2018-04-03 20:23:33 +03:00
// SPDX-License-Identifier: GPL-2.0
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
/*
* Copyright ( C ) 2011 Fujitsu . All rights reserved .
* Written by Miao Xie < miaox @ cn . fujitsu . com >
*/
# include <linux/slab.h>
2017-12-11 14:35:12 +03:00
# include <linux/iversion.h>
2022-10-19 17:50:51 +03:00
# include "ctree.h"
# include "fs.h"
2022-10-19 17:50:49 +03:00
# include "messages.h"
2019-08-21 19:48:25 +03:00
# include "misc.h"
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
# include "delayed-inode.h"
# include "disk-io.h"
# include "transaction.h"
2017-12-12 10:34:33 +03:00
# include "qgroup.h"
2019-09-24 20:17:17 +03:00
# include "locking.h"
2021-12-04 01:18:03 +03:00
# include "inode-item.h"
2022-09-14 18:06:35 +03:00
# include "space-info.h"
2022-10-19 17:51:00 +03:00
# include "accessors.h"
2022-10-26 22:08:27 +03:00
# include "file-item.h"
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2013-03-05 02:13:31 +04:00
# define BTRFS_DELAYED_WRITEBACK 512
# define BTRFS_DELAYED_BACKGROUND 128
# define BTRFS_DELAYED_BATCH 16
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
static struct kmem_cache * delayed_node_cache ;
int __init btrfs_delayed_inode_init ( void )
{
2024-02-24 16:47:09 +03:00
delayed_node_cache = KMEM_CACHE ( btrfs_delayed_node , 0 ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ! delayed_node_cache )
return - ENOMEM ;
return 0 ;
}
2018-02-19 19:24:18 +03:00
void __cold btrfs_delayed_inode_exit ( void )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
2016-01-29 16:36:35 +03:00
kmem_cache_destroy ( delayed_node_cache ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
2024-02-16 15:57:49 +03:00
void btrfs_init_delayed_root ( struct btrfs_delayed_root * delayed_root )
{
atomic_set ( & delayed_root - > items , 0 ) ;
atomic_set ( & delayed_root - > items_seq , 0 ) ;
delayed_root - > nodes = 0 ;
spin_lock_init ( & delayed_root - > lock ) ;
init_waitqueue_head ( & delayed_root - > wait ) ;
INIT_LIST_HEAD ( & delayed_root - > node_list ) ;
INIT_LIST_HEAD ( & delayed_root - > prepare_list ) ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
static inline void btrfs_init_delayed_node (
struct btrfs_delayed_node * delayed_node ,
struct btrfs_root * root , u64 inode_id )
{
delayed_node - > root = root ;
delayed_node - > inode_id = inode_id ;
2017-03-03 11:55:16 +03:00
refcount_set ( & delayed_node - > refs , 0 ) ;
2018-08-22 22:51:51 +03:00
delayed_node - > ins_root = RB_ROOT_CACHED ;
delayed_node - > del_root = RB_ROOT_CACHED ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
mutex_init ( & delayed_node - > mutex ) ;
INIT_LIST_HEAD ( & delayed_node - > n_list ) ;
INIT_LIST_HEAD ( & delayed_node - > p_list ) ;
}
2017-01-20 16:54:07 +03:00
static struct btrfs_delayed_node * btrfs_get_delayed_node (
struct btrfs_inode * btrfs_inode )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
struct btrfs_root * root = btrfs_inode - > root ;
2017-01-10 21:35:31 +03:00
u64 ino = btrfs_ino ( btrfs_inode ) ;
2011-06-23 11:27:13 +04:00
struct btrfs_delayed_node * node ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2016-12-15 16:38:16 +03:00
node = READ_ONCE ( btrfs_inode - > delayed_node ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( node ) {
2017-03-03 11:55:16 +03:00
refcount_inc ( & node - > refs ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
return node ;
}
spin_lock ( & root - > inode_lock ) ;
2023-12-06 17:16:03 +03:00
node = xa_load ( & root - > delayed_nodes , ino ) ;
2017-12-15 22:58:27 +03:00
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( node ) {
if ( btrfs_inode - > delayed_node ) {
2017-03-03 11:55:16 +03:00
refcount_inc ( & node - > refs ) ; /* can be accessed */
2011-06-23 11:27:13 +04:00
BUG_ON ( btrfs_inode - > delayed_node ! = node ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
spin_unlock ( & root - > inode_lock ) ;
2011-06-23 11:27:13 +04:00
return node ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
2017-12-15 22:58:27 +03:00
/*
* It ' s possible that we ' re racing into the middle of removing
2023-12-06 17:16:03 +03:00
* this node from the xarray . In this case , the refcount
2017-12-15 22:58:27 +03:00
* was zero and it should never go back to one . Just return
2023-12-06 17:16:03 +03:00
* NULL like it was never in the xarray at all ; our release
2017-12-15 22:58:27 +03:00
* function is in the process of removing it .
*
* Some implementations of refcount_inc refuse to bump the
* refcount once it has hit zero . If we don ' t do this dance
* here , refcount_inc ( ) may decide to just WARN_ONCE ( ) instead
* of actually bumping the refcount .
*
2023-12-06 17:16:03 +03:00
* If this node is properly in the xarray , we want to bump the
2017-12-15 22:58:27 +03:00
* refcount twice , once for the inode and once for this get
* operation .
*/
if ( refcount_inc_not_zero ( & node - > refs ) ) {
refcount_inc ( & node - > refs ) ;
btrfs_inode - > delayed_node = node ;
} else {
node = NULL ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
spin_unlock ( & root - > inode_lock ) ;
return node ;
}
spin_unlock ( & root - > inode_lock ) ;
2011-06-23 11:27:13 +04:00
return NULL ;
}
2012-03-12 19:03:00 +04:00
/* Will return either the node or PTR_ERR(-ENOMEM) */
2011-06-23 11:27:13 +04:00
static struct btrfs_delayed_node * btrfs_get_or_create_delayed_node (
2017-01-20 16:54:07 +03:00
struct btrfs_inode * btrfs_inode )
2011-06-23 11:27:13 +04:00
{
struct btrfs_delayed_node * node ;
struct btrfs_root * root = btrfs_inode - > root ;
2017-01-10 21:35:31 +03:00
u64 ino = btrfs_ino ( btrfs_inode ) ;
2011-06-23 11:27:13 +04:00
int ret ;
2023-12-06 17:16:03 +03:00
void * ptr ;
2011-06-23 11:27:13 +04:00
2022-07-15 14:59:45 +03:00
again :
node = btrfs_get_delayed_node ( btrfs_inode ) ;
if ( node )
return node ;
2011-06-23 11:27:13 +04:00
2022-07-15 14:59:45 +03:00
node = kmem_cache_zalloc ( delayed_node_cache , GFP_NOFS ) ;
if ( ! node )
return ERR_PTR ( - ENOMEM ) ;
btrfs_init_delayed_node ( node , root , ino ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2023-12-06 17:16:03 +03:00
/* Cached in the inode and can be accessed. */
2022-07-15 14:59:45 +03:00
refcount_set ( & node - > refs , 2 ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2023-12-06 17:16:03 +03:00
/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
ret = xa_reserve ( & root - > delayed_nodes , ino , GFP_NOFS ) ;
if ( ret = = - ENOMEM ) {
2022-07-15 14:59:45 +03:00
kmem_cache_free ( delayed_node_cache , node ) ;
2023-12-06 17:16:03 +03:00
return ERR_PTR ( - ENOMEM ) ;
2022-07-15 14:59:45 +03:00
}
spin_lock ( & root - > inode_lock ) ;
2023-12-06 17:16:03 +03:00
ptr = xa_load ( & root - > delayed_nodes , ino ) ;
if ( ptr ) {
/* Somebody inserted it, go back and read it. */
2022-07-15 14:59:45 +03:00
spin_unlock ( & root - > inode_lock ) ;
kmem_cache_free ( delayed_node_cache , node ) ;
2023-12-06 17:16:03 +03:00
node = NULL ;
2022-07-15 14:59:45 +03:00
goto again ;
}
2023-12-06 17:16:03 +03:00
ptr = xa_store ( & root - > delayed_nodes , ino , node , GFP_ATOMIC ) ;
ASSERT ( xa_err ( ptr ) ! = - EINVAL ) ;
ASSERT ( xa_err ( ptr ) ! = - ENOMEM ) ;
ASSERT ( ptr = = NULL ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs_inode - > delayed_node = node ;
spin_unlock ( & root - > inode_lock ) ;
return node ;
}
/*
* Call it when holding delayed_node - > mutex
*
* If mod = 1 , add this node into the prepared list .
*/
static void btrfs_queue_delayed_node ( struct btrfs_delayed_root * root ,
struct btrfs_delayed_node * node ,
int mod )
{
spin_lock ( & root - > lock ) ;
2013-12-26 09:07:05 +04:00
if ( test_bit ( BTRFS_DELAYED_NODE_IN_LIST , & node - > flags ) ) {
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ! list_empty ( & node - > p_list ) )
list_move_tail ( & node - > p_list , & root - > prepare_list ) ;
else if ( mod )
list_add_tail ( & node - > p_list , & root - > prepare_list ) ;
} else {
list_add_tail ( & node - > n_list , & root - > node_list ) ;
list_add_tail ( & node - > p_list , & root - > prepare_list ) ;
2017-03-03 11:55:16 +03:00
refcount_inc ( & node - > refs ) ; /* inserted into list */
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
root - > nodes + + ;
2013-12-26 09:07:05 +04:00
set_bit ( BTRFS_DELAYED_NODE_IN_LIST , & node - > flags ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
spin_unlock ( & root - > lock ) ;
}
/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node ( struct btrfs_delayed_root * root ,
struct btrfs_delayed_node * node )
{
spin_lock ( & root - > lock ) ;
2013-12-26 09:07:05 +04:00
if ( test_bit ( BTRFS_DELAYED_NODE_IN_LIST , & node - > flags ) ) {
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
root - > nodes - - ;
2017-03-03 11:55:16 +03:00
refcount_dec ( & node - > refs ) ; /* not in the list */
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
list_del_init ( & node - > n_list ) ;
if ( ! list_empty ( & node - > p_list ) )
list_del_init ( & node - > p_list ) ;
2013-12-26 09:07:05 +04:00
clear_bit ( BTRFS_DELAYED_NODE_IN_LIST , & node - > flags ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
spin_unlock ( & root - > lock ) ;
}
2013-04-26 00:41:01 +04:00
static struct btrfs_delayed_node * btrfs_first_delayed_node (
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_root * delayed_root )
{
struct list_head * p ;
struct btrfs_delayed_node * node = NULL ;
spin_lock ( & delayed_root - > lock ) ;
if ( list_empty ( & delayed_root - > node_list ) )
goto out ;
p = delayed_root - > node_list . next ;
node = list_entry ( p , struct btrfs_delayed_node , n_list ) ;
2017-03-03 11:55:16 +03:00
refcount_inc ( & node - > refs ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
out :
spin_unlock ( & delayed_root - > lock ) ;
return node ;
}
2013-04-26 00:41:01 +04:00
static struct btrfs_delayed_node * btrfs_next_delayed_node (
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_node * node )
{
struct btrfs_delayed_root * delayed_root ;
struct list_head * p ;
struct btrfs_delayed_node * next = NULL ;
delayed_root = node - > root - > fs_info - > delayed_root ;
spin_lock ( & delayed_root - > lock ) ;
2013-12-26 09:07:05 +04:00
if ( ! test_bit ( BTRFS_DELAYED_NODE_IN_LIST , & node - > flags ) ) {
/* not in the list */
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( list_empty ( & delayed_root - > node_list ) )
goto out ;
p = delayed_root - > node_list . next ;
} else if ( list_is_last ( & node - > n_list , & delayed_root - > node_list ) )
goto out ;
else
p = node - > n_list . next ;
next = list_entry ( p , struct btrfs_delayed_node , n_list ) ;
2017-03-03 11:55:16 +03:00
refcount_inc ( & next - > refs ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
out :
spin_unlock ( & delayed_root - > lock ) ;
return next ;
}
static void __btrfs_release_delayed_node (
struct btrfs_delayed_node * delayed_node ,
int mod )
{
struct btrfs_delayed_root * delayed_root ;
if ( ! delayed_node )
return ;
delayed_root = delayed_node - > root - > fs_info - > delayed_root ;
mutex_lock ( & delayed_node - > mutex ) ;
if ( delayed_node - > count )
btrfs_queue_delayed_node ( delayed_root , delayed_node , mod ) ;
else
btrfs_dequeue_delayed_node ( delayed_root , delayed_node ) ;
mutex_unlock ( & delayed_node - > mutex ) ;
2017-03-03 11:55:16 +03:00
if ( refcount_dec_and_test ( & delayed_node - > refs ) ) {
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_root * root = delayed_node - > root ;
2017-12-15 22:58:27 +03:00
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
spin_lock ( & root - > inode_lock ) ;
2017-12-15 22:58:27 +03:00
/*
* Once our refcount goes to zero , nobody is allowed to bump it
* back up . We can delete it now .
*/
ASSERT ( refcount_read ( & delayed_node - > refs ) = = 0 ) ;
2023-12-06 17:16:03 +03:00
xa_erase ( & root - > delayed_nodes , delayed_node - > inode_id ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
spin_unlock ( & root - > inode_lock ) ;
2017-12-15 22:58:27 +03:00
kmem_cache_free ( delayed_node_cache , delayed_node ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
}
static inline void btrfs_release_delayed_node ( struct btrfs_delayed_node * node )
{
__btrfs_release_delayed_node ( node , 0 ) ;
}
2013-04-26 00:41:01 +04:00
static struct btrfs_delayed_node * btrfs_first_prepared_delayed_node (
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_root * delayed_root )
{
struct list_head * p ;
struct btrfs_delayed_node * node = NULL ;
spin_lock ( & delayed_root - > lock ) ;
if ( list_empty ( & delayed_root - > prepare_list ) )
goto out ;
p = delayed_root - > prepare_list . next ;
list_del_init ( p ) ;
node = list_entry ( p , struct btrfs_delayed_node , p_list ) ;
2017-03-03 11:55:16 +03:00
refcount_inc ( & node - > refs ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
out :
spin_unlock ( & delayed_root - > lock ) ;
return node ;
}
static inline void btrfs_release_prepared_delayed_node (
struct btrfs_delayed_node * node )
{
__btrfs_release_delayed_node ( node , 1 ) ;
}
2022-08-17 14:22:42 +03:00
static struct btrfs_delayed_item * btrfs_alloc_delayed_item ( u16 data_len ,
struct btrfs_delayed_node * node ,
enum btrfs_delayed_item_type type )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
struct btrfs_delayed_item * item ;
2022-08-17 14:22:42 +03:00
2023-10-09 23:44:54 +03:00
item = kmalloc ( struct_size ( item , data , data_len ) , GFP_NOFS ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( item ) {
item - > data_len = data_len ;
2022-08-17 14:22:42 +03:00
item - > type = type ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
item - > bytes_reserved = 0 ;
2022-08-17 14:22:40 +03:00
item - > delayed_node = node ;
RB_CLEAR_NODE ( & item - > rb_node ) ;
btrfs: use delayed items when logging a directory
When logging a directory we start by flushing all its delayed items.
That results in adding dir index items to the subvolume btree, for new
dentries, and removing dir index items from the subvolume btree for any
dentries that were deleted.
This makes it straightforward to log a directory simply by iterating over
all the modified subvolume btree leaves, especially when we used to log
both dir index keys and dir item keys (before commit 339d035424849c
("btrfs: only copy dir index keys when logging a directory") and when we
used to copy old dir index entries for leaves modified in the current
transaction (before commit 732d591a5d6c12 ("btrfs: stop copying old dir
items when logging a directory")).
From an efficiency point of view this has a couple of drawbacks:
1) Adds extra latency, due to copying delayed items to the subvolume btree
and deleting dir index items from the btree.
Further if there are other tasks accessing the btree, which is common
(syscalls like creat, mkdir, rename, link, unlink, truncate, reflinks,
etc, finishing an ordered extent, etc), lock contention can cause
further delays, both to the task logging a directory and to the other
tasks accessing the btree;
2) More time spent overall flushing delayed items, if after logging the
directory further changes are done to the directory in the same
transaction.
For example, if we add 10 dentries to a directory, fsync it, add more
10 dentries, fsync it again, then add more 10 dentries and fsync it
again, then we end up inserting 3 batches of 10 items to the subvolume
btree. With the changes from this patch, we flush all the delayed items
to the btree only once - a single batch of 30 items, and outside the
logging code (transaction commit or when delayed items are flushed
asynchronously).
This change simply skips the flushing of delayed items every time we log a
directory. Instead we copy the delayed insertion items directly to the log
tree and delete delayed deletion items directly from the log tree.
Therefore avoiding changing first the subvolume btree and then scanning it
for new items to copy from it to the log tree and detecting deletions
by observing gaps in consecutive dir index keys in subvolume btree leaves.
Running the following tests on a non-debug kernel (Debian's default kernel
config), on a box with a NVMe device, a 12 cores Intel CPU and 64G of ram,
produced the results below.
The results compare a branch without this patch and all the other patches
it depends on versus the same branch with the patchset applied.
The patchset is comprised of the following patches:
btrfs: don't drop dir index range items when logging a directory
btrfs: remove the root argument from log_new_dir_dentries()
btrfs: update stale comment for log_new_dir_dentries()
btrfs: free list element sooner at log_new_dir_dentries()
btrfs: avoid memory allocation at log_new_dir_dentries() for common case
btrfs: remove root argument from btrfs_delayed_item_reserve_metadata()
btrfs: store index number instead of key in struct btrfs_delayed_item
btrfs: remove unused logic when looking up delayed items
btrfs: shrink the size of struct btrfs_delayed_item
btrfs: search for last logged dir index if it's not cached in the inode
btrfs: move need_log_inode() to above log_conflicting_inodes()
btrfs: move log_new_dir_dentries() above btrfs_log_inode()
btrfs: log conflicting inodes without holding log mutex of the initial inode
btrfs: skip logging parent dir when conflicting inode is not a dir
btrfs: use delayed items when logging a directory
Custom test script for testing time spent at btrfs_log_inode():
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
# Total number of files to create in the test directory.
NUM_FILES=10000
# Fsync after creating or renaming N files.
FSYNC_AFTER=100
umount $DEV &> /dev/null
mkfs.btrfs -f $DEV
mount -o ssd $DEV $MNT
TEST_DIR=$MNT/testdir
mkdir $TEST_DIR
echo "Creating files..."
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $TEST_DIR/file_$i
if (( ($i % $FSYNC_AFTER) == 0 )); then
xfs_io -c "fsync" $TEST_DIR
fi
done
sync
echo "Renaming files..."
for ((i = 1; i <= $NUM_FILES; i++)); do
mv $TEST_DIR/file_$i $TEST_DIR/file_$i.renamed
if (( ($i % $FSYNC_AFTER) == 0 )); then
xfs_io -c "fsync" $TEST_DIR
fi
done
umount $MNT
And using the following bpftrace script to capture the total time that is
spent at btrfs_log_inode():
#!/usr/bin/bpftrace
k:btrfs_log_inode
{
@start_log_inode[tid] = nsecs;
}
kr:btrfs_log_inode
/@start_log_inode[tid]/
{
$dur = (nsecs - @start_log_inode[tid]) / 1000;
@btrfs_log_inode_total_time = sum($dur);
delete(@start_log_inode[tid]);
}
END
{
clear(@start_log_inode);
}
Result before applying patchset:
@btrfs_log_inode_total_time: 622642
Result after applying patchset:
@btrfs_log_inode_total_time: 354134 (-43.1% time spent)
The following dbench script was also used for testing:
#!/bin/bash
NUM_JOBS=$(nproc --all)
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-O no-holes -R free-space-tree"
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
dbench -D $MNT --skip-cleanup -t 120 -S $NUM_JOBS
umount $MNT
Before patchset:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 3322265 0.034 21.032
Close 2440562 0.002 0.994
Rename 140664 1.150 269.633
Unlink 670796 1.093 269.678
Deltree 96 5.481 15.510
Mkdir 48 0.004 0.052
Qpathinfo 3010924 0.014 8.127
Qfileinfo 528055 0.001 0.518
Qfsinfo 552113 0.003 0.372
Sfileinfo 270575 0.005 0.688
Find 1164176 0.052 13.931
WriteX 1658537 0.019 5.918
ReadX 5207412 0.003 1.034
LockX 10818 0.003 0.079
UnlockX 10818 0.002 0.313
Flush 232811 1.027 269.735
Throughput 869.867 MB/sec (sync dirs) 12 clients 12 procs max_latency=269.741 ms
After patchset:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 4152738 0.029 20.863
Close 3050770 0.002 1.119
Rename 175829 0.871 211.741
Unlink 838447 0.845 211.724
Deltree 120 4.798 14.162
Mkdir 60 0.003 0.005
Qpathinfo 3763807 0.011 4.673
Qfileinfo 660111 0.001 0.400
Qfsinfo 690141 0.003 0.429
Sfileinfo 338260 0.005 0.725
Find 1455273 0.046 6.787
WriteX 2073307 0.017 5.690
ReadX 6509193 0.003 1.171
LockX 13522 0.003 0.077
UnlockX 13522 0.002 0.125
Flush 291044 0.811 211.631
Throughput 1089.27 MB/sec (sync dirs) 12 clients 12 procs max_latency=211.750 ms
(+25.2% throughput, -21.5% max latency)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-08-22 13:51:44 +03:00
INIT_LIST_HEAD ( & item - > log_list ) ;
item - > logged = false ;
2017-03-03 11:55:17 +03:00
refcount_set ( & item - > refs , 1 ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
return item ;
}
/*
2023-09-08 02:09:25 +03:00
* Look up the delayed item by key .
*
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
* @ delayed_node : pointer to the delayed node
2022-08-17 14:22:40 +03:00
* @ index : the dir index value to lookup ( offset of a dir index key )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
*
* Note : if we don ' t find the right item , we will return the prev item and
* the next item .
*/
static struct btrfs_delayed_item * __btrfs_lookup_delayed_item (
struct rb_root * root ,
2022-08-17 14:22:41 +03:00
u64 index )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
2022-08-17 14:22:41 +03:00
struct rb_node * node = root - > rb_node ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_item * delayed_item = NULL ;
while ( node ) {
delayed_item = rb_entry ( node , struct btrfs_delayed_item ,
rb_node ) ;
2022-08-17 14:22:40 +03:00
if ( delayed_item - > index < index )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
node = node - > rb_right ;
2022-08-17 14:22:40 +03:00
else if ( delayed_item - > index > index )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
node = node - > rb_left ;
else
return delayed_item ;
}
return NULL ;
}
static int __btrfs_add_delayed_item ( struct btrfs_delayed_node * delayed_node ,
2022-05-31 18:06:42 +03:00
struct btrfs_delayed_item * ins )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
struct rb_node * * p , * node ;
struct rb_node * parent_node = NULL ;
2018-08-22 22:51:51 +03:00
struct rb_root_cached * root ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_item * item ;
2018-08-22 22:51:51 +03:00
bool leftmost = true ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2022-08-17 14:22:42 +03:00
if ( ins - > type = = BTRFS_DELAYED_INSERTION_ITEM )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
root = & delayed_node - > ins_root ;
else
2022-08-17 14:22:42 +03:00
root = & delayed_node - > del_root ;
2018-08-22 22:51:51 +03:00
p = & root - > rb_root . rb_node ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
node = & ins - > rb_node ;
while ( * p ) {
parent_node = * p ;
item = rb_entry ( parent_node , struct btrfs_delayed_item ,
rb_node ) ;
2022-08-17 14:22:40 +03:00
if ( item - > index < ins - > index ) {
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
p = & ( * p ) - > rb_right ;
2018-08-22 22:51:51 +03:00
leftmost = false ;
2022-08-17 14:22:40 +03:00
} else if ( item - > index > ins - > index ) {
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
p = & ( * p ) - > rb_left ;
2018-08-22 22:51:51 +03:00
} else {
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
return - EEXIST ;
2018-08-22 22:51:51 +03:00
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
rb_link_node ( node , parent_node , p ) ;
2018-08-22 22:51:51 +03:00
rb_insert_color_cached ( node , root , leftmost ) ;
2022-05-31 18:06:39 +03:00
2022-08-17 14:22:42 +03:00
if ( ins - > type = = BTRFS_DELAYED_INSERTION_ITEM & &
2022-08-17 14:22:40 +03:00
ins - > index > = delayed_node - > index_cnt )
delayed_node - > index_cnt = ins - > index + 1 ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
delayed_node - > count + + ;
atomic_inc ( & delayed_node - > root - > fs_info - > delayed_root - > items ) ;
return 0 ;
}
2013-03-05 02:13:31 +04:00
static void finish_one_item ( struct btrfs_delayed_root * delayed_root )
{
int seq = atomic_inc_return ( & delayed_root - > items_seq ) ;
2015-02-16 21:41:40 +03:00
2018-02-26 18:15:17 +03:00
/* atomic_dec_return implies a barrier */
2013-03-05 02:13:31 +04:00
if ( ( atomic_dec_return ( & delayed_root - > items ) <
2018-02-26 18:15:17 +03:00
BTRFS_DELAYED_BACKGROUND | | seq % BTRFS_DELAYED_BATCH = = 0 ) )
cond_wake_up_nomb ( & delayed_root - > wait ) ;
2013-03-05 02:13:31 +04:00
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
static void __btrfs_remove_delayed_item ( struct btrfs_delayed_item * delayed_item )
{
2023-08-28 11:06:44 +03:00
struct btrfs_delayed_node * delayed_node = delayed_item - > delayed_node ;
2018-08-22 22:51:51 +03:00
struct rb_root_cached * root ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_root * delayed_root ;
2022-08-17 14:22:40 +03:00
/* Not inserted, ignore it. */
if ( RB_EMPTY_NODE ( & delayed_item - > rb_node ) )
2019-07-16 12:00:32 +03:00
return ;
2022-08-17 14:22:40 +03:00
2023-08-28 11:06:44 +03:00
/* If it's in a rbtree, then we need to have delayed node locked. */
lockdep_assert_held ( & delayed_node - > mutex ) ;
delayed_root = delayed_node - > root - > fs_info - > delayed_root ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2022-08-17 14:22:42 +03:00
if ( delayed_item - > type = = BTRFS_DELAYED_INSERTION_ITEM )
2023-08-28 11:06:44 +03:00
root = & delayed_node - > ins_root ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
else
2023-08-28 11:06:44 +03:00
root = & delayed_node - > del_root ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2018-08-22 22:51:51 +03:00
rb_erase_cached ( & delayed_item - > rb_node , root ) ;
2022-08-17 14:22:40 +03:00
RB_CLEAR_NODE ( & delayed_item - > rb_node ) ;
2023-08-28 11:06:44 +03:00
delayed_node - > count - - ;
2013-03-05 02:13:31 +04:00
finish_one_item ( delayed_root ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
static void btrfs_release_delayed_item ( struct btrfs_delayed_item * item )
{
if ( item ) {
__btrfs_remove_delayed_item ( item ) ;
2017-03-03 11:55:17 +03:00
if ( refcount_dec_and_test ( & item - > refs ) )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
kfree ( item ) ;
}
}
2013-04-26 00:41:01 +04:00
static struct btrfs_delayed_item * __btrfs_first_delayed_insertion_item (
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_node * delayed_node )
{
struct rb_node * p ;
struct btrfs_delayed_item * item = NULL ;
2018-08-22 22:51:51 +03:00
p = rb_first_cached ( & delayed_node - > ins_root ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( p )
item = rb_entry ( p , struct btrfs_delayed_item , rb_node ) ;
return item ;
}
2013-04-26 00:41:01 +04:00
static struct btrfs_delayed_item * __btrfs_first_delayed_deletion_item (
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_node * delayed_node )
{
struct rb_node * p ;
struct btrfs_delayed_item * item = NULL ;
2018-08-22 22:51:51 +03:00
p = rb_first_cached ( & delayed_node - > del_root ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( p )
item = rb_entry ( p , struct btrfs_delayed_item , rb_node ) ;
return item ;
}
2013-04-26 00:41:01 +04:00
static struct btrfs_delayed_item * __btrfs_next_delayed_item (
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_item * item )
{
struct rb_node * p ;
struct btrfs_delayed_item * next = NULL ;
p = rb_next ( & item - > rb_node ) ;
if ( p )
next = rb_entry ( p , struct btrfs_delayed_item , rb_node ) ;
return next ;
}
static int btrfs_delayed_item_reserve_metadata ( struct btrfs_trans_handle * trans ,
struct btrfs_delayed_item * item )
{
struct btrfs_block_rsv * src_rsv ;
struct btrfs_block_rsv * dst_rsv ;
2022-08-17 14:22:39 +03:00
struct btrfs_fs_info * fs_info = trans - > fs_info ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
u64 num_bytes ;
int ret ;
if ( ! trans - > bytes_reserved )
return 0 ;
src_rsv = trans - > block_rsv ;
2016-06-23 01:54:23 +03:00
dst_rsv = & fs_info - > delayed_block_rsv ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2019-08-22 22:14:33 +03:00
num_bytes = btrfs_calc_insert_metadata_size ( fs_info , 1 ) ;
2018-04-17 11:52:45 +03:00
/*
* Here we migrate space rsv from transaction rsv , since have already
* reserved space when starting a transaction . So no need to reserve
* qgroup space here .
*/
2018-08-04 16:10:55 +03:00
ret = btrfs_block_rsv_migrate ( src_rsv , dst_rsv , num_bytes , true ) ;
2012-01-10 19:31:31 +04:00
if ( ! ret ) {
2016-06-23 01:54:23 +03:00
trace_btrfs_space_reservation ( fs_info , " delayed_item " ,
2022-08-17 14:22:40 +03:00
item - > delayed_node - > inode_id ,
2012-01-10 19:31:31 +04:00
num_bytes , 1 ) ;
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
/*
* For insertions we track reserved metadata space by accounting
* for the number of leaves that will be used , based on the delayed
2023-08-28 10:38:36 +03:00
* node ' s curr_index_batch_size and index_item_leaves fields .
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
*/
2022-08-17 14:22:42 +03:00
if ( item - > type = = BTRFS_DELAYED_DELETION_ITEM )
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
item - > bytes_reserved = num_bytes ;
2012-01-10 19:31:31 +04:00
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
return ret ;
}
2017-12-12 10:34:33 +03:00
static void btrfs_delayed_item_release_metadata ( struct btrfs_root * root ,
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_item * item )
{
2011-06-15 14:47:30 +04:00
struct btrfs_block_rsv * rsv ;
2017-12-12 10:34:33 +03:00
struct btrfs_fs_info * fs_info = root - > fs_info ;
2011-06-15 14:47:30 +04:00
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ! item - > bytes_reserved )
return ;
2016-06-23 01:54:23 +03:00
rsv = & fs_info - > delayed_block_rsv ;
2018-04-17 11:52:45 +03:00
/*
* Check btrfs_delayed_item_reserve_metadata ( ) to see why we don ' t need
* to release / reserve qgroup space .
*/
2016-06-23 01:54:23 +03:00
trace_btrfs_space_reservation ( fs_info , " delayed_item " ,
2022-08-17 14:22:40 +03:00
item - > delayed_node - > inode_id ,
item - > bytes_reserved , 0 ) ;
2020-03-10 11:59:31 +03:00
btrfs_block_rsv_release ( fs_info , rsv , item - > bytes_reserved , NULL ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
static void btrfs_delayed_item_release_leaves ( struct btrfs_delayed_node * node ,
unsigned int num_leaves )
{
struct btrfs_fs_info * fs_info = node - > root - > fs_info ;
const u64 bytes = btrfs_calc_insert_metadata_size ( fs_info , num_leaves ) ;
/* There are no space reservations during log replay, bail out. */
if ( test_bit ( BTRFS_FS_LOG_RECOVERING , & fs_info - > flags ) )
return ;
trace_btrfs_space_reservation ( fs_info , " delayed_item " , node - > inode_id ,
bytes , 0 ) ;
btrfs_block_rsv_release ( fs_info , & fs_info - > delayed_block_rsv , bytes , NULL ) ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
static int btrfs_delayed_inode_reserve_metadata (
struct btrfs_trans_handle * trans ,
struct btrfs_root * root ,
struct btrfs_delayed_node * node )
{
2016-06-23 01:54:23 +03:00
struct btrfs_fs_info * fs_info = root - > fs_info ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_block_rsv * src_rsv ;
struct btrfs_block_rsv * dst_rsv ;
u64 num_bytes ;
int ret ;
src_rsv = trans - > block_rsv ;
2016-06-23 01:54:23 +03:00
dst_rsv = & fs_info - > delayed_block_rsv ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2019-08-22 22:14:34 +03:00
num_bytes = btrfs_calc_metadata_size ( fs_info , 1 ) ;
Btrfs: fix delayed insertion reservation
We all keep getting those stupid warnings from use_block_rsv when running
stress.sh, and it's because the delayed insertion stuff is being stupid. It's
not the delayed insertion stuffs fault, it's all just stupid. When marking an
inode dirty for oh say updating the time on it, we just do a
btrfs_join_transaction, which doesn't reserve any space. This is stupid because
we're going to have to have space reserve to make this change, but we do it
because it's fast because chances are we're going to call it over and over again
and it doesn't matter. Well thanks to the delayed insertion stuff this is
mostly the case, so we do actually need to make this reservation. So if
trans->bytes_reserved is 0 then try to do a normal reservation. If not return
ENOSPC which will make the btrfs_dirty_inode start a proper transaction which
will let it do the whole ENOSPC dance and reserve enough space for the delayed
insertion to steal the reservation from the transaction.
The other stupid thing we do is not reserve space for the inode when writing to
the thing. Usually this is ok since we have to update the time so we'd have
already done all this work before we get to the endio stuff, so it doesn't
matter. But this is stupid because we could write the data after the
transaction commits where we changed the mtime of the inode so we have to cow
all the way down to the inode anyway. This used to be masked by the delalloc
reservation stuff, but because we delay the update it doesn't get masked in this
case. So again the delayed insertion stuff bites us in the ass. So if our
trans->block_rsv is delalloc, just steal the reservation from the delalloc
reserve. Hopefully this won't bite us in the ass, but I've said that before.
With this patch stress.sh no longer spits out those stupid warnings (famous last
words). Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-11-05 03:56:02 +04:00
/*
* btrfs_dirty_inode will update the inode under btrfs_join_transaction
* which doesn ' t reserve space for speed . This is a problem since we
* still need to reserve space for this update , so try to reserve the
* space .
*
* Now if src_rsv = = delalloc_block_rsv we ' ll let it just steal since
2017-10-19 21:15:57 +03:00
* we always reserve enough to update the inode item .
Btrfs: fix delayed insertion reservation
We all keep getting those stupid warnings from use_block_rsv when running
stress.sh, and it's because the delayed insertion stuff is being stupid. It's
not the delayed insertion stuffs fault, it's all just stupid. When marking an
inode dirty for oh say updating the time on it, we just do a
btrfs_join_transaction, which doesn't reserve any space. This is stupid because
we're going to have to have space reserve to make this change, but we do it
because it's fast because chances are we're going to call it over and over again
and it doesn't matter. Well thanks to the delayed insertion stuff this is
mostly the case, so we do actually need to make this reservation. So if
trans->bytes_reserved is 0 then try to do a normal reservation. If not return
ENOSPC which will make the btrfs_dirty_inode start a proper transaction which
will let it do the whole ENOSPC dance and reserve enough space for the delayed
insertion to steal the reservation from the transaction.
The other stupid thing we do is not reserve space for the inode when writing to
the thing. Usually this is ok since we have to update the time so we'd have
already done all this work before we get to the endio stuff, so it doesn't
matter. But this is stupid because we could write the data after the
transaction commits where we changed the mtime of the inode so we have to cow
all the way down to the inode anyway. This used to be masked by the delalloc
reservation stuff, but because we delay the update it doesn't get masked in this
case. So again the delayed insertion stuff bites us in the ass. So if our
trans->block_rsv is delalloc, just steal the reservation from the delalloc
reserve. Hopefully this won't bite us in the ass, but I've said that before.
With this patch stress.sh no longer spits out those stupid warnings (famous last
words). Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-11-05 03:56:02 +04:00
*/
2011-12-15 22:36:29 +04:00
if ( ! src_rsv | | ( ! trans - > bytes_reserved & &
2012-09-06 14:02:28 +04:00
src_rsv - > type ! = BTRFS_BLOCK_RSV_DELALLOC ) ) {
2021-02-22 19:40:44 +03:00
ret = btrfs_qgroup_reserve_meta ( root , num_bytes ,
BTRFS_QGROUP_RSV_META_PREALLOC , true ) ;
2018-04-17 11:52:45 +03:00
if ( ret < 0 )
return ret ;
2021-11-09 18:12:07 +03:00
ret = btrfs_block_rsv_add ( fs_info , dst_rsv , num_bytes ,
Btrfs: improve the noflush reservation
In some places(such as: evicting inode), we just can not flush the reserved
space of delalloc, flushing the delayed directory index and delayed inode
is OK, but we don't try to flush those things and just go back when there is
no enough space to be reserved. This patch fixes this problem.
We defined 3 types of the flush operations: NO_FLUSH, FLUSH_LIMIT and FLUSH_ALL.
If we can in the transaction, we should not flush anything, or the deadlock
would happen, so use NO_FLUSH. If we flushing the reserved space of delalloc
would cause deadlock, use FLUSH_LIMIT. In the other cases, FLUSH_ALL is used,
and we will flush all things.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-10-16 15:33:38 +04:00
BTRFS_RESERVE_NO_FLUSH ) ;
2021-02-22 19:40:47 +03:00
/* NO_FLUSH could only fail with -ENOSPC */
ASSERT ( ret = = 0 | | ret = = - ENOSPC ) ;
if ( ret )
2021-02-22 19:40:42 +03:00
btrfs_qgroup_free_meta_prealloc ( root , num_bytes ) ;
2021-02-22 19:40:47 +03:00
} else {
ret = btrfs_block_rsv_migrate ( src_rsv , dst_rsv , num_bytes , true ) ;
Btrfs: fix delayed insertion reservation
We all keep getting those stupid warnings from use_block_rsv when running
stress.sh, and it's because the delayed insertion stuff is being stupid. It's
not the delayed insertion stuffs fault, it's all just stupid. When marking an
inode dirty for oh say updating the time on it, we just do a
btrfs_join_transaction, which doesn't reserve any space. This is stupid because
we're going to have to have space reserve to make this change, but we do it
because it's fast because chances are we're going to call it over and over again
and it doesn't matter. Well thanks to the delayed insertion stuff this is
mostly the case, so we do actually need to make this reservation. So if
trans->bytes_reserved is 0 then try to do a normal reservation. If not return
ENOSPC which will make the btrfs_dirty_inode start a proper transaction which
will let it do the whole ENOSPC dance and reserve enough space for the delayed
insertion to steal the reservation from the transaction.
The other stupid thing we do is not reserve space for the inode when writing to
the thing. Usually this is ok since we have to update the time so we'd have
already done all this work before we get to the endio stuff, so it doesn't
matter. But this is stupid because we could write the data after the
transaction commits where we changed the mtime of the inode so we have to cow
all the way down to the inode anyway. This used to be masked by the delalloc
reservation stuff, but because we delay the update it doesn't get masked in this
case. So again the delayed insertion stuff bites us in the ass. So if our
trans->block_rsv is delalloc, just steal the reservation from the delalloc
reserve. Hopefully this won't bite us in the ass, but I've said that before.
With this patch stress.sh no longer spits out those stupid warnings (famous last
words). Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-11-05 03:56:02 +04:00
}
2012-01-10 19:31:31 +04:00
if ( ! ret ) {
2016-06-23 01:54:23 +03:00
trace_btrfs_space_reservation ( fs_info , " delayed_inode " ,
2021-02-22 19:40:46 +03:00
node - > inode_id , num_bytes , 1 ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
node - > bytes_reserved = num_bytes ;
2012-01-10 19:31:31 +04:00
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
return ret ;
}
2016-06-23 01:54:24 +03:00
static void btrfs_delayed_inode_release_metadata ( struct btrfs_fs_info * fs_info ,
2017-12-12 10:34:33 +03:00
struct btrfs_delayed_node * node ,
bool qgroup_free )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
struct btrfs_block_rsv * rsv ;
if ( ! node - > bytes_reserved )
return ;
2016-06-23 01:54:23 +03:00
rsv = & fs_info - > delayed_block_rsv ;
trace_btrfs_space_reservation ( fs_info , " delayed_inode " ,
2012-01-10 19:31:31 +04:00
node - > inode_id , node - > bytes_reserved , 0 ) ;
2020-03-10 11:59:31 +03:00
btrfs_block_rsv_release ( fs_info , rsv , node - > bytes_reserved , NULL ) ;
2017-12-12 10:34:33 +03:00
if ( qgroup_free )
btrfs_qgroup_free_meta_prealloc ( node - > root ,
node - > bytes_reserved ) ;
else
btrfs_qgroup_convert_reserved_meta ( node - > root ,
node - > bytes_reserved ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
node - > bytes_reserved = 0 ;
}
/*
btrfs: improve batch insertion of delayed dir index items
Currently we group delayed dir index items for insertion as a single batch
(a single btree operation) as long as their keys are sequential in the key
space.
For example we have delayed index items for the following index keys:
10, 11, 12, 15, 16, 20, 21
We end up building three batches:
1) First one for index keys 10, 11 and 12;
2) Second one for index keys 15 and 16;
3) Third one for index keys 20 and 21.
However, since the dir index numbers come from a monotonically increasing
counter and are never reused, we could group all these items into a single
batch. The existence of holes in the sequence happens only when we had
delayed dir index items for insertion that got deleted before they were
flushed to the subvolume's tree.
The delayed items are stored in a rbtree based on their key order, so
we can just group items into a batch as long as they all fit in a leaf,
and ignore if there's a gap (key offset, index number) between two
consecutive items. This is more efficient and reduces the amount of
time spent when running delayed items if there are gaps between dir
index items.
For example running the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=100
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
start=$(date +%s%N)
sync
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nsync took $dur milliseconds"
umount $MNT
While having the following bpftrace script running in another shell:
$ cat bpf-delayed-items-inserts.sh
#!/usr/bin/bpftrace
/* Must add 'noinline' to btrfs_insert_delayed_items(). */
k:btrfs_insert_delayed_items
{
@start_insert_delayed_items[tid] = nsecs;
}
k:btrfs_insert_empty_items
/@start_insert_delayed_items[tid]/
{
@insert_batches = count();
}
kr:btrfs_insert_delayed_items
/@start_insert_delayed_items[tid]/
{
$dur = (nsecs - @start_insert_delayed_items[tid]) / 1000;
@btrfs_insert_delayed_items_total_time = sum($dur);
delete(@start_insert_delayed_items[tid]);
}
Before this change:
@btrfs_insert_delayed_items_total_time: 576
@insert_batches: 51
After this change:
@btrfs_insert_delayed_items_total_time: 174
@insert_batches: 2
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:40 +03:00
* Insert a single delayed item or a batch of delayed items , as many as possible
* that fit in a leaf . The delayed items ( dir index keys ) are sorted by their key
* in the rbtree , and if there ' s a gap between two consecutive dir index items ,
* then it means at some point we had delayed dir indexes to add but they got
* removed ( by btrfs_delete_delayed_dir_index ( ) ) before we attempted to flush them
* into the subvolume tree . Dir index keys also have their offsets coming from a
* monotonically increasing counter , so we can ' t get new keys with an offset that
* fits within a gap between delayed dir index items .
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
*/
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
static int btrfs_insert_delayed_item ( struct btrfs_trans_handle * trans ,
struct btrfs_root * root ,
struct btrfs_path * path ,
struct btrfs_delayed_item * first_item )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
struct btrfs_fs_info * fs_info = root - > fs_info ;
struct btrfs_delayed_node * node = first_item - > delayed_node ;
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
LIST_HEAD ( item_list ) ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
struct btrfs_delayed_item * curr ;
struct btrfs_delayed_item * next ;
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
const int max_size = BTRFS_LEAF_DATA_SIZE ( fs_info ) ;
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
struct btrfs_item_batch batch ;
2022-08-17 14:22:40 +03:00
struct btrfs_key first_key ;
2022-08-17 14:22:42 +03:00
const u32 first_data_size = first_item - > data_len ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
int total_size ;
char * ins_data = NULL ;
int ret ;
btrfs: do not batch insert non-consecutive dir indexes during log replay
While running generic/475 in a loop I got the following error
BTRFS critical (device dm-11): corrupt leaf: root=5 block=31096832 slot=69, bad key order, prev (263 96 531) current (263 96 524)
<snip>
item 65 key (263 96 517) itemoff 14132 itemsize 33
item 66 key (263 96 523) itemoff 14099 itemsize 33
item 67 key (263 96 525) itemoff 14066 itemsize 33
item 68 key (263 96 531) itemoff 14033 itemsize 33
item 69 key (263 96 524) itemoff 14000 itemsize 33
As you can see here we have 3 dir index keys with the dir index value of
523, 524, and 525 inserted between 517 and 524. This occurs because our
dir index insertion code will bulk insert all dir index items on the
node regardless of their actual key value.
This makes sense on a normally running system, because if there's a gap
in between the items there was a deletion before the item was inserted,
so there's not going to be an overlap of the dir index items that need
to be inserted and what exists on disk.
However during log replay this isn't necessarily true, we could have any
number of dir indexes in the tree already.
Fix this by seeing if we're replaying the log, and if we are simply skip
batching if there's a gap in the key space.
This file system was left broken from the fstest, I tested this patch
against the broken fs to make sure it replayed the log properly, and
then btrfs checked the file system after the log replay to verify
everything was ok.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-21 16:47:39 +03:00
bool continuous_keys_only = false ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
lockdep_assert_held ( & node - > mutex ) ;
btrfs: do not batch insert non-consecutive dir indexes during log replay
While running generic/475 in a loop I got the following error
BTRFS critical (device dm-11): corrupt leaf: root=5 block=31096832 slot=69, bad key order, prev (263 96 531) current (263 96 524)
<snip>
item 65 key (263 96 517) itemoff 14132 itemsize 33
item 66 key (263 96 523) itemoff 14099 itemsize 33
item 67 key (263 96 525) itemoff 14066 itemsize 33
item 68 key (263 96 531) itemoff 14033 itemsize 33
item 69 key (263 96 524) itemoff 14000 itemsize 33
As you can see here we have 3 dir index keys with the dir index value of
523, 524, and 525 inserted between 517 and 524. This occurs because our
dir index insertion code will bulk insert all dir index items on the
node regardless of their actual key value.
This makes sense on a normally running system, because if there's a gap
in between the items there was a deletion before the item was inserted,
so there's not going to be an overlap of the dir index items that need
to be inserted and what exists on disk.
However during log replay this isn't necessarily true, we could have any
number of dir indexes in the tree already.
Fix this by seeing if we're replaying the log, and if we are simply skip
batching if there's a gap in the key space.
This file system was left broken from the fstest, I tested this patch
against the broken fs to make sure it replayed the log properly, and
then btrfs checked the file system after the log replay to verify
everything was ok.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-21 16:47:39 +03:00
/*
* During normal operation the delayed index offset is continuously
* increasing , so we can batch insert all items as there will not be any
* overlapping keys in the tree .
*
* The exception to this is log replay , where we may have interleaved
* offsets in the tree , so our batch needs to be continuous keys only in
* order to ensure we do not end up with out of order items in our leaf .
*/
if ( test_bit ( BTRFS_FS_LOG_RECOVERING , & fs_info - > flags ) )
continuous_keys_only = true ;
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
/*
* For delayed items to insert , we track reserved metadata bytes based
* on the number of leaves that we will use .
* See btrfs_insert_delayed_dir_index ( ) and
* btrfs_delayed_item_reserve_metadata ( ) ) .
*/
ASSERT ( first_item - > bytes_reserved = = 0 ) ;
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
list_add_tail ( & first_item - > tree_list , & item_list ) ;
2022-08-17 14:22:42 +03:00
batch . total_data_size = first_data_size ;
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
batch . nr = 1 ;
2022-08-17 14:22:42 +03:00
total_size = first_data_size + sizeof ( struct btrfs_item ) ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
curr = first_item ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
while ( true ) {
int next_size ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
next = __btrfs_next_delayed_item ( curr ) ;
btrfs: improve batch insertion of delayed dir index items
Currently we group delayed dir index items for insertion as a single batch
(a single btree operation) as long as their keys are sequential in the key
space.
For example we have delayed index items for the following index keys:
10, 11, 12, 15, 16, 20, 21
We end up building three batches:
1) First one for index keys 10, 11 and 12;
2) Second one for index keys 15 and 16;
3) Third one for index keys 20 and 21.
However, since the dir index numbers come from a monotonically increasing
counter and are never reused, we could group all these items into a single
batch. The existence of holes in the sequence happens only when we had
delayed dir index items for insertion that got deleted before they were
flushed to the subvolume's tree.
The delayed items are stored in a rbtree based on their key order, so
we can just group items into a batch as long as they all fit in a leaf,
and ignore if there's a gap (key offset, index number) between two
consecutive items. This is more efficient and reduces the amount of
time spent when running delayed items if there are gaps between dir
index items.
For example running the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=100
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
start=$(date +%s%N)
sync
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nsync took $dur milliseconds"
umount $MNT
While having the following bpftrace script running in another shell:
$ cat bpf-delayed-items-inserts.sh
#!/usr/bin/bpftrace
/* Must add 'noinline' to btrfs_insert_delayed_items(). */
k:btrfs_insert_delayed_items
{
@start_insert_delayed_items[tid] = nsecs;
}
k:btrfs_insert_empty_items
/@start_insert_delayed_items[tid]/
{
@insert_batches = count();
}
kr:btrfs_insert_delayed_items
/@start_insert_delayed_items[tid]/
{
$dur = (nsecs - @start_insert_delayed_items[tid]) / 1000;
@btrfs_insert_delayed_items_total_time = sum($dur);
delete(@start_insert_delayed_items[tid]);
}
Before this change:
@btrfs_insert_delayed_items_total_time: 576
@insert_batches: 51
After this change:
@btrfs_insert_delayed_items_total_time: 174
@insert_batches: 2
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:40 +03:00
if ( ! next )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
break ;
btrfs: do not batch insert non-consecutive dir indexes during log replay
While running generic/475 in a loop I got the following error
BTRFS critical (device dm-11): corrupt leaf: root=5 block=31096832 slot=69, bad key order, prev (263 96 531) current (263 96 524)
<snip>
item 65 key (263 96 517) itemoff 14132 itemsize 33
item 66 key (263 96 523) itemoff 14099 itemsize 33
item 67 key (263 96 525) itemoff 14066 itemsize 33
item 68 key (263 96 531) itemoff 14033 itemsize 33
item 69 key (263 96 524) itemoff 14000 itemsize 33
As you can see here we have 3 dir index keys with the dir index value of
523, 524, and 525 inserted between 517 and 524. This occurs because our
dir index insertion code will bulk insert all dir index items on the
node regardless of their actual key value.
This makes sense on a normally running system, because if there's a gap
in between the items there was a deletion before the item was inserted,
so there's not going to be an overlap of the dir index items that need
to be inserted and what exists on disk.
However during log replay this isn't necessarily true, we could have any
number of dir indexes in the tree already.
Fix this by seeing if we're replaying the log, and if we are simply skip
batching if there's a gap in the key space.
This file system was left broken from the fstest, I tested this patch
against the broken fs to make sure it replayed the log properly, and
then btrfs checked the file system after the log replay to verify
everything was ok.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-21 16:47:39 +03:00
/*
* We cannot allow gaps in the key space if we ' re doing log
* replay .
*/
2022-08-17 14:22:40 +03:00
if ( continuous_keys_only & & ( next - > index ! = curr - > index + 1 ) )
btrfs: do not batch insert non-consecutive dir indexes during log replay
While running generic/475 in a loop I got the following error
BTRFS critical (device dm-11): corrupt leaf: root=5 block=31096832 slot=69, bad key order, prev (263 96 531) current (263 96 524)
<snip>
item 65 key (263 96 517) itemoff 14132 itemsize 33
item 66 key (263 96 523) itemoff 14099 itemsize 33
item 67 key (263 96 525) itemoff 14066 itemsize 33
item 68 key (263 96 531) itemoff 14033 itemsize 33
item 69 key (263 96 524) itemoff 14000 itemsize 33
As you can see here we have 3 dir index keys with the dir index value of
523, 524, and 525 inserted between 517 and 524. This occurs because our
dir index insertion code will bulk insert all dir index items on the
node regardless of their actual key value.
This makes sense on a normally running system, because if there's a gap
in between the items there was a deletion before the item was inserted,
so there's not going to be an overlap of the dir index items that need
to be inserted and what exists on disk.
However during log replay this isn't necessarily true, we could have any
number of dir indexes in the tree already.
Fix this by seeing if we're replaying the log, and if we are simply skip
batching if there's a gap in the key space.
This file system was left broken from the fstest, I tested this patch
against the broken fs to make sure it replayed the log properly, and
then btrfs checked the file system after the log replay to verify
everything was ok.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-21 16:47:39 +03:00
break ;
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
ASSERT ( next - > bytes_reserved = = 0 ) ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
next_size = next - > data_len + sizeof ( struct btrfs_item ) ;
if ( total_size + next_size > max_size )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
break ;
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
list_add_tail ( & next - > tree_list , & item_list ) ;
batch . nr + + ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
total_size + = next_size ;
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
batch . total_data_size + = next - > data_len ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
curr = next ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
if ( batch . nr = = 1 ) {
2022-08-17 14:22:40 +03:00
first_key . objectid = node - > inode_id ;
first_key . type = BTRFS_DIR_INDEX_KEY ;
first_key . offset = first_item - > index ;
batch . keys = & first_key ;
2022-08-17 14:22:42 +03:00
batch . data_sizes = & first_data_size ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
} else {
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
struct btrfs_key * ins_keys ;
u32 * ins_sizes ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
int i = 0 ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
ins_data = kmalloc ( batch . nr * sizeof ( u32 ) +
batch . nr * sizeof ( struct btrfs_key ) , GFP_NOFS ) ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
if ( ! ins_data ) {
ret = - ENOMEM ;
goto out ;
}
ins_sizes = ( u32 * ) ins_data ;
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
ins_keys = ( struct btrfs_key * ) ( ins_data + batch . nr * sizeof ( u32 ) ) ;
batch . keys = ins_keys ;
batch . data_sizes = ins_sizes ;
list_for_each_entry ( curr , & item_list , tree_list ) {
2022-08-17 14:22:40 +03:00
ins_keys [ i ] . objectid = node - > inode_id ;
ins_keys [ i ] . type = BTRFS_DIR_INDEX_KEY ;
ins_keys [ i ] . offset = curr - > index ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
ins_sizes [ i ] = curr - > data_len ;
i + + ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
ret = btrfs_insert_empty_items ( trans , root , path , & batch ) ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
if ( ret )
goto out ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
list_for_each_entry ( curr , & item_list , tree_list ) {
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
char * data_ptr ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
data_ptr = btrfs_item_ptr ( path - > nodes [ 0 ] , path - > slots [ 0 ] , char ) ;
write_extent_buffer ( path - > nodes [ 0 ] , & curr - > data ,
( unsigned long ) data_ptr , curr - > data_len ) ;
path - > slots [ 0 ] + + ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
/*
* Now release our path before releasing the delayed items and their
* metadata reservations , so that we don ' t block other tasks for more
* time than needed .
*/
btrfs_release_path ( path ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
ASSERT ( node - > index_item_leaves > 0 ) ;
btrfs: do not batch insert non-consecutive dir indexes during log replay
While running generic/475 in a loop I got the following error
BTRFS critical (device dm-11): corrupt leaf: root=5 block=31096832 slot=69, bad key order, prev (263 96 531) current (263 96 524)
<snip>
item 65 key (263 96 517) itemoff 14132 itemsize 33
item 66 key (263 96 523) itemoff 14099 itemsize 33
item 67 key (263 96 525) itemoff 14066 itemsize 33
item 68 key (263 96 531) itemoff 14033 itemsize 33
item 69 key (263 96 524) itemoff 14000 itemsize 33
As you can see here we have 3 dir index keys with the dir index value of
523, 524, and 525 inserted between 517 and 524. This occurs because our
dir index insertion code will bulk insert all dir index items on the
node regardless of their actual key value.
This makes sense on a normally running system, because if there's a gap
in between the items there was a deletion before the item was inserted,
so there's not going to be an overlap of the dir index items that need
to be inserted and what exists on disk.
However during log replay this isn't necessarily true, we could have any
number of dir indexes in the tree already.
Fix this by seeing if we're replaying the log, and if we are simply skip
batching if there's a gap in the key space.
This file system was left broken from the fstest, I tested this patch
against the broken fs to make sure it replayed the log properly, and
then btrfs checked the file system after the log replay to verify
everything was ok.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-21 16:47:39 +03:00
/*
* For normal operations we will batch an entire leaf ' s worth of delayed
* items , so if there are more items to process we can decrement
* index_item_leaves by 1 as we inserted 1 leaf ' s worth of items .
*
* However for log replay we may not have inserted an entire leaf ' s
* worth of items , we may have not had continuous items , so decrementing
* here would mess up the index_item_leaves accounting . For this case
* only clean up the accounting when there are no items left .
*/
if ( next & & ! continuous_keys_only ) {
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
/*
* We inserted one batch of items into a leaf a there are more
* items to flush in a future batch , now release one unit of
* metadata space from the delayed block reserve , corresponding
* the leaf we just flushed to .
*/
btrfs_delayed_item_release_leaves ( node , 1 ) ;
node - > index_item_leaves - - ;
btrfs: do not batch insert non-consecutive dir indexes during log replay
While running generic/475 in a loop I got the following error
BTRFS critical (device dm-11): corrupt leaf: root=5 block=31096832 slot=69, bad key order, prev (263 96 531) current (263 96 524)
<snip>
item 65 key (263 96 517) itemoff 14132 itemsize 33
item 66 key (263 96 523) itemoff 14099 itemsize 33
item 67 key (263 96 525) itemoff 14066 itemsize 33
item 68 key (263 96 531) itemoff 14033 itemsize 33
item 69 key (263 96 524) itemoff 14000 itemsize 33
As you can see here we have 3 dir index keys with the dir index value of
523, 524, and 525 inserted between 517 and 524. This occurs because our
dir index insertion code will bulk insert all dir index items on the
node regardless of their actual key value.
This makes sense on a normally running system, because if there's a gap
in between the items there was a deletion before the item was inserted,
so there's not going to be an overlap of the dir index items that need
to be inserted and what exists on disk.
However during log replay this isn't necessarily true, we could have any
number of dir indexes in the tree already.
Fix this by seeing if we're replaying the log, and if we are simply skip
batching if there's a gap in the key space.
This file system was left broken from the fstest, I tested this patch
against the broken fs to make sure it replayed the log properly, and
then btrfs checked the file system after the log replay to verify
everything was ok.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-21 16:47:39 +03:00
} else if ( ! next ) {
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
/*
* There are no more items to insert . We can have a number of
* reserved leaves > 1 here - this happens when many dir index
* items are added and then removed before they are flushed ( file
* names with a very short life , never span a transaction ) . So
* release all remaining leaves .
*/
btrfs_delayed_item_release_leaves ( node , node - > index_item_leaves ) ;
node - > index_item_leaves = 0 ;
}
btrfs: loop only once over data sizes array when inserting an item batch
When inserting a batch of items into a btree, we end up looping over the
data sizes array 3 times:
1) Once in the caller of btrfs_insert_empty_items(), when it populates the
array with the data sizes for each item;
2) Once at btrfs_insert_empty_items() to sum the elements of the data
sizes array and compute the total data size;
3) And then once again at setup_items_for_insert(), where we do exactly
the same as what we do at btrfs_insert_empty_items(), to compute the
total data size.
That is not bad for small arrays, but when the arrays have hundreds of
elements, the time spent on looping is not negligible. For example when
doing batch inserts of delayed items for dir index items or when logging
a directory, it's common to have 200 to 260 dir index items in a single
batch when using a leaf size of 16K and using file names between 8 and 12
characters. For a 64K leaf size, multiply that by 4. Taking into account
that during directory logging or when flushing delayed dir index items we
can have many of those large batches, the time spent on the looping adds
up quickly.
It's also more important to avoid it at setup_items_for_insert(), since
we are holding a write lock on a leaf and, in some cases, on upper nodes
of the btree, which causes us to block other tasks that want to access
the leaf and nodes for longer than necessary.
So change the code so that setup_items_for_insert() and
btrfs_insert_empty_items() no longer compute the total data size, and
instead rely on the caller to supply it. This makes us loop over the
array only once, where we can both populate the data size array and
compute the total data size, taking advantage of spatial and temporal
locality. To make this more manageable, use a structure to contain
all the relevant details for a batch of items (keys array, data sizes
array, total data size, number of items), and use it as an argument
for btrfs_insert_empty_items() and setup_items_for_insert().
This patch is part of a small patchset that is comprised of the following
patches:
btrfs: loop only once over data sizes array when inserting an item batch
btrfs: unexport setup_items_for_insert()
btrfs: use single bulk copy operations when logging directories
This is patch 1/3 and performance results, and the specific tests, are
included in the changelog of patch 3/3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-24 14:28:13 +03:00
list_for_each_entry_safe ( curr , next , & item_list , tree_list ) {
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
list_del ( & curr - > tree_list ) ;
btrfs_release_delayed_item ( curr ) ;
}
out :
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
kfree ( ins_data ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
return ret ;
}
static int btrfs_insert_delayed_items ( struct btrfs_trans_handle * trans ,
struct btrfs_path * path ,
struct btrfs_root * root ,
struct btrfs_delayed_node * node )
{
int ret = 0 ;
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
while ( ret = = 0 ) {
struct btrfs_delayed_item * curr ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs: improve the batch insertion of delayed items
When we insert the delayed items of an inode, which corresponds to the
directory index keys for a directory (key type BTRFS_DIR_INDEX_KEY), we
do the following:
1) Pick the first delayed item from the rbtree and insert it into the
fs/subvolume btree, using btrfs_insert_empty_item() for that;
2) Without releasing the path returned by btrfs_insert_empty_item(),
keep collecting as many consecutive delayed items from the rbtree
as possible, as long as each one's BTRFS_DIR_INDEX_KEY key is the
immediate successor of the previously picked item and as long as
they fit in the available space of the leaf the path points to;
3) Then insert all the collected items into the leaf;
4) Release the reserve metadata space for each collected item and
release each item (implies deleting from the rbtree);
5) Unlock the path.
While this is much better than inserting items one by one, it can be
improved in a few aspects:
1) Instead of adding items based on the remaining free space of the
leaf, collect as many items that can fit in a leaf and bulk insert
them. This results in less and larger batches, reducing the total
amount of time to insert the delayed items. For example when adding
100K files to a directory, we ended up creating 1658 batches with
very variable sizes ranging from 1 item to 118 items, on a filesystem
with a node/leaf size of 16K. After this change, we end up with 839
batches, with the vast majority of them having exactly 120 items;
2) We do the search for more items to batch, by iterating the rbtree,
while holding a write lock on the leaf;
3) While still holding the leaf locked, we are releasing the reserved
metadata for each item and then deleting each item, keeping a write
lock on the leaf for longer than necessary. Releasing the delayed items
one by one can take a significant amount of time, because deleting
them from the rbtree can often be a bit slow when the deletion results
in rebalancing the rbtree.
So change this so that we try to create larger batches, with a total
item size up to the maximum a leaf can support, and by unlocking the leaf
immediately after inserting the items, releasing the reserved metadata
space of each item and releasing each item without holding the write lock
on the leaf.
The following script that runs fs_mark was used to test this change:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-m single -d single"
FILES=1000000
THREADS=16
FILE_SIZE=0
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s $FILE_SIZE -t 16"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
It was run on machine with 12 cores, 64G of ram, using a NVMe device and
using a non-debug kernel config (Debian's default config).
Results before this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 76182.1 72223046
3 32000000 0 62746.9 80776528
5 48000000 0 77029.0 93022381
6 64000000 0 73691.6 95251075
8 80000000 0 66288.0 85089634
Results after this change:
FSUse% Count Size Files/sec App Overhead
1 16000000 0 79049.5 (+3.7%) 69700824
3 32000000 0 65248.9 (+3.9%) 80583693
5 48000000 0 77991.4 (+1.2%) 90040908
6 64000000 0 75096.8 (+1.9%) 89862241
8 80000000 0 66926.8 (+1.0%) 84429169
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-20 18:05:22 +03:00
mutex_lock ( & node - > mutex ) ;
curr = __btrfs_first_delayed_insertion_item ( node ) ;
if ( ! curr ) {
mutex_unlock ( & node - > mutex ) ;
break ;
}
ret = btrfs_insert_delayed_item ( trans , root , path , curr ) ;
mutex_unlock ( & node - > mutex ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
return ret ;
}
static int btrfs_batch_delete_items ( struct btrfs_trans_handle * trans ,
struct btrfs_root * root ,
struct btrfs_path * path ,
struct btrfs_delayed_item * item )
{
2022-08-17 14:22:40 +03:00
const u64 ino = item - > delayed_node - > inode_id ;
2022-06-17 15:53:34 +03:00
struct btrfs_fs_info * fs_info = root - > fs_info ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_item * curr , * next ;
2022-05-31 18:06:35 +03:00
struct extent_buffer * leaf = path - > nodes [ 0 ] ;
btrfs: improve batch deletion of delayed dir index items
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:38 +03:00
LIST_HEAD ( batch_list ) ;
int nitems , slot , last_slot ;
int ret ;
2022-06-17 15:53:34 +03:00
u64 total_reserved_size = item - > bytes_reserved ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2022-05-31 18:06:35 +03:00
ASSERT ( leaf ! = NULL ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs: improve batch deletion of delayed dir index items
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:38 +03:00
slot = path - > slots [ 0 ] ;
last_slot = btrfs_header_nritems ( leaf ) - 1 ;
2022-05-31 18:06:35 +03:00
/*
* Our caller always gives us a path pointing to an existing item , so
* this can not happen .
*/
btrfs: improve batch deletion of delayed dir index items
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:38 +03:00
ASSERT ( slot < = last_slot ) ;
if ( WARN_ON ( slot > last_slot ) )
2022-05-31 18:06:35 +03:00
return - ENOENT ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs: improve batch deletion of delayed dir index items
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:38 +03:00
nitems = 1 ;
curr = item ;
list_add_tail ( & curr - > tree_list , & batch_list ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
/*
btrfs: improve batch deletion of delayed dir index items
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:38 +03:00
* Keep checking if the next delayed item matches the next item in the
* leaf - if so , we can add it to the batch of items to delete from the
* leaf .
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
*/
btrfs: improve batch deletion of delayed dir index items
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:38 +03:00
while ( slot < last_slot ) {
struct btrfs_key key ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
next = __btrfs_next_delayed_item ( curr ) ;
if ( ! next )
break ;
btrfs: improve batch deletion of delayed dir index items
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:38 +03:00
slot + + ;
btrfs_item_key_to_cpu ( leaf , & key , slot ) ;
2022-08-17 14:22:40 +03:00
if ( key . objectid ! = ino | |
key . type ! = BTRFS_DIR_INDEX_KEY | |
key . offset ! = next - > index )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
break ;
btrfs: improve batch deletion of delayed dir index items
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:38 +03:00
nitems + + ;
curr = next ;
list_add_tail ( & curr - > tree_list , & batch_list ) ;
2022-06-17 15:53:34 +03:00
total_reserved_size + = curr - > bytes_reserved ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
ret = btrfs_del_items ( trans , root , path , path - > slots [ 0 ] , nitems ) ;
if ( ret )
btrfs: improve batch deletion of delayed dir index items
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:38 +03:00
return ret ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2022-06-17 15:53:34 +03:00
/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
if ( total_reserved_size > 0 ) {
/*
* Check btrfs_delayed_item_reserve_metadata ( ) to see why we
* don ' t need to release / reserve qgroup space .
*/
2022-08-17 14:22:40 +03:00
trace_btrfs_space_reservation ( fs_info , " delayed_item " , ino ,
total_reserved_size , 0 ) ;
2022-06-17 15:53:34 +03:00
btrfs_block_rsv_release ( fs_info , & fs_info - > delayed_block_rsv ,
total_reserved_size , NULL ) ;
}
btrfs: improve batch deletion of delayed dir index items
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:38 +03:00
list_for_each_entry_safe ( curr , next , & batch_list , tree_list ) {
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
list_del ( & curr - > tree_list ) ;
btrfs_release_delayed_item ( curr ) ;
}
btrfs: improve batch deletion of delayed dir index items
Currently we group delayed dir index items for deletion in a single batch
(single btree operation) as long as they all exist in the same leaf and as
long as their keys are sequential in the key space. For example if we have
a leaf that has dir index items with offsets:
2, 3, 4, 6, 7, 10
And we have delayed dir index items for deleting all these indexes, and
no delayed items for any other index keys in between, then we end up
deleting in 3 batches:
1) First batch for indexes 2, 3 and 4;
2) Second batch for indexes 6 and 7;
3) Third batch for index 10.
This is a waste because we can delete all the index keys in a single
batch. What matters is that each consecutive delayed index key matches
each consecutive dir index key in a leaf.
So update the logic at btrfs_batch_delete_items() to check only for a
key match between delayed dir index items and dir index items in a leaf.
Also avoid the useless first iteration on comparing the key of the
first slot to delete with the key of the first delayed item, as it's
silly since they always match, as the delayed item's key was used for
the btree search that gave us the path we have.
This is more efficient and reduces runtime of running delayed items, as
well as lock contention on the subvolume's tree.
For example, the following test script:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
NUM_FILES=1000
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
# Now delete every other file, to create gaps in the dir index keys.
for ((i = 1; i <= $NUM_FILES; i += 2)); do
rm -f $MNT/testdir/file_$i
done
# Sync to force any delayed items to be flushed to the tree.
sync
start=$(date +%s%N)
rm -fr $MNT/testdir
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo -e "\nrm -fr took $dur milliseconds"
umount $MNT
Running that test script while having the following bpftrace script
running in another shell:
$ cat bpf-measure.sh
#!/usr/bin/bpftrace
/* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */
k:btrfs_delete_delayed_items
{
@start_delete_delayed_items[tid] = nsecs;
}
k:btrfs_del_items
/@start_delete_delayed_items[tid]/
{
@delete_batches = count();
}
kr:btrfs_delete_delayed_items
/@start_delete_delayed_items[tid]/
{
$dur = (nsecs - @start_delete_delayed_items[tid]) / 1000;
@btrfs_delete_delayed_items_total_time = sum($dur);
delete(@start_delete_delayed_items[tid]);
}
Before this change:
@btrfs_delete_delayed_items_total_time: 9563
@delete_batches: 1001
After this change:
@btrfs_delete_delayed_items_total_time: 7328
@delete_batches: 509
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:38 +03:00
return 0 ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
static int btrfs_delete_delayed_items ( struct btrfs_trans_handle * trans ,
struct btrfs_path * path ,
struct btrfs_root * root ,
struct btrfs_delayed_node * node )
{
2022-08-17 14:22:40 +03:00
struct btrfs_key key ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
int ret = 0 ;
2022-08-17 14:22:40 +03:00
key . objectid = node - > inode_id ;
key . type = BTRFS_DIR_INDEX_KEY ;
btrfs: refactor the delayed item deletion entry point
The delayed item deletion entry point, btrfs_delete_delayed_items(), is a
bit convoluted for a few reasons:
1) It's really a loop disguised with labels and goto statements;
2) There's a 'delete_fail' label which isn't only for error cases, we can
jump to that label even if no error happened, if we simply don't have
more delayed items to delete;
3) Unnecessarily keeps track of the current and previous items for no
good reason, as after getting the next item and releasing the current
one, it just jumps to the 'again' label just to look again for the
first delayed item;
4) When a delayed item is not in the tree (because it was already deleted
before), it releases the item while holding a path locked, which is
not necessary and adds more contention to the tree, specially taking
into account that the path came from a deletion search, meaning we have
write locks for nodes at levels 2, 1 and 0. And releasing the item is
not computationally trivial (rb tree deletion, a kfree() and some
trivial things).
So refactor it to use a while loop and add some comments to make it more
obvious why we can have delayed items without a matching item in the tree
as well as why not keep the delayed node locked all the time when running
all its deletion items. This is also a preparation for some upcoming work
involving delayed items.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:37 +03:00
while ( ret = = 0 ) {
struct btrfs_delayed_item * item ;
mutex_lock ( & node - > mutex ) ;
item = __btrfs_first_delayed_deletion_item ( node ) ;
if ( ! item ) {
mutex_unlock ( & node - > mutex ) ;
break ;
}
2022-08-17 14:22:40 +03:00
key . offset = item - > index ;
ret = btrfs_search_slot ( trans , root , & key , path , - 1 , 1 ) ;
btrfs: refactor the delayed item deletion entry point
The delayed item deletion entry point, btrfs_delete_delayed_items(), is a
bit convoluted for a few reasons:
1) It's really a loop disguised with labels and goto statements;
2) There's a 'delete_fail' label which isn't only for error cases, we can
jump to that label even if no error happened, if we simply don't have
more delayed items to delete;
3) Unnecessarily keeps track of the current and previous items for no
good reason, as after getting the next item and releasing the current
one, it just jumps to the 'again' label just to look again for the
first delayed item;
4) When a delayed item is not in the tree (because it was already deleted
before), it releases the item while holding a path locked, which is
not necessary and adds more contention to the tree, specially taking
into account that the path came from a deletion search, meaning we have
write locks for nodes at levels 2, 1 and 0. And releasing the item is
not computationally trivial (rb tree deletion, a kfree() and some
trivial things).
So refactor it to use a while loop and add some comments to make it more
obvious why we can have delayed items without a matching item in the tree
as well as why not keep the delayed node locked all the time when running
all its deletion items. This is also a preparation for some upcoming work
involving delayed items.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:37 +03:00
if ( ret > 0 ) {
/*
* There ' s no matching item in the leaf . This means we
* have already deleted this item in a past run of the
* delayed items . We ignore errors when running delayed
* items from an async context , through a work queue job
* running btrfs_async_run_delayed_root ( ) , and don ' t
* release delayed items that failed to complete . This
* is because we will retry later , and at transaction
* commit time we always run delayed items and will
* then deal with errors if they fail to run again .
*
* So just release delayed items for which we can ' t find
* an item in the tree , and move to the next item .
*/
btrfs_release_path ( path ) ;
btrfs_release_delayed_item ( item ) ;
ret = 0 ;
} else if ( ret = = 0 ) {
ret = btrfs_batch_delete_items ( trans , root , path , item ) ;
btrfs_release_path ( path ) ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
/*
btrfs: refactor the delayed item deletion entry point
The delayed item deletion entry point, btrfs_delete_delayed_items(), is a
bit convoluted for a few reasons:
1) It's really a loop disguised with labels and goto statements;
2) There's a 'delete_fail' label which isn't only for error cases, we can
jump to that label even if no error happened, if we simply don't have
more delayed items to delete;
3) Unnecessarily keeps track of the current and previous items for no
good reason, as after getting the next item and releasing the current
one, it just jumps to the 'again' label just to look again for the
first delayed item;
4) When a delayed item is not in the tree (because it was already deleted
before), it releases the item while holding a path locked, which is
not necessary and adds more contention to the tree, specially taking
into account that the path came from a deletion search, meaning we have
write locks for nodes at levels 2, 1 and 0. And releasing the item is
not computationally trivial (rb tree deletion, a kfree() and some
trivial things).
So refactor it to use a while loop and add some comments to make it more
obvious why we can have delayed items without a matching item in the tree
as well as why not keep the delayed node locked all the time when running
all its deletion items. This is also a preparation for some upcoming work
involving delayed items.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:37 +03:00
* We unlock and relock on each iteration , this is to prevent
* blocking other tasks for too long while we are being run from
* the async context ( work queue job ) . Those tasks are typically
* running system calls like creat / mkdir / rename / unlink / etc which
* need to add delayed items to this delayed node .
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
*/
btrfs: refactor the delayed item deletion entry point
The delayed item deletion entry point, btrfs_delete_delayed_items(), is a
bit convoluted for a few reasons:
1) It's really a loop disguised with labels and goto statements;
2) There's a 'delete_fail' label which isn't only for error cases, we can
jump to that label even if no error happened, if we simply don't have
more delayed items to delete;
3) Unnecessarily keeps track of the current and previous items for no
good reason, as after getting the next item and releasing the current
one, it just jumps to the 'again' label just to look again for the
first delayed item;
4) When a delayed item is not in the tree (because it was already deleted
before), it releases the item while holding a path locked, which is
not necessary and adds more contention to the tree, specially taking
into account that the path came from a deletion search, meaning we have
write locks for nodes at levels 2, 1 and 0. And releasing the item is
not computationally trivial (rb tree deletion, a kfree() and some
trivial things).
So refactor it to use a while loop and add some comments to make it more
obvious why we can have delayed items without a matching item in the tree
as well as why not keep the delayed node locked all the time when running
all its deletion items. This is also a preparation for some upcoming work
involving delayed items.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-31 18:06:37 +03:00
mutex_unlock ( & node - > mutex ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
return ret ;
}
static void btrfs_release_delayed_inode ( struct btrfs_delayed_node * delayed_node )
{
struct btrfs_delayed_root * delayed_root ;
2013-12-26 09:07:05 +04:00
if ( delayed_node & &
test_bit ( BTRFS_DELAYED_NODE_INODE_DIRTY , & delayed_node - > flags ) ) {
2024-01-20 04:26:32 +03:00
ASSERT ( delayed_node - > root ) ;
2013-12-26 09:07:05 +04:00
clear_bit ( BTRFS_DELAYED_NODE_INODE_DIRTY , & delayed_node - > flags ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
delayed_node - > count - - ;
delayed_root = delayed_node - > root - > fs_info - > delayed_root ;
2013-03-05 02:13:31 +04:00
finish_one_item ( delayed_root ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
}
2013-12-26 09:07:06 +04:00
static void btrfs_release_delayed_iref ( struct btrfs_delayed_node * delayed_node )
{
2021-05-21 23:44:07 +03:00
if ( test_and_clear_bit ( BTRFS_DELAYED_NODE_DEL_IREF , & delayed_node - > flags ) ) {
struct btrfs_delayed_root * delayed_root ;
2013-12-26 09:07:06 +04:00
2021-05-21 23:44:07 +03:00
ASSERT ( delayed_node - > root ) ;
delayed_node - > count - - ;
delayed_root = delayed_node - > root - > fs_info - > delayed_root ;
finish_one_item ( delayed_root ) ;
}
2013-12-26 09:07:06 +04:00
}
2012-12-19 10:59:51 +04:00
static int __btrfs_update_delayed_inode ( struct btrfs_trans_handle * trans ,
struct btrfs_root * root ,
struct btrfs_path * path ,
struct btrfs_delayed_node * node )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
2016-06-23 01:54:24 +03:00
struct btrfs_fs_info * fs_info = root - > fs_info ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_key key ;
struct btrfs_inode_item * inode_item ;
struct extent_buffer * leaf ;
2013-12-26 09:07:06 +04:00
int mod ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
int ret ;
key . objectid = node - > inode_id ;
2014-06-04 20:41:45 +04:00
key . type = BTRFS_INODE_ITEM_KEY ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
key . offset = 0 ;
2012-12-19 10:59:51 +04:00
2013-12-26 09:07:06 +04:00
if ( test_bit ( BTRFS_DELAYED_NODE_DEL_IREF , & node - > flags ) )
mod = - 1 ;
else
mod = 1 ;
ret = btrfs_lookup_inode ( trans , root , path , & key , mod ) ;
2021-05-21 23:44:08 +03:00
if ( ret > 0 )
ret = - ENOENT ;
if ( ret < 0 )
goto out ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
leaf = path - > nodes [ 0 ] ;
inode_item = btrfs_item_ptr ( leaf , path - > slots [ 0 ] ,
struct btrfs_inode_item ) ;
write_extent_buffer ( leaf , & node - > inode_item , ( unsigned long ) inode_item ,
sizeof ( struct btrfs_inode_item ) ) ;
2023-09-12 15:04:29 +03:00
btrfs_mark_buffer_dirty ( trans , leaf ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2013-12-26 09:07:06 +04:00
if ( ! test_bit ( BTRFS_DELAYED_NODE_DEL_IREF , & node - > flags ) )
2021-05-21 23:44:07 +03:00
goto out ;
2013-12-26 09:07:06 +04:00
2023-10-31 00:07:20 +03:00
/*
* Now we ' re going to delete the INODE_REF / EXTREF , which should be the
* only one ref left . Check if the next item is an INODE_REF / EXTREF .
*
* But if we ' re the last item already , release and search for the last
* INODE_REF / EXTREF .
*/
if ( path - > slots [ 0 ] + 1 > = btrfs_header_nritems ( leaf ) ) {
key . objectid = node - > inode_id ;
key . type = BTRFS_INODE_EXTREF_KEY ;
key . offset = ( u64 ) - 1 ;
btrfs_release_path ( path ) ;
ret = btrfs_search_slot ( trans , root , & key , path , - 1 , 1 ) ;
if ( ret < 0 )
goto err_out ;
ASSERT ( ret > 0 ) ;
ASSERT ( path - > slots [ 0 ] > 0 ) ;
ret = 0 ;
path - > slots [ 0 ] - - ;
leaf = path - > nodes [ 0 ] ;
} else {
path - > slots [ 0 ] + + ;
}
2013-12-26 09:07:06 +04:00
btrfs_item_key_to_cpu ( leaf , & key , path - > slots [ 0 ] ) ;
if ( key . objectid ! = node - > inode_id )
goto out ;
if ( key . type ! = BTRFS_INODE_REF_KEY & &
key . type ! = BTRFS_INODE_EXTREF_KEY )
goto out ;
/*
* Delayed iref deletion is for the inode who has only one link ,
* so there is only one iref . The case that several irefs are
* in the same item doesn ' t exist .
*/
2023-02-18 07:36:48 +03:00
ret = btrfs_del_item ( trans , root , path ) ;
2013-12-26 09:07:06 +04:00
out :
btrfs_release_delayed_iref ( node ) ;
btrfs_release_path ( path ) ;
err_out :
2017-12-12 10:34:33 +03:00
btrfs_delayed_inode_release_metadata ( fs_info , node , ( ret < 0 ) ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs_release_delayed_inode ( node ) ;
2021-05-21 23:44:09 +03:00
/*
* If we fail to update the delayed inode we need to abort the
* transaction , because we could leave the inode with the improper
* counts behind .
*/
if ( ret & & ret ! = - ENOENT )
btrfs_abort_transaction ( trans , ret ) ;
2013-12-26 09:07:06 +04:00
return ret ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
2012-12-19 10:59:51 +04:00
static inline int btrfs_update_delayed_inode ( struct btrfs_trans_handle * trans ,
struct btrfs_root * root ,
struct btrfs_path * path ,
struct btrfs_delayed_node * node )
{
int ret ;
mutex_lock ( & node - > mutex ) ;
2013-12-26 09:07:05 +04:00
if ( ! test_bit ( BTRFS_DELAYED_NODE_INODE_DIRTY , & node - > flags ) ) {
2012-12-19 10:59:51 +04:00
mutex_unlock ( & node - > mutex ) ;
return 0 ;
}
ret = __btrfs_update_delayed_inode ( trans , root , path , node ) ;
mutex_unlock ( & node - > mutex ) ;
return ret ;
}
2012-12-19 10:59:03 +04:00
static inline int
__btrfs_commit_inode_delayed_items ( struct btrfs_trans_handle * trans ,
struct btrfs_path * path ,
struct btrfs_delayed_node * node )
{
int ret ;
ret = btrfs_insert_delayed_items ( trans , path , node - > root , node ) ;
if ( ret )
return ret ;
ret = btrfs_delete_delayed_items ( trans , path , node - > root , node ) ;
if ( ret )
return ret ;
2024-03-21 20:14:24 +03:00
ret = btrfs_record_root_in_trans ( trans , node - > root ) ;
if ( ret )
return ret ;
2012-12-19 10:59:03 +04:00
ret = btrfs_update_delayed_inode ( trans , node - > root , path , node ) ;
return ret ;
}
2012-03-12 19:03:00 +04:00
/*
* Called when committing the transaction .
* Returns 0 on success .
* Returns < 0 on error and returns with an aborted transaction with any
* outstanding delayed items cleaned up .
*/
2018-02-07 18:55:42 +03:00
static int __btrfs_run_delayed_items ( struct btrfs_trans_handle * trans , int nr )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
2018-02-07 18:55:42 +03:00
struct btrfs_fs_info * fs_info = trans - > fs_info ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_root * delayed_root ;
struct btrfs_delayed_node * curr_node , * prev_node ;
struct btrfs_path * path ;
2011-06-15 14:47:30 +04:00
struct btrfs_block_rsv * block_rsv ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
int ret = 0 ;
2012-06-21 22:05:49 +04:00
bool count = ( nr > 0 ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2020-02-05 19:34:34 +03:00
if ( TRANS_ABORTED ( trans ) )
2012-03-12 19:03:00 +04:00
return - EIO ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
path = btrfs_alloc_path ( ) ;
if ( ! path )
return - ENOMEM ;
2011-06-15 14:47:30 +04:00
block_rsv = trans - > block_rsv ;
2016-06-23 01:54:23 +03:00
trans - > block_rsv = & fs_info - > delayed_block_rsv ;
2011-06-15 14:47:30 +04:00
2016-06-23 01:54:23 +03:00
delayed_root = fs_info - > delayed_root ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
curr_node = btrfs_first_delayed_node ( delayed_root ) ;
2021-01-27 11:11:37 +03:00
while ( curr_node & & ( ! count | | nr - - ) ) {
2012-12-19 10:59:03 +04:00
ret = __btrfs_commit_inode_delayed_items ( trans , path ,
curr_node ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ret ) {
2016-06-11 01:19:25 +03:00
btrfs_abort_transaction ( trans , ret ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
break ;
}
prev_node = curr_node ;
curr_node = btrfs_next_delayed_node ( curr_node ) ;
btrfs: fix lockdep splat and potential deadlock after failure running delayed items
When running delayed items we are holding a delayed node's mutex and then
we will attempt to modify a subvolume btree to insert/update/delete the
delayed items. However if have an error during the insertions for example,
btrfs_insert_delayed_items() may return with a path that has locked extent
buffers (a leaf at the very least), and then we attempt to release the
delayed node at __btrfs_run_delayed_items(), which requires taking the
delayed node's mutex, causing an ABBA type of deadlock. This was reported
by syzbot and the lockdep splat is the following:
WARNING: possible circular locking dependency detected
6.5.0-rc7-syzkaller-00024-g93f5de5f648d #0 Not tainted
------------------------------------------------------
syz-executor.2/13257 is trying to acquire lock:
ffff88801835c0c0 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node+0x9a/0xaa0 fs/btrfs/delayed-inode.c:256
but task is already holding lock:
ffff88802a5ab8e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x3c/0x2a0 fs/btrfs/locking.c:198
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (btrfs-tree-00){++++}-{3:3}:
__lock_release kernel/locking/lockdep.c:5475 [inline]
lock_release+0x36f/0x9d0 kernel/locking/lockdep.c:5781
up_write+0x79/0x580 kernel/locking/rwsem.c:1625
btrfs_tree_unlock_rw fs/btrfs/locking.h:189 [inline]
btrfs_unlock_up_safe+0x179/0x3b0 fs/btrfs/locking.c:239
search_leaf fs/btrfs/ctree.c:1986 [inline]
btrfs_search_slot+0x2511/0x2f80 fs/btrfs/ctree.c:2230
btrfs_insert_empty_items+0x9c/0x180 fs/btrfs/ctree.c:4376
btrfs_insert_delayed_item fs/btrfs/delayed-inode.c:746 [inline]
btrfs_insert_delayed_items fs/btrfs/delayed-inode.c:824 [inline]
__btrfs_commit_inode_delayed_items+0xd24/0x2410 fs/btrfs/delayed-inode.c:1111
__btrfs_run_delayed_items+0x1db/0x430 fs/btrfs/delayed-inode.c:1153
flush_space+0x269/0xe70 fs/btrfs/space-info.c:723
btrfs_async_reclaim_metadata_space+0x106/0x350 fs/btrfs/space-info.c:1078
process_one_work+0x92c/0x12c0 kernel/workqueue.c:2600
worker_thread+0xa63/0x1210 kernel/workqueue.c:2751
kthread+0x2b8/0x350 kernel/kthread.c:389
ret_from_fork+0x2e/0x60 arch/x86/kernel/process.c:145
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304
-> #0 (&delayed_node->mutex){+.+.}-{3:3}:
check_prev_add kernel/locking/lockdep.c:3142 [inline]
check_prevs_add kernel/locking/lockdep.c:3261 [inline]
validate_chain kernel/locking/lockdep.c:3876 [inline]
__lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144
lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761
__mutex_lock_common+0x1d8/0x2530 kernel/locking/mutex.c:603
__mutex_lock kernel/locking/mutex.c:747 [inline]
mutex_lock_nested+0x1b/0x20 kernel/locking/mutex.c:799
__btrfs_release_delayed_node+0x9a/0xaa0 fs/btrfs/delayed-inode.c:256
btrfs_release_delayed_node fs/btrfs/delayed-inode.c:281 [inline]
__btrfs_run_delayed_items+0x2b5/0x430 fs/btrfs/delayed-inode.c:1156
btrfs_commit_transaction+0x859/0x2ff0 fs/btrfs/transaction.c:2276
btrfs_sync_file+0xf56/0x1330 fs/btrfs/file.c:1988
vfs_fsync_range fs/sync.c:188 [inline]
vfs_fsync fs/sync.c:202 [inline]
do_fsync fs/sync.c:212 [inline]
__do_sys_fsync fs/sync.c:220 [inline]
__se_sys_fsync fs/sync.c:218 [inline]
__x64_sys_fsync+0x196/0x1e0 fs/sync.c:218
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(btrfs-tree-00);
lock(&delayed_node->mutex);
lock(btrfs-tree-00);
lock(&delayed_node->mutex);
*** DEADLOCK ***
3 locks held by syz-executor.2/13257:
#0: ffff88802c1ee370 (btrfs_trans_num_writers){++++}-{0:0}, at: spin_unlock include/linux/spinlock.h:391 [inline]
#0: ffff88802c1ee370 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0xb87/0xe00 fs/btrfs/transaction.c:287
#1: ffff88802c1ee398 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0xbb2/0xe00 fs/btrfs/transaction.c:288
#2: ffff88802a5ab8e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x3c/0x2a0 fs/btrfs/locking.c:198
stack backtrace:
CPU: 0 PID: 13257 Comm: syz-executor.2 Not tainted 6.5.0-rc7-syzkaller-00024-g93f5de5f648d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
check_noncircular+0x375/0x4a0 kernel/locking/lockdep.c:2195
check_prev_add kernel/locking/lockdep.c:3142 [inline]
check_prevs_add kernel/locking/lockdep.c:3261 [inline]
validate_chain kernel/locking/lockdep.c:3876 [inline]
__lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144
lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761
__mutex_lock_common+0x1d8/0x2530 kernel/locking/mutex.c:603
__mutex_lock kernel/locking/mutex.c:747 [inline]
mutex_lock_nested+0x1b/0x20 kernel/locking/mutex.c:799
__btrfs_release_delayed_node+0x9a/0xaa0 fs/btrfs/delayed-inode.c:256
btrfs_release_delayed_node fs/btrfs/delayed-inode.c:281 [inline]
__btrfs_run_delayed_items+0x2b5/0x430 fs/btrfs/delayed-inode.c:1156
btrfs_commit_transaction+0x859/0x2ff0 fs/btrfs/transaction.c:2276
btrfs_sync_file+0xf56/0x1330 fs/btrfs/file.c:1988
vfs_fsync_range fs/sync.c:188 [inline]
vfs_fsync fs/sync.c:202 [inline]
do_fsync fs/sync.c:212 [inline]
__do_sys_fsync fs/sync.c:220 [inline]
__se_sys_fsync fs/sync.c:218 [inline]
__x64_sys_fsync+0x196/0x1e0 fs/sync.c:218
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f3ad047cae9
Code: 28 00 00 00 75 (...)
RSP: 002b:00007f3ad12510c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 00007f3ad059bf80 RCX: 00007f3ad047cae9
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000005
RBP: 00007f3ad04c847a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007f3ad059bf80 R15: 00007ffe56af92f8
</TASK>
------------[ cut here ]------------
Fix this by releasing the path before releasing the delayed node in the
error path at __btrfs_run_delayed_items().
Reported-by: syzbot+a379155f07c134ea9879@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/000000000000abba27060403b5bd@google.com/
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-29 13:34:52 +03:00
/*
* See the comment below about releasing path before releasing
* node . If the commit of delayed items was successful the path
* should always be released , but in case of an error , it may
* point to locked extent buffers ( a leaf at the very least ) .
*/
ASSERT ( path - > nodes [ 0 ] = = NULL ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs_release_delayed_node ( prev_node ) ;
}
btrfs: fix lockdep splat and potential deadlock after failure running delayed items
When running delayed items we are holding a delayed node's mutex and then
we will attempt to modify a subvolume btree to insert/update/delete the
delayed items. However if have an error during the insertions for example,
btrfs_insert_delayed_items() may return with a path that has locked extent
buffers (a leaf at the very least), and then we attempt to release the
delayed node at __btrfs_run_delayed_items(), which requires taking the
delayed node's mutex, causing an ABBA type of deadlock. This was reported
by syzbot and the lockdep splat is the following:
WARNING: possible circular locking dependency detected
6.5.0-rc7-syzkaller-00024-g93f5de5f648d #0 Not tainted
------------------------------------------------------
syz-executor.2/13257 is trying to acquire lock:
ffff88801835c0c0 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node+0x9a/0xaa0 fs/btrfs/delayed-inode.c:256
but task is already holding lock:
ffff88802a5ab8e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x3c/0x2a0 fs/btrfs/locking.c:198
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (btrfs-tree-00){++++}-{3:3}:
__lock_release kernel/locking/lockdep.c:5475 [inline]
lock_release+0x36f/0x9d0 kernel/locking/lockdep.c:5781
up_write+0x79/0x580 kernel/locking/rwsem.c:1625
btrfs_tree_unlock_rw fs/btrfs/locking.h:189 [inline]
btrfs_unlock_up_safe+0x179/0x3b0 fs/btrfs/locking.c:239
search_leaf fs/btrfs/ctree.c:1986 [inline]
btrfs_search_slot+0x2511/0x2f80 fs/btrfs/ctree.c:2230
btrfs_insert_empty_items+0x9c/0x180 fs/btrfs/ctree.c:4376
btrfs_insert_delayed_item fs/btrfs/delayed-inode.c:746 [inline]
btrfs_insert_delayed_items fs/btrfs/delayed-inode.c:824 [inline]
__btrfs_commit_inode_delayed_items+0xd24/0x2410 fs/btrfs/delayed-inode.c:1111
__btrfs_run_delayed_items+0x1db/0x430 fs/btrfs/delayed-inode.c:1153
flush_space+0x269/0xe70 fs/btrfs/space-info.c:723
btrfs_async_reclaim_metadata_space+0x106/0x350 fs/btrfs/space-info.c:1078
process_one_work+0x92c/0x12c0 kernel/workqueue.c:2600
worker_thread+0xa63/0x1210 kernel/workqueue.c:2751
kthread+0x2b8/0x350 kernel/kthread.c:389
ret_from_fork+0x2e/0x60 arch/x86/kernel/process.c:145
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304
-> #0 (&delayed_node->mutex){+.+.}-{3:3}:
check_prev_add kernel/locking/lockdep.c:3142 [inline]
check_prevs_add kernel/locking/lockdep.c:3261 [inline]
validate_chain kernel/locking/lockdep.c:3876 [inline]
__lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144
lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761
__mutex_lock_common+0x1d8/0x2530 kernel/locking/mutex.c:603
__mutex_lock kernel/locking/mutex.c:747 [inline]
mutex_lock_nested+0x1b/0x20 kernel/locking/mutex.c:799
__btrfs_release_delayed_node+0x9a/0xaa0 fs/btrfs/delayed-inode.c:256
btrfs_release_delayed_node fs/btrfs/delayed-inode.c:281 [inline]
__btrfs_run_delayed_items+0x2b5/0x430 fs/btrfs/delayed-inode.c:1156
btrfs_commit_transaction+0x859/0x2ff0 fs/btrfs/transaction.c:2276
btrfs_sync_file+0xf56/0x1330 fs/btrfs/file.c:1988
vfs_fsync_range fs/sync.c:188 [inline]
vfs_fsync fs/sync.c:202 [inline]
do_fsync fs/sync.c:212 [inline]
__do_sys_fsync fs/sync.c:220 [inline]
__se_sys_fsync fs/sync.c:218 [inline]
__x64_sys_fsync+0x196/0x1e0 fs/sync.c:218
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(btrfs-tree-00);
lock(&delayed_node->mutex);
lock(btrfs-tree-00);
lock(&delayed_node->mutex);
*** DEADLOCK ***
3 locks held by syz-executor.2/13257:
#0: ffff88802c1ee370 (btrfs_trans_num_writers){++++}-{0:0}, at: spin_unlock include/linux/spinlock.h:391 [inline]
#0: ffff88802c1ee370 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0xb87/0xe00 fs/btrfs/transaction.c:287
#1: ffff88802c1ee398 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0xbb2/0xe00 fs/btrfs/transaction.c:288
#2: ffff88802a5ab8e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x3c/0x2a0 fs/btrfs/locking.c:198
stack backtrace:
CPU: 0 PID: 13257 Comm: syz-executor.2 Not tainted 6.5.0-rc7-syzkaller-00024-g93f5de5f648d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
check_noncircular+0x375/0x4a0 kernel/locking/lockdep.c:2195
check_prev_add kernel/locking/lockdep.c:3142 [inline]
check_prevs_add kernel/locking/lockdep.c:3261 [inline]
validate_chain kernel/locking/lockdep.c:3876 [inline]
__lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144
lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761
__mutex_lock_common+0x1d8/0x2530 kernel/locking/mutex.c:603
__mutex_lock kernel/locking/mutex.c:747 [inline]
mutex_lock_nested+0x1b/0x20 kernel/locking/mutex.c:799
__btrfs_release_delayed_node+0x9a/0xaa0 fs/btrfs/delayed-inode.c:256
btrfs_release_delayed_node fs/btrfs/delayed-inode.c:281 [inline]
__btrfs_run_delayed_items+0x2b5/0x430 fs/btrfs/delayed-inode.c:1156
btrfs_commit_transaction+0x859/0x2ff0 fs/btrfs/transaction.c:2276
btrfs_sync_file+0xf56/0x1330 fs/btrfs/file.c:1988
vfs_fsync_range fs/sync.c:188 [inline]
vfs_fsync fs/sync.c:202 [inline]
do_fsync fs/sync.c:212 [inline]
__do_sys_fsync fs/sync.c:220 [inline]
__se_sys_fsync fs/sync.c:218 [inline]
__x64_sys_fsync+0x196/0x1e0 fs/sync.c:218
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f3ad047cae9
Code: 28 00 00 00 75 (...)
RSP: 002b:00007f3ad12510c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 00007f3ad059bf80 RCX: 00007f3ad047cae9
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000005
RBP: 00007f3ad04c847a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007f3ad059bf80 R15: 00007ffe56af92f8
</TASK>
------------[ cut here ]------------
Fix this by releasing the path before releasing the delayed node in the
error path at __btrfs_run_delayed_items().
Reported-by: syzbot+a379155f07c134ea9879@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/000000000000abba27060403b5bd@google.com/
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-29 13:34:52 +03:00
/*
* Release the path to avoid a potential deadlock and lockdep splat when
* releasing the delayed node , as that requires taking the delayed node ' s
* mutex . If another task starts running delayed items before we take
* the mutex , it will first lock the mutex and then it may try to lock
* the same btree path ( leaf ) .
*/
btrfs_free_path ( path ) ;
2012-06-21 22:05:49 +04:00
if ( curr_node )
btrfs_release_delayed_node ( curr_node ) ;
2011-06-15 14:47:30 +04:00
trans - > block_rsv = block_rsv ;
2012-03-12 19:03:00 +04:00
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
return ret ;
}
2018-02-07 18:55:43 +03:00
int btrfs_run_delayed_items ( struct btrfs_trans_handle * trans )
2012-06-21 22:05:49 +04:00
{
2018-02-07 18:55:42 +03:00
return __btrfs_run_delayed_items ( trans , - 1 ) ;
2012-06-21 22:05:49 +04:00
}
2018-02-07 18:55:43 +03:00
int btrfs_run_delayed_items_nr ( struct btrfs_trans_handle * trans , int nr )
2012-06-21 22:05:49 +04:00
{
2018-02-07 18:55:42 +03:00
return __btrfs_run_delayed_items ( trans , nr ) ;
2012-06-21 22:05:49 +04:00
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
int btrfs_commit_inode_delayed_items ( struct btrfs_trans_handle * trans ,
2017-01-10 21:35:41 +03:00
struct btrfs_inode * inode )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
2017-01-10 21:35:41 +03:00
struct btrfs_delayed_node * delayed_node = btrfs_get_delayed_node ( inode ) ;
2012-12-19 10:59:03 +04:00
struct btrfs_path * path ;
struct btrfs_block_rsv * block_rsv ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
int ret ;
if ( ! delayed_node )
return 0 ;
mutex_lock ( & delayed_node - > mutex ) ;
if ( ! delayed_node - > count ) {
mutex_unlock ( & delayed_node - > mutex ) ;
btrfs_release_delayed_node ( delayed_node ) ;
return 0 ;
}
mutex_unlock ( & delayed_node - > mutex ) ;
2012-12-19 10:59:03 +04:00
path = btrfs_alloc_path ( ) ;
2013-10-12 23:32:59 +04:00
if ( ! path ) {
btrfs_release_delayed_node ( delayed_node ) ;
2012-12-19 10:59:03 +04:00
return - ENOMEM ;
2013-10-12 23:32:59 +04:00
}
2012-12-19 10:59:03 +04:00
block_rsv = trans - > block_rsv ;
trans - > block_rsv = & delayed_node - > root - > fs_info - > delayed_block_rsv ;
ret = __btrfs_commit_inode_delayed_items ( trans , path , delayed_node ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs_release_delayed_node ( delayed_node ) ;
2012-12-19 10:59:03 +04:00
btrfs_free_path ( path ) ;
trans - > block_rsv = block_rsv ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
return ret ;
}
2017-01-10 21:35:40 +03:00
int btrfs_commit_inode_delayed_inode ( struct btrfs_inode * inode )
2012-12-19 10:59:51 +04:00
{
2018-06-29 11:56:42 +03:00
struct btrfs_fs_info * fs_info = inode - > root - > fs_info ;
2012-12-19 10:59:51 +04:00
struct btrfs_trans_handle * trans ;
2017-01-10 21:35:40 +03:00
struct btrfs_delayed_node * delayed_node = btrfs_get_delayed_node ( inode ) ;
2012-12-19 10:59:51 +04:00
struct btrfs_path * path ;
struct btrfs_block_rsv * block_rsv ;
int ret ;
if ( ! delayed_node )
return 0 ;
mutex_lock ( & delayed_node - > mutex ) ;
2013-12-26 09:07:05 +04:00
if ( ! test_bit ( BTRFS_DELAYED_NODE_INODE_DIRTY , & delayed_node - > flags ) ) {
2012-12-19 10:59:51 +04:00
mutex_unlock ( & delayed_node - > mutex ) ;
btrfs_release_delayed_node ( delayed_node ) ;
return 0 ;
}
mutex_unlock ( & delayed_node - > mutex ) ;
trans = btrfs_join_transaction ( delayed_node - > root ) ;
if ( IS_ERR ( trans ) ) {
ret = PTR_ERR ( trans ) ;
goto out ;
}
path = btrfs_alloc_path ( ) ;
if ( ! path ) {
ret = - ENOMEM ;
goto trans_out ;
}
block_rsv = trans - > block_rsv ;
2016-06-23 01:54:24 +03:00
trans - > block_rsv = & fs_info - > delayed_block_rsv ;
2012-12-19 10:59:51 +04:00
mutex_lock ( & delayed_node - > mutex ) ;
2013-12-26 09:07:05 +04:00
if ( test_bit ( BTRFS_DELAYED_NODE_INODE_DIRTY , & delayed_node - > flags ) )
2012-12-19 10:59:51 +04:00
ret = __btrfs_update_delayed_inode ( trans , delayed_node - > root ,
path , delayed_node ) ;
else
ret = 0 ;
mutex_unlock ( & delayed_node - > mutex ) ;
btrfs_free_path ( path ) ;
trans - > block_rsv = block_rsv ;
trans_out :
2016-09-10 04:39:03 +03:00
btrfs_end_transaction ( trans ) ;
2016-06-23 01:54:24 +03:00
btrfs_btree_balance_dirty ( fs_info ) ;
2012-12-19 10:59:51 +04:00
out :
btrfs_release_delayed_node ( delayed_node ) ;
return ret ;
}
2017-01-10 21:35:39 +03:00
void btrfs_remove_delayed_node ( struct btrfs_inode * inode )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
struct btrfs_delayed_node * delayed_node ;
2017-01-10 21:35:39 +03:00
delayed_node = READ_ONCE ( inode - > delayed_node ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ! delayed_node )
return ;
2017-01-10 21:35:39 +03:00
inode - > delayed_node = NULL ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs_release_delayed_node ( delayed_node ) ;
}
2013-03-05 02:13:31 +04:00
struct btrfs_async_delayed_work {
struct btrfs_delayed_root * delayed_root ;
int nr ;
2014-02-28 06:46:19 +04:00
struct btrfs_work work ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
} ;
2014-02-28 06:46:19 +04:00
static void btrfs_async_run_delayed_root ( struct btrfs_work * work )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
2013-03-05 02:13:31 +04:00
struct btrfs_async_delayed_work * async_work ;
struct btrfs_delayed_root * delayed_root ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_trans_handle * trans ;
struct btrfs_path * path ;
struct btrfs_delayed_node * delayed_node = NULL ;
struct btrfs_root * root ;
2011-06-15 14:47:30 +04:00
struct btrfs_block_rsv * block_rsv ;
2013-03-05 02:13:31 +04:00
int total_done = 0 ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2013-03-05 02:13:31 +04:00
async_work = container_of ( work , struct btrfs_async_delayed_work , work ) ;
delayed_root = async_work - > delayed_root ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
path = btrfs_alloc_path ( ) ;
if ( ! path )
goto out ;
2017-10-23 13:51:48 +03:00
do {
if ( atomic_read ( & delayed_root - > items ) <
BTRFS_DELAYED_BACKGROUND / 2 )
break ;
2013-03-05 02:13:31 +04:00
2017-10-23 13:51:48 +03:00
delayed_node = btrfs_first_prepared_delayed_node ( delayed_root ) ;
if ( ! delayed_node )
break ;
2013-03-05 02:13:31 +04:00
2017-10-23 13:51:48 +03:00
root = delayed_node - > root ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2017-10-23 13:51:48 +03:00
trans = btrfs_join_transaction ( root ) ;
if ( IS_ERR ( trans ) ) {
btrfs_release_path ( path ) ;
btrfs_release_prepared_delayed_node ( delayed_node ) ;
total_done + + ;
continue ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2017-10-23 13:51:48 +03:00
block_rsv = trans - > block_rsv ;
trans - > block_rsv = & root - > fs_info - > delayed_block_rsv ;
2011-06-15 14:47:30 +04:00
2017-10-23 13:51:48 +03:00
__btrfs_commit_inode_delayed_items ( trans , path , delayed_node ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2017-10-23 13:51:48 +03:00
trans - > block_rsv = block_rsv ;
btrfs_end_transaction ( trans ) ;
btrfs_btree_balance_dirty_nodelay ( root - > fs_info ) ;
2013-03-05 02:13:31 +04:00
2017-10-23 13:51:48 +03:00
btrfs_release_path ( path ) ;
btrfs_release_prepared_delayed_node ( delayed_node ) ;
total_done + + ;
2013-03-05 02:13:31 +04:00
2017-10-23 13:51:48 +03:00
} while ( ( async_work - > nr = = 0 & & total_done < BTRFS_DELAYED_WRITEBACK )
| | total_done < async_work - > nr ) ;
2013-03-05 02:13:31 +04:00
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs_free_path ( path ) ;
out :
2013-03-05 02:13:31 +04:00
wake_up ( & delayed_root - > wait ) ;
kfree ( async_work ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
2013-03-05 02:13:31 +04:00
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
static int btrfs_wq_run_delayed_node ( struct btrfs_delayed_root * delayed_root ,
2014-11-17 16:05:02 +03:00
struct btrfs_fs_info * fs_info , int nr )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
2013-03-05 02:13:31 +04:00
struct btrfs_async_delayed_work * async_work ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2013-03-05 02:13:31 +04:00
async_work = kmalloc ( sizeof ( * async_work ) , GFP_NOFS ) ;
if ( ! async_work )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
return - ENOMEM ;
2013-03-05 02:13:31 +04:00
async_work - > delayed_root = delayed_root ;
2023-09-19 19:49:23 +03:00
btrfs_init_work ( & async_work - > work , btrfs_async_run_delayed_root , NULL ) ;
2013-03-05 02:13:31 +04:00
async_work - > nr = nr ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2014-11-17 16:05:02 +03:00
btrfs_queue_work ( fs_info - > delayed_workers , & async_work - > work ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
return 0 ;
}
2016-06-23 01:54:23 +03:00
void btrfs_assert_delayed_root_empty ( struct btrfs_fs_info * fs_info )
2011-06-18 00:14:09 +04:00
{
2016-06-23 01:54:23 +03:00
WARN_ON ( btrfs_first_delayed_node ( fs_info - > delayed_root ) ) ;
2011-06-18 00:14:09 +04:00
}
2013-12-26 09:07:03 +04:00
static int could_end_wait ( struct btrfs_delayed_root * delayed_root , int seq )
2013-03-05 02:13:31 +04:00
{
int val = atomic_read ( & delayed_root - > items_seq ) ;
2013-12-26 09:07:03 +04:00
if ( val < seq | | val > = seq + BTRFS_DELAYED_BATCH )
2013-03-05 02:13:31 +04:00
return 1 ;
2013-12-26 09:07:03 +04:00
if ( atomic_read ( & delayed_root - > items ) < BTRFS_DELAYED_BACKGROUND )
return 1 ;
2013-03-05 02:13:31 +04:00
return 0 ;
}
2016-06-23 01:54:24 +03:00
void btrfs_balance_delayed_items ( struct btrfs_fs_info * fs_info )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
2016-06-23 01:54:24 +03:00
struct btrfs_delayed_root * delayed_root = fs_info - > delayed_root ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2017-10-23 13:51:49 +03:00
if ( ( atomic_read ( & delayed_root - > items ) < BTRFS_DELAYED_BACKGROUND ) | |
btrfs_workqueue_normal_congested ( fs_info - > delayed_workers ) )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
return ;
if ( atomic_read ( & delayed_root - > items ) > = BTRFS_DELAYED_WRITEBACK ) {
2013-12-26 09:07:03 +04:00
int seq ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
int ret ;
2013-12-26 09:07:03 +04:00
seq = atomic_read ( & delayed_root - > items_seq ) ;
2013-03-05 02:13:31 +04:00
2014-11-17 16:05:02 +03:00
ret = btrfs_wq_run_delayed_node ( delayed_root , fs_info , 0 ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ret )
return ;
2013-12-26 09:07:03 +04:00
wait_event_interruptible ( delayed_root - > wait ,
could_end_wait ( delayed_root , seq ) ) ;
2013-12-26 09:07:02 +04:00
return ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
2014-11-17 16:05:02 +03:00
btrfs_wq_run_delayed_node ( delayed_root , fs_info , BTRFS_DELAYED_BATCH ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
2023-08-28 11:06:43 +03:00
static void btrfs_release_dir_index_item_space ( struct btrfs_trans_handle * trans )
{
struct btrfs_fs_info * fs_info = trans - > fs_info ;
const u64 bytes = btrfs_calc_insert_metadata_size ( fs_info , 1 ) ;
if ( test_bit ( BTRFS_FS_LOG_RECOVERING , & fs_info - > flags ) )
return ;
/*
* Adding the new dir index item does not require touching another
* leaf , so we can release 1 unit of metadata that was previously
* reserved when starting the transaction . This applies only to
* the case where we had a transaction start and excludes the
* transaction join case ( when replaying log trees ) .
*/
trace_btrfs_space_reservation ( fs_info , " transaction " ,
trans - > transid , bytes , 0 ) ;
btrfs_block_rsv_release ( fs_info , trans - > block_rsv , bytes , NULL ) ;
ASSERT ( trans - > bytes_reserved > = bytes ) ;
trans - > bytes_reserved - = bytes ;
}
/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
int btrfs_insert_delayed_dir_index ( struct btrfs_trans_handle * trans ,
2016-06-23 01:54:24 +03:00
const char * name , int name_len ,
2017-01-10 21:35:35 +03:00
struct btrfs_inode * dir ,
2022-10-20 19:58:28 +03:00
struct btrfs_disk_key * disk_key , u8 flags ,
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
u64 index )
{
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
struct btrfs_fs_info * fs_info = trans - > fs_info ;
const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE ( fs_info ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_node * delayed_node ;
struct btrfs_delayed_item * delayed_item ;
struct btrfs_dir_item * dir_item ;
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
bool reserve_leaf_space ;
u32 data_len ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
int ret ;
2017-01-10 21:35:35 +03:00
delayed_node = btrfs_get_or_create_delayed_node ( dir ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( IS_ERR ( delayed_node ) )
return PTR_ERR ( delayed_node ) ;
2022-08-17 14:22:40 +03:00
delayed_item = btrfs_alloc_delayed_item ( sizeof ( * dir_item ) + name_len ,
2022-08-17 14:22:42 +03:00
delayed_node ,
BTRFS_DELAYED_INSERTION_ITEM ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ! delayed_item ) {
ret = - ENOMEM ;
goto release_node ;
}
2022-08-17 14:22:40 +03:00
delayed_item - > index = index ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
dir_item = ( struct btrfs_dir_item * ) delayed_item - > data ;
dir_item - > location = * disk_key ;
2013-07-16 07:19:18 +04:00
btrfs_set_stack_dir_transid ( dir_item , trans - > transid ) ;
btrfs_set_stack_dir_data_len ( dir_item , 0 ) ;
btrfs_set_stack_dir_name_len ( dir_item , name_len ) ;
2022-10-20 19:58:28 +03:00
btrfs_set_stack_dir_flags ( dir_item , flags ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
memcpy ( ( char * ) ( dir_item + 1 ) , name , name_len ) ;
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
data_len = delayed_item - > data_len + sizeof ( struct btrfs_item ) ;
2012-01-10 19:31:31 +04:00
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
mutex_lock ( & delayed_node - > mutex ) ;
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
2023-08-28 11:06:43 +03:00
/*
* First attempt to insert the delayed item . This is to make the error
* handling path simpler in case we fail ( - EEXIST ) . There ' s no risk of
* any other task coming in and running the delayed item before we do
* the metadata space reservation below , because we are holding the
* delayed node ' s mutex and that mutex must also be locked before the
* node ' s delayed items can be run .
*/
ret = __btrfs_add_delayed_item ( delayed_node , delayed_item ) ;
if ( unlikely ( ret ) ) {
btrfs_err ( trans - > fs_info ,
" error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d " ,
name_len , name , index , btrfs_root_id ( delayed_node - > root ) ,
delayed_node - > inode_id , dir - > index_cnt ,
delayed_node - > index_cnt , ret ) ;
btrfs_release_delayed_item ( delayed_item ) ;
btrfs_release_dir_index_item_space ( trans ) ;
mutex_unlock ( & delayed_node - > mutex ) ;
goto release_node ;
}
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
if ( delayed_node - > index_item_leaves = = 0 | |
delayed_node - > curr_index_batch_size + data_len > leaf_data_size ) {
delayed_node - > curr_index_batch_size = data_len ;
reserve_leaf_space = true ;
} else {
delayed_node - > curr_index_batch_size + = data_len ;
reserve_leaf_space = false ;
}
if ( reserve_leaf_space ) {
2022-08-17 14:22:39 +03:00
ret = btrfs_delayed_item_reserve_metadata ( trans , delayed_item ) ;
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
/*
* Space was reserved for a dir index item insertion when we
* started the transaction , so getting a failure here should be
* impossible .
*/
if ( WARN_ON ( ret ) ) {
btrfs_release_delayed_item ( delayed_item ) ;
2023-08-28 11:06:43 +03:00
mutex_unlock ( & delayed_node - > mutex ) ;
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
goto release_node ;
}
delayed_node - > index_item_leaves + + ;
2023-08-28 11:06:43 +03:00
} else {
btrfs_release_dir_index_item_space ( trans ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
mutex_unlock ( & delayed_node - > mutex ) ;
release_node :
btrfs_release_delayed_node ( delayed_node ) ;
return ret ;
}
2016-06-23 01:54:24 +03:00
static int btrfs_delete_delayed_insertion_item ( struct btrfs_fs_info * fs_info ,
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_node * node ,
2022-08-17 14:22:40 +03:00
u64 index )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
struct btrfs_delayed_item * item ;
mutex_lock ( & node - > mutex ) ;
2022-08-17 14:22:41 +03:00
item = __btrfs_lookup_delayed_item ( & node - > ins_root . rb_root , index ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ! item ) {
mutex_unlock ( & node - > mutex ) ;
return 1 ;
}
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
/*
* For delayed items to insert , we track reserved metadata bytes based
* on the number of leaves that we will use .
* See btrfs_insert_delayed_dir_index ( ) and
* btrfs_delayed_item_reserve_metadata ( ) ) .
*/
ASSERT ( item - > bytes_reserved = = 0 ) ;
ASSERT ( node - > index_item_leaves > 0 ) ;
/*
* If there ' s only one leaf reserved , we can decrement this item from the
* current batch , otherwise we can not because we don ' t know which leaf
* it belongs to . With the current limit on delayed items , we rarely
* accumulate enough dir index items to fill more than one leaf ( even
* when using a leaf size of 4 K ) .
*/
if ( node - > index_item_leaves = = 1 ) {
const u32 data_len = item - > data_len + sizeof ( struct btrfs_item ) ;
ASSERT ( node - > curr_index_batch_size > = data_len ) ;
node - > curr_index_batch_size - = data_len ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs_release_delayed_item ( item ) ;
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
/* If we now have no more dir index items, we can release all leaves. */
if ( RB_EMPTY_ROOT ( & node - > ins_root . rb_root ) ) {
btrfs_delayed_item_release_leaves ( node , node - > index_item_leaves ) ;
node - > index_item_leaves = 0 ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
mutex_unlock ( & node - > mutex ) ;
return 0 ;
}
int btrfs_delete_delayed_dir_index ( struct btrfs_trans_handle * trans ,
2017-01-10 21:35:36 +03:00
struct btrfs_inode * dir , u64 index )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
struct btrfs_delayed_node * node ;
struct btrfs_delayed_item * item ;
int ret ;
2017-01-10 21:35:36 +03:00
node = btrfs_get_or_create_delayed_node ( dir ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( IS_ERR ( node ) )
return PTR_ERR ( node ) ;
2022-08-17 14:22:40 +03:00
ret = btrfs_delete_delayed_insertion_item ( trans - > fs_info , node , index ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ! ret )
goto end ;
2022-08-17 14:22:42 +03:00
item = btrfs_alloc_delayed_item ( 0 , node , BTRFS_DELAYED_DELETION_ITEM ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ! item ) {
ret = - ENOMEM ;
goto end ;
}
2022-08-17 14:22:40 +03:00
item - > index = index ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2022-08-17 14:22:39 +03:00
ret = btrfs_delayed_item_reserve_metadata ( trans , item ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
/*
* we have reserved enough space when we start a new transaction ,
* so reserving metadata failure is impossible .
*/
2019-07-16 12:00:32 +03:00
if ( ret < 0 ) {
btrfs_err ( trans - > fs_info ,
" metadata reservation failed for delayed dir item deltiona, should have been reserved " ) ;
btrfs_release_delayed_item ( item ) ;
goto end ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
mutex_lock ( & node - > mutex ) ;
2022-05-31 18:06:42 +03:00
ret = __btrfs_add_delayed_item ( node , item ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( unlikely ( ret ) ) {
2018-08-01 06:32:26 +03:00
btrfs_err ( trans - > fs_info ,
2016-09-20 17:05:00 +03:00
" err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d) " ,
2024-04-15 23:16:23 +03:00
index , btrfs_root_id ( node - > root ) ,
2018-08-06 08:25:24 +03:00
node - > inode_id , ret ) ;
2019-07-16 12:00:32 +03:00
btrfs_delayed_item_release_metadata ( dir - > root , item ) ;
btrfs_release_delayed_item ( item ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
mutex_unlock ( & node - > mutex ) ;
end :
btrfs_release_delayed_node ( node ) ;
return ret ;
}
2017-01-10 21:35:42 +03:00
int btrfs_inode_delayed_dir_index_count ( struct btrfs_inode * inode )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
2017-01-10 21:35:42 +03:00
struct btrfs_delayed_node * delayed_node = btrfs_get_delayed_node ( inode ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ! delayed_node )
return - ENOENT ;
/*
* Since we have held i_mutex of this directory , it is impossible that
* a new directory index is added into the delayed node and index_cnt
* is updated now . So we needn ' t lock the delayed node .
*/
2011-06-23 11:27:13 +04:00
if ( ! delayed_node - > index_cnt ) {
btrfs_release_delayed_node ( delayed_node ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
return - EINVAL ;
2011-06-23 11:27:13 +04:00
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2017-01-10 21:35:42 +03:00
inode - > index_cnt = delayed_node - > index_cnt ;
2011-06-23 11:27:13 +04:00
btrfs_release_delayed_node ( delayed_node ) ;
return 0 ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
2016-05-20 23:50:33 +03:00
bool btrfs_readdir_get_delayed_items ( struct inode * inode ,
btrfs: fix infinite directory reads
The readdir implementation currently processes always up to the last index
it finds. This however can result in an infinite loop if the directory has
a large number of entries such that they won't all fit in the given buffer
passed to the readdir callback, that is, dir_emit() returns a non-zero
value. Because in that case readdir() will be called again and if in the
meanwhile new directory entries were added and we still can't put all the
remaining entries in the buffer, we keep repeating this over and over.
The following C program and test script reproduce the problem:
$ cat /mnt/readdir_prog.c
#include <sys/types.h>
#include <dirent.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
DIR *dir = opendir(".");
struct dirent *dd;
while ((dd = readdir(dir))) {
printf("%s\n", dd->d_name);
rename(dd->d_name, "TEMPFILE");
rename("TEMPFILE", dd->d_name);
}
closedir(dir);
}
$ gcc -o /mnt/readdir_prog /mnt/readdir_prog.c
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV &> /dev/null
#mkfs.xfs -f $DEV &> /dev/null
#mkfs.ext4 -F $DEV &> /dev/null
mount $DEV $MNT
mkdir $MNT/testdir
for ((i = 1; i <= 2000; i++)); do
echo -n > $MNT/testdir/file_$i
done
cd $MNT/testdir
/mnt/readdir_prog
cd /mnt
umount $MNT
This behaviour is surprising to applications and it's unlike ext4, xfs,
tmpfs, vfat and other filesystems, which always finish. In this case where
new entries were added due to renames, some file names may be reported
more than once, but this varies according to each filesystem - for example
ext4 never reported the same file more than once while xfs reports the
first 13 file names twice.
So change our readdir implementation to track the last index number when
opendir() is called and then make readdir() never process beyond that
index number. This gives the same behaviour as ext4.
Reported-by: Rob Landley <rob@landley.net>
Link: https://lore.kernel.org/linux-btrfs/2c8c55ec-04c6-e0dc-9c5c-8c7924778c35@landley.net/
Link: https://bugzilla.kernel.org/show_bug.cgi?id=217681
CC: stable@vger.kernel.org # 6.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-13 14:34:08 +03:00
u64 last_index ,
2016-05-20 23:50:33 +03:00
struct list_head * ins_list ,
struct list_head * del_list )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
struct btrfs_delayed_node * delayed_node ;
struct btrfs_delayed_item * item ;
2017-01-10 21:35:32 +03:00
delayed_node = btrfs_get_delayed_node ( BTRFS_I ( inode ) ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ! delayed_node )
2016-05-20 23:50:33 +03:00
return false ;
/*
* We can only do one readdir with delayed items at a time because of
* item - > readdir_list .
*/
2022-10-27 03:41:32 +03:00
btrfs_inode_unlock ( BTRFS_I ( inode ) , BTRFS_ILOCK_SHARED ) ;
2022-10-27 03:41:32 +03:00
btrfs_inode_lock ( BTRFS_I ( inode ) , 0 ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
mutex_lock ( & delayed_node - > mutex ) ;
item = __btrfs_first_delayed_insertion_item ( delayed_node ) ;
btrfs: fix infinite directory reads
The readdir implementation currently processes always up to the last index
it finds. This however can result in an infinite loop if the directory has
a large number of entries such that they won't all fit in the given buffer
passed to the readdir callback, that is, dir_emit() returns a non-zero
value. Because in that case readdir() will be called again and if in the
meanwhile new directory entries were added and we still can't put all the
remaining entries in the buffer, we keep repeating this over and over.
The following C program and test script reproduce the problem:
$ cat /mnt/readdir_prog.c
#include <sys/types.h>
#include <dirent.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
DIR *dir = opendir(".");
struct dirent *dd;
while ((dd = readdir(dir))) {
printf("%s\n", dd->d_name);
rename(dd->d_name, "TEMPFILE");
rename("TEMPFILE", dd->d_name);
}
closedir(dir);
}
$ gcc -o /mnt/readdir_prog /mnt/readdir_prog.c
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV &> /dev/null
#mkfs.xfs -f $DEV &> /dev/null
#mkfs.ext4 -F $DEV &> /dev/null
mount $DEV $MNT
mkdir $MNT/testdir
for ((i = 1; i <= 2000; i++)); do
echo -n > $MNT/testdir/file_$i
done
cd $MNT/testdir
/mnt/readdir_prog
cd /mnt
umount $MNT
This behaviour is surprising to applications and it's unlike ext4, xfs,
tmpfs, vfat and other filesystems, which always finish. In this case where
new entries were added due to renames, some file names may be reported
more than once, but this varies according to each filesystem - for example
ext4 never reported the same file more than once while xfs reports the
first 13 file names twice.
So change our readdir implementation to track the last index number when
opendir() is called and then make readdir() never process beyond that
index number. This gives the same behaviour as ext4.
Reported-by: Rob Landley <rob@landley.net>
Link: https://lore.kernel.org/linux-btrfs/2c8c55ec-04c6-e0dc-9c5c-8c7924778c35@landley.net/
Link: https://bugzilla.kernel.org/show_bug.cgi?id=217681
CC: stable@vger.kernel.org # 6.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-13 14:34:08 +03:00
while ( item & & item - > index < = last_index ) {
2017-03-03 11:55:17 +03:00
refcount_inc ( & item - > refs ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
list_add_tail ( & item - > readdir_list , ins_list ) ;
item = __btrfs_next_delayed_item ( item ) ;
}
item = __btrfs_first_delayed_deletion_item ( delayed_node ) ;
btrfs: fix infinite directory reads
The readdir implementation currently processes always up to the last index
it finds. This however can result in an infinite loop if the directory has
a large number of entries such that they won't all fit in the given buffer
passed to the readdir callback, that is, dir_emit() returns a non-zero
value. Because in that case readdir() will be called again and if in the
meanwhile new directory entries were added and we still can't put all the
remaining entries in the buffer, we keep repeating this over and over.
The following C program and test script reproduce the problem:
$ cat /mnt/readdir_prog.c
#include <sys/types.h>
#include <dirent.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
DIR *dir = opendir(".");
struct dirent *dd;
while ((dd = readdir(dir))) {
printf("%s\n", dd->d_name);
rename(dd->d_name, "TEMPFILE");
rename("TEMPFILE", dd->d_name);
}
closedir(dir);
}
$ gcc -o /mnt/readdir_prog /mnt/readdir_prog.c
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV &> /dev/null
#mkfs.xfs -f $DEV &> /dev/null
#mkfs.ext4 -F $DEV &> /dev/null
mount $DEV $MNT
mkdir $MNT/testdir
for ((i = 1; i <= 2000; i++)); do
echo -n > $MNT/testdir/file_$i
done
cd $MNT/testdir
/mnt/readdir_prog
cd /mnt
umount $MNT
This behaviour is surprising to applications and it's unlike ext4, xfs,
tmpfs, vfat and other filesystems, which always finish. In this case where
new entries were added due to renames, some file names may be reported
more than once, but this varies according to each filesystem - for example
ext4 never reported the same file more than once while xfs reports the
first 13 file names twice.
So change our readdir implementation to track the last index number when
opendir() is called and then make readdir() never process beyond that
index number. This gives the same behaviour as ext4.
Reported-by: Rob Landley <rob@landley.net>
Link: https://lore.kernel.org/linux-btrfs/2c8c55ec-04c6-e0dc-9c5c-8c7924778c35@landley.net/
Link: https://bugzilla.kernel.org/show_bug.cgi?id=217681
CC: stable@vger.kernel.org # 6.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-13 14:34:08 +03:00
while ( item & & item - > index < = last_index ) {
2017-03-03 11:55:17 +03:00
refcount_inc ( & item - > refs ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
list_add_tail ( & item - > readdir_list , del_list ) ;
item = __btrfs_next_delayed_item ( item ) ;
}
mutex_unlock ( & delayed_node - > mutex ) ;
/*
* This delayed node is still cached in the btrfs inode , so refs
* must be > 1 now , and we needn ' t check it is going to be freed
* or not .
*
* Besides that , this function is used to read dir , we do not
* insert / delete delayed items in this period . So we also needn ' t
* requeue or dequeue this delayed node .
*/
2017-03-03 11:55:16 +03:00
refcount_dec ( & delayed_node - > refs ) ;
2016-05-20 23:50:33 +03:00
return true ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
2016-05-20 23:50:33 +03:00
void btrfs_readdir_put_delayed_items ( struct inode * inode ,
struct list_head * ins_list ,
struct list_head * del_list )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
struct btrfs_delayed_item * curr , * next ;
list_for_each_entry_safe ( curr , next , ins_list , readdir_list ) {
list_del ( & curr - > readdir_list ) ;
2017-03-03 11:55:17 +03:00
if ( refcount_dec_and_test ( & curr - > refs ) )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
kfree ( curr ) ;
}
list_for_each_entry_safe ( curr , next , del_list , readdir_list ) {
list_del ( & curr - > readdir_list ) ;
2017-03-03 11:55:17 +03:00
if ( refcount_dec_and_test ( & curr - > refs ) )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
kfree ( curr ) ;
}
2016-05-20 23:50:33 +03:00
/*
* The VFS is going to do up_read ( ) , so we need to downgrade back to a
* read lock .
*/
downgrade_write ( & inode - > i_rwsem ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
int btrfs_should_delete_dir_index ( struct list_head * del_list ,
u64 index )
{
2018-01-23 23:17:05 +03:00
struct btrfs_delayed_item * curr ;
int ret = 0 ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2018-01-23 23:17:05 +03:00
list_for_each_entry ( curr , del_list , readdir_list ) {
2022-08-17 14:22:40 +03:00
if ( curr - > index > index )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
break ;
2022-08-17 14:22:40 +03:00
if ( curr - > index = = index ) {
2018-01-23 23:17:05 +03:00
ret = 1 ;
break ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
2018-01-23 23:17:05 +03:00
return ret ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
/*
2023-09-08 02:09:25 +03:00
* Read dir info stored in the delayed tree .
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
*/
2013-05-23 00:48:09 +04:00
int btrfs_readdir_delayed_dir_index ( struct dir_context * ctx ,
2016-11-05 20:26:35 +03:00
struct list_head * ins_list )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
struct btrfs_dir_item * di ;
struct btrfs_delayed_item * curr , * next ;
struct btrfs_key location ;
char * name ;
int name_len ;
int over = 0 ;
unsigned char d_type ;
/*
* Changing the data of the delayed item is impossible . So
* we needn ' t lock them . And we have held i_mutex of the
* directory , nobody can delete any directory indexes now .
*/
list_for_each_entry_safe ( curr , next , ins_list , readdir_list ) {
list_del ( & curr - > readdir_list ) ;
2022-08-17 14:22:40 +03:00
if ( curr - > index < ctx - > pos ) {
2017-03-03 11:55:17 +03:00
if ( refcount_dec_and_test ( & curr - > refs ) )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
kfree ( curr ) ;
continue ;
}
2022-08-17 14:22:40 +03:00
ctx - > pos = curr - > index ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
di = ( struct btrfs_dir_item * ) curr - > data ;
name = ( char * ) ( di + 1 ) ;
2013-07-16 07:19:18 +04:00
name_len = btrfs_stack_dir_name_len ( di ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2022-10-20 19:58:28 +03:00
d_type = fs_ftype_to_dtype ( btrfs_dir_flags_to_ftype ( di - > type ) ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs_disk_key_to_cpu ( & location , & di - > location ) ;
2013-05-23 00:48:09 +04:00
over = ! dir_emit ( ctx , name , name_len ,
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
location . objectid , d_type ) ;
2017-03-03 11:55:17 +03:00
if ( refcount_dec_and_test ( & curr - > refs ) )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
kfree ( curr ) ;
if ( over )
return 1 ;
2017-07-24 22:14:26 +03:00
ctx - > pos + + ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
return 0 ;
}
static void fill_stack_inode_item ( struct btrfs_trans_handle * trans ,
struct btrfs_inode_item * inode_item ,
struct inode * inode )
{
btrfs: add ro compat flags to inodes
Currently, inode flags are fully backwards incompatible in btrfs. If we
introduce a new inode flag, then tree-checker will detect it and fail.
This can even cause us to fail to mount entirely. To make it possible to
introduce new flags which can be read-only compatible, like VERITY, we
add new ro flags to btrfs without treating them quite so harshly in
tree-checker. A read-only file system can survive an unexpected flag,
and can be mounted.
As for the implementation, it unfortunately gets a little complicated.
The on-disk representation of the inode, btrfs_inode_item, has an __le64
for flags but the in-memory representation, btrfs_inode, uses a u32.
David Sterba had the nice idea that we could reclaim those wasted 32 bits
on disk and use them for the new ro_compat flags.
It turns out that the tree-checker code which checks for unknown flags
is broken, and ignores the upper 32 bits we are hoping to use. The issue
is that the flags use the literal 1 rather than 1ULL, so the flags are
signed ints, and one of them is specifically (1 << 31). As a result, the
mask which ORs the flags is a negative integer on machines where int is
32 bit twos complement. When tree-checker evaluates the expression:
btrfs_inode_flags(leaf, iitem) & ~BTRFS_INODE_FLAG_MASK)
The mask is something like 0x80000abc, which gets promoted to u64 with
sign extension to 0xffffffff80000abc. Negating that 64 bit mask leaves
all the upper bits zeroed, and we can't detect unexpected flags.
This suggests that we can't use those bits after all. Luckily, we have
good reason to believe that they are zero anyway. Inode flags are
metadata, which is always checksummed, so any bit flips that would
introduce 1s would cause a checksum failure anyway (excluding the
improbable case of the checksum getting corrupted exactly badly).
Further, unless the 1 << 31 flag is used, the cast to u64 of the 32 bit
inode flag should preserve its value and not add leading zeroes
(at least for twos complement). The only place that flag
(BTRFS_INODE_ROOT_ITEM_INIT) is used is in a special inode embedded in
the root item, and indeed for that inode we see 0xffffffff80000000 as
the flags on disk. However, that inode is never seen by tree checker,
nor is it used in a context where verity might be meaningful.
Theoretically, a future ro flag might cause trouble on that inode, so we
should proactively clean up that mess before it does.
With the introduction of the new ro flags, keep two separate unsigned
masks and check them against the appropriate u32. Since we no longer run
afoul of sign extension, this also stops writing out 0xffffffff80000000
in root_item inodes going forward.
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 23:01:48 +03:00
u64 flags ;
2012-02-10 23:05:07 +04:00
btrfs_set_stack_inode_uid ( inode_item , i_uid_read ( inode ) ) ;
btrfs_set_stack_inode_gid ( inode_item , i_gid_read ( inode ) ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs_set_stack_inode_size ( inode_item , BTRFS_I ( inode ) - > disk_i_size ) ;
btrfs_set_stack_inode_mode ( inode_item , inode - > i_mode ) ;
btrfs_set_stack_inode_nlink ( inode_item , inode - > i_nlink ) ;
btrfs_set_stack_inode_nbytes ( inode_item , inode_get_bytes ( inode ) ) ;
btrfs_set_stack_inode_generation ( inode_item ,
BTRFS_I ( inode ) - > generation ) ;
2017-12-11 14:35:12 +03:00
btrfs_set_stack_inode_sequence ( inode_item ,
inode_peek_iversion ( inode ) ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs_set_stack_inode_transid ( inode_item , trans - > transid ) ;
btrfs_set_stack_inode_rdev ( inode_item , inode - > i_rdev ) ;
btrfs: add ro compat flags to inodes
Currently, inode flags are fully backwards incompatible in btrfs. If we
introduce a new inode flag, then tree-checker will detect it and fail.
This can even cause us to fail to mount entirely. To make it possible to
introduce new flags which can be read-only compatible, like VERITY, we
add new ro flags to btrfs without treating them quite so harshly in
tree-checker. A read-only file system can survive an unexpected flag,
and can be mounted.
As for the implementation, it unfortunately gets a little complicated.
The on-disk representation of the inode, btrfs_inode_item, has an __le64
for flags but the in-memory representation, btrfs_inode, uses a u32.
David Sterba had the nice idea that we could reclaim those wasted 32 bits
on disk and use them for the new ro_compat flags.
It turns out that the tree-checker code which checks for unknown flags
is broken, and ignores the upper 32 bits we are hoping to use. The issue
is that the flags use the literal 1 rather than 1ULL, so the flags are
signed ints, and one of them is specifically (1 << 31). As a result, the
mask which ORs the flags is a negative integer on machines where int is
32 bit twos complement. When tree-checker evaluates the expression:
btrfs_inode_flags(leaf, iitem) & ~BTRFS_INODE_FLAG_MASK)
The mask is something like 0x80000abc, which gets promoted to u64 with
sign extension to 0xffffffff80000abc. Negating that 64 bit mask leaves
all the upper bits zeroed, and we can't detect unexpected flags.
This suggests that we can't use those bits after all. Luckily, we have
good reason to believe that they are zero anyway. Inode flags are
metadata, which is always checksummed, so any bit flips that would
introduce 1s would cause a checksum failure anyway (excluding the
improbable case of the checksum getting corrupted exactly badly).
Further, unless the 1 << 31 flag is used, the cast to u64 of the 32 bit
inode flag should preserve its value and not add leading zeroes
(at least for twos complement). The only place that flag
(BTRFS_INODE_ROOT_ITEM_INIT) is used is in a special inode embedded in
the root item, and indeed for that inode we see 0xffffffff80000000 as
the flags on disk. However, that inode is never seen by tree checker,
nor is it used in a context where verity might be meaningful.
Theoretically, a future ro flag might cause trouble on that inode, so we
should proactively clean up that mess before it does.
With the introduction of the new ro flags, keep two separate unsigned
masks and check them against the appropriate u32. Since we no longer run
afoul of sign extension, this also stops writing out 0xffffffff80000000
in root_item inodes going forward.
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 23:01:48 +03:00
flags = btrfs_inode_combine_flags ( BTRFS_I ( inode ) - > flags ,
BTRFS_I ( inode ) - > ro_flags ) ;
btrfs_set_stack_inode_flags ( inode_item , flags ) ;
2011-05-28 15:00:39 +04:00
btrfs_set_stack_inode_block_group ( inode_item , 0 ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2014-12-12 19:39:12 +03:00
btrfs_set_stack_timespec_sec ( & inode_item - > atime ,
2023-10-04 21:52:08 +03:00
inode_get_atime_sec ( inode ) ) ;
2014-12-12 19:39:12 +03:00
btrfs_set_stack_timespec_nsec ( & inode_item - > atime ,
2023-10-04 21:52:08 +03:00
inode_get_atime_nsec ( inode ) ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2014-12-12 19:39:12 +03:00
btrfs_set_stack_timespec_sec ( & inode_item - > mtime ,
2023-10-04 21:52:08 +03:00
inode_get_mtime_sec ( inode ) ) ;
2014-12-12 19:39:12 +03:00
btrfs_set_stack_timespec_nsec ( & inode_item - > mtime ,
2023-10-04 21:52:08 +03:00
inode_get_mtime_nsec ( inode ) ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2014-12-12 19:39:12 +03:00
btrfs_set_stack_timespec_sec ( & inode_item - > ctime ,
2023-10-04 21:52:08 +03:00
inode_get_ctime_sec ( inode ) ) ;
2014-12-12 19:39:12 +03:00
btrfs_set_stack_timespec_nsec ( & inode_item - > ctime ,
2023-10-04 21:52:08 +03:00
inode_get_ctime_nsec ( inode ) ) ;
2012-07-04 11:18:07 +04:00
2023-09-29 22:18:44 +03:00
btrfs_set_stack_timespec_sec ( & inode_item - > otime , BTRFS_I ( inode ) - > i_otime_sec ) ;
btrfs_set_stack_timespec_nsec ( & inode_item - > otime , BTRFS_I ( inode ) - > i_otime_nsec ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
2011-06-23 11:27:13 +04:00
int btrfs_fill_inode ( struct inode * inode , u32 * rdev )
{
2020-01-17 17:02:22 +03:00
struct btrfs_fs_info * fs_info = BTRFS_I ( inode ) - > root - > fs_info ;
2011-06-23 11:27:13 +04:00
struct btrfs_delayed_node * delayed_node ;
struct btrfs_inode_item * inode_item ;
2017-01-10 21:35:32 +03:00
delayed_node = btrfs_get_delayed_node ( BTRFS_I ( inode ) ) ;
2011-06-23 11:27:13 +04:00
if ( ! delayed_node )
return - ENOENT ;
mutex_lock ( & delayed_node - > mutex ) ;
2013-12-26 09:07:05 +04:00
if ( ! test_bit ( BTRFS_DELAYED_NODE_INODE_DIRTY , & delayed_node - > flags ) ) {
2011-06-23 11:27:13 +04:00
mutex_unlock ( & delayed_node - > mutex ) ;
btrfs_release_delayed_node ( delayed_node ) ;
return - ENOENT ;
}
inode_item = & delayed_node - > inode_item ;
2012-02-10 23:05:07 +04:00
i_uid_write ( inode , btrfs_stack_inode_uid ( inode_item ) ) ;
i_gid_write ( inode , btrfs_stack_inode_gid ( inode_item ) ) ;
2017-02-20 14:50:34 +03:00
btrfs_i_size_write ( BTRFS_I ( inode ) , btrfs_stack_inode_size ( inode_item ) ) ;
2020-01-17 17:02:22 +03:00
btrfs_inode_set_file_extent_range ( BTRFS_I ( inode ) , 0 ,
round_up ( i_size_read ( inode ) , fs_info - > sectorsize ) ) ;
2011-06-23 11:27:13 +04:00
inode - > i_mode = btrfs_stack_inode_mode ( inode_item ) ;
2011-10-28 16:13:29 +04:00
set_nlink ( inode , btrfs_stack_inode_nlink ( inode_item ) ) ;
2011-06-23 11:27:13 +04:00
inode_set_bytes ( inode , btrfs_stack_inode_nbytes ( inode_item ) ) ;
BTRFS_I ( inode ) - > generation = btrfs_stack_inode_generation ( inode_item ) ;
2015-04-09 07:08:43 +03:00
BTRFS_I ( inode ) - > last_trans = btrfs_stack_inode_transid ( inode_item ) ;
2017-12-11 14:35:12 +03:00
inode_set_iversion_queried ( inode ,
btrfs_stack_inode_sequence ( inode_item ) ) ;
2011-06-23 11:27:13 +04:00
inode - > i_rdev = 0 ;
* rdev = btrfs_stack_inode_rdev ( inode_item ) ;
btrfs: add ro compat flags to inodes
Currently, inode flags are fully backwards incompatible in btrfs. If we
introduce a new inode flag, then tree-checker will detect it and fail.
This can even cause us to fail to mount entirely. To make it possible to
introduce new flags which can be read-only compatible, like VERITY, we
add new ro flags to btrfs without treating them quite so harshly in
tree-checker. A read-only file system can survive an unexpected flag,
and can be mounted.
As for the implementation, it unfortunately gets a little complicated.
The on-disk representation of the inode, btrfs_inode_item, has an __le64
for flags but the in-memory representation, btrfs_inode, uses a u32.
David Sterba had the nice idea that we could reclaim those wasted 32 bits
on disk and use them for the new ro_compat flags.
It turns out that the tree-checker code which checks for unknown flags
is broken, and ignores the upper 32 bits we are hoping to use. The issue
is that the flags use the literal 1 rather than 1ULL, so the flags are
signed ints, and one of them is specifically (1 << 31). As a result, the
mask which ORs the flags is a negative integer on machines where int is
32 bit twos complement. When tree-checker evaluates the expression:
btrfs_inode_flags(leaf, iitem) & ~BTRFS_INODE_FLAG_MASK)
The mask is something like 0x80000abc, which gets promoted to u64 with
sign extension to 0xffffffff80000abc. Negating that 64 bit mask leaves
all the upper bits zeroed, and we can't detect unexpected flags.
This suggests that we can't use those bits after all. Luckily, we have
good reason to believe that they are zero anyway. Inode flags are
metadata, which is always checksummed, so any bit flips that would
introduce 1s would cause a checksum failure anyway (excluding the
improbable case of the checksum getting corrupted exactly badly).
Further, unless the 1 << 31 flag is used, the cast to u64 of the 32 bit
inode flag should preserve its value and not add leading zeroes
(at least for twos complement). The only place that flag
(BTRFS_INODE_ROOT_ITEM_INIT) is used is in a special inode embedded in
the root item, and indeed for that inode we see 0xffffffff80000000 as
the flags on disk. However, that inode is never seen by tree checker,
nor is it used in a context where verity might be meaningful.
Theoretically, a future ro flag might cause trouble on that inode, so we
should proactively clean up that mess before it does.
With the introduction of the new ro flags, keep two separate unsigned
masks and check them against the appropriate u32. Since we no longer run
afoul of sign extension, this also stops writing out 0xffffffff80000000
in root_item inodes going forward.
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 23:01:48 +03:00
btrfs_inode_split_flags ( btrfs_stack_inode_flags ( inode_item ) ,
& BTRFS_I ( inode ) - > flags , & BTRFS_I ( inode ) - > ro_flags ) ;
2011-06-23 11:27:13 +04:00
2023-10-04 21:52:08 +03:00
inode_set_atime ( inode , btrfs_stack_timespec_sec ( & inode_item - > atime ) ,
btrfs_stack_timespec_nsec ( & inode_item - > atime ) ) ;
2011-06-23 11:27:13 +04:00
2023-10-04 21:52:08 +03:00
inode_set_mtime ( inode , btrfs_stack_timespec_sec ( & inode_item - > mtime ) ,
btrfs_stack_timespec_nsec ( & inode_item - > mtime ) ) ;
2011-06-23 11:27:13 +04:00
2023-07-05 22:00:54 +03:00
inode_set_ctime ( inode , btrfs_stack_timespec_sec ( & inode_item - > ctime ) ,
btrfs_stack_timespec_nsec ( & inode_item - > ctime ) ) ;
2011-06-23 11:27:13 +04:00
2023-09-29 22:18:44 +03:00
BTRFS_I ( inode ) - > i_otime_sec = btrfs_stack_timespec_sec ( & inode_item - > otime ) ;
BTRFS_I ( inode ) - > i_otime_nsec = btrfs_stack_timespec_nsec ( & inode_item - > otime ) ;
2012-07-04 11:18:07 +04:00
2011-06-23 11:27:13 +04:00
inode - > i_generation = BTRFS_I ( inode ) - > generation ;
BTRFS_I ( inode ) - > index_cnt = ( u64 ) - 1 ;
mutex_unlock ( & delayed_node - > mutex ) ;
btrfs_release_delayed_node ( delayed_node ) ;
return 0 ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
int btrfs_delayed_update_inode ( struct btrfs_trans_handle * trans ,
2020-11-02 17:48:57 +03:00
struct btrfs_inode * inode )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
2023-09-22 13:37:24 +03:00
struct btrfs_root * root = inode - > root ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_node * delayed_node ;
2011-06-03 18:29:08 +04:00
int ret = 0 ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2020-11-02 17:48:57 +03:00
delayed_node = btrfs_get_or_create_delayed_node ( inode ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( IS_ERR ( delayed_node ) )
return PTR_ERR ( delayed_node ) ;
mutex_lock ( & delayed_node - > mutex ) ;
2013-12-26 09:07:05 +04:00
if ( test_bit ( BTRFS_DELAYED_NODE_INODE_DIRTY , & delayed_node - > flags ) ) {
2020-11-02 17:48:57 +03:00
fill_stack_inode_item ( trans , & delayed_node - > inode_item ,
& inode - > vfs_inode ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
goto release_node ;
}
2021-02-22 19:40:46 +03:00
ret = btrfs_delayed_inode_reserve_metadata ( trans , root , delayed_node ) ;
Btrfs: fix delayed insertion reservation
We all keep getting those stupid warnings from use_block_rsv when running
stress.sh, and it's because the delayed insertion stuff is being stupid. It's
not the delayed insertion stuffs fault, it's all just stupid. When marking an
inode dirty for oh say updating the time on it, we just do a
btrfs_join_transaction, which doesn't reserve any space. This is stupid because
we're going to have to have space reserve to make this change, but we do it
because it's fast because chances are we're going to call it over and over again
and it doesn't matter. Well thanks to the delayed insertion stuff this is
mostly the case, so we do actually need to make this reservation. So if
trans->bytes_reserved is 0 then try to do a normal reservation. If not return
ENOSPC which will make the btrfs_dirty_inode start a proper transaction which
will let it do the whole ENOSPC dance and reserve enough space for the delayed
insertion to steal the reservation from the transaction.
The other stupid thing we do is not reserve space for the inode when writing to
the thing. Usually this is ok since we have to update the time so we'd have
already done all this work before we get to the endio stuff, so it doesn't
matter. But this is stupid because we could write the data after the
transaction commits where we changed the mtime of the inode so we have to cow
all the way down to the inode anyway. This used to be masked by the delalloc
reservation stuff, but because we delay the update it doesn't get masked in this
case. So again the delayed insertion stuff bites us in the ass. So if our
trans->block_rsv is delalloc, just steal the reservation from the delalloc
reserve. Hopefully this won't bite us in the ass, but I've said that before.
With this patch stress.sh no longer spits out those stupid warnings (famous last
words). Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-11-05 03:56:02 +04:00
if ( ret )
goto release_node ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2020-11-02 17:48:57 +03:00
fill_stack_inode_item ( trans , & delayed_node - > inode_item , & inode - > vfs_inode ) ;
2013-12-26 09:07:05 +04:00
set_bit ( BTRFS_DELAYED_NODE_INODE_DIRTY , & delayed_node - > flags ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
delayed_node - > count + + ;
atomic_inc ( & root - > fs_info - > delayed_root - > items ) ;
release_node :
mutex_unlock ( & delayed_node - > mutex ) ;
btrfs_release_delayed_node ( delayed_node ) ;
return ret ;
}
2017-01-10 21:35:37 +03:00
int btrfs_delayed_delete_inode_ref ( struct btrfs_inode * inode )
2013-12-26 09:07:06 +04:00
{
2018-06-29 11:56:42 +03:00
struct btrfs_fs_info * fs_info = inode - > root - > fs_info ;
2013-12-26 09:07:06 +04:00
struct btrfs_delayed_node * delayed_node ;
2014-12-31 20:18:29 +03:00
/*
* we don ' t do delayed inode updates during log recovery because it
* leads to enospc problems . This means we also can ' t do
* delayed inode refs
*/
2016-06-23 01:54:23 +03:00
if ( test_bit ( BTRFS_FS_LOG_RECOVERING , & fs_info - > flags ) )
2014-12-31 20:18:29 +03:00
return - EAGAIN ;
2017-01-10 21:35:37 +03:00
delayed_node = btrfs_get_or_create_delayed_node ( inode ) ;
2013-12-26 09:07:06 +04:00
if ( IS_ERR ( delayed_node ) )
return PTR_ERR ( delayed_node ) ;
/*
* We don ' t reserve space for inode ref deletion is because :
* - We ONLY do async inode ref deletion for the inode who has only
* one link ( i_nlink = = 1 ) , it means there is only one inode ref .
* And in most case , the inode ref and the inode item are in the
* same leaf , and we will deal with them at the same time .
* Since we are sure we will reserve the space for the inode item ,
* it is unnecessary to reserve space for inode ref deletion .
* - If the inode ref and the inode item are not in the same leaf ,
* We also needn ' t worry about enospc problem , because we reserve
* much more space for the inode update than it needs .
* - At the worst , we can steal some space from the global reservation .
* It is very rare .
*/
mutex_lock ( & delayed_node - > mutex ) ;
if ( test_bit ( BTRFS_DELAYED_NODE_DEL_IREF , & delayed_node - > flags ) )
goto release_node ;
set_bit ( BTRFS_DELAYED_NODE_DEL_IREF , & delayed_node - > flags ) ;
delayed_node - > count + + ;
2016-06-23 01:54:23 +03:00
atomic_inc ( & fs_info - > delayed_root - > items ) ;
2013-12-26 09:07:06 +04:00
release_node :
mutex_unlock ( & delayed_node - > mutex ) ;
btrfs_release_delayed_node ( delayed_node ) ;
return 0 ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
static void __btrfs_kill_delayed_node ( struct btrfs_delayed_node * delayed_node )
{
struct btrfs_root * root = delayed_node - > root ;
2016-06-23 01:54:24 +03:00
struct btrfs_fs_info * fs_info = root - > fs_info ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_item * curr_item , * prev_item ;
mutex_lock ( & delayed_node - > mutex ) ;
curr_item = __btrfs_first_delayed_insertion_item ( delayed_node ) ;
while ( curr_item ) {
prev_item = curr_item ;
curr_item = __btrfs_next_delayed_item ( prev_item ) ;
btrfs_release_delayed_item ( prev_item ) ;
}
btrfs: reduce amount of reserved metadata for delayed item insertion
Whenever we want to create a new dir index item (when creating an inode,
create a hard link, rename a file) we reserve 1 unit of metadata space
for it in a transaction (that's 256K for a node/leaf size of 16K), and
then create a delayed insertion item for it to be added later to the
subvolume's tree. That unit of metadata is kept until the delayed item
is inserted into the subvolume tree, which may take a while to happen
(in the worst case, it's done only when the transaction commits). If we
have multiple dir index items to insert for the same directory, say N
index items, and they all fit in a single leaf of metadata, then we are
holding N units of reserved metadata space when all we need is 1 unit.
This change addresses that, whenever a new delayed dir index item is
added, we release the unit of metadata the caller has reserved when it
started the transaction if adding that new dir index item does not
result in touching one more metadata leaf, otherwise the reservation
is kept by transferring it from the transaction block reserve to the
delayed items block reserve, just like before. Given that with a leaf
size of 16K we can have a few hundred dir index items in a single leaf
(the exact value depends on file name lengths), this reduces pressure on
metadata reservation by releasing unnecessary space much sooner.
The following fs_mark test showed some improvement when creating many
files in parallel on machine running a non debug kernel (debian's default
kernel config) with 12 cores:
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 10 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 225991.3 5465891
4 2400000 0 345728.1 5512106
4 3600000 0 346959.5 5557653
8 4800000 0 329643.0 5587548
8 6000000 0 312657.4 5606717
8 7200000 0 281707.5 5727985
12 8400000 0 88309.8 5020422
12 9600000 0 85835.9 5207496
16 10800000 0 81039.2 5404964
16 12000000 0 58548.6 5842468
After:
FSUse% Count Size Files/sec App Overhead
2 1200000 0 230604.5 5778375
4 2400000 0 348908.3 5508072
4 3600000 0 357028.7 5484337
6 4800000 0 342898.3 5565703
6 6000000 0 314670.8 5751555
8 7200000 0 282548.2 5778177
12 8400000 0 90844.9 5306819
12 9600000 0 86963.1 5304689
16 10800000 0 89113.2 5455248
16 12000000 0 86693.5 5518933
The "after" results are after applying this patch and all the other
patches in the same patchset, which is comprised of the following
changes:
btrfs: balance btree dirty pages and delayed items after a rename
btrfs: free the path earlier when creating a new inode
btrfs: balance btree dirty pages and delayed items after clone and dedupe
btrfs: add assertions when deleting batches of delayed items
btrfs: deal with deletion errors when deleting delayed items
btrfs: refactor the delayed item deletion entry point
btrfs: improve batch deletion of delayed dir index items
btrfs: assert that delayed item is a dir index item when adding it
btrfs: improve batch insertion of delayed dir index items
btrfs: do not BUG_ON() on failure to reserve metadata for delayed item
btrfs: set delayed item type when initializing it
btrfs: reduce amount of reserved metadata for delayed item insertion
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-22 12:37:45 +03:00
if ( delayed_node - > index_item_leaves > 0 ) {
btrfs_delayed_item_release_leaves ( delayed_node ,
delayed_node - > index_item_leaves ) ;
delayed_node - > index_item_leaves = 0 ;
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
curr_item = __btrfs_first_delayed_deletion_item ( delayed_node ) ;
while ( curr_item ) {
2017-12-12 10:34:33 +03:00
btrfs_delayed_item_release_metadata ( root , curr_item ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
prev_item = curr_item ;
curr_item = __btrfs_next_delayed_item ( prev_item ) ;
btrfs_release_delayed_item ( prev_item ) ;
}
2021-05-21 23:44:07 +03:00
btrfs_release_delayed_iref ( delayed_node ) ;
2013-12-26 09:07:06 +04:00
2013-12-26 09:07:05 +04:00
if ( test_bit ( BTRFS_DELAYED_NODE_INODE_DIRTY , & delayed_node - > flags ) ) {
2017-12-12 10:34:33 +03:00
btrfs_delayed_inode_release_metadata ( fs_info , delayed_node , false ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
btrfs_release_delayed_inode ( delayed_node ) ;
}
mutex_unlock ( & delayed_node - > mutex ) ;
}
2017-01-10 21:35:38 +03:00
void btrfs_kill_delayed_inode_items ( struct btrfs_inode * inode )
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
{
struct btrfs_delayed_node * delayed_node ;
2017-01-10 21:35:38 +03:00
delayed_node = btrfs_get_delayed_node ( inode ) ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
if ( ! delayed_node )
return ;
__btrfs_kill_delayed_node ( delayed_node ) ;
btrfs_release_delayed_node ( delayed_node ) ;
}
void btrfs_kill_all_delayed_nodes ( struct btrfs_root * root )
{
2023-12-06 17:16:03 +03:00
unsigned long index = 0 ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
struct btrfs_delayed_node * delayed_nodes [ 8 ] ;
while ( 1 ) {
2023-12-06 17:16:03 +03:00
struct btrfs_delayed_node * node ;
int count ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
spin_lock ( & root - > inode_lock ) ;
2023-12-06 17:16:03 +03:00
if ( xa_empty ( & root - > delayed_nodes ) ) {
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
spin_unlock ( & root - > inode_lock ) ;
2023-12-06 17:16:03 +03:00
return ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
}
2023-12-06 17:16:03 +03:00
count = 0 ;
xa_for_each_start ( & root - > delayed_nodes , index , node , index ) {
2019-09-26 15:29:32 +03:00
/*
* Don ' t increase refs in case the node is dead and
* about to be removed from the tree in the loop below
*/
2023-12-06 17:16:03 +03:00
if ( refcount_inc_not_zero ( & node - > refs ) ) {
delayed_nodes [ count ] = node ;
count + + ;
}
if ( count > = ARRAY_SIZE ( delayed_nodes ) )
break ;
2019-09-26 15:29:32 +03:00
}
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
spin_unlock ( & root - > inode_lock ) ;
2023-12-06 17:16:03 +03:00
index + + ;
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
2023-12-06 17:16:03 +03:00
for ( int i = 0 ; i < count ; i + + ) {
btrfs: implement delayed inode items operation
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 14:12:22 +04:00
__btrfs_kill_delayed_node ( delayed_nodes [ i ] ) ;
btrfs_release_delayed_node ( delayed_nodes [ i ] ) ;
}
}
}
2012-06-14 12:23:22 +04:00
2016-06-23 01:54:23 +03:00
void btrfs_destroy_delayed_inodes ( struct btrfs_fs_info * fs_info )
2012-06-14 12:23:22 +04:00
{
struct btrfs_delayed_node * curr_node , * prev_node ;
2016-06-23 01:54:23 +03:00
curr_node = btrfs_first_delayed_node ( fs_info - > delayed_root ) ;
2012-06-14 12:23:22 +04:00
while ( curr_node ) {
__btrfs_kill_delayed_node ( curr_node ) ;
prev_node = curr_node ;
curr_node = btrfs_next_delayed_node ( curr_node ) ;
btrfs_release_delayed_node ( prev_node ) ;
}
}
btrfs: use delayed items when logging a directory
When logging a directory we start by flushing all its delayed items.
That results in adding dir index items to the subvolume btree, for new
dentries, and removing dir index items from the subvolume btree for any
dentries that were deleted.
This makes it straightforward to log a directory simply by iterating over
all the modified subvolume btree leaves, especially when we used to log
both dir index keys and dir item keys (before commit 339d035424849c
("btrfs: only copy dir index keys when logging a directory") and when we
used to copy old dir index entries for leaves modified in the current
transaction (before commit 732d591a5d6c12 ("btrfs: stop copying old dir
items when logging a directory")).
From an efficiency point of view this has a couple of drawbacks:
1) Adds extra latency, due to copying delayed items to the subvolume btree
and deleting dir index items from the btree.
Further if there are other tasks accessing the btree, which is common
(syscalls like creat, mkdir, rename, link, unlink, truncate, reflinks,
etc, finishing an ordered extent, etc), lock contention can cause
further delays, both to the task logging a directory and to the other
tasks accessing the btree;
2) More time spent overall flushing delayed items, if after logging the
directory further changes are done to the directory in the same
transaction.
For example, if we add 10 dentries to a directory, fsync it, add more
10 dentries, fsync it again, then add more 10 dentries and fsync it
again, then we end up inserting 3 batches of 10 items to the subvolume
btree. With the changes from this patch, we flush all the delayed items
to the btree only once - a single batch of 30 items, and outside the
logging code (transaction commit or when delayed items are flushed
asynchronously).
This change simply skips the flushing of delayed items every time we log a
directory. Instead we copy the delayed insertion items directly to the log
tree and delete delayed deletion items directly from the log tree.
Therefore avoiding changing first the subvolume btree and then scanning it
for new items to copy from it to the log tree and detecting deletions
by observing gaps in consecutive dir index keys in subvolume btree leaves.
Running the following tests on a non-debug kernel (Debian's default kernel
config), on a box with a NVMe device, a 12 cores Intel CPU and 64G of ram,
produced the results below.
The results compare a branch without this patch and all the other patches
it depends on versus the same branch with the patchset applied.
The patchset is comprised of the following patches:
btrfs: don't drop dir index range items when logging a directory
btrfs: remove the root argument from log_new_dir_dentries()
btrfs: update stale comment for log_new_dir_dentries()
btrfs: free list element sooner at log_new_dir_dentries()
btrfs: avoid memory allocation at log_new_dir_dentries() for common case
btrfs: remove root argument from btrfs_delayed_item_reserve_metadata()
btrfs: store index number instead of key in struct btrfs_delayed_item
btrfs: remove unused logic when looking up delayed items
btrfs: shrink the size of struct btrfs_delayed_item
btrfs: search for last logged dir index if it's not cached in the inode
btrfs: move need_log_inode() to above log_conflicting_inodes()
btrfs: move log_new_dir_dentries() above btrfs_log_inode()
btrfs: log conflicting inodes without holding log mutex of the initial inode
btrfs: skip logging parent dir when conflicting inode is not a dir
btrfs: use delayed items when logging a directory
Custom test script for testing time spent at btrfs_log_inode():
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
# Total number of files to create in the test directory.
NUM_FILES=10000
# Fsync after creating or renaming N files.
FSYNC_AFTER=100
umount $DEV &> /dev/null
mkfs.btrfs -f $DEV
mount -o ssd $DEV $MNT
TEST_DIR=$MNT/testdir
mkdir $TEST_DIR
echo "Creating files..."
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $TEST_DIR/file_$i
if (( ($i % $FSYNC_AFTER) == 0 )); then
xfs_io -c "fsync" $TEST_DIR
fi
done
sync
echo "Renaming files..."
for ((i = 1; i <= $NUM_FILES; i++)); do
mv $TEST_DIR/file_$i $TEST_DIR/file_$i.renamed
if (( ($i % $FSYNC_AFTER) == 0 )); then
xfs_io -c "fsync" $TEST_DIR
fi
done
umount $MNT
And using the following bpftrace script to capture the total time that is
spent at btrfs_log_inode():
#!/usr/bin/bpftrace
k:btrfs_log_inode
{
@start_log_inode[tid] = nsecs;
}
kr:btrfs_log_inode
/@start_log_inode[tid]/
{
$dur = (nsecs - @start_log_inode[tid]) / 1000;
@btrfs_log_inode_total_time = sum($dur);
delete(@start_log_inode[tid]);
}
END
{
clear(@start_log_inode);
}
Result before applying patchset:
@btrfs_log_inode_total_time: 622642
Result after applying patchset:
@btrfs_log_inode_total_time: 354134 (-43.1% time spent)
The following dbench script was also used for testing:
#!/bin/bash
NUM_JOBS=$(nproc --all)
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-O no-holes -R free-space-tree"
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
dbench -D $MNT --skip-cleanup -t 120 -S $NUM_JOBS
umount $MNT
Before patchset:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 3322265 0.034 21.032
Close 2440562 0.002 0.994
Rename 140664 1.150 269.633
Unlink 670796 1.093 269.678
Deltree 96 5.481 15.510
Mkdir 48 0.004 0.052
Qpathinfo 3010924 0.014 8.127
Qfileinfo 528055 0.001 0.518
Qfsinfo 552113 0.003 0.372
Sfileinfo 270575 0.005 0.688
Find 1164176 0.052 13.931
WriteX 1658537 0.019 5.918
ReadX 5207412 0.003 1.034
LockX 10818 0.003 0.079
UnlockX 10818 0.002 0.313
Flush 232811 1.027 269.735
Throughput 869.867 MB/sec (sync dirs) 12 clients 12 procs max_latency=269.741 ms
After patchset:
Operation Count AvgLat MaxLat
----------------------------------------
NTCreateX 4152738 0.029 20.863
Close 3050770 0.002 1.119
Rename 175829 0.871 211.741
Unlink 838447 0.845 211.724
Deltree 120 4.798 14.162
Mkdir 60 0.003 0.005
Qpathinfo 3763807 0.011 4.673
Qfileinfo 660111 0.001 0.400
Qfsinfo 690141 0.003 0.429
Sfileinfo 338260 0.005 0.725
Find 1455273 0.046 6.787
WriteX 2073307 0.017 5.690
ReadX 6509193 0.003 1.171
LockX 13522 0.003 0.077
UnlockX 13522 0.002 0.125
Flush 291044 0.811 211.631
Throughput 1089.27 MB/sec (sync dirs) 12 clients 12 procs max_latency=211.750 ms
(+25.2% throughput, -21.5% max latency)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-08-22 13:51:44 +03:00
void btrfs_log_get_delayed_items ( struct btrfs_inode * inode ,
struct list_head * ins_list ,
struct list_head * del_list )
{
struct btrfs_delayed_node * node ;
struct btrfs_delayed_item * item ;
node = btrfs_get_delayed_node ( inode ) ;
if ( ! node )
return ;
mutex_lock ( & node - > mutex ) ;
item = __btrfs_first_delayed_insertion_item ( node ) ;
while ( item ) {
/*
* It ' s possible that the item is already in a log list . This
* can happen in case two tasks are trying to log the same
* directory . For example if we have tasks A and task B :
*
* Task A collected the delayed items into a log list while
* under the inode ' s log_mutex ( at btrfs_log_inode ( ) ) , but it
* only releases the items after logging the inodes they point
* to ( if they are new inodes ) , which happens after unlocking
* the log mutex ;
*
* Task B enters btrfs_log_inode ( ) and acquires the log_mutex
* of the same directory inode , before task B releases the
* delayed items . This can happen for example when logging some
* inode we need to trigger logging of its parent directory , so
* logging two files that have the same parent directory can
* lead to this .
*
* If this happens , just ignore delayed items already in a log
* list . All the tasks logging the directory are under a log
* transaction and whichever finishes first can not sync the log
* before the other completes and leaves the log transaction .
*/
if ( ! item - > logged & & list_empty ( & item - > log_list ) ) {
refcount_inc ( & item - > refs ) ;
list_add_tail ( & item - > log_list , ins_list ) ;
}
item = __btrfs_next_delayed_item ( item ) ;
}
item = __btrfs_first_delayed_deletion_item ( node ) ;
while ( item ) {
/* It may be non-empty, for the same reason mentioned above. */
if ( ! item - > logged & & list_empty ( & item - > log_list ) ) {
refcount_inc ( & item - > refs ) ;
list_add_tail ( & item - > log_list , del_list ) ;
}
item = __btrfs_next_delayed_item ( item ) ;
}
mutex_unlock ( & node - > mutex ) ;
/*
* We are called during inode logging , which means the inode is in use
* and can not be evicted before we finish logging the inode . So we never
* have the last reference on the delayed inode .
* Also , we don ' t use btrfs_release_delayed_node ( ) because that would
* requeue the delayed inode ( change its order in the list of prepared
* nodes ) and we don ' t want to do such change because we don ' t create or
* delete delayed items .
*/
ASSERT ( refcount_read ( & node - > refs ) > 1 ) ;
refcount_dec ( & node - > refs ) ;
}
void btrfs_log_put_delayed_items ( struct btrfs_inode * inode ,
struct list_head * ins_list ,
struct list_head * del_list )
{
struct btrfs_delayed_node * node ;
struct btrfs_delayed_item * item ;
struct btrfs_delayed_item * next ;
node = btrfs_get_delayed_node ( inode ) ;
if ( ! node )
return ;
mutex_lock ( & node - > mutex ) ;
list_for_each_entry_safe ( item , next , ins_list , log_list ) {
item - > logged = true ;
list_del_init ( & item - > log_list ) ;
if ( refcount_dec_and_test ( & item - > refs ) )
kfree ( item ) ;
}
list_for_each_entry_safe ( item , next , del_list , log_list ) {
item - > logged = true ;
list_del_init ( & item - > log_list ) ;
if ( refcount_dec_and_test ( & item - > refs ) )
kfree ( item ) ;
}
mutex_unlock ( & node - > mutex ) ;
/*
* We are called during inode logging , which means the inode is in use
* and can not be evicted before we finish logging the inode . So we never
* have the last reference on the delayed inode .
* Also , we don ' t use btrfs_release_delayed_node ( ) because that would
* requeue the delayed inode ( change its order in the list of prepared
* nodes ) and we don ' t want to do such change because we don ' t create or
* delete delayed items .
*/
ASSERT ( refcount_read ( & node - > refs ) > 1 ) ;
refcount_dec ( & node - > refs ) ;
}