linux/drivers/hwmon/corsair-psu.c

845 lines
22 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* corsair-psu.c - Linux driver for Corsair power supplies with HID sensors interface
* Copyright (C) 2020 Wilken Gottwalt <wilken.gottwalt@posteo.net>
*/
#include <linux/completion.h>
#include <linux/debugfs.h>
#include <linux/errno.h>
#include <linux/hid.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/types.h>
/*
* Corsair protocol for PSUs
*
* message size = 64 bytes (request and response, little endian)
* request:
* [length][command][param0][param1][paramX]...
* reply:
* [echo of length][echo of command][data0][data1][dataX]...
*
* - commands are byte sized opcodes
* - length is the sum of all bytes of the commands/params
* - the micro-controller of most of these PSUs support concatenation in the request and reply,
* but it is better to not rely on this (it is also hard to parse)
* - the driver uses raw events to be accessible from userspace (though this is not really
* supported, it is just there for convenience, may be removed in the future)
* - a reply always start with the length and command in the same order the request used it
* - length of the reply data is specific to the command used
* - some of the commands work on a rail and can be switched to a specific rail (0 = 12v,
* 1 = 5v, 2 = 3.3v)
* - the format of the init command 0xFE is swapped length/command bytes
* - parameter bytes amount and values are specific to the command (rail setting is the only
* for now that uses non-zero values)
* - there are much more commands, especially for configuring the device, but they are not
* supported because a wrong command/length can lockup the micro-controller
* - the driver supports debugfs for values not fitting into the hwmon class
* - not every device class (HXi, RMi or AXi) supports all commands
* - it is a pure sensors reading driver (will not support configuring)
*/
#define DRIVER_NAME "corsair-psu"
#define REPLY_SIZE 16 /* max length of a reply to a single command */
#define CMD_BUFFER_SIZE 64
#define CMD_TIMEOUT_MS 250
#define SECONDS_PER_HOUR (60 * 60)
#define SECONDS_PER_DAY (SECONDS_PER_HOUR * 24)
#define RAIL_COUNT 3 /* 3v3 + 5v + 12v */
#define TEMP_COUNT 2
#define OCP_MULTI_RAIL 0x02
#define PSU_CMD_SELECT_RAIL 0x00 /* expects length 2 */
#define PSU_CMD_RAIL_VOLTS_HCRIT 0x40 /* the rest of the commands expect length 3 */
#define PSU_CMD_RAIL_VOLTS_LCRIT 0x44
#define PSU_CMD_RAIL_AMPS_HCRIT 0x46
#define PSU_CMD_TEMP_HCRIT 0x4F
#define PSU_CMD_IN_VOLTS 0x88
#define PSU_CMD_IN_AMPS 0x89
#define PSU_CMD_RAIL_VOLTS 0x8B
#define PSU_CMD_RAIL_AMPS 0x8C
#define PSU_CMD_TEMP0 0x8D
#define PSU_CMD_TEMP1 0x8E
#define PSU_CMD_FAN 0x90
#define PSU_CMD_RAIL_WATTS 0x96
#define PSU_CMD_VEND_STR 0x99
#define PSU_CMD_PROD_STR 0x9A
#define PSU_CMD_TOTAL_UPTIME 0xD1
#define PSU_CMD_UPTIME 0xD2
#define PSU_CMD_OCPMODE 0xD8
#define PSU_CMD_TOTAL_WATTS 0xEE
#define PSU_CMD_INIT 0xFE
#define L_IN_VOLTS "v_in"
#define L_OUT_VOLTS_12V "v_out +12v"
#define L_OUT_VOLTS_5V "v_out +5v"
#define L_OUT_VOLTS_3_3V "v_out +3.3v"
#define L_IN_AMPS "curr in"
#define L_AMPS_12V "curr +12v"
#define L_AMPS_5V "curr +5v"
#define L_AMPS_3_3V "curr +3.3v"
#define L_FAN "psu fan"
#define L_TEMP0 "vrm temp"
#define L_TEMP1 "case temp"
#define L_WATTS "power total"
#define L_WATTS_12V "power +12v"
#define L_WATTS_5V "power +5v"
#define L_WATTS_3_3V "power +3.3v"
static const char *const label_watts[] = {
L_WATTS,
L_WATTS_12V,
L_WATTS_5V,
L_WATTS_3_3V
};
static const char *const label_volts[] = {
L_IN_VOLTS,
L_OUT_VOLTS_12V,
L_OUT_VOLTS_5V,
L_OUT_VOLTS_3_3V
};
static const char *const label_amps[] = {
L_IN_AMPS,
L_AMPS_12V,
L_AMPS_5V,
L_AMPS_3_3V
};
struct corsairpsu_data {
struct hid_device *hdev;
struct device *hwmon_dev;
struct dentry *debugfs;
struct completion wait_completion;
struct mutex lock; /* for locking access to cmd_buffer */
u8 *cmd_buffer;
char vendor[REPLY_SIZE];
char product[REPLY_SIZE];
long temp_crit[TEMP_COUNT];
long in_crit[RAIL_COUNT];
long in_lcrit[RAIL_COUNT];
long curr_crit[RAIL_COUNT];
u8 temp_crit_support;
u8 in_crit_support;
u8 in_lcrit_support;
u8 curr_crit_support;
bool in_curr_cmd_support; /* not all commands are supported on every PSU */
};
/* some values are SMBus LINEAR11 data which need a conversion */
static int corsairpsu_linear11_to_int(const u16 val, const int scale)
{
const int exp = ((s16)val) >> 11;
const int mant = (((s16)(val & 0x7ff)) << 5) >> 5;
const int result = mant * scale;
return (exp >= 0) ? (result << exp) : (result >> -exp);
}
static int corsairpsu_usb_cmd(struct corsairpsu_data *priv, u8 p0, u8 p1, u8 p2, void *data)
{
unsigned long time;
int ret;
memset(priv->cmd_buffer, 0, CMD_BUFFER_SIZE);
priv->cmd_buffer[0] = p0;
priv->cmd_buffer[1] = p1;
priv->cmd_buffer[2] = p2;
reinit_completion(&priv->wait_completion);
ret = hid_hw_output_report(priv->hdev, priv->cmd_buffer, CMD_BUFFER_SIZE);
if (ret < 0)
return ret;
time = wait_for_completion_timeout(&priv->wait_completion,
msecs_to_jiffies(CMD_TIMEOUT_MS));
if (!time)
return -ETIMEDOUT;
/*
* at the start of the reply is an echo of the send command/length in the same order it
* was send, not every command is supported on every device class, if a command is not
* supported, the length value in the reply is okay, but the command value is set to 0
*/
if (p0 != priv->cmd_buffer[0] || p1 != priv->cmd_buffer[1])
return -EOPNOTSUPP;
if (data)
memcpy(data, priv->cmd_buffer + 2, REPLY_SIZE);
return 0;
}
static int corsairpsu_init(struct corsairpsu_data *priv)
{
/*
* PSU_CMD_INIT uses swapped length/command and expects 2 parameter bytes, this command
* actually generates a reply, but we don't need it
*/
return corsairpsu_usb_cmd(priv, PSU_CMD_INIT, 3, 0, NULL);
}
static int corsairpsu_fwinfo(struct corsairpsu_data *priv)
{
int ret;
ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_VEND_STR, 0, priv->vendor);
if (ret < 0)
return ret;
ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_PROD_STR, 0, priv->product);
if (ret < 0)
return ret;
return 0;
}
static int corsairpsu_request(struct corsairpsu_data *priv, u8 cmd, u8 rail, void *data)
{
int ret;
mutex_lock(&priv->lock);
switch (cmd) {
case PSU_CMD_RAIL_VOLTS_HCRIT:
case PSU_CMD_RAIL_VOLTS_LCRIT:
case PSU_CMD_RAIL_AMPS_HCRIT:
case PSU_CMD_RAIL_VOLTS:
case PSU_CMD_RAIL_AMPS:
case PSU_CMD_RAIL_WATTS:
ret = corsairpsu_usb_cmd(priv, 2, PSU_CMD_SELECT_RAIL, rail, NULL);
if (ret < 0)
goto cmd_fail;
break;
default:
break;
}
ret = corsairpsu_usb_cmd(priv, 3, cmd, 0, data);
cmd_fail:
mutex_unlock(&priv->lock);
return ret;
}
static int corsairpsu_get_value(struct corsairpsu_data *priv, u8 cmd, u8 rail, long *val)
{
u8 data[REPLY_SIZE];
long tmp;
int ret;
ret = corsairpsu_request(priv, cmd, rail, data);
if (ret < 0)
return ret;
/*
* the biggest value here comes from the uptime command and to exceed MAXINT total uptime
* needs to be about 68 years, the rest are u16 values and the biggest value coming out of
* the LINEAR11 conversion are the watts values which are about 1200 for the strongest psu
* supported (HX1200i)
*/
tmp = ((long)data[3] << 24) + (data[2] << 16) + (data[1] << 8) + data[0];
switch (cmd) {
case PSU_CMD_RAIL_VOLTS_HCRIT:
case PSU_CMD_RAIL_VOLTS_LCRIT:
case PSU_CMD_RAIL_AMPS_HCRIT:
case PSU_CMD_TEMP_HCRIT:
case PSU_CMD_IN_VOLTS:
case PSU_CMD_IN_AMPS:
case PSU_CMD_RAIL_VOLTS:
case PSU_CMD_RAIL_AMPS:
case PSU_CMD_TEMP0:
case PSU_CMD_TEMP1:
*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000);
break;
case PSU_CMD_FAN:
*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1);
break;
case PSU_CMD_RAIL_WATTS:
case PSU_CMD_TOTAL_WATTS:
*val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000000);
break;
case PSU_CMD_TOTAL_UPTIME:
case PSU_CMD_UPTIME:
case PSU_CMD_OCPMODE:
*val = tmp;
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static void corsairpsu_get_criticals(struct corsairpsu_data *priv)
{
long tmp;
int rail;
for (rail = 0; rail < TEMP_COUNT; ++rail) {
if (!corsairpsu_get_value(priv, PSU_CMD_TEMP_HCRIT, rail, &tmp)) {
priv->temp_crit_support |= BIT(rail);
priv->temp_crit[rail] = tmp;
}
}
for (rail = 0; rail < RAIL_COUNT; ++rail) {
if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_HCRIT, rail, &tmp)) {
priv->in_crit_support |= BIT(rail);
priv->in_crit[rail] = tmp;
}
if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_LCRIT, rail, &tmp)) {
priv->in_lcrit_support |= BIT(rail);
priv->in_lcrit[rail] = tmp;
}
if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS_HCRIT, rail, &tmp)) {
priv->curr_crit_support |= BIT(rail);
priv->curr_crit[rail] = tmp;
}
}
}
static void corsairpsu_check_cmd_support(struct corsairpsu_data *priv)
{
long tmp;
priv->in_curr_cmd_support = !corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, &tmp);
}
static umode_t corsairpsu_hwmon_temp_is_visible(const struct corsairpsu_data *priv, u32 attr,
int channel)
{
umode_t res = 0444;
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_label:
case hwmon_temp_crit:
if (channel > 0 && !(priv->temp_crit_support & BIT(channel - 1)))
res = 0;
break;
default:
break;
}
return res;
}
static umode_t corsairpsu_hwmon_fan_is_visible(const struct corsairpsu_data *priv, u32 attr,
int channel)
{
switch (attr) {
case hwmon_fan_input:
case hwmon_fan_label:
return 0444;
default:
return 0;
}
}
static umode_t corsairpsu_hwmon_power_is_visible(const struct corsairpsu_data *priv, u32 attr,
int channel)
{
switch (attr) {
case hwmon_power_input:
case hwmon_power_label:
return 0444;
default:
return 0;
}
}
static umode_t corsairpsu_hwmon_in_is_visible(const struct corsairpsu_data *priv, u32 attr,
int channel)
{
umode_t res = 0444;
switch (attr) {
case hwmon_in_input:
case hwmon_in_label:
case hwmon_in_crit:
if (channel > 0 && !(priv->in_crit_support & BIT(channel - 1)))
res = 0;
break;
case hwmon_in_lcrit:
if (channel > 0 && !(priv->in_lcrit_support & BIT(channel - 1)))
res = 0;
break;
default:
break;
}
return res;
}
static umode_t corsairpsu_hwmon_curr_is_visible(const struct corsairpsu_data *priv, u32 attr,
int channel)
{
umode_t res = 0444;
switch (attr) {
case hwmon_curr_input:
if (channel == 0 && !priv->in_curr_cmd_support)
res = 0;
break;
case hwmon_curr_label:
case hwmon_curr_crit:
if (channel > 0 && !(priv->curr_crit_support & BIT(channel - 1)))
res = 0;
break;
default:
break;
}
return res;
}
static umode_t corsairpsu_hwmon_ops_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct corsairpsu_data *priv = data;
switch (type) {
case hwmon_temp:
return corsairpsu_hwmon_temp_is_visible(priv, attr, channel);
case hwmon_fan:
return corsairpsu_hwmon_fan_is_visible(priv, attr, channel);
case hwmon_power:
return corsairpsu_hwmon_power_is_visible(priv, attr, channel);
case hwmon_in:
return corsairpsu_hwmon_in_is_visible(priv, attr, channel);
case hwmon_curr:
return corsairpsu_hwmon_curr_is_visible(priv, attr, channel);
default:
return 0;
}
}
static int corsairpsu_hwmon_temp_read(struct corsairpsu_data *priv, u32 attr, int channel,
long *val)
{
int err = -EOPNOTSUPP;
switch (attr) {
case hwmon_temp_input:
return corsairpsu_get_value(priv, channel ? PSU_CMD_TEMP1 : PSU_CMD_TEMP0,
channel, val);
case hwmon_temp_crit:
*val = priv->temp_crit[channel];
err = 0;
break;
default:
break;
}
return err;
}
static int corsairpsu_hwmon_power_read(struct corsairpsu_data *priv, u32 attr, int channel,
long *val)
{
if (attr == hwmon_power_input) {
switch (channel) {
case 0:
return corsairpsu_get_value(priv, PSU_CMD_TOTAL_WATTS, 0, val);
case 1 ... 3:
return corsairpsu_get_value(priv, PSU_CMD_RAIL_WATTS, channel - 1, val);
default:
break;
}
}
return -EOPNOTSUPP;
}
static int corsairpsu_hwmon_in_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val)
{
int err = -EOPNOTSUPP;
switch (attr) {
case hwmon_in_input:
switch (channel) {
case 0:
return corsairpsu_get_value(priv, PSU_CMD_IN_VOLTS, 0, val);
case 1 ... 3:
return corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS, channel - 1, val);
default:
break;
}
break;
case hwmon_in_crit:
*val = priv->in_crit[channel - 1];
err = 0;
break;
case hwmon_in_lcrit:
*val = priv->in_lcrit[channel - 1];
err = 0;
break;
}
return err;
}
static int corsairpsu_hwmon_curr_read(struct corsairpsu_data *priv, u32 attr, int channel,
long *val)
{
int err = -EOPNOTSUPP;
switch (attr) {
case hwmon_curr_input:
switch (channel) {
case 0:
return corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, val);
case 1 ... 3:
return corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS, channel - 1, val);
default:
break;
}
break;
case hwmon_curr_crit:
*val = priv->curr_crit[channel - 1];
err = 0;
break;
default:
break;
}
return err;
}
static int corsairpsu_hwmon_ops_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long *val)
{
struct corsairpsu_data *priv = dev_get_drvdata(dev);
switch (type) {
case hwmon_temp:
return corsairpsu_hwmon_temp_read(priv, attr, channel, val);
case hwmon_fan:
if (attr == hwmon_fan_input)
return corsairpsu_get_value(priv, PSU_CMD_FAN, 0, val);
return -EOPNOTSUPP;
case hwmon_power:
return corsairpsu_hwmon_power_read(priv, attr, channel, val);
case hwmon_in:
return corsairpsu_hwmon_in_read(priv, attr, channel, val);
case hwmon_curr:
return corsairpsu_hwmon_curr_read(priv, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static int corsairpsu_hwmon_ops_read_string(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
if (type == hwmon_temp && attr == hwmon_temp_label) {
*str = channel ? L_TEMP1 : L_TEMP0;
return 0;
} else if (type == hwmon_fan && attr == hwmon_fan_label) {
*str = L_FAN;
return 0;
} else if (type == hwmon_power && attr == hwmon_power_label && channel < 4) {
*str = label_watts[channel];
return 0;
} else if (type == hwmon_in && attr == hwmon_in_label && channel < 4) {
*str = label_volts[channel];
return 0;
} else if (type == hwmon_curr && attr == hwmon_curr_label && channel < 4) {
*str = label_amps[channel];
return 0;
}
return -EOPNOTSUPP;
}
static const struct hwmon_ops corsairpsu_hwmon_ops = {
.is_visible = corsairpsu_hwmon_ops_is_visible,
.read = corsairpsu_hwmon_ops_read,
.read_string = corsairpsu_hwmon_ops_read_string,
};
static const struct hwmon_channel_info * const corsairpsu_info[] = {
HWMON_CHANNEL_INFO(chip,
HWMON_C_REGISTER_TZ),
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT),
HWMON_CHANNEL_INFO(fan,
HWMON_F_INPUT | HWMON_F_LABEL),
HWMON_CHANNEL_INFO(power,
HWMON_P_INPUT | HWMON_P_LABEL,
HWMON_P_INPUT | HWMON_P_LABEL,
HWMON_P_INPUT | HWMON_P_LABEL,
HWMON_P_INPUT | HWMON_P_LABEL),
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT,
HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT,
HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT),
HWMON_CHANNEL_INFO(curr,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT,
HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT,
HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT),
NULL
};
static const struct hwmon_chip_info corsairpsu_chip_info = {
.ops = &corsairpsu_hwmon_ops,
.info = corsairpsu_info,
};
#ifdef CONFIG_DEBUG_FS
static void print_uptime(struct seq_file *seqf, u8 cmd)
{
struct corsairpsu_data *priv = seqf->private;
long val;
int ret;
ret = corsairpsu_get_value(priv, cmd, 0, &val);
if (ret < 0) {
seq_puts(seqf, "N/A\n");
return;
}
if (val > SECONDS_PER_DAY) {
seq_printf(seqf, "%ld day(s), %02ld:%02ld:%02ld\n", val / SECONDS_PER_DAY,
val % SECONDS_PER_DAY / SECONDS_PER_HOUR, val % SECONDS_PER_HOUR / 60,
val % 60);
return;
}
seq_printf(seqf, "%02ld:%02ld:%02ld\n", val % SECONDS_PER_DAY / SECONDS_PER_HOUR,
val % SECONDS_PER_HOUR / 60, val % 60);
}
static int uptime_show(struct seq_file *seqf, void *unused)
{
print_uptime(seqf, PSU_CMD_UPTIME);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(uptime);
static int uptime_total_show(struct seq_file *seqf, void *unused)
{
print_uptime(seqf, PSU_CMD_TOTAL_UPTIME);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(uptime_total);
static int vendor_show(struct seq_file *seqf, void *unused)
{
struct corsairpsu_data *priv = seqf->private;
seq_printf(seqf, "%s\n", priv->vendor);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(vendor);
static int product_show(struct seq_file *seqf, void *unused)
{
struct corsairpsu_data *priv = seqf->private;
seq_printf(seqf, "%s\n", priv->product);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(product);
static int ocpmode_show(struct seq_file *seqf, void *unused)
{
struct corsairpsu_data *priv = seqf->private;
long val;
int ret;
/*
* The rail mode is switchable on the fly. The RAW interface can be used for this. But it
* will not be included here, because I consider it somewhat dangerous for the health of the
* PSU. The returned value can be a bogus one, if the PSU is in the process of switching and
* getting of the value itself can also fail during this. Because of this every other value
* than OCP_MULTI_RAIL can be considered as "single rail".
*/
ret = corsairpsu_get_value(priv, PSU_CMD_OCPMODE, 0, &val);
if (ret < 0)
seq_puts(seqf, "N/A\n");
else
seq_printf(seqf, "%s\n", (val == OCP_MULTI_RAIL) ? "multi rail" : "single rail");
return 0;
}
DEFINE_SHOW_ATTRIBUTE(ocpmode);
static void corsairpsu_debugfs_init(struct corsairpsu_data *priv)
{
char name[32];
scnprintf(name, sizeof(name), "%s-%s", DRIVER_NAME, dev_name(&priv->hdev->dev));
priv->debugfs = debugfs_create_dir(name, NULL);
debugfs_create_file("uptime", 0444, priv->debugfs, priv, &uptime_fops);
debugfs_create_file("uptime_total", 0444, priv->debugfs, priv, &uptime_total_fops);
debugfs_create_file("vendor", 0444, priv->debugfs, priv, &vendor_fops);
debugfs_create_file("product", 0444, priv->debugfs, priv, &product_fops);
debugfs_create_file("ocpmode", 0444, priv->debugfs, priv, &ocpmode_fops);
}
#else
static void corsairpsu_debugfs_init(struct corsairpsu_data *priv)
{
}
#endif
static int corsairpsu_probe(struct hid_device *hdev, const struct hid_device_id *id)
{
struct corsairpsu_data *priv;
int ret;
priv = devm_kzalloc(&hdev->dev, sizeof(struct corsairpsu_data), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->cmd_buffer = devm_kmalloc(&hdev->dev, CMD_BUFFER_SIZE, GFP_KERNEL);
if (!priv->cmd_buffer)
return -ENOMEM;
ret = hid_parse(hdev);
if (ret)
return ret;
ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
if (ret)
return ret;
ret = hid_hw_open(hdev);
if (ret)
goto fail_and_stop;
priv->hdev = hdev;
hid_set_drvdata(hdev, priv);
mutex_init(&priv->lock);
init_completion(&priv->wait_completion);
hid_device_io_start(hdev);
ret = corsairpsu_init(priv);
if (ret < 0) {
dev_err(&hdev->dev, "unable to initialize device (%d)\n", ret);
goto fail_and_stop;
}
ret = corsairpsu_fwinfo(priv);
if (ret < 0) {
dev_err(&hdev->dev, "unable to query firmware (%d)\n", ret);
goto fail_and_stop;
}
corsairpsu_get_criticals(priv);
corsairpsu_check_cmd_support(priv);
priv->hwmon_dev = hwmon_device_register_with_info(&hdev->dev, "corsairpsu", priv,
&corsairpsu_chip_info, NULL);
if (IS_ERR(priv->hwmon_dev)) {
ret = PTR_ERR(priv->hwmon_dev);
goto fail_and_close;
}
corsairpsu_debugfs_init(priv);
return 0;
fail_and_close:
hid_hw_close(hdev);
fail_and_stop:
hid_hw_stop(hdev);
return ret;
}
static void corsairpsu_remove(struct hid_device *hdev)
{
struct corsairpsu_data *priv = hid_get_drvdata(hdev);
debugfs_remove_recursive(priv->debugfs);
hwmon_device_unregister(priv->hwmon_dev);
hid_hw_close(hdev);
hid_hw_stop(hdev);
}
static int corsairpsu_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data,
int size)
{
struct corsairpsu_data *priv = hid_get_drvdata(hdev);
if (completion_done(&priv->wait_completion))
return 0;
memcpy(priv->cmd_buffer, data, min(CMD_BUFFER_SIZE, size));
complete(&priv->wait_completion);
return 0;
}
#ifdef CONFIG_PM
static int corsairpsu_resume(struct hid_device *hdev)
{
struct corsairpsu_data *priv = hid_get_drvdata(hdev);
/* some PSUs turn off the microcontroller during standby, so a reinit is required */
return corsairpsu_init(priv);
}
#endif
static const struct hid_device_id corsairpsu_idtable[] = {
{ HID_USB_DEVICE(0x1b1c, 0x1c03) }, /* Corsair HX550i */
{ HID_USB_DEVICE(0x1b1c, 0x1c04) }, /* Corsair HX650i */
{ HID_USB_DEVICE(0x1b1c, 0x1c05) }, /* Corsair HX750i */
{ HID_USB_DEVICE(0x1b1c, 0x1c06) }, /* Corsair HX850i */
{ HID_USB_DEVICE(0x1b1c, 0x1c07) }, /* Corsair HX1000i revision 1 */
{ HID_USB_DEVICE(0x1b1c, 0x1c08) }, /* Corsair HX1200i */
{ HID_USB_DEVICE(0x1b1c, 0x1c09) }, /* Corsair RM550i */
{ HID_USB_DEVICE(0x1b1c, 0x1c0a) }, /* Corsair RM650i */
{ HID_USB_DEVICE(0x1b1c, 0x1c0b) }, /* Corsair RM750i */
{ HID_USB_DEVICE(0x1b1c, 0x1c0c) }, /* Corsair RM850i */
{ HID_USB_DEVICE(0x1b1c, 0x1c0d) }, /* Corsair RM1000i */
{ HID_USB_DEVICE(0x1b1c, 0x1c1e) }, /* Corsair HX1000i revision 2 */
{ HID_USB_DEVICE(0x1b1c, 0x1c1f) }, /* Corsair HX1500i */
{ },
};
MODULE_DEVICE_TABLE(hid, corsairpsu_idtable);
static struct hid_driver corsairpsu_driver = {
.name = DRIVER_NAME,
.id_table = corsairpsu_idtable,
.probe = corsairpsu_probe,
.remove = corsairpsu_remove,
.raw_event = corsairpsu_raw_event,
#ifdef CONFIG_PM
.resume = corsairpsu_resume,
.reset_resume = corsairpsu_resume,
#endif
};
module_hid_driver(corsairpsu_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Wilken Gottwalt <wilken.gottwalt@posteo.net>");
MODULE_DESCRIPTION("Linux driver for Corsair power supplies with HID sensors interface");