2019-06-04 11:11:33 +03:00
// SPDX-License-Identifier: GPL-2.0-only
2007-05-05 22:46:38 +04:00
/*
* Copyright 2003 - 2005 Devicescape Software , Inc .
* Copyright ( c ) 2006 Jiri Benc < jbenc @ suse . cz >
* Copyright 2007 Johannes Berg < johannes @ sipsolutions . net >
2014-09-03 16:24:57 +04:00
* Copyright 2013 - 2014 Intel Mobile Communications GmbH
2016-03-09 14:27:09 +03:00
* Copyright ( c ) 2016 Intel Deutschland GmbH
2021-09-20 16:40:06 +03:00
* Copyright ( C ) 2018 - 2021 Intel Corporation
2007-05-05 22:46:38 +04:00
*/
# include <linux/debugfs.h>
# include <linux/ieee80211.h>
# include "ieee80211_i.h"
# include "debugfs.h"
# include "debugfs_sta.h"
# include "sta_info.h"
2012-11-20 07:16:02 +04:00
# include "driver-ops.h"
2007-05-05 22:46:38 +04:00
/* sta attributtes */
2010-10-27 16:58:29 +04:00
# define STA_READ(name, field, format_string) \
2007-05-05 22:46:38 +04:00
static ssize_t sta_ # # name # # _read ( struct file * file , \
char __user * userbuf , \
size_t count , loff_t * ppos ) \
{ \
struct sta_info * sta = file - > private_data ; \
2010-10-27 16:58:29 +04:00
return mac80211_format_buffer ( userbuf , count , ppos , \
format_string , sta - > field ) ; \
2007-05-05 22:46:38 +04:00
}
2010-10-27 16:58:29 +04:00
# define STA_READ_D(name, field) STA_READ(name, field, "%d\n")
2007-05-05 22:46:38 +04:00
# define STA_OPS(name) \
static const struct file_operations sta_ # # name # # _ops = { \
. read = sta_ # # name # # _read , \
2012-04-06 01:25:11 +04:00
. open = simple_open , \
2010-07-06 21:05:31 +04:00
. llseek = generic_file_llseek , \
2007-05-05 22:46:38 +04:00
}
2010-05-01 20:53:51 +04:00
# define STA_OPS_RW(name) \
static const struct file_operations sta_ # # name # # _ops = { \
. read = sta_ # # name # # _read , \
. write = sta_ # # name # # _write , \
2012-04-06 01:25:11 +04:00
. open = simple_open , \
2010-07-06 21:05:31 +04:00
. llseek = generic_file_llseek , \
2010-05-01 20:53:51 +04:00
}
2007-05-05 22:46:38 +04:00
# define STA_FILE(name, field, format) \
STA_READ_ # # format ( name , field ) \
STA_OPS ( name )
2008-09-11 02:02:02 +04:00
STA_FILE ( aid , sta . aid , D ) ;
2007-05-05 22:46:38 +04:00
2016-03-17 16:02:54 +03:00
static const char * const sta_flag_names [ ] = {
# define FLAG(F) [WLAN_STA_##F] = #F
FLAG ( AUTH ) ,
FLAG ( ASSOC ) ,
FLAG ( PS_STA ) ,
FLAG ( AUTHORIZED ) ,
FLAG ( SHORT_PREAMBLE ) ,
FLAG ( WDS ) ,
FLAG ( CLEAR_PS_FILT ) ,
FLAG ( MFP ) ,
FLAG ( BLOCK_BA ) ,
FLAG ( PS_DRIVER ) ,
FLAG ( PSPOLL ) ,
FLAG ( TDLS_PEER ) ,
FLAG ( TDLS_PEER_AUTH ) ,
FLAG ( TDLS_INITIATOR ) ,
FLAG ( TDLS_CHAN_SWITCH ) ,
FLAG ( TDLS_OFF_CHANNEL ) ,
FLAG ( TDLS_WIDER_BW ) ,
FLAG ( UAPSD ) ,
FLAG ( SP ) ,
FLAG ( 4 ADDR_EVENT ) ,
FLAG ( INSERTED ) ,
FLAG ( RATE_CONTROL ) ,
FLAG ( TOFFSET_KNOWN ) ,
FLAG ( MPSP_OWNER ) ,
FLAG ( MPSP_RECIPIENT ) ,
FLAG ( PS_DELIVER ) ,
2020-03-26 16:09:42 +03:00
FLAG ( USES_ENCRYPTION ) ,
2020-12-18 21:47:18 +03:00
FLAG ( DECAP_OFFLOAD ) ,
2016-03-17 16:02:54 +03:00
# undef FLAG
} ;
2007-05-05 22:46:38 +04:00
static ssize_t sta_flags_read ( struct file * file , char __user * userbuf ,
size_t count , loff_t * ppos )
{
2016-03-17 16:02:54 +03:00
char buf [ 16 * NUM_WLAN_STA_FLAGS ] , * pos = buf ;
char * end = buf + sizeof ( buf ) - 1 ;
2007-05-05 22:46:38 +04:00
struct sta_info * sta = file - > private_data ;
2016-03-17 16:02:54 +03:00
unsigned int flg ;
BUILD_BUG_ON ( ARRAY_SIZE ( sta_flag_names ) ! = NUM_WLAN_STA_FLAGS ) ;
2011-09-29 18:04:36 +04:00
2016-03-17 16:02:54 +03:00
for ( flg = 0 ; flg < NUM_WLAN_STA_FLAGS ; flg + + ) {
if ( test_sta_flag ( sta , flg ) )
pos + = scnprintf ( pos , end - pos , " %s \n " ,
sta_flag_names [ flg ] ) ;
}
2011-09-29 18:04:37 +04:00
2016-03-17 16:02:54 +03:00
return simple_read_from_buffer ( userbuf , count , ppos , buf , strlen ( buf ) ) ;
2007-05-05 22:46:38 +04:00
}
STA_OPS ( flags ) ;
static ssize_t sta_num_ps_buf_frames_read ( struct file * file ,
char __user * userbuf ,
size_t count , loff_t * ppos )
{
struct sta_info * sta = file - > private_data ;
2011-09-29 18:04:29 +04:00
char buf [ 17 * IEEE80211_NUM_ACS ] , * p = buf ;
int ac ;
for ( ac = 0 ; ac < IEEE80211_NUM_ACS ; ac + + )
p + = scnprintf ( p , sizeof ( buf ) + buf - p , " AC%d: %d \n " , ac ,
skb_queue_len ( & sta - > ps_tx_buf [ ac ] ) +
skb_queue_len ( & sta - > tx_filtered [ ac ] ) ) ;
return simple_read_from_buffer ( userbuf , count , ppos , buf , p - buf ) ;
2007-05-05 22:46:38 +04:00
}
STA_OPS ( num_ps_buf_frames ) ;
static ssize_t sta_last_seq_ctrl_read ( struct file * file , char __user * userbuf ,
size_t count , loff_t * ppos )
{
2012-11-15 02:22:21 +04:00
char buf [ 15 * IEEE80211_NUM_TIDS ] , * p = buf ;
2007-05-05 22:46:38 +04:00
int i ;
struct sta_info * sta = file - > private_data ;
2012-11-15 02:22:21 +04:00
for ( i = 0 ; i < IEEE80211_NUM_TIDS ; i + + )
2007-05-05 22:46:38 +04:00
p + = scnprintf ( p , sizeof ( buf ) + buf - p , " %x " ,
2007-07-27 17:43:23 +04:00
le16_to_cpu ( sta - > last_seq_ctrl [ i ] ) ) ;
2007-05-05 22:46:38 +04:00
p + = scnprintf ( p , sizeof ( buf ) + buf - p , " \n " ) ;
return simple_read_from_buffer ( userbuf , count , ppos , buf , p - buf ) ;
}
STA_OPS ( last_seq_ctrl ) ;
2016-09-12 16:55:43 +03:00
# define AQM_TXQ_ENTRY_LEN 130
static ssize_t sta_aqm_read ( struct file * file , char __user * userbuf ,
size_t count , loff_t * ppos )
{
struct sta_info * sta = file - > private_data ;
struct ieee80211_local * local = sta - > local ;
2018-08-31 11:31:08 +03:00
size_t bufsz = AQM_TXQ_ENTRY_LEN * ( IEEE80211_NUM_TIDS + 2 ) ;
2016-09-12 16:55:43 +03:00
char * buf = kzalloc ( bufsz , GFP_KERNEL ) , * p = buf ;
struct txq_info * txqi ;
ssize_t rv ;
int i ;
if ( ! buf )
return - ENOMEM ;
spin_lock_bh ( & local - > fq . lock ) ;
rcu_read_lock ( ) ;
2017-04-06 12:38:26 +03:00
p + = scnprintf ( p ,
2021-10-21 17:30:36 +03:00
bufsz + buf - p ,
2017-04-06 12:38:26 +03:00
" target %uus interval %uus ecn %s \n " ,
codel_time_to_us ( sta - > cparams . target ) ,
codel_time_to_us ( sta - > cparams . interval ) ,
sta - > cparams . ecn ? " yes " : " no " ) ;
2016-09-12 16:55:43 +03:00
p + = scnprintf ( p ,
2021-10-21 17:30:36 +03:00
bufsz + buf - p ,
2018-01-27 04:14:19 +03:00
" tid ac backlog-bytes backlog-packets new-flows drops marks overlimit collisions tx-bytes tx-packets flags \n " ) ;
2016-09-12 16:55:43 +03:00
2018-08-31 11:31:08 +03:00
for ( i = 0 ; i < ARRAY_SIZE ( sta - > sta . txq ) ; i + + ) {
if ( ! sta - > sta . txq [ i ] )
continue ;
2016-09-12 16:55:43 +03:00
txqi = to_txq_info ( sta - > sta . txq [ i ] ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2018-01-27 04:14:19 +03:00
" %d %d %u %u %u %u %u %u %u %u %u 0x%lx(%s%s%s) \n " ,
2016-09-12 16:55:43 +03:00
txqi - > txq . tid ,
txqi - > txq . ac ,
txqi - > tin . backlog_bytes ,
txqi - > tin . backlog_packets ,
txqi - > tin . flows ,
txqi - > cstats . drop_count ,
txqi - > cstats . ecn_mark ,
txqi - > tin . overlimit ,
txqi - > tin . collisions ,
txqi - > tin . tx_bytes ,
2018-01-27 04:14:19 +03:00
txqi - > tin . tx_packets ,
txqi - > flags ,
2018-12-19 04:02:08 +03:00
test_bit ( IEEE80211_TXQ_STOP , & txqi - > flags ) ? " STOP " : " RUN " ,
test_bit ( IEEE80211_TXQ_AMPDU , & txqi - > flags ) ? " AMPDU " : " " ,
test_bit ( IEEE80211_TXQ_NO_AMSDU , & txqi - > flags ) ? " NO-AMSDU " : " " ) ;
2016-09-12 16:55:43 +03:00
}
rcu_read_unlock ( ) ;
spin_unlock_bh ( & local - > fq . lock ) ;
rv = simple_read_from_buffer ( userbuf , count , ppos , buf , p - buf ) ;
kfree ( buf ) ;
return rv ;
}
STA_OPS ( aqm ) ;
2018-12-19 04:02:08 +03:00
static ssize_t sta_airtime_read ( struct file * file , char __user * userbuf ,
size_t count , loff_t * ppos )
{
struct sta_info * sta = file - > private_data ;
struct ieee80211_local * local = sta - > sdata - > local ;
mac80211: Implement Airtime-based Queue Limit (AQL)
In order for the Fq_CoDel algorithm integrated in mac80211 layer to operate
effectively to control excessive queueing latency, the CoDel algorithm
requires an accurate measure of how long packets stays in the queue, AKA
sojourn time. The sojourn time measured at the mac80211 layer doesn't
include queueing latency in the lower layer (firmware/hardware) and CoDel
expects lower layer to have a short queue. However, most 802.11ac chipsets
offload tasks such TX aggregation to firmware or hardware, thus have a deep
lower layer queue.
Without a mechanism to control the lower layer queue size, packets only
stay in mac80211 layer transiently before being sent to firmware queue.
As a result, the sojourn time measured by CoDel in the mac80211 layer is
almost always lower than the CoDel latency target, hence CoDel does little
to control the latency, even when the lower layer queue causes excessive
latency.
The Byte Queue Limits (BQL) mechanism is commonly used to address the
similar issue with wired network interface. However, this method cannot be
applied directly to the wireless network interface. "Bytes" is not a
suitable measure of queue depth in the wireless network, as the data rate
can vary dramatically from station to station in the same network, from a
few Mbps to over Gbps.
This patch implements an Airtime-based Queue Limit (AQL) to make CoDel work
effectively with wireless drivers that utilized firmware/hardware
offloading. AQL allows each txq to release just enough packets to the lower
layer to form 1-2 large aggregations to keep hardware fully utilized and
retains the rest of the frames in mac80211 layer to be controlled by the
CoDel algorithm.
Signed-off-by: Kan Yan <kyan@google.com>
[ Toke: Keep API to set pending airtime internal, fix nits in commit msg ]
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20191119060610.76681-4-kyan@google.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-11-19 09:06:09 +03:00
size_t bufsz = 400 ;
2018-12-19 04:02:08 +03:00
char * buf = kzalloc ( bufsz , GFP_KERNEL ) , * p = buf ;
u64 rx_airtime = 0 , tx_airtime = 0 ;
2021-06-23 16:47:55 +03:00
u64 v_t [ IEEE80211_NUM_ACS ] ;
2018-12-19 04:02:08 +03:00
ssize_t rv ;
int ac ;
if ( ! buf )
return - ENOMEM ;
for ( ac = 0 ; ac < IEEE80211_NUM_ACS ; ac + + ) {
2021-06-23 16:47:55 +03:00
spin_lock_bh ( & local - > airtime [ ac ] . lock ) ;
2018-12-19 04:02:08 +03:00
rx_airtime + = sta - > airtime [ ac ] . rx_airtime ;
tx_airtime + = sta - > airtime [ ac ] . tx_airtime ;
2021-06-23 16:47:55 +03:00
v_t [ ac ] = sta - > airtime [ ac ] . v_t ;
spin_unlock_bh ( & local - > airtime [ ac ] . lock ) ;
2019-12-12 14:14:37 +03:00
}
p + = scnprintf ( p , bufsz + buf - p ,
" RX: %llu us \n TX: %llu us \n Weight: %u \n "
2021-06-23 16:47:55 +03:00
" Virt-T: VO: %lld us VI: %lld us BE: %lld us BK: %lld us \n " ,
rx_airtime , tx_airtime , sta - > airtime [ 0 ] . weight ,
v_t [ 0 ] , v_t [ 1 ] , v_t [ 2 ] , v_t [ 3 ] ) ;
2019-12-12 14:14:37 +03:00
rv = simple_read_from_buffer ( userbuf , count , ppos , buf , p - buf ) ;
kfree ( buf ) ;
return rv ;
}
static ssize_t sta_airtime_write ( struct file * file , const char __user * userbuf ,
size_t count , loff_t * ppos )
{
struct sta_info * sta = file - > private_data ;
struct ieee80211_local * local = sta - > sdata - > local ;
int ac ;
for ( ac = 0 ; ac < IEEE80211_NUM_ACS ; ac + + ) {
2021-06-23 16:47:55 +03:00
spin_lock_bh ( & local - > airtime [ ac ] . lock ) ;
2019-12-12 14:14:37 +03:00
sta - > airtime [ ac ] . rx_airtime = 0 ;
sta - > airtime [ ac ] . tx_airtime = 0 ;
2021-06-23 16:47:55 +03:00
sta - > airtime [ ac ] . v_t = 0 ;
spin_unlock_bh ( & local - > airtime [ ac ] . lock ) ;
2019-12-12 14:14:37 +03:00
}
return count ;
}
STA_OPS_RW ( airtime ) ;
static ssize_t sta_aql_read ( struct file * file , char __user * userbuf ,
size_t count , loff_t * ppos )
{
struct sta_info * sta = file - > private_data ;
struct ieee80211_local * local = sta - > sdata - > local ;
size_t bufsz = 400 ;
char * buf = kzalloc ( bufsz , GFP_KERNEL ) , * p = buf ;
u32 q_depth [ IEEE80211_NUM_ACS ] ;
u32 q_limit_l [ IEEE80211_NUM_ACS ] , q_limit_h [ IEEE80211_NUM_ACS ] ;
ssize_t rv ;
int ac ;
if ( ! buf )
return - ENOMEM ;
for ( ac = 0 ; ac < IEEE80211_NUM_ACS ; ac + + ) {
2021-06-23 16:47:55 +03:00
spin_lock_bh ( & local - > airtime [ ac ] . lock ) ;
mac80211: Implement Airtime-based Queue Limit (AQL)
In order for the Fq_CoDel algorithm integrated in mac80211 layer to operate
effectively to control excessive queueing latency, the CoDel algorithm
requires an accurate measure of how long packets stays in the queue, AKA
sojourn time. The sojourn time measured at the mac80211 layer doesn't
include queueing latency in the lower layer (firmware/hardware) and CoDel
expects lower layer to have a short queue. However, most 802.11ac chipsets
offload tasks such TX aggregation to firmware or hardware, thus have a deep
lower layer queue.
Without a mechanism to control the lower layer queue size, packets only
stay in mac80211 layer transiently before being sent to firmware queue.
As a result, the sojourn time measured by CoDel in the mac80211 layer is
almost always lower than the CoDel latency target, hence CoDel does little
to control the latency, even when the lower layer queue causes excessive
latency.
The Byte Queue Limits (BQL) mechanism is commonly used to address the
similar issue with wired network interface. However, this method cannot be
applied directly to the wireless network interface. "Bytes" is not a
suitable measure of queue depth in the wireless network, as the data rate
can vary dramatically from station to station in the same network, from a
few Mbps to over Gbps.
This patch implements an Airtime-based Queue Limit (AQL) to make CoDel work
effectively with wireless drivers that utilized firmware/hardware
offloading. AQL allows each txq to release just enough packets to the lower
layer to form 1-2 large aggregations to keep hardware fully utilized and
retains the rest of the frames in mac80211 layer to be controlled by the
CoDel algorithm.
Signed-off-by: Kan Yan <kyan@google.com>
[ Toke: Keep API to set pending airtime internal, fix nits in commit msg ]
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20191119060610.76681-4-kyan@google.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-11-19 09:06:09 +03:00
q_limit_l [ ac ] = sta - > airtime [ ac ] . aql_limit_low ;
q_limit_h [ ac ] = sta - > airtime [ ac ] . aql_limit_high ;
2021-06-23 16:47:55 +03:00
spin_unlock_bh ( & local - > airtime [ ac ] . lock ) ;
mac80211: Implement Airtime-based Queue Limit (AQL)
In order for the Fq_CoDel algorithm integrated in mac80211 layer to operate
effectively to control excessive queueing latency, the CoDel algorithm
requires an accurate measure of how long packets stays in the queue, AKA
sojourn time. The sojourn time measured at the mac80211 layer doesn't
include queueing latency in the lower layer (firmware/hardware) and CoDel
expects lower layer to have a short queue. However, most 802.11ac chipsets
offload tasks such TX aggregation to firmware or hardware, thus have a deep
lower layer queue.
Without a mechanism to control the lower layer queue size, packets only
stay in mac80211 layer transiently before being sent to firmware queue.
As a result, the sojourn time measured by CoDel in the mac80211 layer is
almost always lower than the CoDel latency target, hence CoDel does little
to control the latency, even when the lower layer queue causes excessive
latency.
The Byte Queue Limits (BQL) mechanism is commonly used to address the
similar issue with wired network interface. However, this method cannot be
applied directly to the wireless network interface. "Bytes" is not a
suitable measure of queue depth in the wireless network, as the data rate
can vary dramatically from station to station in the same network, from a
few Mbps to over Gbps.
This patch implements an Airtime-based Queue Limit (AQL) to make CoDel work
effectively with wireless drivers that utilized firmware/hardware
offloading. AQL allows each txq to release just enough packets to the lower
layer to form 1-2 large aggregations to keep hardware fully utilized and
retains the rest of the frames in mac80211 layer to be controlled by the
CoDel algorithm.
Signed-off-by: Kan Yan <kyan@google.com>
[ Toke: Keep API to set pending airtime internal, fix nits in commit msg ]
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20191119060610.76681-4-kyan@google.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-11-19 09:06:09 +03:00
q_depth [ ac ] = atomic_read ( & sta - > airtime [ ac ] . aql_tx_pending ) ;
2018-12-19 04:02:08 +03:00
}
p + = scnprintf ( p , bufsz + buf - p ,
mac80211: Implement Airtime-based Queue Limit (AQL)
In order for the Fq_CoDel algorithm integrated in mac80211 layer to operate
effectively to control excessive queueing latency, the CoDel algorithm
requires an accurate measure of how long packets stays in the queue, AKA
sojourn time. The sojourn time measured at the mac80211 layer doesn't
include queueing latency in the lower layer (firmware/hardware) and CoDel
expects lower layer to have a short queue. However, most 802.11ac chipsets
offload tasks such TX aggregation to firmware or hardware, thus have a deep
lower layer queue.
Without a mechanism to control the lower layer queue size, packets only
stay in mac80211 layer transiently before being sent to firmware queue.
As a result, the sojourn time measured by CoDel in the mac80211 layer is
almost always lower than the CoDel latency target, hence CoDel does little
to control the latency, even when the lower layer queue causes excessive
latency.
The Byte Queue Limits (BQL) mechanism is commonly used to address the
similar issue with wired network interface. However, this method cannot be
applied directly to the wireless network interface. "Bytes" is not a
suitable measure of queue depth in the wireless network, as the data rate
can vary dramatically from station to station in the same network, from a
few Mbps to over Gbps.
This patch implements an Airtime-based Queue Limit (AQL) to make CoDel work
effectively with wireless drivers that utilized firmware/hardware
offloading. AQL allows each txq to release just enough packets to the lower
layer to form 1-2 large aggregations to keep hardware fully utilized and
retains the rest of the frames in mac80211 layer to be controlled by the
CoDel algorithm.
Signed-off-by: Kan Yan <kyan@google.com>
[ Toke: Keep API to set pending airtime internal, fix nits in commit msg ]
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20191119060610.76681-4-kyan@google.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-11-19 09:06:09 +03:00
" Q depth: VO: %u us VI: %u us BE: %u us BK: %u us \n "
" Q limit[low/high]: VO: %u/%u VI: %u/%u BE: %u/%u BK: %u/%u \n " ,
q_depth [ 0 ] , q_depth [ 1 ] , q_depth [ 2 ] , q_depth [ 3 ] ,
q_limit_l [ 0 ] , q_limit_h [ 0 ] , q_limit_l [ 1 ] , q_limit_h [ 1 ] ,
2020-10-11 13:34:55 +03:00
q_limit_l [ 2 ] , q_limit_h [ 2 ] , q_limit_l [ 3 ] , q_limit_h [ 3 ] ) ;
2018-12-19 04:02:08 +03:00
rv = simple_read_from_buffer ( userbuf , count , ppos , buf , p - buf ) ;
kfree ( buf ) ;
return rv ;
}
2019-12-12 14:14:37 +03:00
static ssize_t sta_aql_write ( struct file * file , const char __user * userbuf ,
2018-12-19 04:02:08 +03:00
size_t count , loff_t * ppos )
{
struct sta_info * sta = file - > private_data ;
mac80211: Implement Airtime-based Queue Limit (AQL)
In order for the Fq_CoDel algorithm integrated in mac80211 layer to operate
effectively to control excessive queueing latency, the CoDel algorithm
requires an accurate measure of how long packets stays in the queue, AKA
sojourn time. The sojourn time measured at the mac80211 layer doesn't
include queueing latency in the lower layer (firmware/hardware) and CoDel
expects lower layer to have a short queue. However, most 802.11ac chipsets
offload tasks such TX aggregation to firmware or hardware, thus have a deep
lower layer queue.
Without a mechanism to control the lower layer queue size, packets only
stay in mac80211 layer transiently before being sent to firmware queue.
As a result, the sojourn time measured by CoDel in the mac80211 layer is
almost always lower than the CoDel latency target, hence CoDel does little
to control the latency, even when the lower layer queue causes excessive
latency.
The Byte Queue Limits (BQL) mechanism is commonly used to address the
similar issue with wired network interface. However, this method cannot be
applied directly to the wireless network interface. "Bytes" is not a
suitable measure of queue depth in the wireless network, as the data rate
can vary dramatically from station to station in the same network, from a
few Mbps to over Gbps.
This patch implements an Airtime-based Queue Limit (AQL) to make CoDel work
effectively with wireless drivers that utilized firmware/hardware
offloading. AQL allows each txq to release just enough packets to the lower
layer to form 1-2 large aggregations to keep hardware fully utilized and
retains the rest of the frames in mac80211 layer to be controlled by the
CoDel algorithm.
Signed-off-by: Kan Yan <kyan@google.com>
[ Toke: Keep API to set pending airtime internal, fix nits in commit msg ]
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20191119060610.76681-4-kyan@google.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-11-19 09:06:09 +03:00
u32 ac , q_limit_l , q_limit_h ;
char _buf [ 100 ] = { } , * buf = _buf ;
if ( count > sizeof ( _buf ) )
return - EINVAL ;
if ( copy_from_user ( buf , userbuf , count ) )
return - EFAULT ;
buf [ sizeof ( _buf ) - 1 ] = ' \0 ' ;
2019-12-12 14:14:37 +03:00
if ( sscanf ( buf , " limit %u %u %u " , & ac , & q_limit_l , & q_limit_h )
mac80211: Implement Airtime-based Queue Limit (AQL)
In order for the Fq_CoDel algorithm integrated in mac80211 layer to operate
effectively to control excessive queueing latency, the CoDel algorithm
requires an accurate measure of how long packets stays in the queue, AKA
sojourn time. The sojourn time measured at the mac80211 layer doesn't
include queueing latency in the lower layer (firmware/hardware) and CoDel
expects lower layer to have a short queue. However, most 802.11ac chipsets
offload tasks such TX aggregation to firmware or hardware, thus have a deep
lower layer queue.
Without a mechanism to control the lower layer queue size, packets only
stay in mac80211 layer transiently before being sent to firmware queue.
As a result, the sojourn time measured by CoDel in the mac80211 layer is
almost always lower than the CoDel latency target, hence CoDel does little
to control the latency, even when the lower layer queue causes excessive
latency.
The Byte Queue Limits (BQL) mechanism is commonly used to address the
similar issue with wired network interface. However, this method cannot be
applied directly to the wireless network interface. "Bytes" is not a
suitable measure of queue depth in the wireless network, as the data rate
can vary dramatically from station to station in the same network, from a
few Mbps to over Gbps.
This patch implements an Airtime-based Queue Limit (AQL) to make CoDel work
effectively with wireless drivers that utilized firmware/hardware
offloading. AQL allows each txq to release just enough packets to the lower
layer to form 1-2 large aggregations to keep hardware fully utilized and
retains the rest of the frames in mac80211 layer to be controlled by the
CoDel algorithm.
Signed-off-by: Kan Yan <kyan@google.com>
[ Toke: Keep API to set pending airtime internal, fix nits in commit msg ]
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20191119060610.76681-4-kyan@google.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-11-19 09:06:09 +03:00
! = 3 )
return - EINVAL ;
if ( ac > = IEEE80211_NUM_ACS )
return - EINVAL ;
sta - > airtime [ ac ] . aql_limit_low = q_limit_l ;
sta - > airtime [ ac ] . aql_limit_high = q_limit_h ;
2018-12-19 04:02:08 +03:00
return count ;
}
2019-12-12 14:14:37 +03:00
STA_OPS_RW ( aql ) ;
2018-12-19 04:02:08 +03:00
2008-01-28 15:07:20 +03:00
static ssize_t sta_agg_status_read ( struct file * file , char __user * userbuf ,
size_t count , loff_t * ppos )
{
2021-09-20 16:40:06 +03:00
char * buf , * p ;
2021-10-21 17:30:36 +03:00
ssize_t bufsz = 71 + IEEE80211_NUM_TIDS * 40 ;
2008-01-28 15:07:20 +03:00
int i ;
struct sta_info * sta = file - > private_data ;
2010-11-29 13:09:16 +03:00
struct tid_ampdu_rx * tid_rx ;
struct tid_ampdu_tx * tid_tx ;
2021-09-20 16:40:06 +03:00
ssize_t ret ;
2021-10-21 17:30:36 +03:00
buf = kzalloc ( bufsz , GFP_KERNEL ) ;
2021-09-20 16:40:06 +03:00
if ( ! buf )
return - ENOMEM ;
p = buf ;
2010-11-29 13:09:16 +03:00
rcu_read_lock ( ) ;
2008-01-28 15:07:20 +03:00
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " next dialog_token: %#02x \n " ,
2009-06-17 19:28:45 +04:00
sta - > ampdu_mlme . dialog_token_allocator + 1 ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2014-08-05 11:34:05 +04:00
" TID \t \t RX \t DTKN \t SSN \t \t TX \t DTKN \t pending \n " ) ;
2010-11-29 13:09:16 +03:00
2012-11-15 02:22:21 +04:00
for ( i = 0 ; i < IEEE80211_NUM_TIDS ; i + + ) {
2016-10-18 23:12:09 +03:00
bool tid_rx_valid ;
2010-11-29 13:09:16 +03:00
tid_rx = rcu_dereference ( sta - > ampdu_mlme . tid_rx [ i ] ) ;
tid_tx = rcu_dereference ( sta - > ampdu_mlme . tid_tx [ i ] ) ;
2016-10-18 23:12:09 +03:00
tid_rx_valid = test_bit ( i , sta - > ampdu_mlme . agg_session_valid ) ;
2010-11-29 13:09:16 +03:00
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " %02d " , i ) ;
p + = scnprintf ( p , bufsz + buf - p , " \t \t %x " ,
2016-10-18 23:12:09 +03:00
tid_rx_valid ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " \t %#.2x " ,
2016-10-18 23:12:09 +03:00
tid_rx_valid ?
sta - > ampdu_mlme . tid_rx_token [ i ] : 0 ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " \t %#.3x " ,
2010-11-29 13:09:16 +03:00
tid_rx ? tid_rx - > ssn : 0 ) ;
2009-06-17 19:28:45 +04:00
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " \t \t %x " , ! ! tid_tx ) ;
p + = scnprintf ( p , bufsz + buf - p , " \t %#.2x " ,
2010-11-29 13:09:16 +03:00
tid_tx ? tid_tx - > dialog_token : 0 ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " \t %03d " ,
2010-11-29 13:09:16 +03:00
tid_tx ? skb_queue_len ( & tid_tx - > pending ) : 0 ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " \n " ) ;
2009-06-17 19:28:45 +04:00
}
2010-11-29 13:09:16 +03:00
rcu_read_unlock ( ) ;
2008-01-28 15:07:20 +03:00
2021-09-20 16:40:06 +03:00
ret = simple_read_from_buffer ( userbuf , count , ppos , buf , p - buf ) ;
kfree ( buf ) ;
return ret ;
2008-01-28 15:07:20 +03:00
}
2010-05-01 20:53:51 +04:00
static ssize_t sta_agg_status_write ( struct file * file , const char __user * userbuf ,
size_t count , loff_t * ppos )
{
2016-03-09 14:27:09 +03:00
char _buf [ 25 ] = { } , * buf = _buf ;
2010-05-01 20:53:51 +04:00
struct sta_info * sta = file - > private_data ;
bool start , tx ;
unsigned long tid ;
2016-03-09 14:27:09 +03:00
char * pos ;
int ret , timeout = 5000 ;
2010-05-01 20:53:51 +04:00
if ( count > sizeof ( _buf ) )
return - EINVAL ;
if ( copy_from_user ( buf , userbuf , count ) )
return - EFAULT ;
buf [ sizeof ( _buf ) - 1 ] = ' \0 ' ;
2016-03-09 14:27:09 +03:00
pos = buf ;
buf = strsep ( & pos , " " ) ;
if ( ! buf )
return - EINVAL ;
2010-05-01 20:53:51 +04:00
2016-03-09 14:27:09 +03:00
if ( ! strcmp ( buf , " tx " ) )
2010-05-01 20:53:51 +04:00
tx = true ;
2016-03-09 14:27:09 +03:00
else if ( ! strcmp ( buf , " rx " ) )
2010-05-01 20:53:51 +04:00
tx = false ;
2016-03-09 14:27:09 +03:00
else
2010-05-01 20:53:51 +04:00
return - EINVAL ;
2016-03-09 14:27:09 +03:00
buf = strsep ( & pos , " " ) ;
if ( ! buf )
return - EINVAL ;
if ( ! strcmp ( buf , " start " ) ) {
2010-05-01 20:53:51 +04:00
start = true ;
if ( ! tx )
return - EINVAL ;
2016-03-09 14:27:09 +03:00
} else if ( ! strcmp ( buf , " stop " ) ) {
2010-05-01 20:53:51 +04:00
start = false ;
2016-03-09 14:27:09 +03:00
} else {
2010-05-01 20:53:51 +04:00
return - EINVAL ;
2016-03-09 14:27:09 +03:00
}
2010-05-01 20:53:51 +04:00
2016-03-09 14:27:09 +03:00
buf = strsep ( & pos , " " ) ;
if ( ! buf )
return - EINVAL ;
if ( sscanf ( buf , " timeout=%d " , & timeout ) = = 1 ) {
buf = strsep ( & pos , " " ) ;
if ( ! buf | | ! tx | | ! start )
return - EINVAL ;
}
2010-05-01 20:53:51 +04:00
2016-03-09 14:27:09 +03:00
ret = kstrtoul ( buf , 0 , & tid ) ;
if ( ret | | tid > = IEEE80211_NUM_TIDS )
2010-05-01 20:53:51 +04:00
return - EINVAL ;
if ( tx ) {
if ( start )
2016-03-09 14:27:09 +03:00
ret = ieee80211_start_tx_ba_session ( & sta - > sta , tid ,
timeout ) ;
2010-05-01 20:53:51 +04:00
else
2010-05-27 16:41:07 +04:00
ret = ieee80211_stop_tx_ba_session ( & sta - > sta , tid ) ;
2010-05-01 20:53:51 +04:00
} else {
2010-10-05 21:37:40 +04:00
__ieee80211_stop_rx_ba_session ( sta , tid , WLAN_BACK_RECIPIENT ,
3 , true ) ;
2010-05-01 20:53:51 +04:00
ret = 0 ;
}
return ret ? : count ;
}
STA_OPS_RW ( agg_status ) ;
2008-01-28 15:07:20 +03:00
2009-11-19 16:26:11 +03:00
static ssize_t sta_ht_capa_read ( struct file * file , char __user * userbuf ,
size_t count , loff_t * ppos )
{
2009-12-07 22:54:45 +03:00
# define PRINT_HT_CAP(_cond, _str) \
do { \
if ( _cond ) \
2022-04-06 20:56:59 +03:00
p + = scnprintf ( p , bufsz + buf - p , " \t " _str " \n " ) ; \
2009-12-07 22:54:45 +03:00
} while ( 0 )
2021-09-20 16:40:06 +03:00
char * buf , * p ;
2009-11-19 16:26:11 +03:00
int i ;
2021-10-21 17:30:36 +03:00
ssize_t bufsz = 512 ;
2009-11-19 16:26:11 +03:00
struct sta_info * sta = file - > private_data ;
mac80211: prepare sta handling for MLO support
Currently in mac80211 each STA object is represented
using sta_info datastructure with the associated
STA specific information and drivers access ieee80211_sta
part of it.
With MLO (Multi Link Operation) support being added
in 802.11be standard, though the association is logically
with a single Multi Link capable STA, at the physical level
communication can happen via different advertised
links (uniquely identified by Channel, operating class,
BSSID) and hence the need to handle multiple link
STA parameters within a composite sta_info object
called the MLD STA. The different link STA part of
MLD STA are identified using the link address which can
be same or different as the MLD STA address and unique
link id based on the link vif.
To support extension of such a model, the sta_info
datastructure is modified to hold multiple link STA
objects with link specific params currently within
sta_info moved to this new structure. Similarly this is
done for ieee80211_sta as well which will be accessed
within mac80211 as well as by drivers, hence trivial
driver changes are expected to support this.
For current non MLO supported drivers, only one link STA
is present and link information is accessed via 'deflink'
member.
For MLO drivers, we still need to define the APIs etc. to
get the correct link ID and access the correct part of
the station info.
Currently in mac80211, all link STA info are accessed directly
via deflink. These will be updated to access via link pointers
indexed by link id with MLO support patches, with link id
being 0 for non MLO supported cases.
Except for couple of macro related changes, below spatch takes
care of updating mac80211 and driver code to access to the
link STA info via deflink.
@ieee80211_sta@
struct ieee80211_sta *s;
struct sta_info *si;
identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr};
@@
(
s->
- var
+ deflink.var
|
si->sta.
- var
+ deflink.var
)
@sta_info@
struct sta_info *si;
identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth};
@@
(
si->
- var
+ deflink.var
)
Signed-off-by: Sriram R <quic_srirrama@quicinc.com>
Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com
[remove MLO-drivers notes from commit message, not clear yet; run spatch]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 18:41:23 +03:00
struct ieee80211_sta_ht_cap * htc = & sta - > sta . deflink . ht_cap ;
2021-09-20 16:40:06 +03:00
ssize_t ret ;
2021-10-21 17:30:36 +03:00
buf = kzalloc ( bufsz , GFP_KERNEL ) ;
2021-09-20 16:40:06 +03:00
if ( ! buf )
return - ENOMEM ;
p = buf ;
2009-11-19 16:26:11 +03:00
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " ht %ssupported \n " ,
2009-11-19 16:26:11 +03:00
htc - > ht_supported ? " " : " not " ) ;
if ( htc - > ht_supported ) {
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " cap: %#.4x \n " , htc - > cap ) ;
2009-12-07 22:54:45 +03:00
2010-04-09 00:08:46 +04:00
PRINT_HT_CAP ( ( htc - > cap & BIT ( 0 ) ) , " RX LDPC " ) ;
2009-12-07 22:54:45 +03:00
PRINT_HT_CAP ( ( htc - > cap & BIT ( 1 ) ) , " HT20/HT40 " ) ;
PRINT_HT_CAP ( ! ( htc - > cap & BIT ( 1 ) ) , " HT20 " ) ;
PRINT_HT_CAP ( ( ( htc - > cap > > 2 ) & 0x3 ) = = 0 , " Static SM Power Save " ) ;
PRINT_HT_CAP ( ( ( htc - > cap > > 2 ) & 0x3 ) = = 1 , " Dynamic SM Power Save " ) ;
PRINT_HT_CAP ( ( ( htc - > cap > > 2 ) & 0x3 ) = = 3 , " SM Power Save disabled " ) ;
PRINT_HT_CAP ( ( htc - > cap & BIT ( 4 ) ) , " RX Greenfield " ) ;
PRINT_HT_CAP ( ( htc - > cap & BIT ( 5 ) ) , " RX HT20 SGI " ) ;
PRINT_HT_CAP ( ( htc - > cap & BIT ( 6 ) ) , " RX HT40 SGI " ) ;
PRINT_HT_CAP ( ( htc - > cap & BIT ( 7 ) ) , " TX STBC " ) ;
PRINT_HT_CAP ( ( ( htc - > cap > > 8 ) & 0x3 ) = = 0 , " No RX STBC " ) ;
PRINT_HT_CAP ( ( ( htc - > cap > > 8 ) & 0x3 ) = = 1 , " RX STBC 1-stream " ) ;
PRINT_HT_CAP ( ( ( htc - > cap > > 8 ) & 0x3 ) = = 2 , " RX STBC 2-streams " ) ;
PRINT_HT_CAP ( ( ( htc - > cap > > 8 ) & 0x3 ) = = 3 , " RX STBC 3-streams " ) ;
PRINT_HT_CAP ( ( htc - > cap & BIT ( 10 ) ) , " HT Delayed Block Ack " ) ;
PRINT_HT_CAP ( ! ( htc - > cap & BIT ( 11 ) ) , " Max AMSDU length: "
2011-11-18 02:53:36 +04:00
" 3839 bytes " ) ;
PRINT_HT_CAP ( ( htc - > cap & BIT ( 11 ) ) , " Max AMSDU length: "
2009-12-07 22:54:45 +03:00
" 7935 bytes " ) ;
/*
* For beacons and probe response this would mean the BSS
* does or does not allow the usage of DSSS / CCK HT40 .
* Otherwise it means the STA does or does not use
* DSSS / CCK HT40 .
*/
PRINT_HT_CAP ( ( htc - > cap & BIT ( 12 ) ) , " DSSS/CCK HT40 " ) ;
PRINT_HT_CAP ( ! ( htc - > cap & BIT ( 12 ) ) , " No DSSS/CCK HT40 " ) ;
/* BIT(13) is reserved */
PRINT_HT_CAP ( ( htc - > cap & BIT ( 14 ) ) , " 40 MHz Intolerant " ) ;
PRINT_HT_CAP ( ( htc - > cap & BIT ( 15 ) ) , " L-SIG TXOP protection " ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " ampdu factor/density: %d/%d \n " ,
2009-11-19 16:26:11 +03:00
htc - > ampdu_factor , htc - > ampdu_density ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " MCS mask: " ) ;
2009-12-07 23:57:50 +03:00
2009-11-19 16:26:11 +03:00
for ( i = 0 ; i < IEEE80211_HT_MCS_MASK_LEN ; i + + )
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " %.2x " ,
2009-11-19 16:26:11 +03:00
htc - > mcs . rx_mask [ i ] ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " \n " ) ;
2009-12-07 23:57:50 +03:00
/* If not set this is meaningless */
if ( le16_to_cpu ( htc - > mcs . rx_highest ) ) {
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2009-12-07 23:57:50 +03:00
" MCS rx highest: %d Mbps \n " ,
le16_to_cpu ( htc - > mcs . rx_highest ) ) ;
}
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " MCS tx params: %x \n " ,
2009-11-19 16:26:11 +03:00
htc - > mcs . tx_params ) ;
}
2021-09-20 16:40:06 +03:00
ret = simple_read_from_buffer ( userbuf , count , ppos , buf , p - buf ) ;
kfree ( buf ) ;
return ret ;
2009-11-19 16:26:11 +03:00
}
STA_OPS ( ht_capa ) ;
2013-03-01 16:36:24 +04:00
static ssize_t sta_vht_capa_read ( struct file * file , char __user * userbuf ,
size_t count , loff_t * ppos )
{
2021-09-20 16:40:06 +03:00
char * buf , * p ;
2013-03-01 16:36:24 +04:00
struct sta_info * sta = file - > private_data ;
mac80211: prepare sta handling for MLO support
Currently in mac80211 each STA object is represented
using sta_info datastructure with the associated
STA specific information and drivers access ieee80211_sta
part of it.
With MLO (Multi Link Operation) support being added
in 802.11be standard, though the association is logically
with a single Multi Link capable STA, at the physical level
communication can happen via different advertised
links (uniquely identified by Channel, operating class,
BSSID) and hence the need to handle multiple link
STA parameters within a composite sta_info object
called the MLD STA. The different link STA part of
MLD STA are identified using the link address which can
be same or different as the MLD STA address and unique
link id based on the link vif.
To support extension of such a model, the sta_info
datastructure is modified to hold multiple link STA
objects with link specific params currently within
sta_info moved to this new structure. Similarly this is
done for ieee80211_sta as well which will be accessed
within mac80211 as well as by drivers, hence trivial
driver changes are expected to support this.
For current non MLO supported drivers, only one link STA
is present and link information is accessed via 'deflink'
member.
For MLO drivers, we still need to define the APIs etc. to
get the correct link ID and access the correct part of
the station info.
Currently in mac80211, all link STA info are accessed directly
via deflink. These will be updated to access via link pointers
indexed by link id with MLO support patches, with link id
being 0 for non MLO supported cases.
Except for couple of macro related changes, below spatch takes
care of updating mac80211 and driver code to access to the
link STA info via deflink.
@ieee80211_sta@
struct ieee80211_sta *s;
struct sta_info *si;
identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr};
@@
(
s->
- var
+ deflink.var
|
si->sta.
- var
+ deflink.var
)
@sta_info@
struct sta_info *si;
identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth};
@@
(
si->
- var
+ deflink.var
)
Signed-off-by: Sriram R <quic_srirrama@quicinc.com>
Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com
[remove MLO-drivers notes from commit message, not clear yet; run spatch]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 18:41:23 +03:00
struct ieee80211_sta_vht_cap * vhtc = & sta - > sta . deflink . vht_cap ;
2021-09-20 16:40:06 +03:00
ssize_t ret ;
2021-10-21 17:30:36 +03:00
ssize_t bufsz = 512 ;
2021-09-20 16:40:06 +03:00
2021-10-21 17:30:36 +03:00
buf = kzalloc ( bufsz , GFP_KERNEL ) ;
2021-09-20 16:40:06 +03:00
if ( ! buf )
return - ENOMEM ;
p = buf ;
2013-03-01 16:36:24 +04:00
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " VHT %ssupported \n " ,
2013-03-01 16:36:24 +04:00
vhtc - > vht_supported ? " " : " not " ) ;
if ( vhtc - > vht_supported ) {
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " cap: %#.8x \n " ,
2016-05-13 21:29:33 +03:00
vhtc - > cap ) ;
# define PFLAG(a, b) \
do { \
if ( vhtc - > cap & IEEE80211_VHT_CAP_ # # a ) \
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , \
2016-05-13 21:29:33 +03:00
" \t \t %s \n " , b ) ; \
} while ( 0 )
switch ( vhtc - > cap & 0x3 ) {
case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 :
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t MAX-MPDU-3895 \n " ) ;
break ;
case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 :
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t MAX-MPDU-7991 \n " ) ;
break ;
case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 :
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t MAX-MPDU-11454 \n " ) ;
break ;
default :
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t MAX-MPDU-UNKNOWN \n " ) ;
2018-01-18 00:03:00 +03:00
}
2016-05-13 21:29:33 +03:00
switch ( vhtc - > cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK ) {
case 0 :
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t 80Mhz \n " ) ;
break ;
case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ :
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t 160Mhz \n " ) ;
break ;
case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ :
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t 80+80Mhz \n " ) ;
break ;
default :
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t UNKNOWN-MHZ: 0x%x \n " ,
( vhtc - > cap > > 2 ) & 0x3 ) ;
2018-01-18 00:03:00 +03:00
}
2016-05-13 21:29:33 +03:00
PFLAG ( RXLDPC , " RXLDPC " ) ;
PFLAG ( SHORT_GI_80 , " SHORT-GI-80 " ) ;
PFLAG ( SHORT_GI_160 , " SHORT-GI-160 " ) ;
PFLAG ( TXSTBC , " TXSTBC " ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t RXSTBC_%d \n " , ( vhtc - > cap > > 8 ) & 0x7 ) ;
PFLAG ( SU_BEAMFORMER_CAPABLE , " SU-BEAMFORMER-CAPABLE " ) ;
PFLAG ( SU_BEAMFORMEE_CAPABLE , " SU-BEAMFORMEE-CAPABLE " ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t BEAMFORMEE-STS: 0x%x \n " ,
( vhtc - > cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK ) > >
IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t SOUNDING-DIMENSIONS: 0x%x \n " ,
( vhtc - > cap & IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK )
> > IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT ) ;
PFLAG ( MU_BEAMFORMER_CAPABLE , " MU-BEAMFORMER-CAPABLE " ) ;
PFLAG ( MU_BEAMFORMEE_CAPABLE , " MU-BEAMFORMEE-CAPABLE " ) ;
PFLAG ( VHT_TXOP_PS , " TXOP-PS " ) ;
PFLAG ( HTC_VHT , " HTC-VHT " ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t MPDU-LENGTH-EXPONENT: 0x%x \n " ,
( vhtc - > cap & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK ) > >
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT ) ;
PFLAG ( VHT_LINK_ADAPTATION_VHT_UNSOL_MFB ,
" LINK-ADAPTATION-VHT-UNSOL-MFB " ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2016-05-13 21:29:33 +03:00
" \t \t LINK-ADAPTATION-VHT-MRQ-MFB: 0x%x \n " ,
( vhtc - > cap & IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB ) > > 26 ) ;
PFLAG ( RX_ANTENNA_PATTERN , " RX-ANTENNA-PATTERN " ) ;
PFLAG ( TX_ANTENNA_PATTERN , " TX-ANTENNA-PATTERN " ) ;
2013-03-01 16:36:24 +04:00
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " RX MCS: %.4x \n " ,
2013-03-01 16:36:24 +04:00
le16_to_cpu ( vhtc - > vht_mcs . rx_mcs_map ) ) ;
if ( vhtc - > vht_mcs . rx_highest )
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2013-03-01 16:36:24 +04:00
" MCS RX highest: %d Mbps \n " ,
le16_to_cpu ( vhtc - > vht_mcs . rx_highest ) ) ;
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p , " TX MCS: %.4x \n " ,
2013-03-01 16:36:24 +04:00
le16_to_cpu ( vhtc - > vht_mcs . tx_mcs_map ) ) ;
if ( vhtc - > vht_mcs . tx_highest )
2021-10-21 17:30:36 +03:00
p + = scnprintf ( p , bufsz + buf - p ,
2013-03-01 16:36:24 +04:00
" MCS TX highest: %d Mbps \n " ,
le16_to_cpu ( vhtc - > vht_mcs . tx_highest ) ) ;
2018-08-31 11:31:03 +03:00
# undef PFLAG
2013-03-01 16:36:24 +04:00
}
2021-09-20 16:40:06 +03:00
ret = simple_read_from_buffer ( userbuf , count , ppos , buf , p - buf ) ;
kfree ( buf ) ;
return ret ;
2013-03-01 16:36:24 +04:00
}
STA_OPS ( vht_capa ) ;
2018-08-31 11:31:03 +03:00
static ssize_t sta_he_capa_read ( struct file * file , char __user * userbuf ,
size_t count , loff_t * ppos )
{
char * buf , * p ;
size_t buf_sz = PAGE_SIZE ;
struct sta_info * sta = file - > private_data ;
mac80211: prepare sta handling for MLO support
Currently in mac80211 each STA object is represented
using sta_info datastructure with the associated
STA specific information and drivers access ieee80211_sta
part of it.
With MLO (Multi Link Operation) support being added
in 802.11be standard, though the association is logically
with a single Multi Link capable STA, at the physical level
communication can happen via different advertised
links (uniquely identified by Channel, operating class,
BSSID) and hence the need to handle multiple link
STA parameters within a composite sta_info object
called the MLD STA. The different link STA part of
MLD STA are identified using the link address which can
be same or different as the MLD STA address and unique
link id based on the link vif.
To support extension of such a model, the sta_info
datastructure is modified to hold multiple link STA
objects with link specific params currently within
sta_info moved to this new structure. Similarly this is
done for ieee80211_sta as well which will be accessed
within mac80211 as well as by drivers, hence trivial
driver changes are expected to support this.
For current non MLO supported drivers, only one link STA
is present and link information is accessed via 'deflink'
member.
For MLO drivers, we still need to define the APIs etc. to
get the correct link ID and access the correct part of
the station info.
Currently in mac80211, all link STA info are accessed directly
via deflink. These will be updated to access via link pointers
indexed by link id with MLO support patches, with link id
being 0 for non MLO supported cases.
Except for couple of macro related changes, below spatch takes
care of updating mac80211 and driver code to access to the
link STA info via deflink.
@ieee80211_sta@
struct ieee80211_sta *s;
struct sta_info *si;
identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr};
@@
(
s->
- var
+ deflink.var
|
si->sta.
- var
+ deflink.var
)
@sta_info@
struct sta_info *si;
identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth};
@@
(
si->
- var
+ deflink.var
)
Signed-off-by: Sriram R <quic_srirrama@quicinc.com>
Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com
[remove MLO-drivers notes from commit message, not clear yet; run spatch]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 18:41:23 +03:00
struct ieee80211_sta_he_cap * hec = & sta - > sta . deflink . he_cap ;
2018-08-31 11:31:03 +03:00
struct ieee80211_he_mcs_nss_supp * nss = & hec - > he_mcs_nss_supp ;
u8 ppe_size ;
u8 * cap ;
int i ;
ssize_t ret ;
buf = kmalloc ( buf_sz , GFP_KERNEL ) ;
if ( ! buf )
return - ENOMEM ;
p = buf ;
p + = scnprintf ( p , buf_sz + buf - p , " HE %ssupported \n " ,
hec - > has_he ? " " : " not " ) ;
if ( ! hec - > has_he )
goto out ;
cap = hec - > he_cap_elem . mac_cap_info ;
p + = scnprintf ( p , buf_sz + buf - p ,
2018-09-05 08:06:08 +03:00
" MAC-CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x \n " ,
cap [ 0 ] , cap [ 1 ] , cap [ 2 ] , cap [ 3 ] , cap [ 4 ] , cap [ 5 ] ) ;
2018-08-31 11:31:03 +03:00
# define PRINT(fmt, ...) \
p + = scnprintf ( p , buf_sz + buf - p , " \t \t " fmt " \n " , \
# #__VA_ARGS__)
# define PFLAG(t, n, a, b) \
do { \
if ( cap [ n ] & IEEE80211_HE_ # # t # # _CAP # # n # # _ # # a ) \
PRINT ( " %s " , b ) ; \
} while ( 0 )
# define PFLAG_RANGE(t, i, n, s, m, off, fmt) \
do { \
u8 msk = IEEE80211_HE_ # # t # # _CAP # # i # # _ # # n # # _MASK ; \
u8 idx = ( ( cap [ i ] & msk ) > > ( ffs ( msk ) - 1 ) ) + off ; \
PRINT ( fmt , ( s < < idx ) + ( m * idx ) ) ; \
} while ( 0 )
# define PFLAG_RANGE_DEFAULT(t, i, n, s, m, off, fmt, a, b) \
do { \
if ( cap [ i ] = = IEEE80211_HE_ # # t # # _CAP # # i # # _ # # n # # _ # # a ) { \
PRINT ( " %s " , b ) ; \
break ; \
} \
PFLAG_RANGE ( t , i , n , s , m , off , fmt ) ; \
} while ( 0 )
PFLAG ( MAC , 0 , HTC_HE , " HTC-HE " ) ;
PFLAG ( MAC , 0 , TWT_REQ , " TWT-REQ " ) ;
PFLAG ( MAC , 0 , TWT_RES , " TWT-RES " ) ;
PFLAG_RANGE_DEFAULT ( MAC , 0 , DYNAMIC_FRAG , 0 , 1 , 0 ,
" DYNAMIC-FRAG-LEVEL-%d " , NOT_SUPP , " NOT-SUPP " ) ;
PFLAG_RANGE_DEFAULT ( MAC , 0 , MAX_NUM_FRAG_MSDU , 1 , 0 , 0 ,
" MAX-NUM-FRAG-MSDU-%d " , UNLIMITED , " UNLIMITED " ) ;
PFLAG_RANGE_DEFAULT ( MAC , 1 , MIN_FRAG_SIZE , 128 , 0 , - 1 ,
" MIN-FRAG-SIZE-%d " , UNLIMITED , " UNLIMITED " ) ;
PFLAG_RANGE_DEFAULT ( MAC , 1 , TF_MAC_PAD_DUR , 0 , 8 , 0 ,
" TF-MAC-PAD-DUR-%dUS " , MASK , " UNKNOWN " ) ;
2018-09-05 08:06:08 +03:00
PFLAG_RANGE ( MAC , 1 , MULTI_TID_AGG_RX_QOS , 0 , 1 , 1 ,
" MULTI-TID-AGG-RX-QOS-%d " ) ;
2018-08-31 11:31:03 +03:00
if ( cap [ 0 ] & IEEE80211_HE_MAC_CAP0_HTC_HE ) {
switch ( ( ( cap [ 2 ] < < 1 ) | ( cap [ 1 ] > > 7 ) ) & 0x3 ) {
case 0 :
PRINT ( " LINK-ADAPTATION-NO-FEEDBACK " ) ;
break ;
case 1 :
PRINT ( " LINK-ADAPTATION-RESERVED " ) ;
break ;
case 2 :
PRINT ( " LINK-ADAPTATION-UNSOLICITED-FEEDBACK " ) ;
break ;
case 3 :
PRINT ( " LINK-ADAPTATION-BOTH " ) ;
break ;
}
}
PFLAG ( MAC , 2 , ALL_ACK , " ALL-ACK " ) ;
2018-09-05 08:06:08 +03:00
PFLAG ( MAC , 2 , TRS , " TRS " ) ;
2018-08-31 11:31:03 +03:00
PFLAG ( MAC , 2 , BSR , " BSR " ) ;
PFLAG ( MAC , 2 , BCAST_TWT , " BCAST-TWT " ) ;
PFLAG ( MAC , 2 , 32 BIT_BA_BITMAP , " 32BIT-BA-BITMAP " ) ;
PFLAG ( MAC , 2 , MU_CASCADING , " MU-CASCADING " ) ;
PFLAG ( MAC , 2 , ACK_EN , " ACK-EN " ) ;
PFLAG ( MAC , 3 , OMI_CONTROL , " OMI-CONTROL " ) ;
PFLAG ( MAC , 3 , OFDMA_RA , " OFDMA-RA " ) ;
2018-09-05 08:06:08 +03:00
switch ( cap [ 3 ] & IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK ) {
2021-04-09 12:40:20 +03:00
case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 :
PRINT ( " MAX-AMPDU-LEN-EXP-USE-EXT-0 " ) ;
2018-08-31 11:31:03 +03:00
break ;
2021-04-09 12:40:20 +03:00
case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 :
PRINT ( " MAX-AMPDU-LEN-EXP-VHT-EXT-1 " ) ;
2018-08-31 11:31:03 +03:00
break ;
2021-04-09 12:40:20 +03:00
case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 :
PRINT ( " MAX-AMPDU-LEN-EXP-VHT-EXT-2 " ) ;
2018-08-31 11:31:03 +03:00
break ;
2021-04-09 12:40:20 +03:00
case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 :
PRINT ( " MAX-AMPDU-LEN-EXP-VHT-EXT-3 " ) ;
2018-08-31 11:31:03 +03:00
break ;
}
2018-09-05 08:06:08 +03:00
PFLAG ( MAC , 3 , AMSDU_FRAG , " AMSDU-FRAG " ) ;
2018-08-31 11:31:03 +03:00
PFLAG ( MAC , 3 , FLEX_TWT_SCHED , " FLEX-TWT-SCHED " ) ;
PFLAG ( MAC , 3 , RX_CTRL_FRAME_TO_MULTIBSS , " RX-CTRL-FRAME-TO-MULTIBSS " ) ;
PFLAG ( MAC , 4 , BSRP_BQRP_A_MPDU_AGG , " BSRP-BQRP-A-MPDU-AGG " ) ;
PFLAG ( MAC , 4 , QTP , " QTP " ) ;
PFLAG ( MAC , 4 , BQR , " BQR " ) ;
2021-04-09 12:40:17 +03:00
PFLAG ( MAC , 4 , PSR_RESP , " PSR-RESP " ) ;
2018-08-31 11:31:03 +03:00
PFLAG ( MAC , 4 , NDP_FB_REP , " NDP-FB-REP " ) ;
PFLAG ( MAC , 4 , OPS , " OPS " ) ;
2021-04-09 12:40:24 +03:00
PFLAG ( MAC , 4 , AMSDU_IN_AMPDU , " AMSDU-IN-AMPDU " ) ;
2018-08-31 11:31:03 +03:00
2018-09-05 08:06:08 +03:00
PRINT ( " MULTI-TID-AGG-TX-QOS-%d " , ( ( cap [ 5 ] < < 1 ) | ( cap [ 4 ] > > 7 ) ) & 0x7 ) ;
2021-04-09 12:40:17 +03:00
PFLAG ( MAC , 5 , SUBCHAN_SELECTIVE_TRANSMISSION ,
" SUBCHAN-SELECTIVE-TRANSMISSION " ) ;
2018-09-05 08:06:08 +03:00
PFLAG ( MAC , 5 , UL_2x996_TONE_RU , " UL-2x996-TONE-RU " ) ;
PFLAG ( MAC , 5 , OM_CTRL_UL_MU_DATA_DIS_RX , " OM-CTRL-UL-MU-DATA-DIS-RX " ) ;
2019-02-06 14:17:20 +03:00
PFLAG ( MAC , 5 , HE_DYNAMIC_SM_PS , " HE-DYNAMIC-SM-PS " ) ;
PFLAG ( MAC , 5 , PUNCTURED_SOUNDING , " PUNCTURED-SOUNDING " ) ;
PFLAG ( MAC , 5 , HT_VHT_TRIG_FRAME_RX , " HT-VHT-TRIG-FRAME-RX " ) ;
2018-09-05 08:06:08 +03:00
2018-08-31 11:31:03 +03:00
cap = hec - > he_cap_elem . phy_cap_info ;
p + = scnprintf ( p , buf_sz + buf - p ,
2018-09-05 08:06:08 +03:00
" PHY CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x \n " ,
2018-08-31 11:31:03 +03:00
cap [ 0 ] , cap [ 1 ] , cap [ 2 ] , cap [ 3 ] , cap [ 4 ] , cap [ 5 ] , cap [ 6 ] ,
2018-09-05 08:06:08 +03:00
cap [ 7 ] , cap [ 8 ] , cap [ 9 ] , cap [ 10 ] ) ;
2018-08-31 11:31:03 +03:00
PFLAG ( PHY , 0 , CHANNEL_WIDTH_SET_40MHZ_IN_2G ,
" CHANNEL-WIDTH-SET-40MHZ-IN-2G " ) ;
PFLAG ( PHY , 0 , CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G ,
" CHANNEL-WIDTH-SET-40MHZ-80MHZ-IN-5G " ) ;
PFLAG ( PHY , 0 , CHANNEL_WIDTH_SET_160MHZ_IN_5G ,
" CHANNEL-WIDTH-SET-160MHZ-IN-5G " ) ;
PFLAG ( PHY , 0 , CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G ,
" CHANNEL-WIDTH-SET-80PLUS80-MHZ-IN-5G " ) ;
PFLAG ( PHY , 0 , CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G ,
" CHANNEL-WIDTH-SET-RU-MAPPING-IN-2G " ) ;
PFLAG ( PHY , 0 , CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G ,
" CHANNEL-WIDTH-SET-RU-MAPPING-IN-5G " ) ;
switch ( cap [ 1 ] & IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK ) {
case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ :
PRINT ( " PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-20MHZ " ) ;
break ;
case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ :
PRINT ( " PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-40MHZ " ) ;
break ;
case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ :
PRINT ( " PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-20MHZ " ) ;
break ;
case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ :
PRINT ( " PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-40MHZ " ) ;
break ;
}
PFLAG ( PHY , 1 , DEVICE_CLASS_A ,
" IEEE80211-HE-PHY-CAP1-DEVICE-CLASS-A " ) ;
PFLAG ( PHY , 1 , LDPC_CODING_IN_PAYLOAD ,
" LDPC-CODING-IN-PAYLOAD " ) ;
PFLAG ( PHY , 1 , HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US ,
" HY-CAP1-HE-LTF-AND-GI-FOR-HE-PPDUS-0-8US " ) ;
PRINT ( " MIDAMBLE-RX-MAX-NSTS-%d " , ( ( cap [ 2 ] < < 1 ) | ( cap [ 1 ] > > 7 ) ) & 0x3 ) ;
PFLAG ( PHY , 2 , NDP_4x_LTF_AND_3_2US , " NDP-4X-LTF-AND-3-2US " ) ;
PFLAG ( PHY , 2 , STBC_TX_UNDER_80MHZ , " STBC-TX-UNDER-80MHZ " ) ;
PFLAG ( PHY , 2 , STBC_RX_UNDER_80MHZ , " STBC-RX-UNDER-80MHZ " ) ;
PFLAG ( PHY , 2 , DOPPLER_TX , " DOPPLER-TX " ) ;
PFLAG ( PHY , 2 , DOPPLER_RX , " DOPPLER-RX " ) ;
PFLAG ( PHY , 2 , UL_MU_FULL_MU_MIMO , " UL-MU-FULL-MU-MIMO " ) ;
PFLAG ( PHY , 2 , UL_MU_PARTIAL_MU_MIMO , " UL-MU-PARTIAL-MU-MIMO " ) ;
switch ( cap [ 3 ] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK ) {
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM :
PRINT ( " DCM-MAX-CONST-TX-NO-DCM " ) ;
break ;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK :
PRINT ( " DCM-MAX-CONST-TX-BPSK " ) ;
break ;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK :
PRINT ( " DCM-MAX-CONST-TX-QPSK " ) ;
break ;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM :
PRINT ( " DCM-MAX-CONST-TX-16-QAM " ) ;
break ;
}
PFLAG ( PHY , 3 , DCM_MAX_TX_NSS_1 , " DCM-MAX-TX-NSS-1 " ) ;
PFLAG ( PHY , 3 , DCM_MAX_TX_NSS_2 , " DCM-MAX-TX-NSS-2 " ) ;
switch ( cap [ 3 ] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK ) {
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM :
PRINT ( " DCM-MAX-CONST-RX-NO-DCM " ) ;
break ;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK :
PRINT ( " DCM-MAX-CONST-RX-BPSK " ) ;
break ;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK :
PRINT ( " DCM-MAX-CONST-RX-QPSK " ) ;
break ;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM :
PRINT ( " DCM-MAX-CONST-RX-16-QAM " ) ;
break ;
}
PFLAG ( PHY , 3 , DCM_MAX_RX_NSS_1 , " DCM-MAX-RX-NSS-1 " ) ;
PFLAG ( PHY , 3 , DCM_MAX_RX_NSS_2 , " DCM-MAX-RX-NSS-2 " ) ;
2021-04-09 12:40:17 +03:00
PFLAG ( PHY , 3 , RX_PARTIAL_BW_SU_IN_20MHZ_MU ,
" RX-PARTIAL-BW-SU-IN-20MHZ-MU " ) ;
2018-08-31 11:31:03 +03:00
PFLAG ( PHY , 3 , SU_BEAMFORMER , " SU-BEAMFORMER " ) ;
PFLAG ( PHY , 4 , SU_BEAMFORMEE , " SU-BEAMFORMEE " ) ;
PFLAG ( PHY , 4 , MU_BEAMFORMER , " MU-BEAMFORMER " ) ;
PFLAG_RANGE ( PHY , 4 , BEAMFORMEE_MAX_STS_UNDER_80MHZ , 0 , 1 , 4 ,
" BEAMFORMEE-MAX-STS-UNDER-%d " ) ;
PFLAG_RANGE ( PHY , 4 , BEAMFORMEE_MAX_STS_ABOVE_80MHZ , 0 , 1 , 4 ,
" BEAMFORMEE-MAX-STS-ABOVE-%d " ) ;
PFLAG_RANGE ( PHY , 5 , BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ , 0 , 1 , 1 ,
" NUM-SND-DIM-UNDER-80MHZ-%d " ) ;
PFLAG_RANGE ( PHY , 5 , BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ , 0 , 1 , 1 ,
" NUM-SND-DIM-ABOVE-80MHZ-%d " ) ;
PFLAG ( PHY , 5 , NG16_SU_FEEDBACK , " NG16-SU-FEEDBACK " ) ;
PFLAG ( PHY , 5 , NG16_MU_FEEDBACK , " NG16-MU-FEEDBACK " ) ;
PFLAG ( PHY , 6 , CODEBOOK_SIZE_42_SU , " CODEBOOK-SIZE-42-SU " ) ;
PFLAG ( PHY , 6 , CODEBOOK_SIZE_75_MU , " CODEBOOK-SIZE-75-MU " ) ;
2021-04-09 12:40:17 +03:00
PFLAG ( PHY , 6 , TRIG_SU_BEAMFORMING_FB , " TRIG-SU-BEAMFORMING-FB " ) ;
PFLAG ( PHY , 6 , TRIG_MU_BEAMFORMING_PARTIAL_BW_FB ,
" MU-BEAMFORMING-PARTIAL-BW-FB " ) ;
2018-08-31 11:31:03 +03:00
PFLAG ( PHY , 6 , TRIG_CQI_FB , " TRIG-CQI-FB " ) ;
PFLAG ( PHY , 6 , PARTIAL_BW_EXT_RANGE , " PARTIAL-BW-EXT-RANGE " ) ;
PFLAG ( PHY , 6 , PARTIAL_BANDWIDTH_DL_MUMIMO ,
" PARTIAL-BANDWIDTH-DL-MUMIMO " ) ;
PFLAG ( PHY , 6 , PPE_THRESHOLD_PRESENT , " PPE-THRESHOLD-PRESENT " ) ;
2021-04-09 12:40:17 +03:00
PFLAG ( PHY , 7 , PSR_BASED_SR , " PSR-BASED-SR " ) ;
PFLAG ( PHY , 7 , POWER_BOOST_FACTOR_SUPP , " POWER-BOOST-FACTOR-SUPP " ) ;
2018-08-31 11:31:03 +03:00
PFLAG ( PHY , 7 , HE_SU_MU_PPDU_4XLTF_AND_08_US_GI ,
" HE-SU-MU-PPDU-4XLTF-AND-08-US-GI " ) ;
PFLAG_RANGE ( PHY , 7 , MAX_NC , 0 , 1 , 1 , " MAX-NC-%d " ) ;
PFLAG ( PHY , 7 , STBC_TX_ABOVE_80MHZ , " STBC-TX-ABOVE-80MHZ " ) ;
PFLAG ( PHY , 7 , STBC_RX_ABOVE_80MHZ , " STBC-RX-ABOVE-80MHZ " ) ;
PFLAG ( PHY , 8 , HE_ER_SU_PPDU_4XLTF_AND_08_US_GI ,
" HE-ER-SU-PPDU-4XLTF-AND-08-US-GI " ) ;
PFLAG ( PHY , 8 , 20 MHZ_IN_40MHZ_HE_PPDU_IN_2G ,
" 20MHZ-IN-40MHZ-HE-PPDU-IN-2G " ) ;
PFLAG ( PHY , 8 , 20 MHZ_IN_160MHZ_HE_PPDU , " 20MHZ-IN-160MHZ-HE-PPDU " ) ;
PFLAG ( PHY , 8 , 80 MHZ_IN_160MHZ_HE_PPDU , " 80MHZ-IN-160MHZ-HE-PPDU " ) ;
PFLAG ( PHY , 8 , HE_ER_SU_1XLTF_AND_08_US_GI ,
" HE-ER-SU-1XLTF-AND-08-US-GI " ) ;
2018-09-05 08:06:08 +03:00
PFLAG ( PHY , 8 , MIDAMBLE_RX_TX_2X_AND_1XLTF ,
" MIDAMBLE-RX-TX-2X-AND-1XLTF " ) ;
2019-02-06 14:17:20 +03:00
switch ( cap [ 8 ] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK ) {
case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 :
PRINT ( " DCM-MAX-RU-242 " ) ;
2018-09-05 08:06:08 +03:00
break ;
2019-02-06 14:17:20 +03:00
case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 :
PRINT ( " DCM-MAX-RU-484 " ) ;
2018-09-05 08:06:08 +03:00
break ;
2019-02-06 14:17:20 +03:00
case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 :
PRINT ( " DCM-MAX-RU-996 " ) ;
2018-09-05 08:06:08 +03:00
break ;
2019-02-06 14:17:20 +03:00
case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 :
PRINT ( " DCM-MAX-RU-2x996 " ) ;
2018-09-05 08:06:08 +03:00
break ;
}
PFLAG ( PHY , 9 , LONGER_THAN_16_SIGB_OFDM_SYM ,
" LONGER-THAN-16-SIGB-OFDM-SYM " ) ;
PFLAG ( PHY , 9 , NON_TRIGGERED_CQI_FEEDBACK ,
" NON-TRIGGERED-CQI-FEEDBACK " ) ;
PFLAG ( PHY , 9 , TX_1024_QAM_LESS_THAN_242_TONE_RU ,
" TX-1024-QAM-LESS-THAN-242-TONE-RU " ) ;
PFLAG ( PHY , 9 , RX_1024_QAM_LESS_THAN_242_TONE_RU ,
" RX-1024-QAM-LESS-THAN-242-TONE-RU " ) ;
PFLAG ( PHY , 9 , RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB ,
" RX-FULL-BW-SU-USING-MU-WITH-COMP-SIGB " ) ;
PFLAG ( PHY , 9 , RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB ,
" RX-FULL-BW-SU-USING-MU-WITH-NON-COMP-SIGB " ) ;
2018-08-31 11:31:03 +03:00
2021-11-26 12:48:19 +03:00
switch ( u8_get_bits ( cap [ 9 ] ,
IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK ) ) {
case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US :
2019-02-06 14:17:20 +03:00
PRINT ( " NOMINAL-PACKET-PADDING-0US " ) ;
break ;
2021-11-26 12:48:19 +03:00
case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US :
2019-02-06 14:17:20 +03:00
PRINT ( " NOMINAL-PACKET-PADDING-8US " ) ;
break ;
2021-11-26 12:48:19 +03:00
case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US :
2019-02-06 14:17:20 +03:00
PRINT ( " NOMINAL-PACKET-PADDING-16US " ) ;
break ;
}
2018-08-31 11:31:03 +03:00
# undef PFLAG_RANGE_DEFAULT
# undef PFLAG_RANGE
# undef PFLAG
# define PRINT_NSS_SUPP(f, n) \
do { \
2018-11-09 13:14:51 +03:00
int _i ; \
2018-08-31 11:31:03 +03:00
u16 v = le16_to_cpu ( nss - > f ) ; \
p + = scnprintf ( p , buf_sz + buf - p , n " : %#.4x \n " , v ) ; \
2018-11-09 13:14:51 +03:00
for ( _i = 0 ; _i < 8 ; _i + = 2 ) { \
switch ( ( v > > _i ) & 0x3 ) { \
2018-08-31 11:31:03 +03:00
case 0 : \
2018-11-09 13:14:51 +03:00
PRINT ( n " -%d-SUPPORT-0-7 " , _i / 2 ) ; \
2018-08-31 11:31:03 +03:00
break ; \
case 1 : \
2018-11-09 13:14:51 +03:00
PRINT ( n " -%d-SUPPORT-0-9 " , _i / 2 ) ; \
2018-08-31 11:31:03 +03:00
break ; \
case 2 : \
2018-11-09 13:14:51 +03:00
PRINT ( n " -%d-SUPPORT-0-11 " , _i / 2 ) ; \
2018-08-31 11:31:03 +03:00
break ; \
case 3 : \
2018-11-09 13:14:51 +03:00
PRINT ( n " -%d-NOT-SUPPORTED " , _i / 2 ) ; \
2018-08-31 11:31:03 +03:00
break ; \
} \
} \
} while ( 0 )
PRINT_NSS_SUPP ( rx_mcs_80 , " RX-MCS-80 " ) ;
PRINT_NSS_SUPP ( tx_mcs_80 , " TX-MCS-80 " ) ;
if ( cap [ 0 ] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G ) {
PRINT_NSS_SUPP ( rx_mcs_160 , " RX-MCS-160 " ) ;
PRINT_NSS_SUPP ( tx_mcs_160 , " TX-MCS-160 " ) ;
}
if ( cap [ 0 ] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G ) {
PRINT_NSS_SUPP ( rx_mcs_80p80 , " RX-MCS-80P80 " ) ;
PRINT_NSS_SUPP ( tx_mcs_80p80 , " TX-MCS-80P80 " ) ;
}
# undef PRINT_NSS_SUPP
# undef PRINT
if ( ! ( cap [ 6 ] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT ) )
goto out ;
p + = scnprintf ( p , buf_sz + buf - p , " PPE-THRESHOLDS: %#.2x " ,
hec - > ppe_thres [ 0 ] ) ;
ppe_size = ieee80211_he_ppe_size ( hec - > ppe_thres [ 0 ] , cap ) ;
for ( i = 1 ; i < ppe_size ; i + + ) {
p + = scnprintf ( p , buf_sz + buf - p , " %#.2x " ,
hec - > ppe_thres [ i ] ) ;
}
p + = scnprintf ( p , buf_sz + buf - p , " \n " ) ;
out :
ret = simple_read_from_buffer ( userbuf , count , ppos , buf , p - buf ) ;
kfree ( buf ) ;
return ret ;
}
STA_OPS ( he_capa ) ;
2012-11-29 18:24:19 +04:00
2007-05-05 22:46:38 +04:00
# define DEBUGFS_ADD(name) \
2009-10-27 14:59:03 +03:00
debugfs_create_file ( # name , 0400 , \
2020-11-27 22:38:42 +03:00
sta - > debugfs_dir , sta , & sta_ # # name # # _ops )
2007-05-05 22:46:38 +04:00
2010-06-02 04:57:34 +04:00
# define DEBUGFS_ADD_COUNTER(name, field) \
2019-10-25 12:41:25 +03:00
debugfs_create_ulong ( # name , 0400 , sta - > debugfs_dir , & sta - > field ) ;
2007-05-05 22:46:38 +04:00
void ieee80211_sta_debugfs_add ( struct sta_info * sta )
{
2012-11-20 07:16:02 +04:00
struct ieee80211_local * local = sta - > local ;
struct ieee80211_sub_if_data * sdata = sta - > sdata ;
2010-09-23 07:29:01 +04:00
struct dentry * stations_dir = sta - > sdata - > debugfs . subdir_stations ;
2008-10-28 01:56:10 +03:00
u8 mac [ 3 * ETH_ALEN ] ;
2007-05-05 22:46:38 +04:00
if ( ! stations_dir )
return ;
2008-10-28 01:56:10 +03:00
snprintf ( mac , sizeof ( mac ) , " %pM " , sta - > sta . addr ) ;
2007-05-05 22:46:38 +04:00
2008-10-07 14:04:29 +04:00
/*
* This might fail due to a race condition :
* When mac80211 unlinks a station , the debugfs entries
* remain , but it is already possible to link a new
* station with the same address which triggers adding
* it to debugfs ; therefore , if the old station isn ' t
* destroyed quickly enough the old station ' s debugfs
* dir might still be around .
*/
2016-04-05 12:59:05 +03:00
sta - > debugfs_dir = debugfs_create_dir ( mac , stations_dir ) ;
2007-05-05 22:46:38 +04:00
DEBUGFS_ADD ( flags ) ;
2017-02-07 12:40:50 +03:00
DEBUGFS_ADD ( aid ) ;
2007-05-05 22:46:38 +04:00
DEBUGFS_ADD ( num_ps_buf_frames ) ;
DEBUGFS_ADD ( last_seq_ctrl ) ;
2008-01-28 15:07:20 +03:00
DEBUGFS_ADD ( agg_status ) ;
2009-11-19 16:26:11 +03:00
DEBUGFS_ADD ( ht_capa ) ;
2013-03-01 16:36:24 +04:00
DEBUGFS_ADD ( vht_capa ) ;
2018-08-31 11:31:03 +03:00
DEBUGFS_ADD ( he_capa ) ;
2010-06-02 04:57:34 +04:00
mac80211: prepare sta handling for MLO support
Currently in mac80211 each STA object is represented
using sta_info datastructure with the associated
STA specific information and drivers access ieee80211_sta
part of it.
With MLO (Multi Link Operation) support being added
in 802.11be standard, though the association is logically
with a single Multi Link capable STA, at the physical level
communication can happen via different advertised
links (uniquely identified by Channel, operating class,
BSSID) and hence the need to handle multiple link
STA parameters within a composite sta_info object
called the MLD STA. The different link STA part of
MLD STA are identified using the link address which can
be same or different as the MLD STA address and unique
link id based on the link vif.
To support extension of such a model, the sta_info
datastructure is modified to hold multiple link STA
objects with link specific params currently within
sta_info moved to this new structure. Similarly this is
done for ieee80211_sta as well which will be accessed
within mac80211 as well as by drivers, hence trivial
driver changes are expected to support this.
For current non MLO supported drivers, only one link STA
is present and link information is accessed via 'deflink'
member.
For MLO drivers, we still need to define the APIs etc. to
get the correct link ID and access the correct part of
the station info.
Currently in mac80211, all link STA info are accessed directly
via deflink. These will be updated to access via link pointers
indexed by link id with MLO support patches, with link id
being 0 for non MLO supported cases.
Except for couple of macro related changes, below spatch takes
care of updating mac80211 and driver code to access to the
link STA info via deflink.
@ieee80211_sta@
struct ieee80211_sta *s;
struct sta_info *si;
identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr};
@@
(
s->
- var
+ deflink.var
|
si->sta.
- var
+ deflink.var
)
@sta_info@
struct sta_info *si;
identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth};
@@
(
si->
- var
+ deflink.var
)
Signed-off-by: Sriram R <quic_srirrama@quicinc.com>
Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com
[remove MLO-drivers notes from commit message, not clear yet; run spatch]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 18:41:23 +03:00
DEBUGFS_ADD_COUNTER ( rx_duplicates , deflink . rx_stats . num_duplicates ) ;
DEBUGFS_ADD_COUNTER ( rx_fragments , deflink . rx_stats . fragments ) ;
DEBUGFS_ADD_COUNTER ( tx_filtered , deflink . status_stats . filtered ) ;
2012-11-20 07:16:02 +04:00
2019-12-10 17:34:17 +03:00
if ( local - > ops - > wake_tx_queue ) {
2016-09-12 16:55:43 +03:00
DEBUGFS_ADD ( aqm ) ;
2018-12-19 04:02:08 +03:00
DEBUGFS_ADD ( airtime ) ;
2019-12-10 17:34:17 +03:00
}
2018-12-19 04:02:08 +03:00
2019-12-12 14:14:37 +03:00
if ( wiphy_ext_feature_isset ( local - > hw . wiphy ,
NL80211_EXT_FEATURE_AQL ) )
DEBUGFS_ADD ( aql ) ;
2019-10-25 12:41:25 +03:00
debugfs_create_xul ( " driver_buffered_tids " , 0400 , sta - > debugfs_dir ,
& sta - > driver_buffered_tids ) ;
2013-07-12 12:40:31 +04:00
2016-04-05 12:59:05 +03:00
drv_sta_add_debugfs ( local , sdata , & sta - > sta , sta - > debugfs_dir ) ;
2007-05-05 22:46:38 +04:00
}
void ieee80211_sta_debugfs_remove ( struct sta_info * sta )
{
2016-04-05 12:59:05 +03:00
debugfs_remove_recursive ( sta - > debugfs_dir ) ;
sta - > debugfs_dir = NULL ;
2007-05-05 22:46:38 +04:00
}