468 lines
11 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157 Based on 3 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [graeme] [gregory] [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema] [hk] [hemahk]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 1105 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-27 08:55:06 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* lm83.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (C) 2003-2009 Jean Delvare <jdelvare@suse.de>
*
* Heavily inspired from the lm78, lm75 and adm1021 drivers. The LM83 is
* a sensor chip made by National Semiconductor. It reports up to four
* temperatures (its own plus up to three external ones) with a 1 deg
* resolution and a 3-4 deg accuracy. Complete datasheet can be obtained
* from National's website at:
* http://www.national.com/pf/LM/LM83.html
* Since the datasheet omits to give the chip stepping code, I give it
* here: 0x03 (at register 0xff).
*
* Also supports the LM82 temp sensor, which is basically a stripped down
* model of the LM83. Datasheet is here:
* http://www.national.com/pf/LM/LM82.html
*/
#include <linux/bits.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/slab.h>
/*
* Addresses to scan
* Address is selected using 2 three-level pins, resulting in 9 possible
* addresses.
*/
static const unsigned short normal_i2c[] = {
0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x4c, 0x4d, 0x4e, I2C_CLIENT_END };
enum chips { lm83, lm82 };
/*
* The LM83 registers
* Manufacturer ID is 0x01 for National Semiconductor.
*/
#define LM83_REG_R_MAN_ID 0xFE
#define LM83_REG_R_CHIP_ID 0xFF
#define LM83_REG_R_CONFIG 0x03
#define LM83_REG_W_CONFIG 0x09
#define LM83_REG_R_STATUS1 0x02
#define LM83_REG_R_STATUS2 0x35
#define LM83_REG_R_LOCAL_TEMP 0x00
#define LM83_REG_R_LOCAL_HIGH 0x05
#define LM83_REG_W_LOCAL_HIGH 0x0B
#define LM83_REG_R_REMOTE1_TEMP 0x30
#define LM83_REG_R_REMOTE1_HIGH 0x38
#define LM83_REG_W_REMOTE1_HIGH 0x50
#define LM83_REG_R_REMOTE2_TEMP 0x01
#define LM83_REG_R_REMOTE2_HIGH 0x07
#define LM83_REG_W_REMOTE2_HIGH 0x0D
#define LM83_REG_R_REMOTE3_TEMP 0x31
#define LM83_REG_R_REMOTE3_HIGH 0x3A
#define LM83_REG_W_REMOTE3_HIGH 0x52
#define LM83_REG_R_TCRIT 0x42
#define LM83_REG_W_TCRIT 0x5A
static const u8 LM83_REG_TEMP[] = {
LM83_REG_R_LOCAL_TEMP,
LM83_REG_R_REMOTE1_TEMP,
LM83_REG_R_REMOTE2_TEMP,
LM83_REG_R_REMOTE3_TEMP,
};
static const u8 LM83_REG_MAX[] = {
LM83_REG_R_LOCAL_HIGH,
LM83_REG_R_REMOTE1_HIGH,
LM83_REG_R_REMOTE2_HIGH,
LM83_REG_R_REMOTE3_HIGH,
};
/* alarm and fault registers and bits, indexed by channel */
static const u8 LM83_ALARM_REG[] = {
LM83_REG_R_STATUS1, LM83_REG_R_STATUS2, LM83_REG_R_STATUS1, LM83_REG_R_STATUS2
};
static const u8 LM83_MAX_ALARM_BIT[] = {
BIT(6), BIT(7), BIT(4), BIT(4)
};
static const u8 LM83_CRIT_ALARM_BIT[] = {
BIT(0), BIT(0), BIT(1), BIT(1)
};
static const u8 LM83_FAULT_BIT[] = {
0, BIT(5), BIT(2), BIT(2)
};
/*
* Client data (each client gets its own)
*/
struct lm83_data {
struct regmap *regmap;
enum chips type;
};
/* regmap code */
static int lm83_regmap_reg_read(void *context, unsigned int reg, unsigned int *val)
{
struct i2c_client *client = context;
int ret;
ret = i2c_smbus_read_byte_data(client, reg);
if (ret < 0)
return ret;
*val = ret;
return 0;
}
/*
* The regmap write function maps read register addresses to write register
* addresses. This is necessary for regmap register caching to work.
* An alternative would be to clear the regmap cache whenever a register is
* written, but that would be much more expensive.
*/
static int lm83_regmap_reg_write(void *context, unsigned int reg, unsigned int val)
{
struct i2c_client *client = context;
switch (reg) {
case LM83_REG_R_CONFIG:
case LM83_REG_R_LOCAL_HIGH:
case LM83_REG_R_REMOTE2_HIGH:
reg += 0x06;
break;
case LM83_REG_R_REMOTE1_HIGH:
case LM83_REG_R_REMOTE3_HIGH:
case LM83_REG_R_TCRIT:
reg += 0x18;
break;
default:
break;
}
return i2c_smbus_write_byte_data(client, reg, val);
}
static bool lm83_regmap_is_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case LM83_REG_R_LOCAL_TEMP:
case LM83_REG_R_REMOTE1_TEMP:
case LM83_REG_R_REMOTE2_TEMP:
case LM83_REG_R_REMOTE3_TEMP:
case LM83_REG_R_STATUS1:
case LM83_REG_R_STATUS2:
return true;
default:
return false;
}
}
static const struct regmap_config lm83_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_RBTREE,
.volatile_reg = lm83_regmap_is_volatile,
.reg_read = lm83_regmap_reg_read,
.reg_write = lm83_regmap_reg_write,
};
/* hwmon API */
static int lm83_temp_read(struct device *dev, u32 attr, int channel, long *val)
{
struct lm83_data *data = dev_get_drvdata(dev);
unsigned int regval;
int err;
switch (attr) {
case hwmon_temp_input:
err = regmap_read(data->regmap, LM83_REG_TEMP[channel], &regval);
if (err < 0)
return err;
*val = (s8)regval * 1000;
break;
case hwmon_temp_max:
err = regmap_read(data->regmap, LM83_REG_MAX[channel], &regval);
if (err < 0)
return err;
*val = (s8)regval * 1000;
break;
case hwmon_temp_crit:
err = regmap_read(data->regmap, LM83_REG_R_TCRIT, &regval);
if (err < 0)
return err;
*val = (s8)regval * 1000;
break;
case hwmon_temp_max_alarm:
err = regmap_read(data->regmap, LM83_ALARM_REG[channel], &regval);
if (err < 0)
return err;
*val = !!(regval & LM83_MAX_ALARM_BIT[channel]);
break;
case hwmon_temp_crit_alarm:
err = regmap_read(data->regmap, LM83_ALARM_REG[channel], &regval);
if (err < 0)
return err;
*val = !!(regval & LM83_CRIT_ALARM_BIT[channel]);
break;
case hwmon_temp_fault:
err = regmap_read(data->regmap, LM83_ALARM_REG[channel], &regval);
if (err < 0)
return err;
*val = !!(regval & LM83_FAULT_BIT[channel]);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int lm83_temp_write(struct device *dev, u32 attr, int channel, long val)
{
struct lm83_data *data = dev_get_drvdata(dev);
unsigned int regval;
int err;
regval = DIV_ROUND_CLOSEST(clamp_val(val, -128000, 127000), 1000);
switch (attr) {
case hwmon_temp_max:
err = regmap_write(data->regmap, LM83_REG_MAX[channel], regval);
if (err < 0)
return err;
break;
case hwmon_temp_crit:
err = regmap_write(data->regmap, LM83_REG_R_TCRIT, regval);
if (err < 0)
return err;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int lm83_chip_read(struct device *dev, u32 attr, int channel, long *val)
{
struct lm83_data *data = dev_get_drvdata(dev);
unsigned int regval;
int err;
switch (attr) {
case hwmon_chip_alarms:
err = regmap_read(data->regmap, LM83_REG_R_STATUS1, &regval);
if (err < 0)
return err;
*val = regval;
err = regmap_read(data->regmap, LM83_REG_R_STATUS2, &regval);
if (err < 0)
return err;
*val |= regval << 8;
return 0;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int lm83_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_chip:
return lm83_chip_read(dev, attr, channel, val);
case hwmon_temp:
return lm83_temp_read(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static int lm83_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
switch (type) {
case hwmon_temp:
return lm83_temp_write(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static umode_t lm83_is_visible(const void *_data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct lm83_data *data = _data;
/*
* LM82 only supports a single external channel, modeled as channel 2.
*/
if (data->type == lm82 && (channel == 1 || channel == 3))
return 0;
switch (type) {
case hwmon_chip:
if (attr == hwmon_chip_alarms)
return 0444;
break;
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_max_alarm:
case hwmon_temp_crit_alarm:
return 0444;
case hwmon_temp_fault:
if (channel)
return 0444;
break;
case hwmon_temp_max:
return 0644;
case hwmon_temp_crit:
if (channel == 2)
return 0644;
return 0444;
default:
break;
}
break;
default:
break;
}
return 0;
}
static const struct hwmon_channel_info *lm83_info[] = {
HWMON_CHANNEL_INFO(chip, HWMON_C_ALARMS),
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT |
HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT |
HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT |
HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT |
HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT
),
NULL
};
static const struct hwmon_ops lm83_hwmon_ops = {
.is_visible = lm83_is_visible,
.read = lm83_read,
.write = lm83_write,
};
static const struct hwmon_chip_info lm83_chip_info = {
.ops = &lm83_hwmon_ops,
.info = lm83_info,
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int lm83_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
const char *name;
u8 man_id, chip_id;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/* Detection */
if ((i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS1) & 0xA8) ||
(i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS2) & 0x48) ||
(i2c_smbus_read_byte_data(client, LM83_REG_R_CONFIG) & 0x41)) {
dev_dbg(&adapter->dev, "LM83 detection failed at 0x%02x\n",
client->addr);
return -ENODEV;
}
/* Identification */
man_id = i2c_smbus_read_byte_data(client, LM83_REG_R_MAN_ID);
if (man_id != 0x01) /* National Semiconductor */
return -ENODEV;
chip_id = i2c_smbus_read_byte_data(client, LM83_REG_R_CHIP_ID);
switch (chip_id) {
case 0x03:
/*
* According to the LM82 datasheet dated March 2013, recent
* revisions of LM82 have a die revision of 0x03. This was
* confirmed with a real chip. Further details in this revision
* of the LM82 datasheet strongly suggest that LM82 is just a
* repackaged LM83. It is therefore impossible to distinguish
* those chips from LM83, and they will be misdetected as LM83.
*/
name = "lm83";
break;
case 0x01:
name = "lm82";
break;
default:
/* identification failed */
dev_dbg(&adapter->dev,
"Unsupported chip (man_id=0x%02X, chip_id=0x%02X)\n",
man_id, chip_id);
return -ENODEV;
}
strscpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static const struct i2c_device_id lm83_id[] = {
{ "lm83", lm83 },
{ "lm82", lm82 },
{ }
};
MODULE_DEVICE_TABLE(i2c, lm83_id);
static int lm83_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct device *hwmon_dev;
struct lm83_data *data;
data = devm_kzalloc(dev, sizeof(struct lm83_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->regmap = devm_regmap_init(dev, NULL, client, &lm83_regmap_config);
if (IS_ERR(data->regmap))
return PTR_ERR(data->regmap);
data->type = i2c_match_id(lm83_id, client)->driver_data;
hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
data, &lm83_chip_info, NULL);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
/*
* Driver data (common to all clients)
*/
static struct i2c_driver lm83_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "lm83",
},
.probe_new = lm83_probe,
.id_table = lm83_id,
.detect = lm83_detect,
.address_list = normal_i2c,
};
module_i2c_driver(lm83_driver);
MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
MODULE_DESCRIPTION("LM83 driver");
MODULE_LICENSE("GPL");