linux/fs/nfsd/nfs2acl.c

394 lines
9.3 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
// SPDX-License-Identifier: GPL-2.0
/*
* Process version 2 NFSACL requests.
*
* Copyright (C) 2002-2003 Andreas Gruenbacher <agruen@suse.de>
*/
#include "nfsd.h"
/* FIXME: nfsacl.h is a broken header */
#include <linux/nfsacl.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/gfp.h>
#include "cache.h"
#include "xdr3.h"
#include "vfs.h"
#define NFSDDBG_FACILITY NFSDDBG_PROC
/*
* NULL call.
*/
static __be32
nfsacld_proc_null(struct svc_rqst *rqstp)
{
return rpc_success;
}
/*
* Get the Access and/or Default ACL of a file.
*/
static __be32 nfsacld_proc_getacl(struct svc_rqst *rqstp)
{
struct nfsd3_getaclargs *argp = rqstp->rq_argp;
struct nfsd3_getaclres *resp = rqstp->rq_resp;
struct posix_acl *acl;
struct inode *inode;
svc_fh *fh;
dprintk("nfsd: GETACL(2acl) %s\n", SVCFH_fmt(&argp->fh));
fh = fh_copy(&resp->fh, &argp->fh);
resp->status = fh_verify(rqstp, &resp->fh, 0, NFSD_MAY_NOP);
if (resp->status != nfs_ok)
goto out;
inode = d_inode(fh->fh_dentry);
if (argp->mask & ~NFS_ACL_MASK) {
resp->status = nfserr_inval;
goto out;
}
resp->mask = argp->mask;
resp->status = fh_getattr(fh, &resp->stat);
if (resp->status != nfs_ok)
goto out;
if (resp->mask & (NFS_ACL|NFS_ACLCNT)) {
acl = get_acl(inode, ACL_TYPE_ACCESS);
if (acl == NULL) {
/* Solaris returns the inode's minimum ACL. */
acl = posix_acl_from_mode(inode->i_mode, GFP_KERNEL);
}
if (IS_ERR(acl)) {
resp->status = nfserrno(PTR_ERR(acl));
goto fail;
}
resp->acl_access = acl;
}
if (resp->mask & (NFS_DFACL|NFS_DFACLCNT)) {
/* Check how Solaris handles requests for the Default ACL
of a non-directory! */
acl = get_acl(inode, ACL_TYPE_DEFAULT);
if (IS_ERR(acl)) {
resp->status = nfserrno(PTR_ERR(acl));
goto fail;
}
resp->acl_default = acl;
}
/* resp->acl_{access,default} are released in nfssvc_release_getacl. */
out:
return rpc_success;
fail:
posix_acl_release(resp->acl_access);
posix_acl_release(resp->acl_default);
goto out;
}
/*
* Set the Access and/or Default ACL of a file.
*/
static __be32 nfsacld_proc_setacl(struct svc_rqst *rqstp)
{
struct nfsd3_setaclargs *argp = rqstp->rq_argp;
struct nfsd_attrstat *resp = rqstp->rq_resp;
struct inode *inode;
svc_fh *fh;
int error;
dprintk("nfsd: SETACL(2acl) %s\n", SVCFH_fmt(&argp->fh));
fh = fh_copy(&resp->fh, &argp->fh);
resp->status = fh_verify(rqstp, &resp->fh, 0, NFSD_MAY_SATTR);
if (resp->status != nfs_ok)
goto out;
inode = d_inode(fh->fh_dentry);
error = fh_want_write(fh);
if (error)
goto out_errno;
fh_lock(fh);
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 14:19:27 +01:00
error = set_posix_acl(&init_user_ns, inode, ACL_TYPE_ACCESS,
argp->acl_access);
if (error)
goto out_drop_lock;
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 14:19:27 +01:00
error = set_posix_acl(&init_user_ns, inode, ACL_TYPE_DEFAULT,
argp->acl_default);
if (error)
goto out_drop_lock;
fh_unlock(fh);
fh_drop_write(fh);
resp->status = fh_getattr(fh, &resp->stat);
out:
/* argp->acl_{access,default} may have been allocated in
nfssvc_decode_setaclargs. */
posix_acl_release(argp->acl_access);
posix_acl_release(argp->acl_default);
return rpc_success;
out_drop_lock:
fh_unlock(fh);
fh_drop_write(fh);
out_errno:
resp->status = nfserrno(error);
goto out;
}
/*
* Check file attributes
*/
static __be32 nfsacld_proc_getattr(struct svc_rqst *rqstp)
{
struct nfsd_fhandle *argp = rqstp->rq_argp;
struct nfsd_attrstat *resp = rqstp->rq_resp;
dprintk("nfsd: GETATTR %s\n", SVCFH_fmt(&argp->fh));
fh_copy(&resp->fh, &argp->fh);
resp->status = fh_verify(rqstp, &resp->fh, 0, NFSD_MAY_NOP);
if (resp->status != nfs_ok)
goto out;
resp->status = fh_getattr(&resp->fh, &resp->stat);
out:
return rpc_success;
}
/*
* Check file access
*/
static __be32 nfsacld_proc_access(struct svc_rqst *rqstp)
{
struct nfsd3_accessargs *argp = rqstp->rq_argp;
struct nfsd3_accessres *resp = rqstp->rq_resp;
dprintk("nfsd: ACCESS(2acl) %s 0x%x\n",
SVCFH_fmt(&argp->fh),
argp->access);
fh_copy(&resp->fh, &argp->fh);
resp->access = argp->access;
resp->status = nfsd_access(rqstp, &resp->fh, &resp->access, NULL);
if (resp->status != nfs_ok)
goto out;
resp->status = fh_getattr(&resp->fh, &resp->stat);
out:
return rpc_success;
}
/*
* XDR decode functions
*/
static bool
nfsaclsvc_decode_getaclargs(struct svc_rqst *rqstp, struct xdr_stream *xdr)
{
struct nfsd3_getaclargs *argp = rqstp->rq_argp;
if (!svcxdr_decode_fhandle(xdr, &argp->fh))
return false;
if (xdr_stream_decode_u32(xdr, &argp->mask) < 0)
return false;
return true;
}
static bool
nfsaclsvc_decode_setaclargs(struct svc_rqst *rqstp, struct xdr_stream *xdr)
{
struct nfsd3_setaclargs *argp = rqstp->rq_argp;
if (!svcxdr_decode_fhandle(xdr, &argp->fh))
return false;
if (xdr_stream_decode_u32(xdr, &argp->mask) < 0)
return false;
if (argp->mask & ~NFS_ACL_MASK)
return false;
if (!nfs_stream_decode_acl(xdr, NULL, (argp->mask & NFS_ACL) ?
&argp->acl_access : NULL))
return false;
if (!nfs_stream_decode_acl(xdr, NULL, (argp->mask & NFS_DFACL) ?
&argp->acl_default : NULL))
return false;
return true;
}
static bool
nfsaclsvc_decode_accessargs(struct svc_rqst *rqstp, struct xdr_stream *xdr)
{
struct nfsd3_accessargs *args = rqstp->rq_argp;
if (!svcxdr_decode_fhandle(xdr, &args->fh))
return false;
if (xdr_stream_decode_u32(xdr, &args->access) < 0)
return false;
return true;
}
/*
* XDR encode functions
*/
/* GETACL */
static bool
nfsaclsvc_encode_getaclres(struct svc_rqst *rqstp, struct xdr_stream *xdr)
{
struct nfsd3_getaclres *resp = rqstp->rq_resp;
struct dentry *dentry = resp->fh.fh_dentry;
struct inode *inode;
int w;
if (!svcxdr_encode_stat(xdr, resp->status))
return false;
if (dentry == NULL || d_really_is_negative(dentry))
return true;
inode = d_inode(dentry);
if (!svcxdr_encode_fattr(rqstp, xdr, &resp->fh, &resp->stat))
return false;
if (xdr_stream_encode_u32(xdr, resp->mask) < 0)
return false;
rqstp->rq_res.page_len = w = nfsacl_size(
(resp->mask & NFS_ACL) ? resp->acl_access : NULL,
(resp->mask & NFS_DFACL) ? resp->acl_default : NULL);
while (w > 0) {
if (!*(rqstp->rq_next_page++))
return true;
w -= PAGE_SIZE;
}
if (!nfs_stream_encode_acl(xdr, inode, resp->acl_access,
resp->mask & NFS_ACL, 0))
return false;
if (!nfs_stream_encode_acl(xdr, inode, resp->acl_default,
resp->mask & NFS_DFACL, NFS_ACL_DEFAULT))
return false;
return true;
}
/* ACCESS */
static bool
nfsaclsvc_encode_accessres(struct svc_rqst *rqstp, struct xdr_stream *xdr)
{
struct nfsd3_accessres *resp = rqstp->rq_resp;
if (!svcxdr_encode_stat(xdr, resp->status))
return false;
switch (resp->status) {
case nfs_ok:
if (!svcxdr_encode_fattr(rqstp, xdr, &resp->fh, &resp->stat))
return false;
if (xdr_stream_encode_u32(xdr, resp->access) < 0)
return false;
break;
}
return true;
}
/*
* XDR release functions
*/
static void nfsaclsvc_release_getacl(struct svc_rqst *rqstp)
{
struct nfsd3_getaclres *resp = rqstp->rq_resp;
fh_put(&resp->fh);
posix_acl_release(resp->acl_access);
posix_acl_release(resp->acl_default);
}
static void nfsaclsvc_release_access(struct svc_rqst *rqstp)
{
struct nfsd3_accessres *resp = rqstp->rq_resp;
fh_put(&resp->fh);
}
struct nfsd3_voidargs { int dummy; };
#define ST 1 /* status*/
#define AT 21 /* attributes */
#define pAT (1+AT) /* post attributes - conditional */
#define ACL (1+NFS_ACL_MAX_ENTRIES*3) /* Access Control List */
static const struct svc_procedure nfsd_acl_procedures2[5] = {
[ACLPROC2_NULL] = {
.pc_func = nfsacld_proc_null,
.pc_decode = nfssvc_decode_voidarg,
.pc_encode = nfssvc_encode_voidres,
.pc_argsize = sizeof(struct nfsd_voidargs),
.pc_ressize = sizeof(struct nfsd_voidres),
.pc_cachetype = RC_NOCACHE,
.pc_xdrressize = ST,
.pc_name = "NULL",
},
[ACLPROC2_GETACL] = {
.pc_func = nfsacld_proc_getacl,
.pc_decode = nfsaclsvc_decode_getaclargs,
.pc_encode = nfsaclsvc_encode_getaclres,
.pc_release = nfsaclsvc_release_getacl,
.pc_argsize = sizeof(struct nfsd3_getaclargs),
.pc_ressize = sizeof(struct nfsd3_getaclres),
.pc_cachetype = RC_NOCACHE,
.pc_xdrressize = ST+1+2*(1+ACL),
.pc_name = "GETACL",
},
[ACLPROC2_SETACL] = {
.pc_func = nfsacld_proc_setacl,
.pc_decode = nfsaclsvc_decode_setaclargs,
.pc_encode = nfssvc_encode_attrstatres,
.pc_release = nfssvc_release_attrstat,
.pc_argsize = sizeof(struct nfsd3_setaclargs),
.pc_ressize = sizeof(struct nfsd_attrstat),
.pc_cachetype = RC_NOCACHE,
.pc_xdrressize = ST+AT,
.pc_name = "SETACL",
},
[ACLPROC2_GETATTR] = {
.pc_func = nfsacld_proc_getattr,
.pc_decode = nfssvc_decode_fhandleargs,
.pc_encode = nfssvc_encode_attrstatres,
.pc_release = nfssvc_release_attrstat,
.pc_argsize = sizeof(struct nfsd_fhandle),
.pc_ressize = sizeof(struct nfsd_attrstat),
.pc_cachetype = RC_NOCACHE,
.pc_xdrressize = ST+AT,
.pc_name = "GETATTR",
},
[ACLPROC2_ACCESS] = {
.pc_func = nfsacld_proc_access,
.pc_decode = nfsaclsvc_decode_accessargs,
.pc_encode = nfsaclsvc_encode_accessres,
.pc_release = nfsaclsvc_release_access,
.pc_argsize = sizeof(struct nfsd3_accessargs),
.pc_ressize = sizeof(struct nfsd3_accessres),
.pc_cachetype = RC_NOCACHE,
.pc_xdrressize = ST+AT+1,
.pc_name = "SETATTR",
},
};
static unsigned int nfsd_acl_count2[ARRAY_SIZE(nfsd_acl_procedures2)];
const struct svc_version nfsd_acl_version2 = {
.vs_vers = 2,
.vs_nproc = 5,
.vs_proc = nfsd_acl_procedures2,
.vs_count = nfsd_acl_count2,
.vs_dispatch = nfsd_dispatch,
.vs_xdrsize = NFS3_SVC_XDRSIZE,
};