2005-04-17 02:20:36 +04:00
# ifndef _ASM_IA64_SYSTEM_H
# define _ASM_IA64_SYSTEM_H
/*
* System defines . Note that this is included both from . c and . S
* files , so it does only defines , not any C code . This is based
* on information published in the Processor Abstraction Layer
* and the System Abstraction Layer manual .
*
* Copyright ( C ) 1998 - 2003 Hewlett - Packard Co
* David Mosberger - Tang < davidm @ hpl . hp . com >
* Copyright ( C ) 1999 Asit Mallick < asit . k . mallick @ intel . com >
* Copyright ( C ) 1999 Don Dugger < don . dugger @ intel . com >
*/
# include <linux/config.h>
# include <asm/kregs.h>
# include <asm/page.h>
# include <asm/pal.h>
# include <asm/percpu.h>
2005-08-17 06:54:00 +04:00
# define GATE_ADDR RGN_BASE(RGN_GATE)
2005-04-17 02:20:36 +04:00
/*
* 0xa000000000000000 + 2 * PERCPU_PAGE_SIZE
* - 0xa000000000000000 + 3 * PERCPU_PAGE_SIZE remain unmapped ( guard page )
*/
2005-08-17 06:54:00 +04:00
# define KERNEL_START (GATE_ADDR+0x100000000)
2005-04-17 02:20:36 +04:00
# define PERCPU_ADDR (-PERCPU_PAGE_SIZE)
# ifndef __ASSEMBLY__
# include <linux/kernel.h>
# include <linux/types.h>
struct pci_vector_struct {
__u16 segment ; /* PCI Segment number */
__u16 bus ; /* PCI Bus number */
__u32 pci_id ; /* ACPI split 16 bits device, 16 bits function (see section 6.1.1) */
__u8 pin ; /* PCI PIN (0 = A, 1 = B, 2 = C, 3 = D) */
__u32 irq ; /* IRQ assigned */
} ;
extern struct ia64_boot_param {
__u64 command_line ; /* physical address of command line arguments */
__u64 efi_systab ; /* physical address of EFI system table */
__u64 efi_memmap ; /* physical address of EFI memory map */
__u64 efi_memmap_size ; /* size of EFI memory map */
__u64 efi_memdesc_size ; /* size of an EFI memory map descriptor */
__u32 efi_memdesc_version ; /* memory descriptor version */
struct {
__u16 num_cols ; /* number of columns on console output device */
__u16 num_rows ; /* number of rows on console output device */
__u16 orig_x ; /* cursor's x position */
__u16 orig_y ; /* cursor's y position */
} console_info ;
__u64 fpswa ; /* physical address of the fpswa interface */
__u64 initrd_start ;
__u64 initrd_size ;
} * ia64_boot_param ;
/*
* Macros to force memory ordering . In these descriptions , " previous "
* and " subsequent " refer to program order ; " visible " means that all
* architecturally visible effects of a memory access have occurred
* ( at a minimum , this means the memory has been read or written ) .
*
* wmb ( ) : Guarantees that all preceding stores to memory -
* like regions are visible before any subsequent
* stores and that all following stores will be
* visible only after all previous stores .
* rmb ( ) : Like wmb ( ) , but for reads .
* mb ( ) : wmb ( ) / rmb ( ) combo , i . e . , all previous memory
* accesses are visible before all subsequent
* accesses and vice versa . This is also known as
* a " fence. "
*
* Note : " mb() " and its variants cannot be used as a fence to order
* accesses to memory mapped I / O registers . For that , mf . a needs to
* be used . However , we don ' t want to always use mf . a because ( a )
* it ' s ( presumably ) much slower than mf and ( b ) mf . a is supported for
* sequential memory pages only .
*/
# define mb() ia64_mf()
# define rmb() mb()
# define wmb() mb()
# define read_barrier_depends() do { } while(0)
# ifdef CONFIG_SMP
# define smp_mb() mb()
# define smp_rmb() rmb()
# define smp_wmb() wmb()
# define smp_read_barrier_depends() read_barrier_depends()
# else
# define smp_mb() barrier()
# define smp_rmb() barrier()
# define smp_wmb() barrier()
# define smp_read_barrier_depends() do { } while(0)
# endif
/*
* XXX check on these - - - I suspect what Linus really wants here is
* acquire vs release semantics but we can ' t discuss this stuff with
* Linus just yet . Grrr . . .
*/
# define set_mb(var, value) do { (var) = (value); mb(); } while (0)
# define set_wmb(var, value) do { (var) = (value); mb(); } while (0)
# define safe_halt() ia64_pal_halt_light() /* PAL_HALT_LIGHT */
/*
* The group barrier in front of the rsm & ssm are necessary to ensure
* that none of the previous instructions in the same group are
* affected by the rsm / ssm .
*/
/* For spinlocks etc */
/*
* - clearing psr . i is implicitly serialized ( visible by next insn )
* - setting psr . i requires data serialization
* - we need a stop - bit before reading PSR because we sometimes
* write a floating - point register right before reading the PSR
* and that writes to PSR . mfl
*/
# define __local_irq_save(x) \
do { \
ia64_stop ( ) ; \
( x ) = ia64_getreg ( _IA64_REG_PSR ) ; \
ia64_stop ( ) ; \
ia64_rsm ( IA64_PSR_I ) ; \
} while ( 0 )
# define __local_irq_disable() \
do { \
ia64_stop ( ) ; \
ia64_rsm ( IA64_PSR_I ) ; \
} while ( 0 )
# define __local_irq_restore(x) ia64_intrin_local_irq_restore((x) & IA64_PSR_I)
# ifdef CONFIG_IA64_DEBUG_IRQ
extern unsigned long last_cli_ip ;
# define __save_ip() last_cli_ip = ia64_getreg(_IA64_REG_IP)
# define local_irq_save(x) \
do { \
unsigned long psr ; \
\
__local_irq_save ( psr ) ; \
if ( psr & IA64_PSR_I ) \
__save_ip ( ) ; \
( x ) = psr ; \
} while ( 0 )
# define local_irq_disable() do { unsigned long x; local_irq_save(x); } while (0)
# define local_irq_restore(x) \
do { \
unsigned long old_psr , psr = ( x ) ; \
\
local_save_flags ( old_psr ) ; \
__local_irq_restore ( psr ) ; \
if ( ( old_psr & IA64_PSR_I ) & & ! ( psr & IA64_PSR_I ) ) \
__save_ip ( ) ; \
} while ( 0 )
# else /* !CONFIG_IA64_DEBUG_IRQ */
# define local_irq_save(x) __local_irq_save(x)
# define local_irq_disable() __local_irq_disable()
# define local_irq_restore(x) __local_irq_restore(x)
# endif /* !CONFIG_IA64_DEBUG_IRQ */
# define local_irq_enable() ({ ia64_stop(); ia64_ssm(IA64_PSR_I); ia64_srlz_d(); })
# define local_save_flags(flags) ({ ia64_stop(); (flags) = ia64_getreg(_IA64_REG_PSR); })
# define irqs_disabled() \
( { \
unsigned long __ia64_id_flags ; \
local_save_flags ( __ia64_id_flags ) ; \
( __ia64_id_flags & IA64_PSR_I ) = = 0 ; \
} )
# ifdef __KERNEL__
# ifdef CONFIG_IA32_SUPPORT
# define IS_IA32_PROCESS(regs) (ia64_psr(regs)->is != 0)
# else
# define IS_IA32_PROCESS(regs) 0
struct task_struct ;
static inline void ia32_save_state ( struct task_struct * t __attribute__ ( ( unused ) ) ) { }
static inline void ia32_load_state ( struct task_struct * t __attribute__ ( ( unused ) ) ) { }
# endif
/*
* Context switch from one thread to another . If the two threads have
* different address spaces , schedule ( ) has already taken care of
* switching to the new address space by calling switch_mm ( ) .
*
* Disabling access to the fph partition and the debug - register
* context switch MUST be done before calling ia64_switch_to ( ) since a
* newly created thread returns directly to
* ia64_ret_from_syscall_clear_r8 .
*/
extern struct task_struct * ia64_switch_to ( void * next_task ) ;
struct task_struct ;
extern void ia64_save_extra ( struct task_struct * task ) ;
extern void ia64_load_extra ( struct task_struct * task ) ;
# ifdef CONFIG_PERFMON
DECLARE_PER_CPU ( unsigned long , pfm_syst_info ) ;
# define PERFMON_IS_SYSWIDE() (__get_cpu_var(pfm_syst_info) & 0x1)
# else
# define PERFMON_IS_SYSWIDE() (0)
# endif
# define IA64_HAS_EXTRA_STATE(t) \
( ( t ) - > thread . flags & ( IA64_THREAD_DBG_VALID | IA64_THREAD_PM_VALID ) \
| | IS_IA32_PROCESS ( ia64_task_regs ( t ) ) | | PERFMON_IS_SYSWIDE ( ) )
# define __switch_to(prev,next,last) do { \
if ( IA64_HAS_EXTRA_STATE ( prev ) ) \
ia64_save_extra ( prev ) ; \
if ( IA64_HAS_EXTRA_STATE ( next ) ) \
ia64_load_extra ( next ) ; \
ia64_psr ( ia64_task_regs ( next ) ) - > dfh = ! ia64_is_local_fpu_owner ( next ) ; \
( last ) = ia64_switch_to ( ( next ) ) ; \
} while ( 0 )
# ifdef CONFIG_SMP
/*
* In the SMP case , we save the fph state when context - switching away from a thread that
* modified fph . This way , when the thread gets scheduled on another CPU , the CPU can
* pick up the state from task - > thread . fph , avoiding the complication of having to fetch
* the latest fph state from another CPU . In other words : eager save , lazy restore .
*/
# define switch_to(prev,next,last) do { \
if ( ia64_psr ( ia64_task_regs ( prev ) ) - > mfh & & ia64_is_local_fpu_owner ( prev ) ) { \
ia64_psr ( ia64_task_regs ( prev ) ) - > mfh = 0 ; \
( prev ) - > thread . flags | = IA64_THREAD_FPH_VALID ; \
__ia64_save_fpu ( ( prev ) - > thread . fph ) ; \
} \
__switch_to ( prev , next , last ) ; \
} while ( 0 )
# else
# define switch_to(prev,next,last) __switch_to(prev, next, last)
# endif
/*
* On IA - 64 , we don ' t want to hold the runqueue ' s lock during the low - level context - switch ,
* because that could cause a deadlock . Here is an example by Erich Focht :
*
* Example :
* CPU # 0 :
* schedule ( )
* - > spin_lock_irq ( & rq - > lock )
* - > context_switch ( )
* - > wrap_mmu_context ( )
* - > read_lock ( & tasklist_lock )
*
* CPU # 1 :
* sys_wait4 ( ) or release_task ( ) or forget_original_parent ( )
* - > write_lock ( & tasklist_lock )
* - > do_notify_parent ( )
* - > wake_up_parent ( )
* - > try_to_wake_up ( )
* - > spin_lock_irq ( & parent_rq - > lock )
*
* If the parent ' s rq happens to be on CPU # 0 , we ' ll wait for the rq - > lock
* of that CPU which will not be released , because there we wait for the
* tasklist_lock to become available .
*/
2005-06-26 01:57:23 +04:00
# define __ARCH_WANT_UNLOCKED_CTXSW
2005-04-17 02:20:36 +04:00
2005-09-10 00:02:02 +04:00
# define ARCH_HAS_PREFETCH_SWITCH_STACK
2005-04-17 02:20:36 +04:00
# define ia64_platform_is(x) (strcmp(x, platform_name) == 0)
void cpu_idle_wait ( void ) ;
# define arch_align_stack(x) (x)
# endif /* __KERNEL__ */
# endif /* __ASSEMBLY__ */
# endif /* _ASM_IA64_SYSTEM_H */