linux/drivers/gpu/drm/i915/intel_runtime_pm.c

1948 lines
57 KiB
C
Raw Normal View History

/*
* Copyright © 2012-2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
* Daniel Vetter <daniel.vetter@ffwll.ch>
*
*/
#include <linux/pm_runtime.h>
#include <linux/vgaarb.h>
#include "i915_drv.h"
#include "intel_drv.h"
/**
* DOC: runtime pm
*
* The i915 driver supports dynamic enabling and disabling of entire hardware
* blocks at runtime. This is especially important on the display side where
* software is supposed to control many power gates manually on recent hardware,
* since on the GT side a lot of the power management is done by the hardware.
* But even there some manual control at the device level is required.
*
* Since i915 supports a diverse set of platforms with a unified codebase and
* hardware engineers just love to shuffle functionality around between power
* domains there's a sizeable amount of indirection required. This file provides
* generic functions to the driver for grabbing and releasing references for
* abstract power domains. It then maps those to the actual power wells
* present for a given platform.
*/
drm/i915/skl: Add DC6 Trigger sequence. Add triggers for DC6 as per details provided in skl_enable_dc6 and skl_disable_dc6 implementations. Also Call POSTING_READ for every write to a register to ensure it is written to immediately v1: Remove POSTING_READ and intel_prepare_ddi calls as they've been added in previous patches. v2: 1] Remove check for backlight disabled as it should be the case by that time. 2] Mark DC5 as disabled when enabling DC6. 3] Return from DC5-disabling function early if DC5 is already be disabled which can happen due to DC6-enabling earlier. 3] Ensure CSR firmware is loaded after resume from DC6 as corresponding memory contents won't be retained after runtime-suspend. 4] Ensure that CSR isn't identified as loaded before CSR-loading program is called during runtime-resume. v3: Rebase to latest Modified as per review comments from Imre and after discussion with Art: 1] DC6 should be preferably enabled when PG2 is disabled by SW as the check for PG1 being disabled is taken of by HW to enter DC6, and disabled when PG2 is enabled respectively. This helps save more power, especially in the case when display is disabled but GT is enabled. Accordingly, replacing DC5 trigger sequence with DC6 for SKL. 2] DC6 could be enabled from intel_runtime_suspend() function, if DC5 is already enabled. 3] Move CSR-load-status setting code from intel_runtime_suspend function to a new function. v4: 1] Enable/disable DC6 only when toggling the power-well using a newly defined macro ENABLE_DC6. v5: 1] Load CSR on system resume too as firmware may be lost on system suspend preventing enabling DC5, DC6. 2] DDI buffers shouldn't be programmed during driver-load/resume as it's already done during modeset initialization then and also that the encoder list is still uninitialized by then. Therefore, call intel_prepare_ddi function right after disabling DC6 but outside skl_disable_dc6 function and not during driver-load/resume. v6: 1] Rebase to latest. 2] Move SKL_ENABLE_DC6 macro definition from intel_display.c to intel_runtime_pm.c. v7: 1) Refactored the code for removing the warning got from checkpatch. 2) After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v8: - Reverted the changes done in v7. - Removed the condition check in skl_prepare_resune(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:11 +03:00
#define GEN9_ENABLE_DC5(dev) 0
#define SKL_ENABLE_DC6(dev) IS_SKYLAKE(dev)
drm/i915/skl: Add DC5 Trigger Sequence Add triggers as per expectations mentioned in gen9_enable_dc5 and gen9_disable_dc5 patch. Also call POSTING_READ for every write to a register to ensure that its written immediately. v1: Remove POSTING_READ calls as they've already been added in previous patches. v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file. Modified as per review comments from Imre: 1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant functions. 2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into gen9_disable_DC5 which is a more appropriate place. 3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well() to warnings. However, removing them for now as they'll be included in a future patch asserting DC-state entry/exit criteria. 4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure to track 'enabled' and 'deferred' status of DC5. 5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering runtime-suspend and release it when it's loaded. 6] Protect necessary CSR-related code with locks. 7] Move CSR-loading call to runtime PM initialization, as power domains needed to be accessed during deferred DC5-enabling, are not initialized earlier. v3: Rebase to latest. Modified as per review comments from Imre: 1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of deferring enabling DC5 until CSR is loaded. 2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5- enabling is removed and release it at the end of CSR-loading functionality. 3] Revert calling CSR-loading functionality to the beginning of i915 driver-load functionality to avoid any delay in loading. 4] Define another variable to track whether CSR-loading failed and use it to avoid enabling DC5 if it's true. 5] Define CSR-load-status accessor functions for use later. v4: 1] Disable DC5 before enabling PG2 instead of after it. 2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that. 3] Enable DC5-related functionality using a macro. 4] Remove dc5_enabled tracking variable and its use as it's not needed now. v5: 1] Mark CSR failed to load where necessary in finish_csr_load function. 2] Use mutex-protected accessor function to check if CSR loaded instead of directly accessing the variable. 3] Prefix csr_load_status_get/set function names with intel_. v6: rebase to latest. v7: Rebase on top of nightly (Damien) v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre) v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v10: Added a enum for different csr states, suggested by Imre. (Animesh) v11: Based on review comments from Imre, Damien and Daniel following changes done - enum name chnaged to csr_state (singular form). - FW_UNINITIALIZED used as zeroth element in enum csr_state. - Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool. v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps calling once to set the csr status. The same flag used to fail RPM if find any issue during firmware loading. Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 17:16:16 +03:00
#define for_each_power_well(i, power_well, domain_mask, power_domains) \
for (i = 0; \
i < (power_domains)->power_well_count && \
((power_well) = &(power_domains)->power_wells[i]); \
i++) \
if ((power_well)->domains & (domain_mask))
#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
for (i = (power_domains)->power_well_count - 1; \
i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
i--) \
if ((power_well)->domains & (domain_mask))
drm/i915/skl: Assert the requirements to enter or exit DC5. Warn if the conditions to enter or exit DC5 are not satisfied such as support for runtime PM, state of power well, CSR loading etc. v2: Removed camelcase in functions and variables. v3: Do some minimal check to assert if CSR program is not loaded. v4: 1] Used an appropriate function lookup_power_well() to identify power well, instead of using a magic number which can change in future. 2] Split the conditions further in assert_can_enable_DC5() and added more checks. 3] Removed all WARNs from assert_can_disable_DC5 as they were unnecessary and added two new ones. 4] Changed variable names as updated in earlier patches. v5: 1] Change lookup_power_well function to take an int power well id. 2] Define a new intel_display_power_well_is_enabled helper function to check whether a particular power well is enabled. 3] Use CSR-related mutex in assert_csr_loaded function. v6: Remove use of dc5_enabled variable as it's no longer needed. v7: 1] Rebase to latest. 2] Move all DC5-related functions from intel_display.c to intel_runtime_pm.c. v8: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v9: Modified below changes based on review comments from Imre. - Moved intel_display_power_well_is_enabled() to intel_runtime_pm.c. - Removed mutex lock from assert_csr_loaded(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:10 +03:00
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
int power_well_id);
static void intel_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
DRM_DEBUG_KMS("enabling %s\n", power_well->name);
power_well->ops->enable(dev_priv, power_well);
power_well->hw_enabled = true;
}
static void intel_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
DRM_DEBUG_KMS("disabling %s\n", power_well->name);
power_well->hw_enabled = false;
power_well->ops->disable(dev_priv, power_well);
}
/*
* We should only use the power well if we explicitly asked the hardware to
* enable it, so check if it's enabled and also check if we've requested it to
* be enabled.
*/
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return I915_READ(HSW_PWR_WELL_DRIVER) ==
(HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}
/**
* __intel_display_power_is_enabled - unlocked check for a power domain
* @dev_priv: i915 device instance
* @domain: power domain to check
*
* This is the unlocked version of intel_display_power_is_enabled() and should
* only be used from error capture and recovery code where deadlocks are
* possible.
*
* Returns:
* True when the power domain is enabled, false otherwise.
*/
bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
bool is_enabled;
int i;
if (dev_priv->pm.suspended)
return false;
power_domains = &dev_priv->power_domains;
is_enabled = true;
for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
if (power_well->always_on)
continue;
if (!power_well->hw_enabled) {
is_enabled = false;
break;
}
}
return is_enabled;
}
/**
* intel_display_power_is_enabled - check for a power domain
* @dev_priv: i915 device instance
* @domain: power domain to check
*
* This function can be used to check the hw power domain state. It is mostly
* used in hardware state readout functions. Everywhere else code should rely
* upon explicit power domain reference counting to ensure that the hardware
* block is powered up before accessing it.
*
* Callers must hold the relevant modesetting locks to ensure that concurrent
* threads can't disable the power well while the caller tries to read a few
* registers.
*
* Returns:
* True when the power domain is enabled, false otherwise.
*/
bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
bool ret;
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
ret = __intel_display_power_is_enabled(dev_priv, domain);
mutex_unlock(&power_domains->lock);
return ret;
}
/**
* intel_display_set_init_power - set the initial power domain state
* @dev_priv: i915 device instance
* @enable: whether to enable or disable the initial power domain state
*
* For simplicity our driver load/unload and system suspend/resume code assumes
* that all power domains are always enabled. This functions controls the state
* of this little hack. While the initial power domain state is enabled runtime
* pm is effectively disabled.
*/
void intel_display_set_init_power(struct drm_i915_private *dev_priv,
bool enable)
{
if (dev_priv->power_domains.init_power_on == enable)
return;
if (enable)
intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
else
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
dev_priv->power_domains.init_power_on = enable;
}
/*
* Starting with Haswell, we have a "Power Down Well" that can be turned off
* when not needed anymore. We have 4 registers that can request the power well
* to be enabled, and it will only be disabled if none of the registers is
* requesting it to be enabled.
*/
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
/*
* After we re-enable the power well, if we touch VGA register 0x3d5
* we'll get unclaimed register interrupts. This stops after we write
* anything to the VGA MSR register. The vgacon module uses this
* register all the time, so if we unbind our driver and, as a
* consequence, bind vgacon, we'll get stuck in an infinite loop at
* console_unlock(). So make here we touch the VGA MSR register, making
* sure vgacon can keep working normally without triggering interrupts
* and error messages.
*/
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
if (IS_BROADWELL(dev))
gen8_irq_power_well_post_enable(dev_priv,
1 << PIPE_C | 1 << PIPE_B);
}
static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
struct drm_device *dev = dev_priv->dev;
/*
* After we re-enable the power well, if we touch VGA register 0x3d5
* we'll get unclaimed register interrupts. This stops after we write
* anything to the VGA MSR register. The vgacon module uses this
* register all the time, so if we unbind our driver and, as a
* consequence, bind vgacon, we'll get stuck in an infinite loop at
* console_unlock(). So make here we touch the VGA MSR register, making
* sure vgacon can keep working normally without triggering interrupts
* and error messages.
*/
if (power_well->data == SKL_DISP_PW_2) {
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
gen8_irq_power_well_post_enable(dev_priv,
1 << PIPE_C | 1 << PIPE_B);
}
if (power_well->data == SKL_DISP_PW_1) {
intel_prepare_ddi(dev);
gen8_irq_power_well_post_enable(dev_priv, 1 << PIPE_A);
}
}
static void hsw_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
bool is_enabled, enable_requested;
uint32_t tmp;
tmp = I915_READ(HSW_PWR_WELL_DRIVER);
is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
if (enable) {
if (!enable_requested)
I915_WRITE(HSW_PWR_WELL_DRIVER,
HSW_PWR_WELL_ENABLE_REQUEST);
if (!is_enabled) {
DRM_DEBUG_KMS("Enabling power well\n");
if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
HSW_PWR_WELL_STATE_ENABLED), 20))
DRM_ERROR("Timeout enabling power well\n");
hsw_power_well_post_enable(dev_priv);
}
} else {
if (enable_requested) {
I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
POSTING_READ(HSW_PWR_WELL_DRIVER);
DRM_DEBUG_KMS("Requesting to disable the power well\n");
}
}
}
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
#define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_TRANSCODER_A) | \
BIT(POWER_DOMAIN_PIPE_B) | \
BIT(POWER_DOMAIN_TRANSCODER_B) | \
BIT(POWER_DOMAIN_PIPE_C) | \
BIT(POWER_DOMAIN_TRANSCODER_C) | \
BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_AUX_D) | \
BIT(POWER_DOMAIN_AUDIO) | \
BIT(POWER_DOMAIN_VGA) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT(POWER_DOMAIN_PLLS) | \
BIT(POWER_DOMAIN_PIPE_A) | \
BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
BIT(POWER_DOMAIN_AUX_A) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_MISC_IO_POWER_DOMAINS ( \
SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
BIT(POWER_DOMAIN_PLLS) | \
BIT(POWER_DOMAIN_INIT))
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
#define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~(SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
SKL_DISPLAY_DDI_A_E_POWER_DOMAINS | \
SKL_DISPLAY_DDI_B_POWER_DOMAINS | \
SKL_DISPLAY_DDI_C_POWER_DOMAINS | \
SKL_DISPLAY_DDI_D_POWER_DOMAINS | \
SKL_DISPLAY_MISC_IO_POWER_DOMAINS)) | \
BIT(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_TRANSCODER_A) | \
BIT(POWER_DOMAIN_PIPE_B) | \
BIT(POWER_DOMAIN_TRANSCODER_B) | \
BIT(POWER_DOMAIN_PIPE_C) | \
BIT(POWER_DOMAIN_TRANSCODER_C) | \
BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_AUDIO) | \
BIT(POWER_DOMAIN_VGA) | \
BIT(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS ( \
BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT(POWER_DOMAIN_PIPE_A) | \
BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
BIT(POWER_DOMAIN_AUX_A) | \
BIT(POWER_DOMAIN_PLLS) | \
BIT(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS | \
BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) | \
BIT(POWER_DOMAIN_INIT))
static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
"DC9 already programmed to be enabled.\n");
WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
"DC5 still not disabled to enable DC9.\n");
WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
/*
* TODO: check for the following to verify the conditions to enter DC9
* state are satisfied:
* 1] Check relevant display engine registers to verify if mode set
* disable sequence was followed.
* 2] Check if display uninitialize sequence is initialized.
*/
}
static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
{
WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
"DC9 already programmed to be disabled.\n");
WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
"DC5 still not disabled.\n");
/*
* TODO: check for the following to verify DC9 state was indeed
* entered before programming to disable it:
* 1] Check relevant display engine registers to verify if mode
* set disable sequence was followed.
* 2] Check if display uninitialize sequence is initialized.
*/
}
void bxt_enable_dc9(struct drm_i915_private *dev_priv)
{
uint32_t val;
assert_can_enable_dc9(dev_priv);
DRM_DEBUG_KMS("Enabling DC9\n");
val = I915_READ(DC_STATE_EN);
val |= DC_STATE_EN_DC9;
I915_WRITE(DC_STATE_EN, val);
POSTING_READ(DC_STATE_EN);
}
void bxt_disable_dc9(struct drm_i915_private *dev_priv)
{
uint32_t val;
assert_can_disable_dc9(dev_priv);
DRM_DEBUG_KMS("Disabling DC9\n");
val = I915_READ(DC_STATE_EN);
val &= ~DC_STATE_EN_DC9;
I915_WRITE(DC_STATE_EN, val);
POSTING_READ(DC_STATE_EN);
}
drm/i915/skl: Implement enable/disable for Display C5 state. This patch just implements the basic enable and disable functions of DC5 state which is needed for both SKL and BXT. Its important to load respective CSR program before calling enable, which anyways will happen as CSR program is executed during boot. DC5 is a power saving state where hardware dynamically disables power well 1 and the CDCLK PLL and saves the associated registers. DC5 can be entered when software allows it, power well 2 is disabled, and hardware detects that all pipes are disabled or pipe A is enabled with PSR active. Its better to configure display engine to have power well 2 disabled before getting into DC5 enable function. Hence rpm framework will have to ensure to check status of power well 2 before calling gen9_enable_dc5. Rather dc5 entry criteria should be decided based on power well 2 status. If disabled, then call gen9_enable_dc5. v2: Replace HAS_ with IS_ check as per Daniel's review comments v3: Cleared the bits dc5/dc6 enable of DC_STATE_EN register before setting them as per Satheesh's review comments. v4: call POSTING_READ for every write to a register to ensure that its written immediately. v5: Modified as per review comments from Imre. - Squashed register definitions into this patch. - Finetuned comments and functions. v6: Avoid redundant writes in gen9_set_dc_state_debugmask_memory_up function. v7: - Rebase to latest. - Move all runtime PM functions defined in intel_display.c to intel_runtime_pm.c. v8: Rebased to drm-intel-nightly. (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:09 +03:00
static void gen9_set_dc_state_debugmask_memory_up(
struct drm_i915_private *dev_priv)
{
uint32_t val;
/* The below bit doesn't need to be cleared ever afterwards */
val = I915_READ(DC_STATE_DEBUG);
if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
I915_WRITE(DC_STATE_DEBUG, val);
POSTING_READ(DC_STATE_DEBUG);
}
}
drm/i915/skl: Assert the requirements to enter or exit DC5. Warn if the conditions to enter or exit DC5 are not satisfied such as support for runtime PM, state of power well, CSR loading etc. v2: Removed camelcase in functions and variables. v3: Do some minimal check to assert if CSR program is not loaded. v4: 1] Used an appropriate function lookup_power_well() to identify power well, instead of using a magic number which can change in future. 2] Split the conditions further in assert_can_enable_DC5() and added more checks. 3] Removed all WARNs from assert_can_disable_DC5 as they were unnecessary and added two new ones. 4] Changed variable names as updated in earlier patches. v5: 1] Change lookup_power_well function to take an int power well id. 2] Define a new intel_display_power_well_is_enabled helper function to check whether a particular power well is enabled. 3] Use CSR-related mutex in assert_csr_loaded function. v6: Remove use of dc5_enabled variable as it's no longer needed. v7: 1] Rebase to latest. 2] Move all DC5-related functions from intel_display.c to intel_runtime_pm.c. v8: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v9: Modified below changes based on review comments from Imre. - Moved intel_display_power_well_is_enabled() to intel_runtime_pm.c. - Removed mutex lock from assert_csr_loaded(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:10 +03:00
static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
drm/i915/skl: Add DC5 Trigger Sequence Add triggers as per expectations mentioned in gen9_enable_dc5 and gen9_disable_dc5 patch. Also call POSTING_READ for every write to a register to ensure that its written immediately. v1: Remove POSTING_READ calls as they've already been added in previous patches. v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file. Modified as per review comments from Imre: 1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant functions. 2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into gen9_disable_DC5 which is a more appropriate place. 3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well() to warnings. However, removing them for now as they'll be included in a future patch asserting DC-state entry/exit criteria. 4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure to track 'enabled' and 'deferred' status of DC5. 5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering runtime-suspend and release it when it's loaded. 6] Protect necessary CSR-related code with locks. 7] Move CSR-loading call to runtime PM initialization, as power domains needed to be accessed during deferred DC5-enabling, are not initialized earlier. v3: Rebase to latest. Modified as per review comments from Imre: 1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of deferring enabling DC5 until CSR is loaded. 2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5- enabling is removed and release it at the end of CSR-loading functionality. 3] Revert calling CSR-loading functionality to the beginning of i915 driver-load functionality to avoid any delay in loading. 4] Define another variable to track whether CSR-loading failed and use it to avoid enabling DC5 if it's true. 5] Define CSR-load-status accessor functions for use later. v4: 1] Disable DC5 before enabling PG2 instead of after it. 2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that. 3] Enable DC5-related functionality using a macro. 4] Remove dc5_enabled tracking variable and its use as it's not needed now. v5: 1] Mark CSR failed to load where necessary in finish_csr_load function. 2] Use mutex-protected accessor function to check if CSR loaded instead of directly accessing the variable. 3] Prefix csr_load_status_get/set function names with intel_. v6: rebase to latest. v7: Rebase on top of nightly (Damien) v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre) v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v10: Added a enum for different csr states, suggested by Imre. (Animesh) v11: Based on review comments from Imre, Damien and Daniel following changes done - enum name chnaged to csr_state (singular form). - FW_UNINITIALIZED used as zeroth element in enum csr_state. - Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool. v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps calling once to set the csr status. The same flag used to fail RPM if find any issue during firmware loading. Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 17:16:16 +03:00
{
drm/i915/skl: Implement enable/disable for Display C5 state. This patch just implements the basic enable and disable functions of DC5 state which is needed for both SKL and BXT. Its important to load respective CSR program before calling enable, which anyways will happen as CSR program is executed during boot. DC5 is a power saving state where hardware dynamically disables power well 1 and the CDCLK PLL and saves the associated registers. DC5 can be entered when software allows it, power well 2 is disabled, and hardware detects that all pipes are disabled or pipe A is enabled with PSR active. Its better to configure display engine to have power well 2 disabled before getting into DC5 enable function. Hence rpm framework will have to ensure to check status of power well 2 before calling gen9_enable_dc5. Rather dc5 entry criteria should be decided based on power well 2 status. If disabled, then call gen9_enable_dc5. v2: Replace HAS_ with IS_ check as per Daniel's review comments v3: Cleared the bits dc5/dc6 enable of DC_STATE_EN register before setting them as per Satheesh's review comments. v4: call POSTING_READ for every write to a register to ensure that its written immediately. v5: Modified as per review comments from Imre. - Squashed register definitions into this patch. - Finetuned comments and functions. v6: Avoid redundant writes in gen9_set_dc_state_debugmask_memory_up function. v7: - Rebase to latest. - Move all runtime PM functions defined in intel_display.c to intel_runtime_pm.c. v8: Rebased to drm-intel-nightly. (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:09 +03:00
struct drm_device *dev = dev_priv->dev;
drm/i915/skl: Assert the requirements to enter or exit DC5. Warn if the conditions to enter or exit DC5 are not satisfied such as support for runtime PM, state of power well, CSR loading etc. v2: Removed camelcase in functions and variables. v3: Do some minimal check to assert if CSR program is not loaded. v4: 1] Used an appropriate function lookup_power_well() to identify power well, instead of using a magic number which can change in future. 2] Split the conditions further in assert_can_enable_DC5() and added more checks. 3] Removed all WARNs from assert_can_disable_DC5 as they were unnecessary and added two new ones. 4] Changed variable names as updated in earlier patches. v5: 1] Change lookup_power_well function to take an int power well id. 2] Define a new intel_display_power_well_is_enabled helper function to check whether a particular power well is enabled. 3] Use CSR-related mutex in assert_csr_loaded function. v6: Remove use of dc5_enabled variable as it's no longer needed. v7: 1] Rebase to latest. 2] Move all DC5-related functions from intel_display.c to intel_runtime_pm.c. v8: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v9: Modified below changes based on review comments from Imre. - Moved intel_display_power_well_is_enabled() to intel_runtime_pm.c. - Removed mutex lock from assert_csr_loaded(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:10 +03:00
bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
SKL_DISP_PW_2);
WARN(!IS_SKYLAKE(dev), "Platform doesn't support DC5.\n");
WARN(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
WARN(pg2_enabled, "PG2 not disabled to enable DC5.\n");
WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
"DC5 already programmed to be enabled.\n");
WARN(dev_priv->pm.suspended,
"DC5 cannot be enabled, if platform is runtime-suspended.\n");
assert_csr_loaded(dev_priv);
}
static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
{
bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
SKL_DISP_PW_2);
2015-04-16 11:52:13 +03:00
/*
* During initialization, the firmware may not be loaded yet.
* We still want to make sure that the DC enabling flag is cleared.
*/
if (dev_priv->power_domains.initializing)
return;
drm/i915/skl: Assert the requirements to enter or exit DC5. Warn if the conditions to enter or exit DC5 are not satisfied such as support for runtime PM, state of power well, CSR loading etc. v2: Removed camelcase in functions and variables. v3: Do some minimal check to assert if CSR program is not loaded. v4: 1] Used an appropriate function lookup_power_well() to identify power well, instead of using a magic number which can change in future. 2] Split the conditions further in assert_can_enable_DC5() and added more checks. 3] Removed all WARNs from assert_can_disable_DC5 as they were unnecessary and added two new ones. 4] Changed variable names as updated in earlier patches. v5: 1] Change lookup_power_well function to take an int power well id. 2] Define a new intel_display_power_well_is_enabled helper function to check whether a particular power well is enabled. 3] Use CSR-related mutex in assert_csr_loaded function. v6: Remove use of dc5_enabled variable as it's no longer needed. v7: 1] Rebase to latest. 2] Move all DC5-related functions from intel_display.c to intel_runtime_pm.c. v8: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v9: Modified below changes based on review comments from Imre. - Moved intel_display_power_well_is_enabled() to intel_runtime_pm.c. - Removed mutex lock from assert_csr_loaded(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:10 +03:00
WARN(!pg2_enabled, "PG2 not enabled to disable DC5.\n");
WARN(dev_priv->pm.suspended,
"Disabling of DC5 while platform is runtime-suspended should never happen.\n");
}
static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
{
drm/i915/skl: Implement enable/disable for Display C5 state. This patch just implements the basic enable and disable functions of DC5 state which is needed for both SKL and BXT. Its important to load respective CSR program before calling enable, which anyways will happen as CSR program is executed during boot. DC5 is a power saving state where hardware dynamically disables power well 1 and the CDCLK PLL and saves the associated registers. DC5 can be entered when software allows it, power well 2 is disabled, and hardware detects that all pipes are disabled or pipe A is enabled with PSR active. Its better to configure display engine to have power well 2 disabled before getting into DC5 enable function. Hence rpm framework will have to ensure to check status of power well 2 before calling gen9_enable_dc5. Rather dc5 entry criteria should be decided based on power well 2 status. If disabled, then call gen9_enable_dc5. v2: Replace HAS_ with IS_ check as per Daniel's review comments v3: Cleared the bits dc5/dc6 enable of DC_STATE_EN register before setting them as per Satheesh's review comments. v4: call POSTING_READ for every write to a register to ensure that its written immediately. v5: Modified as per review comments from Imre. - Squashed register definitions into this patch. - Finetuned comments and functions. v6: Avoid redundant writes in gen9_set_dc_state_debugmask_memory_up function. v7: - Rebase to latest. - Move all runtime PM functions defined in intel_display.c to intel_runtime_pm.c. v8: Rebased to drm-intel-nightly. (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:09 +03:00
uint32_t val;
drm/i915/skl: Assert the requirements to enter or exit DC5. Warn if the conditions to enter or exit DC5 are not satisfied such as support for runtime PM, state of power well, CSR loading etc. v2: Removed camelcase in functions and variables. v3: Do some minimal check to assert if CSR program is not loaded. v4: 1] Used an appropriate function lookup_power_well() to identify power well, instead of using a magic number which can change in future. 2] Split the conditions further in assert_can_enable_DC5() and added more checks. 3] Removed all WARNs from assert_can_disable_DC5 as they were unnecessary and added two new ones. 4] Changed variable names as updated in earlier patches. v5: 1] Change lookup_power_well function to take an int power well id. 2] Define a new intel_display_power_well_is_enabled helper function to check whether a particular power well is enabled. 3] Use CSR-related mutex in assert_csr_loaded function. v6: Remove use of dc5_enabled variable as it's no longer needed. v7: 1] Rebase to latest. 2] Move all DC5-related functions from intel_display.c to intel_runtime_pm.c. v8: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v9: Modified below changes based on review comments from Imre. - Moved intel_display_power_well_is_enabled() to intel_runtime_pm.c. - Removed mutex lock from assert_csr_loaded(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:10 +03:00
assert_can_enable_dc5(dev_priv);
drm/i915/skl: Implement enable/disable for Display C5 state. This patch just implements the basic enable and disable functions of DC5 state which is needed for both SKL and BXT. Its important to load respective CSR program before calling enable, which anyways will happen as CSR program is executed during boot. DC5 is a power saving state where hardware dynamically disables power well 1 and the CDCLK PLL and saves the associated registers. DC5 can be entered when software allows it, power well 2 is disabled, and hardware detects that all pipes are disabled or pipe A is enabled with PSR active. Its better to configure display engine to have power well 2 disabled before getting into DC5 enable function. Hence rpm framework will have to ensure to check status of power well 2 before calling gen9_enable_dc5. Rather dc5 entry criteria should be decided based on power well 2 status. If disabled, then call gen9_enable_dc5. v2: Replace HAS_ with IS_ check as per Daniel's review comments v3: Cleared the bits dc5/dc6 enable of DC_STATE_EN register before setting them as per Satheesh's review comments. v4: call POSTING_READ for every write to a register to ensure that its written immediately. v5: Modified as per review comments from Imre. - Squashed register definitions into this patch. - Finetuned comments and functions. v6: Avoid redundant writes in gen9_set_dc_state_debugmask_memory_up function. v7: - Rebase to latest. - Move all runtime PM functions defined in intel_display.c to intel_runtime_pm.c. v8: Rebased to drm-intel-nightly. (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:09 +03:00
DRM_DEBUG_KMS("Enabling DC5\n");
gen9_set_dc_state_debugmask_memory_up(dev_priv);
val = I915_READ(DC_STATE_EN);
val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK;
val |= DC_STATE_EN_UPTO_DC5;
I915_WRITE(DC_STATE_EN, val);
POSTING_READ(DC_STATE_EN);
drm/i915/skl: Add DC5 Trigger Sequence Add triggers as per expectations mentioned in gen9_enable_dc5 and gen9_disable_dc5 patch. Also call POSTING_READ for every write to a register to ensure that its written immediately. v1: Remove POSTING_READ calls as they've already been added in previous patches. v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file. Modified as per review comments from Imre: 1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant functions. 2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into gen9_disable_DC5 which is a more appropriate place. 3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well() to warnings. However, removing them for now as they'll be included in a future patch asserting DC-state entry/exit criteria. 4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure to track 'enabled' and 'deferred' status of DC5. 5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering runtime-suspend and release it when it's loaded. 6] Protect necessary CSR-related code with locks. 7] Move CSR-loading call to runtime PM initialization, as power domains needed to be accessed during deferred DC5-enabling, are not initialized earlier. v3: Rebase to latest. Modified as per review comments from Imre: 1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of deferring enabling DC5 until CSR is loaded. 2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5- enabling is removed and release it at the end of CSR-loading functionality. 3] Revert calling CSR-loading functionality to the beginning of i915 driver-load functionality to avoid any delay in loading. 4] Define another variable to track whether CSR-loading failed and use it to avoid enabling DC5 if it's true. 5] Define CSR-load-status accessor functions for use later. v4: 1] Disable DC5 before enabling PG2 instead of after it. 2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that. 3] Enable DC5-related functionality using a macro. 4] Remove dc5_enabled tracking variable and its use as it's not needed now. v5: 1] Mark CSR failed to load where necessary in finish_csr_load function. 2] Use mutex-protected accessor function to check if CSR loaded instead of directly accessing the variable. 3] Prefix csr_load_status_get/set function names with intel_. v6: rebase to latest. v7: Rebase on top of nightly (Damien) v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre) v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v10: Added a enum for different csr states, suggested by Imre. (Animesh) v11: Based on review comments from Imre, Damien and Daniel following changes done - enum name chnaged to csr_state (singular form). - FW_UNINITIALIZED used as zeroth element in enum csr_state. - Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool. v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps calling once to set the csr status. The same flag used to fail RPM if find any issue during firmware loading. Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 17:16:16 +03:00
}
static void gen9_disable_dc5(struct drm_i915_private *dev_priv)
{
drm/i915/skl: Implement enable/disable for Display C5 state. This patch just implements the basic enable and disable functions of DC5 state which is needed for both SKL and BXT. Its important to load respective CSR program before calling enable, which anyways will happen as CSR program is executed during boot. DC5 is a power saving state where hardware dynamically disables power well 1 and the CDCLK PLL and saves the associated registers. DC5 can be entered when software allows it, power well 2 is disabled, and hardware detects that all pipes are disabled or pipe A is enabled with PSR active. Its better to configure display engine to have power well 2 disabled before getting into DC5 enable function. Hence rpm framework will have to ensure to check status of power well 2 before calling gen9_enable_dc5. Rather dc5 entry criteria should be decided based on power well 2 status. If disabled, then call gen9_enable_dc5. v2: Replace HAS_ with IS_ check as per Daniel's review comments v3: Cleared the bits dc5/dc6 enable of DC_STATE_EN register before setting them as per Satheesh's review comments. v4: call POSTING_READ for every write to a register to ensure that its written immediately. v5: Modified as per review comments from Imre. - Squashed register definitions into this patch. - Finetuned comments and functions. v6: Avoid redundant writes in gen9_set_dc_state_debugmask_memory_up function. v7: - Rebase to latest. - Move all runtime PM functions defined in intel_display.c to intel_runtime_pm.c. v8: Rebased to drm-intel-nightly. (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:09 +03:00
uint32_t val;
drm/i915/skl: Assert the requirements to enter or exit DC5. Warn if the conditions to enter or exit DC5 are not satisfied such as support for runtime PM, state of power well, CSR loading etc. v2: Removed camelcase in functions and variables. v3: Do some minimal check to assert if CSR program is not loaded. v4: 1] Used an appropriate function lookup_power_well() to identify power well, instead of using a magic number which can change in future. 2] Split the conditions further in assert_can_enable_DC5() and added more checks. 3] Removed all WARNs from assert_can_disable_DC5 as they were unnecessary and added two new ones. 4] Changed variable names as updated in earlier patches. v5: 1] Change lookup_power_well function to take an int power well id. 2] Define a new intel_display_power_well_is_enabled helper function to check whether a particular power well is enabled. 3] Use CSR-related mutex in assert_csr_loaded function. v6: Remove use of dc5_enabled variable as it's no longer needed. v7: 1] Rebase to latest. 2] Move all DC5-related functions from intel_display.c to intel_runtime_pm.c. v8: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v9: Modified below changes based on review comments from Imre. - Moved intel_display_power_well_is_enabled() to intel_runtime_pm.c. - Removed mutex lock from assert_csr_loaded(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:10 +03:00
assert_can_disable_dc5(dev_priv);
drm/i915/skl: Implement enable/disable for Display C5 state. This patch just implements the basic enable and disable functions of DC5 state which is needed for both SKL and BXT. Its important to load respective CSR program before calling enable, which anyways will happen as CSR program is executed during boot. DC5 is a power saving state where hardware dynamically disables power well 1 and the CDCLK PLL and saves the associated registers. DC5 can be entered when software allows it, power well 2 is disabled, and hardware detects that all pipes are disabled or pipe A is enabled with PSR active. Its better to configure display engine to have power well 2 disabled before getting into DC5 enable function. Hence rpm framework will have to ensure to check status of power well 2 before calling gen9_enable_dc5. Rather dc5 entry criteria should be decided based on power well 2 status. If disabled, then call gen9_enable_dc5. v2: Replace HAS_ with IS_ check as per Daniel's review comments v3: Cleared the bits dc5/dc6 enable of DC_STATE_EN register before setting them as per Satheesh's review comments. v4: call POSTING_READ for every write to a register to ensure that its written immediately. v5: Modified as per review comments from Imre. - Squashed register definitions into this patch. - Finetuned comments and functions. v6: Avoid redundant writes in gen9_set_dc_state_debugmask_memory_up function. v7: - Rebase to latest. - Move all runtime PM functions defined in intel_display.c to intel_runtime_pm.c. v8: Rebased to drm-intel-nightly. (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:09 +03:00
DRM_DEBUG_KMS("Disabling DC5\n");
val = I915_READ(DC_STATE_EN);
val &= ~DC_STATE_EN_UPTO_DC5;
I915_WRITE(DC_STATE_EN, val);
POSTING_READ(DC_STATE_EN);
drm/i915/skl: Add DC5 Trigger Sequence Add triggers as per expectations mentioned in gen9_enable_dc5 and gen9_disable_dc5 patch. Also call POSTING_READ for every write to a register to ensure that its written immediately. v1: Remove POSTING_READ calls as they've already been added in previous patches. v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file. Modified as per review comments from Imre: 1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant functions. 2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into gen9_disable_DC5 which is a more appropriate place. 3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well() to warnings. However, removing them for now as they'll be included in a future patch asserting DC-state entry/exit criteria. 4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure to track 'enabled' and 'deferred' status of DC5. 5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering runtime-suspend and release it when it's loaded. 6] Protect necessary CSR-related code with locks. 7] Move CSR-loading call to runtime PM initialization, as power domains needed to be accessed during deferred DC5-enabling, are not initialized earlier. v3: Rebase to latest. Modified as per review comments from Imre: 1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of deferring enabling DC5 until CSR is loaded. 2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5- enabling is removed and release it at the end of CSR-loading functionality. 3] Revert calling CSR-loading functionality to the beginning of i915 driver-load functionality to avoid any delay in loading. 4] Define another variable to track whether CSR-loading failed and use it to avoid enabling DC5 if it's true. 5] Define CSR-load-status accessor functions for use later. v4: 1] Disable DC5 before enabling PG2 instead of after it. 2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that. 3] Enable DC5-related functionality using a macro. 4] Remove dc5_enabled tracking variable and its use as it's not needed now. v5: 1] Mark CSR failed to load where necessary in finish_csr_load function. 2] Use mutex-protected accessor function to check if CSR loaded instead of directly accessing the variable. 3] Prefix csr_load_status_get/set function names with intel_. v6: rebase to latest. v7: Rebase on top of nightly (Damien) v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre) v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v10: Added a enum for different csr states, suggested by Imre. (Animesh) v11: Based on review comments from Imre, Damien and Daniel following changes done - enum name chnaged to csr_state (singular form). - FW_UNINITIALIZED used as zeroth element in enum csr_state. - Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool. v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps calling once to set the csr status. The same flag used to fail RPM if find any issue during firmware loading. Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 17:16:16 +03:00
}
2015-04-16 11:52:13 +03:00
static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
drm/i915/skl: Add DC6 Trigger sequence. Add triggers for DC6 as per details provided in skl_enable_dc6 and skl_disable_dc6 implementations. Also Call POSTING_READ for every write to a register to ensure it is written to immediately v1: Remove POSTING_READ and intel_prepare_ddi calls as they've been added in previous patches. v2: 1] Remove check for backlight disabled as it should be the case by that time. 2] Mark DC5 as disabled when enabling DC6. 3] Return from DC5-disabling function early if DC5 is already be disabled which can happen due to DC6-enabling earlier. 3] Ensure CSR firmware is loaded after resume from DC6 as corresponding memory contents won't be retained after runtime-suspend. 4] Ensure that CSR isn't identified as loaded before CSR-loading program is called during runtime-resume. v3: Rebase to latest Modified as per review comments from Imre and after discussion with Art: 1] DC6 should be preferably enabled when PG2 is disabled by SW as the check for PG1 being disabled is taken of by HW to enter DC6, and disabled when PG2 is enabled respectively. This helps save more power, especially in the case when display is disabled but GT is enabled. Accordingly, replacing DC5 trigger sequence with DC6 for SKL. 2] DC6 could be enabled from intel_runtime_suspend() function, if DC5 is already enabled. 3] Move CSR-load-status setting code from intel_runtime_suspend function to a new function. v4: 1] Enable/disable DC6 only when toggling the power-well using a newly defined macro ENABLE_DC6. v5: 1] Load CSR on system resume too as firmware may be lost on system suspend preventing enabling DC5, DC6. 2] DDI buffers shouldn't be programmed during driver-load/resume as it's already done during modeset initialization then and also that the encoder list is still uninitialized by then. Therefore, call intel_prepare_ddi function right after disabling DC6 but outside skl_disable_dc6 function and not during driver-load/resume. v6: 1] Rebase to latest. 2] Move SKL_ENABLE_DC6 macro definition from intel_display.c to intel_runtime_pm.c. v7: 1) Refactored the code for removing the warning got from checkpatch. 2) After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v8: - Reverted the changes done in v7. - Removed the condition check in skl_prepare_resune(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:11 +03:00
{
Implement enable/disable for Display C6 state This patch just implements the basic enable and disable functions of DC6 state which is needed for SKL platform. Its important to load SKL CSR program before calling enable. DC6 is a deeper power saving state where hardware dynamically disables power well 0 and saves the associated registers. DC6 can be entered when software allows it, the conditions for DC5 are met, and the PCU allows DC6. DC6 cannot be used if the backlight is being driven from the display utility pin. Its better to configure display engine to have power well 2 disabled before getting into DC6 enable function. Hence rpm framework will ensure to check status of power well 2 and DC5 before calling skl_enable_dc6. v2: Replace HAS_ with IS_ check as per Daniel's review comments v3: Cleared the bits dc5/dc6 enable of DC_STATE_EN register before setting them as per Satheesh's review comments. v4: No need to call gen9_disable_dc5 inside enable sequence of DC6, as its already take care above. v5: call POSTING_READ for every write to a register to ensure that its written immediately. Call intel_prepare_ddi during DC6 exit as it's required on low-power exit. v6: Protect DC6-enabling-disabling functionality with locks to synchronize with CSR-loading code. v7: Remove grabbing CSR-related mutex in skl_enable/disable_dc6 functions as deferred DC5-enabling functionality is now removed. v8: Remove 'Disabling DC5' from the debug comment during DC6 enabling as when DC6 is allowed, DC5 is not programmed at all. v9: - Rebase to latest. - Move all DC6-related functions from intel_display.c to intel_runtime_pm.c. v10: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:12 +03:00
struct drm_device *dev = dev_priv->dev;
2015-04-16 11:52:13 +03:00
WARN(!IS_SKYLAKE(dev), "Platform doesn't support DC6.\n");
WARN(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
"Backlight is not disabled.\n");
WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
"DC6 already programmed to be enabled.\n");
assert_csr_loaded(dev_priv);
}
static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
{
/*
* During initialization, the firmware may not be loaded yet.
* We still want to make sure that the DC enabling flag is cleared.
*/
if (dev_priv->power_domains.initializing)
return;
assert_csr_loaded(dev_priv);
WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
"DC6 already programmed to be disabled.\n");
}
static void skl_enable_dc6(struct drm_i915_private *dev_priv)
{
Implement enable/disable for Display C6 state This patch just implements the basic enable and disable functions of DC6 state which is needed for SKL platform. Its important to load SKL CSR program before calling enable. DC6 is a deeper power saving state where hardware dynamically disables power well 0 and saves the associated registers. DC6 can be entered when software allows it, the conditions for DC5 are met, and the PCU allows DC6. DC6 cannot be used if the backlight is being driven from the display utility pin. Its better to configure display engine to have power well 2 disabled before getting into DC6 enable function. Hence rpm framework will ensure to check status of power well 2 and DC5 before calling skl_enable_dc6. v2: Replace HAS_ with IS_ check as per Daniel's review comments v3: Cleared the bits dc5/dc6 enable of DC_STATE_EN register before setting them as per Satheesh's review comments. v4: No need to call gen9_disable_dc5 inside enable sequence of DC6, as its already take care above. v5: call POSTING_READ for every write to a register to ensure that its written immediately. Call intel_prepare_ddi during DC6 exit as it's required on low-power exit. v6: Protect DC6-enabling-disabling functionality with locks to synchronize with CSR-loading code. v7: Remove grabbing CSR-related mutex in skl_enable/disable_dc6 functions as deferred DC5-enabling functionality is now removed. v8: Remove 'Disabling DC5' from the debug comment during DC6 enabling as when DC6 is allowed, DC5 is not programmed at all. v9: - Rebase to latest. - Move all DC6-related functions from intel_display.c to intel_runtime_pm.c. v10: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:12 +03:00
uint32_t val;
2015-04-16 11:52:13 +03:00
assert_can_enable_dc6(dev_priv);
Implement enable/disable for Display C6 state This patch just implements the basic enable and disable functions of DC6 state which is needed for SKL platform. Its important to load SKL CSR program before calling enable. DC6 is a deeper power saving state where hardware dynamically disables power well 0 and saves the associated registers. DC6 can be entered when software allows it, the conditions for DC5 are met, and the PCU allows DC6. DC6 cannot be used if the backlight is being driven from the display utility pin. Its better to configure display engine to have power well 2 disabled before getting into DC6 enable function. Hence rpm framework will ensure to check status of power well 2 and DC5 before calling skl_enable_dc6. v2: Replace HAS_ with IS_ check as per Daniel's review comments v3: Cleared the bits dc5/dc6 enable of DC_STATE_EN register before setting them as per Satheesh's review comments. v4: No need to call gen9_disable_dc5 inside enable sequence of DC6, as its already take care above. v5: call POSTING_READ for every write to a register to ensure that its written immediately. Call intel_prepare_ddi during DC6 exit as it's required on low-power exit. v6: Protect DC6-enabling-disabling functionality with locks to synchronize with CSR-loading code. v7: Remove grabbing CSR-related mutex in skl_enable/disable_dc6 functions as deferred DC5-enabling functionality is now removed. v8: Remove 'Disabling DC5' from the debug comment during DC6 enabling as when DC6 is allowed, DC5 is not programmed at all. v9: - Rebase to latest. - Move all DC6-related functions from intel_display.c to intel_runtime_pm.c. v10: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:12 +03:00
DRM_DEBUG_KMS("Enabling DC6\n");
gen9_set_dc_state_debugmask_memory_up(dev_priv);
val = I915_READ(DC_STATE_EN);
val &= ~DC_STATE_EN_UPTO_DC5_DC6_MASK;
val |= DC_STATE_EN_UPTO_DC6;
I915_WRITE(DC_STATE_EN, val);
POSTING_READ(DC_STATE_EN);
drm/i915/skl: Add DC6 Trigger sequence. Add triggers for DC6 as per details provided in skl_enable_dc6 and skl_disable_dc6 implementations. Also Call POSTING_READ for every write to a register to ensure it is written to immediately v1: Remove POSTING_READ and intel_prepare_ddi calls as they've been added in previous patches. v2: 1] Remove check for backlight disabled as it should be the case by that time. 2] Mark DC5 as disabled when enabling DC6. 3] Return from DC5-disabling function early if DC5 is already be disabled which can happen due to DC6-enabling earlier. 3] Ensure CSR firmware is loaded after resume from DC6 as corresponding memory contents won't be retained after runtime-suspend. 4] Ensure that CSR isn't identified as loaded before CSR-loading program is called during runtime-resume. v3: Rebase to latest Modified as per review comments from Imre and after discussion with Art: 1] DC6 should be preferably enabled when PG2 is disabled by SW as the check for PG1 being disabled is taken of by HW to enter DC6, and disabled when PG2 is enabled respectively. This helps save more power, especially in the case when display is disabled but GT is enabled. Accordingly, replacing DC5 trigger sequence with DC6 for SKL. 2] DC6 could be enabled from intel_runtime_suspend() function, if DC5 is already enabled. 3] Move CSR-load-status setting code from intel_runtime_suspend function to a new function. v4: 1] Enable/disable DC6 only when toggling the power-well using a newly defined macro ENABLE_DC6. v5: 1] Load CSR on system resume too as firmware may be lost on system suspend preventing enabling DC5, DC6. 2] DDI buffers shouldn't be programmed during driver-load/resume as it's already done during modeset initialization then and also that the encoder list is still uninitialized by then. Therefore, call intel_prepare_ddi function right after disabling DC6 but outside skl_disable_dc6 function and not during driver-load/resume. v6: 1] Rebase to latest. 2] Move SKL_ENABLE_DC6 macro definition from intel_display.c to intel_runtime_pm.c. v7: 1) Refactored the code for removing the warning got from checkpatch. 2) After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v8: - Reverted the changes done in v7. - Removed the condition check in skl_prepare_resune(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:11 +03:00
}
static void skl_disable_dc6(struct drm_i915_private *dev_priv)
{
Implement enable/disable for Display C6 state This patch just implements the basic enable and disable functions of DC6 state which is needed for SKL platform. Its important to load SKL CSR program before calling enable. DC6 is a deeper power saving state where hardware dynamically disables power well 0 and saves the associated registers. DC6 can be entered when software allows it, the conditions for DC5 are met, and the PCU allows DC6. DC6 cannot be used if the backlight is being driven from the display utility pin. Its better to configure display engine to have power well 2 disabled before getting into DC6 enable function. Hence rpm framework will ensure to check status of power well 2 and DC5 before calling skl_enable_dc6. v2: Replace HAS_ with IS_ check as per Daniel's review comments v3: Cleared the bits dc5/dc6 enable of DC_STATE_EN register before setting them as per Satheesh's review comments. v4: No need to call gen9_disable_dc5 inside enable sequence of DC6, as its already take care above. v5: call POSTING_READ for every write to a register to ensure that its written immediately. Call intel_prepare_ddi during DC6 exit as it's required on low-power exit. v6: Protect DC6-enabling-disabling functionality with locks to synchronize with CSR-loading code. v7: Remove grabbing CSR-related mutex in skl_enable/disable_dc6 functions as deferred DC5-enabling functionality is now removed. v8: Remove 'Disabling DC5' from the debug comment during DC6 enabling as when DC6 is allowed, DC5 is not programmed at all. v9: - Rebase to latest. - Move all DC6-related functions from intel_display.c to intel_runtime_pm.c. v10: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:12 +03:00
uint32_t val;
2015-04-16 11:52:13 +03:00
assert_can_disable_dc6(dev_priv);
Implement enable/disable for Display C6 state This patch just implements the basic enable and disable functions of DC6 state which is needed for SKL platform. Its important to load SKL CSR program before calling enable. DC6 is a deeper power saving state where hardware dynamically disables power well 0 and saves the associated registers. DC6 can be entered when software allows it, the conditions for DC5 are met, and the PCU allows DC6. DC6 cannot be used if the backlight is being driven from the display utility pin. Its better to configure display engine to have power well 2 disabled before getting into DC6 enable function. Hence rpm framework will ensure to check status of power well 2 and DC5 before calling skl_enable_dc6. v2: Replace HAS_ with IS_ check as per Daniel's review comments v3: Cleared the bits dc5/dc6 enable of DC_STATE_EN register before setting them as per Satheesh's review comments. v4: No need to call gen9_disable_dc5 inside enable sequence of DC6, as its already take care above. v5: call POSTING_READ for every write to a register to ensure that its written immediately. Call intel_prepare_ddi during DC6 exit as it's required on low-power exit. v6: Protect DC6-enabling-disabling functionality with locks to synchronize with CSR-loading code. v7: Remove grabbing CSR-related mutex in skl_enable/disable_dc6 functions as deferred DC5-enabling functionality is now removed. v8: Remove 'Disabling DC5' from the debug comment during DC6 enabling as when DC6 is allowed, DC5 is not programmed at all. v9: - Rebase to latest. - Move all DC6-related functions from intel_display.c to intel_runtime_pm.c. v10: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:12 +03:00
DRM_DEBUG_KMS("Disabling DC6\n");
val = I915_READ(DC_STATE_EN);
val &= ~DC_STATE_EN_UPTO_DC6;
I915_WRITE(DC_STATE_EN, val);
POSTING_READ(DC_STATE_EN);
drm/i915/skl: Add DC6 Trigger sequence. Add triggers for DC6 as per details provided in skl_enable_dc6 and skl_disable_dc6 implementations. Also Call POSTING_READ for every write to a register to ensure it is written to immediately v1: Remove POSTING_READ and intel_prepare_ddi calls as they've been added in previous patches. v2: 1] Remove check for backlight disabled as it should be the case by that time. 2] Mark DC5 as disabled when enabling DC6. 3] Return from DC5-disabling function early if DC5 is already be disabled which can happen due to DC6-enabling earlier. 3] Ensure CSR firmware is loaded after resume from DC6 as corresponding memory contents won't be retained after runtime-suspend. 4] Ensure that CSR isn't identified as loaded before CSR-loading program is called during runtime-resume. v3: Rebase to latest Modified as per review comments from Imre and after discussion with Art: 1] DC6 should be preferably enabled when PG2 is disabled by SW as the check for PG1 being disabled is taken of by HW to enter DC6, and disabled when PG2 is enabled respectively. This helps save more power, especially in the case when display is disabled but GT is enabled. Accordingly, replacing DC5 trigger sequence with DC6 for SKL. 2] DC6 could be enabled from intel_runtime_suspend() function, if DC5 is already enabled. 3] Move CSR-load-status setting code from intel_runtime_suspend function to a new function. v4: 1] Enable/disable DC6 only when toggling the power-well using a newly defined macro ENABLE_DC6. v5: 1] Load CSR on system resume too as firmware may be lost on system suspend preventing enabling DC5, DC6. 2] DDI buffers shouldn't be programmed during driver-load/resume as it's already done during modeset initialization then and also that the encoder list is still uninitialized by then. Therefore, call intel_prepare_ddi function right after disabling DC6 but outside skl_disable_dc6 function and not during driver-load/resume. v6: 1] Rebase to latest. 2] Move SKL_ENABLE_DC6 macro definition from intel_display.c to intel_runtime_pm.c. v7: 1) Refactored the code for removing the warning got from checkpatch. 2) After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v8: - Reverted the changes done in v7. - Removed the condition check in skl_prepare_resune(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:11 +03:00
}
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
static void skl_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
drm/i915/skl: Add DC5 Trigger Sequence Add triggers as per expectations mentioned in gen9_enable_dc5 and gen9_disable_dc5 patch. Also call POSTING_READ for every write to a register to ensure that its written immediately. v1: Remove POSTING_READ calls as they've already been added in previous patches. v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file. Modified as per review comments from Imre: 1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant functions. 2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into gen9_disable_DC5 which is a more appropriate place. 3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well() to warnings. However, removing them for now as they'll be included in a future patch asserting DC-state entry/exit criteria. 4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure to track 'enabled' and 'deferred' status of DC5. 5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering runtime-suspend and release it when it's loaded. 6] Protect necessary CSR-related code with locks. 7] Move CSR-loading call to runtime PM initialization, as power domains needed to be accessed during deferred DC5-enabling, are not initialized earlier. v3: Rebase to latest. Modified as per review comments from Imre: 1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of deferring enabling DC5 until CSR is loaded. 2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5- enabling is removed and release it at the end of CSR-loading functionality. 3] Revert calling CSR-loading functionality to the beginning of i915 driver-load functionality to avoid any delay in loading. 4] Define another variable to track whether CSR-loading failed and use it to avoid enabling DC5 if it's true. 5] Define CSR-load-status accessor functions for use later. v4: 1] Disable DC5 before enabling PG2 instead of after it. 2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that. 3] Enable DC5-related functionality using a macro. 4] Remove dc5_enabled tracking variable and its use as it's not needed now. v5: 1] Mark CSR failed to load where necessary in finish_csr_load function. 2] Use mutex-protected accessor function to check if CSR loaded instead of directly accessing the variable. 3] Prefix csr_load_status_get/set function names with intel_. v6: rebase to latest. v7: Rebase on top of nightly (Damien) v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre) v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v10: Added a enum for different csr states, suggested by Imre. (Animesh) v11: Based on review comments from Imre, Damien and Daniel following changes done - enum name chnaged to csr_state (singular form). - FW_UNINITIALIZED used as zeroth element in enum csr_state. - Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool. v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps calling once to set the csr status. The same flag used to fail RPM if find any issue during firmware loading. Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 17:16:16 +03:00
struct drm_device *dev = dev_priv->dev;
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
uint32_t tmp, fuse_status;
uint32_t req_mask, state_mask;
bool is_enabled, enable_requested, check_fuse_status = false;
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
tmp = I915_READ(HSW_PWR_WELL_DRIVER);
fuse_status = I915_READ(SKL_FUSE_STATUS);
switch (power_well->data) {
case SKL_DISP_PW_1:
if (wait_for((I915_READ(SKL_FUSE_STATUS) &
SKL_FUSE_PG0_DIST_STATUS), 1)) {
DRM_ERROR("PG0 not enabled\n");
return;
}
break;
case SKL_DISP_PW_2:
if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
DRM_ERROR("PG1 in disabled state\n");
return;
}
break;
case SKL_DISP_PW_DDI_A_E:
case SKL_DISP_PW_DDI_B:
case SKL_DISP_PW_DDI_C:
case SKL_DISP_PW_DDI_D:
case SKL_DISP_PW_MISC_IO:
break;
default:
WARN(1, "Unknown power well %lu\n", power_well->data);
return;
}
req_mask = SKL_POWER_WELL_REQ(power_well->data);
enable_requested = tmp & req_mask;
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
state_mask = SKL_POWER_WELL_STATE(power_well->data);
is_enabled = tmp & state_mask;
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
if (enable) {
if (!enable_requested) {
drm/i915/skl: Add DC5 Trigger Sequence Add triggers as per expectations mentioned in gen9_enable_dc5 and gen9_disable_dc5 patch. Also call POSTING_READ for every write to a register to ensure that its written immediately. v1: Remove POSTING_READ calls as they've already been added in previous patches. v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file. Modified as per review comments from Imre: 1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant functions. 2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into gen9_disable_DC5 which is a more appropriate place. 3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well() to warnings. However, removing them for now as they'll be included in a future patch asserting DC-state entry/exit criteria. 4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure to track 'enabled' and 'deferred' status of DC5. 5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering runtime-suspend and release it when it's loaded. 6] Protect necessary CSR-related code with locks. 7] Move CSR-loading call to runtime PM initialization, as power domains needed to be accessed during deferred DC5-enabling, are not initialized earlier. v3: Rebase to latest. Modified as per review comments from Imre: 1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of deferring enabling DC5 until CSR is loaded. 2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5- enabling is removed and release it at the end of CSR-loading functionality. 3] Revert calling CSR-loading functionality to the beginning of i915 driver-load functionality to avoid any delay in loading. 4] Define another variable to track whether CSR-loading failed and use it to avoid enabling DC5 if it's true. 5] Define CSR-load-status accessor functions for use later. v4: 1] Disable DC5 before enabling PG2 instead of after it. 2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that. 3] Enable DC5-related functionality using a macro. 4] Remove dc5_enabled tracking variable and its use as it's not needed now. v5: 1] Mark CSR failed to load where necessary in finish_csr_load function. 2] Use mutex-protected accessor function to check if CSR loaded instead of directly accessing the variable. 3] Prefix csr_load_status_get/set function names with intel_. v6: rebase to latest. v7: Rebase on top of nightly (Damien) v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre) v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v10: Added a enum for different csr states, suggested by Imre. (Animesh) v11: Based on review comments from Imre, Damien and Daniel following changes done - enum name chnaged to csr_state (singular form). - FW_UNINITIALIZED used as zeroth element in enum csr_state. - Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool. v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps calling once to set the csr status. The same flag used to fail RPM if find any issue during firmware loading. Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 17:16:16 +03:00
WARN((tmp & state_mask) &&
!I915_READ(HSW_PWR_WELL_BIOS),
"Invalid for power well status to be enabled, unless done by the BIOS, \
when request is to disable!\n");
drm/i915/skl: Add DC6 Trigger sequence. Add triggers for DC6 as per details provided in skl_enable_dc6 and skl_disable_dc6 implementations. Also Call POSTING_READ for every write to a register to ensure it is written to immediately v1: Remove POSTING_READ and intel_prepare_ddi calls as they've been added in previous patches. v2: 1] Remove check for backlight disabled as it should be the case by that time. 2] Mark DC5 as disabled when enabling DC6. 3] Return from DC5-disabling function early if DC5 is already be disabled which can happen due to DC6-enabling earlier. 3] Ensure CSR firmware is loaded after resume from DC6 as corresponding memory contents won't be retained after runtime-suspend. 4] Ensure that CSR isn't identified as loaded before CSR-loading program is called during runtime-resume. v3: Rebase to latest Modified as per review comments from Imre and after discussion with Art: 1] DC6 should be preferably enabled when PG2 is disabled by SW as the check for PG1 being disabled is taken of by HW to enter DC6, and disabled when PG2 is enabled respectively. This helps save more power, especially in the case when display is disabled but GT is enabled. Accordingly, replacing DC5 trigger sequence with DC6 for SKL. 2] DC6 could be enabled from intel_runtime_suspend() function, if DC5 is already enabled. 3] Move CSR-load-status setting code from intel_runtime_suspend function to a new function. v4: 1] Enable/disable DC6 only when toggling the power-well using a newly defined macro ENABLE_DC6. v5: 1] Load CSR on system resume too as firmware may be lost on system suspend preventing enabling DC5, DC6. 2] DDI buffers shouldn't be programmed during driver-load/resume as it's already done during modeset initialization then and also that the encoder list is still uninitialized by then. Therefore, call intel_prepare_ddi function right after disabling DC6 but outside skl_disable_dc6 function and not during driver-load/resume. v6: 1] Rebase to latest. 2] Move SKL_ENABLE_DC6 macro definition from intel_display.c to intel_runtime_pm.c. v7: 1) Refactored the code for removing the warning got from checkpatch. 2) After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v8: - Reverted the changes done in v7. - Removed the condition check in skl_prepare_resune(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:11 +03:00
if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) &&
power_well->data == SKL_DISP_PW_2) {
if (SKL_ENABLE_DC6(dev)) {
skl_disable_dc6(dev_priv);
/*
* DDI buffer programming unnecessary during driver-load/resume
* as it's already done during modeset initialization then.
* It's also invalid here as encoder list is still uninitialized.
*/
if (!dev_priv->power_domains.initializing)
intel_prepare_ddi(dev);
} else {
gen9_disable_dc5(dev_priv);
}
}
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
}
if (!is_enabled) {
DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
state_mask), 1))
DRM_ERROR("%s enable timeout\n",
power_well->name);
check_fuse_status = true;
}
} else {
if (enable_requested) {
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
POSTING_READ(HSW_PWR_WELL_DRIVER);
DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
drm/i915/skl: Add DC5 Trigger Sequence Add triggers as per expectations mentioned in gen9_enable_dc5 and gen9_disable_dc5 patch. Also call POSTING_READ for every write to a register to ensure that its written immediately. v1: Remove POSTING_READ calls as they've already been added in previous patches. v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file. Modified as per review comments from Imre: 1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant functions. 2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into gen9_disable_DC5 which is a more appropriate place. 3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well() to warnings. However, removing them for now as they'll be included in a future patch asserting DC-state entry/exit criteria. 4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure to track 'enabled' and 'deferred' status of DC5. 5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering runtime-suspend and release it when it's loaded. 6] Protect necessary CSR-related code with locks. 7] Move CSR-loading call to runtime PM initialization, as power domains needed to be accessed during deferred DC5-enabling, are not initialized earlier. v3: Rebase to latest. Modified as per review comments from Imre: 1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of deferring enabling DC5 until CSR is loaded. 2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5- enabling is removed and release it at the end of CSR-loading functionality. 3] Revert calling CSR-loading functionality to the beginning of i915 driver-load functionality to avoid any delay in loading. 4] Define another variable to track whether CSR-loading failed and use it to avoid enabling DC5 if it's true. 5] Define CSR-load-status accessor functions for use later. v4: 1] Disable DC5 before enabling PG2 instead of after it. 2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that. 3] Enable DC5-related functionality using a macro. 4] Remove dc5_enabled tracking variable and its use as it's not needed now. v5: 1] Mark CSR failed to load where necessary in finish_csr_load function. 2] Use mutex-protected accessor function to check if CSR loaded instead of directly accessing the variable. 3] Prefix csr_load_status_get/set function names with intel_. v6: rebase to latest. v7: Rebase on top of nightly (Damien) v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre) v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v10: Added a enum for different csr states, suggested by Imre. (Animesh) v11: Based on review comments from Imre, Damien and Daniel following changes done - enum name chnaged to csr_state (singular form). - FW_UNINITIALIZED used as zeroth element in enum csr_state. - Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool. v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps calling once to set the csr status. The same flag used to fail RPM if find any issue during firmware loading. Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 17:16:16 +03:00
drm/i915/skl: Add DC6 Trigger sequence. Add triggers for DC6 as per details provided in skl_enable_dc6 and skl_disable_dc6 implementations. Also Call POSTING_READ for every write to a register to ensure it is written to immediately v1: Remove POSTING_READ and intel_prepare_ddi calls as they've been added in previous patches. v2: 1] Remove check for backlight disabled as it should be the case by that time. 2] Mark DC5 as disabled when enabling DC6. 3] Return from DC5-disabling function early if DC5 is already be disabled which can happen due to DC6-enabling earlier. 3] Ensure CSR firmware is loaded after resume from DC6 as corresponding memory contents won't be retained after runtime-suspend. 4] Ensure that CSR isn't identified as loaded before CSR-loading program is called during runtime-resume. v3: Rebase to latest Modified as per review comments from Imre and after discussion with Art: 1] DC6 should be preferably enabled when PG2 is disabled by SW as the check for PG1 being disabled is taken of by HW to enter DC6, and disabled when PG2 is enabled respectively. This helps save more power, especially in the case when display is disabled but GT is enabled. Accordingly, replacing DC5 trigger sequence with DC6 for SKL. 2] DC6 could be enabled from intel_runtime_suspend() function, if DC5 is already enabled. 3] Move CSR-load-status setting code from intel_runtime_suspend function to a new function. v4: 1] Enable/disable DC6 only when toggling the power-well using a newly defined macro ENABLE_DC6. v5: 1] Load CSR on system resume too as firmware may be lost on system suspend preventing enabling DC5, DC6. 2] DDI buffers shouldn't be programmed during driver-load/resume as it's already done during modeset initialization then and also that the encoder list is still uninitialized by then. Therefore, call intel_prepare_ddi function right after disabling DC6 but outside skl_disable_dc6 function and not during driver-load/resume. v6: 1] Rebase to latest. 2] Move SKL_ENABLE_DC6 macro definition from intel_display.c to intel_runtime_pm.c. v7: 1) Refactored the code for removing the warning got from checkpatch. 2) After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v8: - Reverted the changes done in v7. - Removed the condition check in skl_prepare_resune(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:11 +03:00
if ((GEN9_ENABLE_DC5(dev) || SKL_ENABLE_DC6(dev)) &&
drm/i915/skl: Add DC5 Trigger Sequence Add triggers as per expectations mentioned in gen9_enable_dc5 and gen9_disable_dc5 patch. Also call POSTING_READ for every write to a register to ensure that its written immediately. v1: Remove POSTING_READ calls as they've already been added in previous patches. v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file. Modified as per review comments from Imre: 1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant functions. 2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into gen9_disable_DC5 which is a more appropriate place. 3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well() to warnings. However, removing them for now as they'll be included in a future patch asserting DC-state entry/exit criteria. 4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure to track 'enabled' and 'deferred' status of DC5. 5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering runtime-suspend and release it when it's loaded. 6] Protect necessary CSR-related code with locks. 7] Move CSR-loading call to runtime PM initialization, as power domains needed to be accessed during deferred DC5-enabling, are not initialized earlier. v3: Rebase to latest. Modified as per review comments from Imre: 1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of deferring enabling DC5 until CSR is loaded. 2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5- enabling is removed and release it at the end of CSR-loading functionality. 3] Revert calling CSR-loading functionality to the beginning of i915 driver-load functionality to avoid any delay in loading. 4] Define another variable to track whether CSR-loading failed and use it to avoid enabling DC5 if it's true. 5] Define CSR-load-status accessor functions for use later. v4: 1] Disable DC5 before enabling PG2 instead of after it. 2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that. 3] Enable DC5-related functionality using a macro. 4] Remove dc5_enabled tracking variable and its use as it's not needed now. v5: 1] Mark CSR failed to load where necessary in finish_csr_load function. 2] Use mutex-protected accessor function to check if CSR loaded instead of directly accessing the variable. 3] Prefix csr_load_status_get/set function names with intel_. v6: rebase to latest. v7: Rebase on top of nightly (Damien) v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre) v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v10: Added a enum for different csr states, suggested by Imre. (Animesh) v11: Based on review comments from Imre, Damien and Daniel following changes done - enum name chnaged to csr_state (singular form). - FW_UNINITIALIZED used as zeroth element in enum csr_state. - Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool. v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps calling once to set the csr status. The same flag used to fail RPM if find any issue during firmware loading. Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 17:16:16 +03:00
power_well->data == SKL_DISP_PW_2) {
enum csr_state state;
drm/i915/skl: Add DC6 Trigger sequence. Add triggers for DC6 as per details provided in skl_enable_dc6 and skl_disable_dc6 implementations. Also Call POSTING_READ for every write to a register to ensure it is written to immediately v1: Remove POSTING_READ and intel_prepare_ddi calls as they've been added in previous patches. v2: 1] Remove check for backlight disabled as it should be the case by that time. 2] Mark DC5 as disabled when enabling DC6. 3] Return from DC5-disabling function early if DC5 is already be disabled which can happen due to DC6-enabling earlier. 3] Ensure CSR firmware is loaded after resume from DC6 as corresponding memory contents won't be retained after runtime-suspend. 4] Ensure that CSR isn't identified as loaded before CSR-loading program is called during runtime-resume. v3: Rebase to latest Modified as per review comments from Imre and after discussion with Art: 1] DC6 should be preferably enabled when PG2 is disabled by SW as the check for PG1 being disabled is taken of by HW to enter DC6, and disabled when PG2 is enabled respectively. This helps save more power, especially in the case when display is disabled but GT is enabled. Accordingly, replacing DC5 trigger sequence with DC6 for SKL. 2] DC6 could be enabled from intel_runtime_suspend() function, if DC5 is already enabled. 3] Move CSR-load-status setting code from intel_runtime_suspend function to a new function. v4: 1] Enable/disable DC6 only when toggling the power-well using a newly defined macro ENABLE_DC6. v5: 1] Load CSR on system resume too as firmware may be lost on system suspend preventing enabling DC5, DC6. 2] DDI buffers shouldn't be programmed during driver-load/resume as it's already done during modeset initialization then and also that the encoder list is still uninitialized by then. Therefore, call intel_prepare_ddi function right after disabling DC6 but outside skl_disable_dc6 function and not during driver-load/resume. v6: 1] Rebase to latest. 2] Move SKL_ENABLE_DC6 macro definition from intel_display.c to intel_runtime_pm.c. v7: 1) Refactored the code for removing the warning got from checkpatch. 2) After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v8: - Reverted the changes done in v7. - Removed the condition check in skl_prepare_resune(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:11 +03:00
/* TODO: wait for a completion event or
* similar here instead of busy
* waiting using wait_for function.
*/
drm/i915/skl: Add DC5 Trigger Sequence Add triggers as per expectations mentioned in gen9_enable_dc5 and gen9_disable_dc5 patch. Also call POSTING_READ for every write to a register to ensure that its written immediately. v1: Remove POSTING_READ calls as they've already been added in previous patches. v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file. Modified as per review comments from Imre: 1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant functions. 2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into gen9_disable_DC5 which is a more appropriate place. 3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well() to warnings. However, removing them for now as they'll be included in a future patch asserting DC-state entry/exit criteria. 4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure to track 'enabled' and 'deferred' status of DC5. 5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering runtime-suspend and release it when it's loaded. 6] Protect necessary CSR-related code with locks. 7] Move CSR-loading call to runtime PM initialization, as power domains needed to be accessed during deferred DC5-enabling, are not initialized earlier. v3: Rebase to latest. Modified as per review comments from Imre: 1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of deferring enabling DC5 until CSR is loaded. 2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5- enabling is removed and release it at the end of CSR-loading functionality. 3] Revert calling CSR-loading functionality to the beginning of i915 driver-load functionality to avoid any delay in loading. 4] Define another variable to track whether CSR-loading failed and use it to avoid enabling DC5 if it's true. 5] Define CSR-load-status accessor functions for use later. v4: 1] Disable DC5 before enabling PG2 instead of after it. 2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that. 3] Enable DC5-related functionality using a macro. 4] Remove dc5_enabled tracking variable and its use as it's not needed now. v5: 1] Mark CSR failed to load where necessary in finish_csr_load function. 2] Use mutex-protected accessor function to check if CSR loaded instead of directly accessing the variable. 3] Prefix csr_load_status_get/set function names with intel_. v6: rebase to latest. v7: Rebase on top of nightly (Damien) v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre) v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v10: Added a enum for different csr states, suggested by Imre. (Animesh) v11: Based on review comments from Imre, Damien and Daniel following changes done - enum name chnaged to csr_state (singular form). - FW_UNINITIALIZED used as zeroth element in enum csr_state. - Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool. v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps calling once to set the csr status. The same flag used to fail RPM if find any issue during firmware loading. Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 17:16:16 +03:00
wait_for((state = intel_csr_load_status_get(dev_priv)) !=
FW_UNINITIALIZED, 1000);
if (state != FW_LOADED)
DRM_ERROR("CSR firmware not ready (%d)\n",
state);
else
drm/i915/skl: Add DC6 Trigger sequence. Add triggers for DC6 as per details provided in skl_enable_dc6 and skl_disable_dc6 implementations. Also Call POSTING_READ for every write to a register to ensure it is written to immediately v1: Remove POSTING_READ and intel_prepare_ddi calls as they've been added in previous patches. v2: 1] Remove check for backlight disabled as it should be the case by that time. 2] Mark DC5 as disabled when enabling DC6. 3] Return from DC5-disabling function early if DC5 is already be disabled which can happen due to DC6-enabling earlier. 3] Ensure CSR firmware is loaded after resume from DC6 as corresponding memory contents won't be retained after runtime-suspend. 4] Ensure that CSR isn't identified as loaded before CSR-loading program is called during runtime-resume. v3: Rebase to latest Modified as per review comments from Imre and after discussion with Art: 1] DC6 should be preferably enabled when PG2 is disabled by SW as the check for PG1 being disabled is taken of by HW to enter DC6, and disabled when PG2 is enabled respectively. This helps save more power, especially in the case when display is disabled but GT is enabled. Accordingly, replacing DC5 trigger sequence with DC6 for SKL. 2] DC6 could be enabled from intel_runtime_suspend() function, if DC5 is already enabled. 3] Move CSR-load-status setting code from intel_runtime_suspend function to a new function. v4: 1] Enable/disable DC6 only when toggling the power-well using a newly defined macro ENABLE_DC6. v5: 1] Load CSR on system resume too as firmware may be lost on system suspend preventing enabling DC5, DC6. 2] DDI buffers shouldn't be programmed during driver-load/resume as it's already done during modeset initialization then and also that the encoder list is still uninitialized by then. Therefore, call intel_prepare_ddi function right after disabling DC6 but outside skl_disable_dc6 function and not during driver-load/resume. v6: 1] Rebase to latest. 2] Move SKL_ENABLE_DC6 macro definition from intel_display.c to intel_runtime_pm.c. v7: 1) Refactored the code for removing the warning got from checkpatch. 2) After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v8: - Reverted the changes done in v7. - Removed the condition check in skl_prepare_resune(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:11 +03:00
if (SKL_ENABLE_DC6(dev))
skl_enable_dc6(dev_priv);
else
gen9_enable_dc5(dev_priv);
drm/i915/skl: Add DC5 Trigger Sequence Add triggers as per expectations mentioned in gen9_enable_dc5 and gen9_disable_dc5 patch. Also call POSTING_READ for every write to a register to ensure that its written immediately. v1: Remove POSTING_READ calls as they've already been added in previous patches. v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file. Modified as per review comments from Imre: 1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant functions. 2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into gen9_disable_DC5 which is a more appropriate place. 3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well() to warnings. However, removing them for now as they'll be included in a future patch asserting DC-state entry/exit criteria. 4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure to track 'enabled' and 'deferred' status of DC5. 5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering runtime-suspend and release it when it's loaded. 6] Protect necessary CSR-related code with locks. 7] Move CSR-loading call to runtime PM initialization, as power domains needed to be accessed during deferred DC5-enabling, are not initialized earlier. v3: Rebase to latest. Modified as per review comments from Imre: 1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of deferring enabling DC5 until CSR is loaded. 2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5- enabling is removed and release it at the end of CSR-loading functionality. 3] Revert calling CSR-loading functionality to the beginning of i915 driver-load functionality to avoid any delay in loading. 4] Define another variable to track whether CSR-loading failed and use it to avoid enabling DC5 if it's true. 5] Define CSR-load-status accessor functions for use later. v4: 1] Disable DC5 before enabling PG2 instead of after it. 2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that. 3] Enable DC5-related functionality using a macro. 4] Remove dc5_enabled tracking variable and its use as it's not needed now. v5: 1] Mark CSR failed to load where necessary in finish_csr_load function. 2] Use mutex-protected accessor function to check if CSR loaded instead of directly accessing the variable. 3] Prefix csr_load_status_get/set function names with intel_. v6: rebase to latest. v7: Rebase on top of nightly (Damien) v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre) v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v10: Added a enum for different csr states, suggested by Imre. (Animesh) v11: Based on review comments from Imre, Damien and Daniel following changes done - enum name chnaged to csr_state (singular form). - FW_UNINITIALIZED used as zeroth element in enum csr_state. - Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool. v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps calling once to set the csr status. The same flag used to fail RPM if find any issue during firmware loading. Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 17:16:16 +03:00
}
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
}
}
if (check_fuse_status) {
if (power_well->data == SKL_DISP_PW_1) {
if (wait_for((I915_READ(SKL_FUSE_STATUS) &
SKL_FUSE_PG1_DIST_STATUS), 1))
DRM_ERROR("PG1 distributing status timeout\n");
} else if (power_well->data == SKL_DISP_PW_2) {
if (wait_for((I915_READ(SKL_FUSE_STATUS) &
SKL_FUSE_PG2_DIST_STATUS), 1))
DRM_ERROR("PG2 distributing status timeout\n");
}
}
if (enable && !is_enabled)
skl_power_well_post_enable(dev_priv, power_well);
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
}
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
/*
* We're taking over the BIOS, so clear any requests made by it since
* the driver is in charge now.
*/
if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}
static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, true);
}
static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
hsw_set_power_well(dev_priv, power_well, false);
}
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
SKL_POWER_WELL_STATE(power_well->data);
return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
}
static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
skl_set_power_well(dev_priv, power_well, power_well->count > 0);
/* Clear any request made by BIOS as driver is taking over */
I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}
static void skl_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
skl_set_power_well(dev_priv, power_well, true);
}
static void skl_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
skl_set_power_well(dev_priv, power_well, false);
}
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
}
static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return true;
}
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
enum punit_power_well power_well_id = power_well->data;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(power_well_id);
state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
PUNIT_PWRGT_PWR_GATE(power_well_id);
mutex_lock(&dev_priv->rps.hw_lock);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
ctrl &= ~mask;
ctrl |= state;
vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
if (wait_for(COND, 100))
DRM_ERROR("timeout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
#undef COND
out:
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
}
static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, true);
}
static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, false);
}
static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
int power_well_id = power_well->data;
bool enabled = false;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(power_well_id);
ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
mutex_lock(&dev_priv->rps.hw_lock);
state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
state != PUNIT_PWRGT_PWR_GATE(power_well_id));
if (state == ctrl)
enabled = true;
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
WARN_ON(ctrl != state);
mutex_unlock(&dev_priv->rps.hw_lock);
return enabled;
}
static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
/*
* Enable the CRI clock source so we can get at the
* display and the reference clock for VGA
* hotplug / manual detection. Supposedly DSI also
* needs the ref clock up and running.
*
* CHV DPLL B/C have some issues if VGA mode is enabled.
*/
for_each_pipe(dev_priv->dev, pipe) {
u32 val = I915_READ(DPLL(pipe));
val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
I915_WRITE(DPLL(pipe), val);
}
spin_lock_irq(&dev_priv->irq_lock);
valleyview_enable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
/*
* During driver initialization/resume we can avoid restoring the
* part of the HW/SW state that will be inited anyway explicitly.
*/
if (dev_priv->power_domains.initializing)
return;
intel_hpd_init(dev_priv);
i915_redisable_vga_power_on(dev_priv->dev);
}
static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
{
spin_lock_irq(&dev_priv->irq_lock);
valleyview_disable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
vlv_power_sequencer_reset(dev_priv);
}
static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
vlv_set_power_well(dev_priv, power_well, true);
vlv_display_power_well_init(dev_priv);
}
static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
vlv_display_power_well_deinit(dev_priv);
vlv_set_power_well(dev_priv, power_well, false);
}
static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
/* since ref/cri clock was enabled */
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/*
* From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
* 6. De-assert cmn_reset/side_reset. Same as VLV X0.
* a. GUnit 0x2110 bit[0] set to 1 (def 0)
* b. The other bits such as sfr settings / modesel may all
* be set to 0.
*
* This should only be done on init and resume from S3 with
* both PLLs disabled, or we risk losing DPIO and PLL
* synchronization.
*/
I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
}
static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe;
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
for_each_pipe(dev_priv, pipe)
assert_pll_disabled(dev_priv, pipe);
/* Assert common reset */
I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
vlv_set_power_well(dev_priv, power_well, false);
}
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum dpio_phy phy;
drm/i915: Implement PHY lane power gating for CHV Powergate the PHY lanes when they're not needed. For HDMI all four lanes are needed always, but for DP we can enable only the needed lanes. To power down the unused lanes we use some power down override bits in the DISPLAY_PHY_CONTROL register. Without the overrides it appears that the hardware always powers on all the lanes. When the port is disabled the power down override is not needed and the lanes will shut off on their own. That also means the override is critical to actually be able to access the DPIO registers before the port is actually enabled. Additionally the common lanes will power down when not needed. CL1 remains on as long as anything else is on, CL2 will shut down when all the lanes in the same channel will shut down. There is one exception for CL2 that will be dealt in a separate patch for clarity. With potentially some lanes powered down, the DP code now has to check the number of active lanes before accessing PCS/TX registers. All registers in powered down blocks will reads as 0xffffffff, and soe we would drown in warnings from vlv_dpio_read() if we allowed the code to access all those registers. Another important detail in the DP code is the "TX latency optimal" setting. Normally the second TX lane acts as some kind of reset master, with the other lanes as slaves. But when only a single lane is enabled, that single lane obviously has to be the master. A bit of extra care is needed to reconstruct the initial state of the DISPLAY_PHY_CONTROL register since it can't be read safely. So instead read the actual lane status from the DPLL/PHY_STATUS registers and use that to determine which lanes ought to be powergated initially. We also need to switch the PHY power modes to "deep PSR" to avoid a hard system hang when powering down the single channel PHY. Also sprinkle a few debug prints around so that we can monitor the DISPLAY_PHY_STATUS changes without having to read it and risk corrupting it. v2: Add locking to chv_powergate_phy_lanes() v3: Actually enable dynamic powerdown in the PHY and deal with the fallout Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-08 23:45:54 +03:00
enum pipe pipe;
uint32_t tmp;
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
drm/i915: Implement PHY lane power gating for CHV Powergate the PHY lanes when they're not needed. For HDMI all four lanes are needed always, but for DP we can enable only the needed lanes. To power down the unused lanes we use some power down override bits in the DISPLAY_PHY_CONTROL register. Without the overrides it appears that the hardware always powers on all the lanes. When the port is disabled the power down override is not needed and the lanes will shut off on their own. That also means the override is critical to actually be able to access the DPIO registers before the port is actually enabled. Additionally the common lanes will power down when not needed. CL1 remains on as long as anything else is on, CL2 will shut down when all the lanes in the same channel will shut down. There is one exception for CL2 that will be dealt in a separate patch for clarity. With potentially some lanes powered down, the DP code now has to check the number of active lanes before accessing PCS/TX registers. All registers in powered down blocks will reads as 0xffffffff, and soe we would drown in warnings from vlv_dpio_read() if we allowed the code to access all those registers. Another important detail in the DP code is the "TX latency optimal" setting. Normally the second TX lane acts as some kind of reset master, with the other lanes as slaves. But when only a single lane is enabled, that single lane obviously has to be the master. A bit of extra care is needed to reconstruct the initial state of the DISPLAY_PHY_CONTROL register since it can't be read safely. So instead read the actual lane status from the DPLL/PHY_STATUS registers and use that to determine which lanes ought to be powergated initially. We also need to switch the PHY power modes to "deep PSR" to avoid a hard system hang when powering down the single channel PHY. Also sprinkle a few debug prints around so that we can monitor the DISPLAY_PHY_STATUS changes without having to read it and risk corrupting it. v2: Add locking to chv_powergate_phy_lanes() v3: Actually enable dynamic powerdown in the PHY and deal with the fallout Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-08 23:45:54 +03:00
if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
pipe = PIPE_A;
phy = DPIO_PHY0;
drm/i915: Implement PHY lane power gating for CHV Powergate the PHY lanes when they're not needed. For HDMI all four lanes are needed always, but for DP we can enable only the needed lanes. To power down the unused lanes we use some power down override bits in the DISPLAY_PHY_CONTROL register. Without the overrides it appears that the hardware always powers on all the lanes. When the port is disabled the power down override is not needed and the lanes will shut off on their own. That also means the override is critical to actually be able to access the DPIO registers before the port is actually enabled. Additionally the common lanes will power down when not needed. CL1 remains on as long as anything else is on, CL2 will shut down when all the lanes in the same channel will shut down. There is one exception for CL2 that will be dealt in a separate patch for clarity. With potentially some lanes powered down, the DP code now has to check the number of active lanes before accessing PCS/TX registers. All registers in powered down blocks will reads as 0xffffffff, and soe we would drown in warnings from vlv_dpio_read() if we allowed the code to access all those registers. Another important detail in the DP code is the "TX latency optimal" setting. Normally the second TX lane acts as some kind of reset master, with the other lanes as slaves. But when only a single lane is enabled, that single lane obviously has to be the master. A bit of extra care is needed to reconstruct the initial state of the DISPLAY_PHY_CONTROL register since it can't be read safely. So instead read the actual lane status from the DPLL/PHY_STATUS registers and use that to determine which lanes ought to be powergated initially. We also need to switch the PHY power modes to "deep PSR" to avoid a hard system hang when powering down the single channel PHY. Also sprinkle a few debug prints around so that we can monitor the DISPLAY_PHY_STATUS changes without having to read it and risk corrupting it. v2: Add locking to chv_powergate_phy_lanes() v3: Actually enable dynamic powerdown in the PHY and deal with the fallout Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-08 23:45:54 +03:00
} else {
pipe = PIPE_C;
phy = DPIO_PHY1;
drm/i915: Implement PHY lane power gating for CHV Powergate the PHY lanes when they're not needed. For HDMI all four lanes are needed always, but for DP we can enable only the needed lanes. To power down the unused lanes we use some power down override bits in the DISPLAY_PHY_CONTROL register. Without the overrides it appears that the hardware always powers on all the lanes. When the port is disabled the power down override is not needed and the lanes will shut off on their own. That also means the override is critical to actually be able to access the DPIO registers before the port is actually enabled. Additionally the common lanes will power down when not needed. CL1 remains on as long as anything else is on, CL2 will shut down when all the lanes in the same channel will shut down. There is one exception for CL2 that will be dealt in a separate patch for clarity. With potentially some lanes powered down, the DP code now has to check the number of active lanes before accessing PCS/TX registers. All registers in powered down blocks will reads as 0xffffffff, and soe we would drown in warnings from vlv_dpio_read() if we allowed the code to access all those registers. Another important detail in the DP code is the "TX latency optimal" setting. Normally the second TX lane acts as some kind of reset master, with the other lanes as slaves. But when only a single lane is enabled, that single lane obviously has to be the master. A bit of extra care is needed to reconstruct the initial state of the DISPLAY_PHY_CONTROL register since it can't be read safely. So instead read the actual lane status from the DPLL/PHY_STATUS registers and use that to determine which lanes ought to be powergated initially. We also need to switch the PHY power modes to "deep PSR" to avoid a hard system hang when powering down the single channel PHY. Also sprinkle a few debug prints around so that we can monitor the DISPLAY_PHY_STATUS changes without having to read it and risk corrupting it. v2: Add locking to chv_powergate_phy_lanes() v3: Actually enable dynamic powerdown in the PHY and deal with the fallout Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-08 23:45:54 +03:00
}
/* since ref/cri clock was enabled */
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/* Poll for phypwrgood signal */
if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
DRM_ERROR("Display PHY %d is not power up\n", phy);
drm/i915: Implement PHY lane power gating for CHV Powergate the PHY lanes when they're not needed. For HDMI all four lanes are needed always, but for DP we can enable only the needed lanes. To power down the unused lanes we use some power down override bits in the DISPLAY_PHY_CONTROL register. Without the overrides it appears that the hardware always powers on all the lanes. When the port is disabled the power down override is not needed and the lanes will shut off on their own. That also means the override is critical to actually be able to access the DPIO registers before the port is actually enabled. Additionally the common lanes will power down when not needed. CL1 remains on as long as anything else is on, CL2 will shut down when all the lanes in the same channel will shut down. There is one exception for CL2 that will be dealt in a separate patch for clarity. With potentially some lanes powered down, the DP code now has to check the number of active lanes before accessing PCS/TX registers. All registers in powered down blocks will reads as 0xffffffff, and soe we would drown in warnings from vlv_dpio_read() if we allowed the code to access all those registers. Another important detail in the DP code is the "TX latency optimal" setting. Normally the second TX lane acts as some kind of reset master, with the other lanes as slaves. But when only a single lane is enabled, that single lane obviously has to be the master. A bit of extra care is needed to reconstruct the initial state of the DISPLAY_PHY_CONTROL register since it can't be read safely. So instead read the actual lane status from the DPLL/PHY_STATUS registers and use that to determine which lanes ought to be powergated initially. We also need to switch the PHY power modes to "deep PSR" to avoid a hard system hang when powering down the single channel PHY. Also sprinkle a few debug prints around so that we can monitor the DISPLAY_PHY_STATUS changes without having to read it and risk corrupting it. v2: Add locking to chv_powergate_phy_lanes() v3: Actually enable dynamic powerdown in the PHY and deal with the fallout Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-08 23:45:54 +03:00
mutex_lock(&dev_priv->sb_lock);
/* Enable dynamic power down */
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
tmp |= DPIO_DYNPWRDOWNEN_CH1;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
}
mutex_unlock(&dev_priv->sb_lock);
drm/i915: Work around DISPLAY_PHY_CONTROL register corruption on CHV Sometimes (exactly when is a bit unclear) DISPLAY_PHY_CONTROL appears to get corrupted. The values I've managed to read from it seem to have some pattern but vary quite a lot. The corruption doesn't seem to just happen when the register is accessed, but can also happen spontaneosly during modeset. When this happens during a modeset things go south and the display doesn't light up. I've managed to hit the problemn when toggling HDMI on port D on and off. When things get corrupted the display doesn't light up, but as soon as I manually write the correct value to the register the display comes up. First I was suspicious that we ourselves accidentally overwrite it with garbage, but didn't catch anything with the reg_rw tracepoint. Also I sprinkled check all over the modeset path to see exactly when the corruption happens, and eg. the read back value was fine just before intel_dp_set_m(), and corrupted immediately after it. I also made my check function repair the register value whenever it was wrong, and with this approach the corruption repeated several times during the modeset operation, always seeming to trigger in the same exact calls to the check function, while other calls to the function never caught anything. So far I've not seen this problem occurring when carefully avoiding all read accesses to DISPLAY_PHY_CONTROL. Not sure if that's just pure luck or an actual workaround, but we can hope it works. So let's avoid reading the register and instead track the desired value of the register in dev_priv. v2: Read out the power well state to determine initial register value v3: Use DPIO_CHx names instead of raw numbers Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-10 18:21:28 +03:00
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
drm/i915: Implement PHY lane power gating for CHV Powergate the PHY lanes when they're not needed. For HDMI all four lanes are needed always, but for DP we can enable only the needed lanes. To power down the unused lanes we use some power down override bits in the DISPLAY_PHY_CONTROL register. Without the overrides it appears that the hardware always powers on all the lanes. When the port is disabled the power down override is not needed and the lanes will shut off on their own. That also means the override is critical to actually be able to access the DPIO registers before the port is actually enabled. Additionally the common lanes will power down when not needed. CL1 remains on as long as anything else is on, CL2 will shut down when all the lanes in the same channel will shut down. There is one exception for CL2 that will be dealt in a separate patch for clarity. With potentially some lanes powered down, the DP code now has to check the number of active lanes before accessing PCS/TX registers. All registers in powered down blocks will reads as 0xffffffff, and soe we would drown in warnings from vlv_dpio_read() if we allowed the code to access all those registers. Another important detail in the DP code is the "TX latency optimal" setting. Normally the second TX lane acts as some kind of reset master, with the other lanes as slaves. But when only a single lane is enabled, that single lane obviously has to be the master. A bit of extra care is needed to reconstruct the initial state of the DISPLAY_PHY_CONTROL register since it can't be read safely. So instead read the actual lane status from the DPLL/PHY_STATUS registers and use that to determine which lanes ought to be powergated initially. We also need to switch the PHY power modes to "deep PSR" to avoid a hard system hang when powering down the single channel PHY. Also sprinkle a few debug prints around so that we can monitor the DISPLAY_PHY_STATUS changes without having to read it and risk corrupting it. v2: Add locking to chv_powergate_phy_lanes() v3: Actually enable dynamic powerdown in the PHY and deal with the fallout Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-08 23:45:54 +03:00
DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
phy, dev_priv->chv_phy_control);
}
static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum dpio_phy phy;
WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
phy = DPIO_PHY0;
assert_pll_disabled(dev_priv, PIPE_A);
assert_pll_disabled(dev_priv, PIPE_B);
} else {
phy = DPIO_PHY1;
assert_pll_disabled(dev_priv, PIPE_C);
}
drm/i915: Work around DISPLAY_PHY_CONTROL register corruption on CHV Sometimes (exactly when is a bit unclear) DISPLAY_PHY_CONTROL appears to get corrupted. The values I've managed to read from it seem to have some pattern but vary quite a lot. The corruption doesn't seem to just happen when the register is accessed, but can also happen spontaneosly during modeset. When this happens during a modeset things go south and the display doesn't light up. I've managed to hit the problemn when toggling HDMI on port D on and off. When things get corrupted the display doesn't light up, but as soon as I manually write the correct value to the register the display comes up. First I was suspicious that we ourselves accidentally overwrite it with garbage, but didn't catch anything with the reg_rw tracepoint. Also I sprinkled check all over the modeset path to see exactly when the corruption happens, and eg. the read back value was fine just before intel_dp_set_m(), and corrupted immediately after it. I also made my check function repair the register value whenever it was wrong, and with this approach the corruption repeated several times during the modeset operation, always seeming to trigger in the same exact calls to the check function, while other calls to the function never caught anything. So far I've not seen this problem occurring when carefully avoiding all read accesses to DISPLAY_PHY_CONTROL. Not sure if that's just pure luck or an actual workaround, but we can hope it works. So let's avoid reading the register and instead track the desired value of the register in dev_priv. v2: Read out the power well state to determine initial register value v3: Use DPIO_CHx names instead of raw numbers Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-10 18:21:28 +03:00
dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
vlv_set_power_well(dev_priv, power_well, false);
drm/i915: Implement PHY lane power gating for CHV Powergate the PHY lanes when they're not needed. For HDMI all four lanes are needed always, but for DP we can enable only the needed lanes. To power down the unused lanes we use some power down override bits in the DISPLAY_PHY_CONTROL register. Without the overrides it appears that the hardware always powers on all the lanes. When the port is disabled the power down override is not needed and the lanes will shut off on their own. That also means the override is critical to actually be able to access the DPIO registers before the port is actually enabled. Additionally the common lanes will power down when not needed. CL1 remains on as long as anything else is on, CL2 will shut down when all the lanes in the same channel will shut down. There is one exception for CL2 that will be dealt in a separate patch for clarity. With potentially some lanes powered down, the DP code now has to check the number of active lanes before accessing PCS/TX registers. All registers in powered down blocks will reads as 0xffffffff, and soe we would drown in warnings from vlv_dpio_read() if we allowed the code to access all those registers. Another important detail in the DP code is the "TX latency optimal" setting. Normally the second TX lane acts as some kind of reset master, with the other lanes as slaves. But when only a single lane is enabled, that single lane obviously has to be the master. A bit of extra care is needed to reconstruct the initial state of the DISPLAY_PHY_CONTROL register since it can't be read safely. So instead read the actual lane status from the DPLL/PHY_STATUS registers and use that to determine which lanes ought to be powergated initially. We also need to switch the PHY power modes to "deep PSR" to avoid a hard system hang when powering down the single channel PHY. Also sprinkle a few debug prints around so that we can monitor the DISPLAY_PHY_STATUS changes without having to read it and risk corrupting it. v2: Add locking to chv_powergate_phy_lanes() v3: Actually enable dynamic powerdown in the PHY and deal with the fallout Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-08 23:45:54 +03:00
DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
phy, dev_priv->chv_phy_control);
}
void chv_phy_powergate_lanes(struct intel_encoder *encoder,
bool override, unsigned int mask)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct i915_power_domains *power_domains = &dev_priv->power_domains;
enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
mutex_lock(&power_domains->lock);
dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
if (override)
dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
else
dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
phy, ch, mask, dev_priv->chv_phy_control);
mutex_unlock(&power_domains->lock);
}
static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe = power_well->data;
bool enabled;
u32 state, ctrl;
mutex_lock(&dev_priv->rps.hw_lock);
state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
enabled = state == DP_SSS_PWR_ON(pipe);
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
WARN_ON(ctrl << 16 != state);
mutex_unlock(&dev_priv->rps.hw_lock);
return enabled;
}
static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
bool enable)
{
enum pipe pipe = power_well->data;
u32 state;
u32 ctrl;
state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
mutex_lock(&dev_priv->rps.hw_lock);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
ctrl &= ~DP_SSC_MASK(pipe);
ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
if (wait_for(COND, 100))
DRM_ERROR("timeout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
#undef COND
out:
mutex_unlock(&dev_priv->rps.hw_lock);
}
static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PIPE_A);
chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
}
static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PIPE_A);
chv_set_pipe_power_well(dev_priv, power_well, true);
vlv_display_power_well_init(dev_priv);
}
static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN_ON_ONCE(power_well->data != PIPE_A);
vlv_display_power_well_deinit(dev_priv);
chv_set_pipe_power_well(dev_priv, power_well, false);
}
/**
* intel_display_power_get - grab a power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function grabs a power domain reference for @domain and ensures that the
* power domain and all its parents are powered up. Therefore users should only
* grab a reference to the innermost power domain they need.
*
* Any power domain reference obtained by this function must have a symmetric
* call to intel_display_power_put() to release the reference again.
*/
void intel_display_power_get(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
int i;
intel_runtime_pm_get(dev_priv);
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
for_each_power_well(i, power_well, BIT(domain), power_domains) {
if (!power_well->count++)
intel_power_well_enable(dev_priv, power_well);
}
power_domains->domain_use_count[domain]++;
mutex_unlock(&power_domains->lock);
}
/**
* intel_display_power_put - release a power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function drops the power domain reference obtained by
* intel_display_power_get() and might power down the corresponding hardware
* block right away if this is the last reference.
*/
void intel_display_power_put(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
int i;
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
WARN_ON(!power_domains->domain_use_count[domain]);
power_domains->domain_use_count[domain]--;
for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
WARN_ON(!power_well->count);
if (!--power_well->count && i915.disable_power_well)
intel_power_well_disable(dev_priv, power_well);
}
mutex_unlock(&power_domains->lock);
intel_runtime_pm_put(dev_priv);
}
#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
#define HSW_ALWAYS_ON_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PIPE_A) | \
BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
BIT(POWER_DOMAIN_PORT_CRT) | \
BIT(POWER_DOMAIN_PLLS) | \
BIT(POWER_DOMAIN_AUX_A) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_AUX_D) | \
BIT(POWER_DOMAIN_INIT))
#define HSW_DISPLAY_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
BIT(POWER_DOMAIN_INIT))
#define BDW_ALWAYS_ON_POWER_DOMAINS ( \
HSW_ALWAYS_ON_POWER_DOMAINS | \
BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
#define BDW_DISPLAY_POWER_DOMAINS ( \
(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
#define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
#define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_PORT_CRT) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_INIT))
#define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
BIT(POWER_DOMAIN_AUX_B) | \
BIT(POWER_DOMAIN_AUX_C) | \
BIT(POWER_DOMAIN_INIT))
#define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
BIT(POWER_DOMAIN_AUX_D) | \
BIT(POWER_DOMAIN_INIT))
static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
.sync_hw = i9xx_always_on_power_well_noop,
.enable = i9xx_always_on_power_well_noop,
.disable = i9xx_always_on_power_well_noop,
.is_enabled = i9xx_always_on_power_well_enabled,
};
static const struct i915_power_well_ops chv_pipe_power_well_ops = {
.sync_hw = chv_pipe_power_well_sync_hw,
.enable = chv_pipe_power_well_enable,
.disable = chv_pipe_power_well_disable,
.is_enabled = chv_pipe_power_well_enabled,
};
static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = chv_dpio_cmn_power_well_enable,
.disable = chv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static struct i915_power_well i9xx_always_on_power_well[] = {
{
.name = "always-on",
.always_on = 1,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
},
};
static const struct i915_power_well_ops hsw_power_well_ops = {
.sync_hw = hsw_power_well_sync_hw,
.enable = hsw_power_well_enable,
.disable = hsw_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
static const struct i915_power_well_ops skl_power_well_ops = {
.sync_hw = skl_power_well_sync_hw,
.enable = skl_power_well_enable,
.disable = skl_power_well_disable,
.is_enabled = skl_power_well_enabled,
};
static struct i915_power_well hsw_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
.domains = HSW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
},
};
static struct i915_power_well bdw_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
.domains = BDW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
},
};
static const struct i915_power_well_ops vlv_display_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = vlv_display_power_well_enable,
.disable = vlv_display_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = vlv_dpio_cmn_power_well_enable,
.disable = vlv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
.sync_hw = vlv_power_well_sync_hw,
.enable = vlv_power_well_enable,
.disable = vlv_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static struct i915_power_well vlv_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
.domains = VLV_DISPLAY_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DISP2D,
.ops = &vlv_display_power_well_ops,
},
{
.name = "dpio-tx-b-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
},
{
.name = "dpio-tx-b-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
},
{
.name = "dpio-tx-c-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
},
{
.name = "dpio-tx-c-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
},
{
.name = "dpio-common",
.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
.ops = &vlv_dpio_cmn_power_well_ops,
},
};
static struct i915_power_well chv_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "display",
/*
* Pipe A power well is the new disp2d well. Pipe B and C
* power wells don't actually exist. Pipe A power well is
* required for any pipe to work.
*/
.domains = VLV_DISPLAY_POWER_DOMAINS,
.data = PIPE_A,
.ops = &chv_pipe_power_well_ops,
},
{
.name = "dpio-common-bc",
.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
.ops = &chv_dpio_cmn_power_well_ops,
},
{
.name = "dpio-common-d",
.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
.data = PUNIT_POWER_WELL_DPIO_CMN_D,
.ops = &chv_dpio_cmn_power_well_ops,
},
};
static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
drm/i915/skl: Assert the requirements to enter or exit DC5. Warn if the conditions to enter or exit DC5 are not satisfied such as support for runtime PM, state of power well, CSR loading etc. v2: Removed camelcase in functions and variables. v3: Do some minimal check to assert if CSR program is not loaded. v4: 1] Used an appropriate function lookup_power_well() to identify power well, instead of using a magic number which can change in future. 2] Split the conditions further in assert_can_enable_DC5() and added more checks. 3] Removed all WARNs from assert_can_disable_DC5 as they were unnecessary and added two new ones. 4] Changed variable names as updated in earlier patches. v5: 1] Change lookup_power_well function to take an int power well id. 2] Define a new intel_display_power_well_is_enabled helper function to check whether a particular power well is enabled. 3] Use CSR-related mutex in assert_csr_loaded function. v6: Remove use of dc5_enabled variable as it's no longer needed. v7: 1] Rebase to latest. 2] Move all DC5-related functions from intel_display.c to intel_runtime_pm.c. v8: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v9: Modified below changes based on review comments from Imre. - Moved intel_display_power_well_is_enabled() to intel_runtime_pm.c. - Removed mutex lock from assert_csr_loaded(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:10 +03:00
int power_well_id)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
int i;
for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
if (power_well->data == power_well_id)
return power_well;
}
return NULL;
}
drm/i915/skl: Assert the requirements to enter or exit DC5. Warn if the conditions to enter or exit DC5 are not satisfied such as support for runtime PM, state of power well, CSR loading etc. v2: Removed camelcase in functions and variables. v3: Do some minimal check to assert if CSR program is not loaded. v4: 1] Used an appropriate function lookup_power_well() to identify power well, instead of using a magic number which can change in future. 2] Split the conditions further in assert_can_enable_DC5() and added more checks. 3] Removed all WARNs from assert_can_disable_DC5 as they were unnecessary and added two new ones. 4] Changed variable names as updated in earlier patches. v5: 1] Change lookup_power_well function to take an int power well id. 2] Define a new intel_display_power_well_is_enabled helper function to check whether a particular power well is enabled. 3] Use CSR-related mutex in assert_csr_loaded function. v6: Remove use of dc5_enabled variable as it's no longer needed. v7: 1] Rebase to latest. 2] Move all DC5-related functions from intel_display.c to intel_runtime_pm.c. v8: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh) v9: Modified below changes based on review comments from Imre. - Moved intel_display_power_well_is_enabled() to intel_runtime_pm.c. - Removed mutex lock from assert_csr_loaded(). (Animesh) Issue: VIZ-2819 Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Suketu Shah <suketu.j.shah@intel.com> Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Animesh Manna <animesh.manna@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-16 11:52:10 +03:00
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
int power_well_id)
{
struct i915_power_well *power_well;
bool ret;
power_well = lookup_power_well(dev_priv, power_well_id);
ret = power_well->ops->is_enabled(dev_priv, power_well);
return ret;
}
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
static struct i915_power_well skl_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "power well 1",
.domains = SKL_DISPLAY_POWERWELL_1_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_1,
},
{
.name = "MISC IO power well",
.domains = SKL_DISPLAY_MISC_IO_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_MISC_IO,
},
{
.name = "power well 2",
.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_2,
},
{
.name = "DDI A/E power well",
.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_DDI_A_E,
},
{
.name = "DDI B power well",
.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_DDI_B,
},
{
.name = "DDI C power well",
.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_DDI_C,
},
{
.name = "DDI D power well",
.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_DDI_D,
},
};
static struct i915_power_well bxt_power_wells[] = {
{
.name = "always-on",
.always_on = 1,
.domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
.ops = &i9xx_always_on_power_well_ops,
},
{
.name = "power well 1",
.domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_1,
},
{
.name = "power well 2",
.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
.ops = &skl_power_well_ops,
.data = SKL_DISP_PW_2,
}
};
#define set_power_wells(power_domains, __power_wells) ({ \
(power_domains)->power_wells = (__power_wells); \
(power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
})
/**
* intel_power_domains_init - initializes the power domain structures
* @dev_priv: i915 device instance
*
* Initializes the power domain structures for @dev_priv depending upon the
* supported platform.
*/
int intel_power_domains_init(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
mutex_init(&power_domains->lock);
/*
* The enabling order will be from lower to higher indexed wells,
* the disabling order is reversed.
*/
if (IS_HASWELL(dev_priv->dev)) {
set_power_wells(power_domains, hsw_power_wells);
} else if (IS_BROADWELL(dev_priv->dev)) {
set_power_wells(power_domains, bdw_power_wells);
drm/i915/skl: Implementation of SKL display power well support This patch implements core logic of SKL display power well. v2: Addressed Imre's comments - Added respective DDIs under power well #1 and #2 - Simplified repetitive code in power well programming v3: Implemented Imre's comments - Further simplified power well programming - Made sure that PW 1 is enabled prior to PW 2 v4: Fix minor conflict with the the cherryview support (Damien) v5: Add the PLL power domain to the always on power well (Damien) v6: Disable BIOS power well (Imre) Use power well data for comparison (Imre) Put the PLL power domain into PW1 as its needed for CDCLK (Satheesh, Damien) v7: Addressed Imre's comments - Lowered the time out to 1ms - Added parantheses in macro - Moved debug message and fixed wait_for interval v8: - Add a WARN() when swiching on an unknown power well (Imre, done by Damien) - Whitespace fixes (spaces instead of tabs) (Damien) v9: (Imre, done by Damien) - Merge the register definitions with this patch - Merge the MISC IO power well in this patch v10: (Imre, done by Damien) - Define the Misc I/O power domains to be the power well 1 ones as Misc I/O needs to be enabled with PW1 - Added Transcoder A and VGA domains to PW 2 - Remove the MISC_IO power domains as well in the the always on domains definition - Move Misc I/O power well at the top of the power well list so it's turned on right after PW1. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Satheeshakrishna M <satheeshakrishna.m@intel.com> (v3,v6,v7) Signed-off-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-02-04 16:57:44 +03:00
} else if (IS_SKYLAKE(dev_priv->dev)) {
set_power_wells(power_domains, skl_power_wells);
} else if (IS_BROXTON(dev_priv->dev)) {
set_power_wells(power_domains, bxt_power_wells);
} else if (IS_CHERRYVIEW(dev_priv->dev)) {
set_power_wells(power_domains, chv_power_wells);
} else if (IS_VALLEYVIEW(dev_priv->dev)) {
set_power_wells(power_domains, vlv_power_wells);
} else {
set_power_wells(power_domains, i9xx_always_on_power_well);
}
return 0;
}
static void intel_runtime_pm_disable(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
if (!intel_enable_rc6(dev))
return;
/* Make sure we're not suspended first. */
pm_runtime_get_sync(device);
pm_runtime_disable(device);
}
/**
* intel_power_domains_fini - finalizes the power domain structures
* @dev_priv: i915 device instance
*
* Finalizes the power domain structures for @dev_priv depending upon the
* supported platform. This function also disables runtime pm and ensures that
* the device stays powered up so that the driver can be reloaded.
*/
void intel_power_domains_fini(struct drm_i915_private *dev_priv)
{
intel_runtime_pm_disable(dev_priv);
/* The i915.ko module is still not prepared to be loaded when
* the power well is not enabled, so just enable it in case
* we're going to unload/reload. */
intel_display_set_init_power(dev_priv, true);
}
static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
int i;
mutex_lock(&power_domains->lock);
for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
power_well->ops->sync_hw(dev_priv, power_well);
power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
power_well);
}
mutex_unlock(&power_domains->lock);
}
drm/i915: Work around DISPLAY_PHY_CONTROL register corruption on CHV Sometimes (exactly when is a bit unclear) DISPLAY_PHY_CONTROL appears to get corrupted. The values I've managed to read from it seem to have some pattern but vary quite a lot. The corruption doesn't seem to just happen when the register is accessed, but can also happen spontaneosly during modeset. When this happens during a modeset things go south and the display doesn't light up. I've managed to hit the problemn when toggling HDMI on port D on and off. When things get corrupted the display doesn't light up, but as soon as I manually write the correct value to the register the display comes up. First I was suspicious that we ourselves accidentally overwrite it with garbage, but didn't catch anything with the reg_rw tracepoint. Also I sprinkled check all over the modeset path to see exactly when the corruption happens, and eg. the read back value was fine just before intel_dp_set_m(), and corrupted immediately after it. I also made my check function repair the register value whenever it was wrong, and with this approach the corruption repeated several times during the modeset operation, always seeming to trigger in the same exact calls to the check function, while other calls to the function never caught anything. So far I've not seen this problem occurring when carefully avoiding all read accesses to DISPLAY_PHY_CONTROL. Not sure if that's just pure luck or an actual workaround, but we can hope it works. So let's avoid reading the register and instead track the desired value of the register in dev_priv. v2: Read out the power well state to determine initial register value v3: Use DPIO_CHx names instead of raw numbers Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-10 18:21:28 +03:00
static void chv_phy_control_init(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn_bc =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
struct i915_power_well *cmn_d =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
/*
* DISPLAY_PHY_CONTROL can get corrupted if read. As a
* workaround never ever read DISPLAY_PHY_CONTROL, and
* instead maintain a shadow copy ourselves. Use the actual
drm/i915: Implement PHY lane power gating for CHV Powergate the PHY lanes when they're not needed. For HDMI all four lanes are needed always, but for DP we can enable only the needed lanes. To power down the unused lanes we use some power down override bits in the DISPLAY_PHY_CONTROL register. Without the overrides it appears that the hardware always powers on all the lanes. When the port is disabled the power down override is not needed and the lanes will shut off on their own. That also means the override is critical to actually be able to access the DPIO registers before the port is actually enabled. Additionally the common lanes will power down when not needed. CL1 remains on as long as anything else is on, CL2 will shut down when all the lanes in the same channel will shut down. There is one exception for CL2 that will be dealt in a separate patch for clarity. With potentially some lanes powered down, the DP code now has to check the number of active lanes before accessing PCS/TX registers. All registers in powered down blocks will reads as 0xffffffff, and soe we would drown in warnings from vlv_dpio_read() if we allowed the code to access all those registers. Another important detail in the DP code is the "TX latency optimal" setting. Normally the second TX lane acts as some kind of reset master, with the other lanes as slaves. But when only a single lane is enabled, that single lane obviously has to be the master. A bit of extra care is needed to reconstruct the initial state of the DISPLAY_PHY_CONTROL register since it can't be read safely. So instead read the actual lane status from the DPLL/PHY_STATUS registers and use that to determine which lanes ought to be powergated initially. We also need to switch the PHY power modes to "deep PSR" to avoid a hard system hang when powering down the single channel PHY. Also sprinkle a few debug prints around so that we can monitor the DISPLAY_PHY_STATUS changes without having to read it and risk corrupting it. v2: Add locking to chv_powergate_phy_lanes() v3: Actually enable dynamic powerdown in the PHY and deal with the fallout Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-08 23:45:54 +03:00
* power well state and lane status to reconstruct the
* expected initial value.
drm/i915: Work around DISPLAY_PHY_CONTROL register corruption on CHV Sometimes (exactly when is a bit unclear) DISPLAY_PHY_CONTROL appears to get corrupted. The values I've managed to read from it seem to have some pattern but vary quite a lot. The corruption doesn't seem to just happen when the register is accessed, but can also happen spontaneosly during modeset. When this happens during a modeset things go south and the display doesn't light up. I've managed to hit the problemn when toggling HDMI on port D on and off. When things get corrupted the display doesn't light up, but as soon as I manually write the correct value to the register the display comes up. First I was suspicious that we ourselves accidentally overwrite it with garbage, but didn't catch anything with the reg_rw tracepoint. Also I sprinkled check all over the modeset path to see exactly when the corruption happens, and eg. the read back value was fine just before intel_dp_set_m(), and corrupted immediately after it. I also made my check function repair the register value whenever it was wrong, and with this approach the corruption repeated several times during the modeset operation, always seeming to trigger in the same exact calls to the check function, while other calls to the function never caught anything. So far I've not seen this problem occurring when carefully avoiding all read accesses to DISPLAY_PHY_CONTROL. Not sure if that's just pure luck or an actual workaround, but we can hope it works. So let's avoid reading the register and instead track the desired value of the register in dev_priv. v2: Read out the power well state to determine initial register value v3: Use DPIO_CHx names instead of raw numbers Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-10 18:21:28 +03:00
*/
dev_priv->chv_phy_control =
PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
drm/i915: Implement PHY lane power gating for CHV Powergate the PHY lanes when they're not needed. For HDMI all four lanes are needed always, but for DP we can enable only the needed lanes. To power down the unused lanes we use some power down override bits in the DISPLAY_PHY_CONTROL register. Without the overrides it appears that the hardware always powers on all the lanes. When the port is disabled the power down override is not needed and the lanes will shut off on their own. That also means the override is critical to actually be able to access the DPIO registers before the port is actually enabled. Additionally the common lanes will power down when not needed. CL1 remains on as long as anything else is on, CL2 will shut down when all the lanes in the same channel will shut down. There is one exception for CL2 that will be dealt in a separate patch for clarity. With potentially some lanes powered down, the DP code now has to check the number of active lanes before accessing PCS/TX registers. All registers in powered down blocks will reads as 0xffffffff, and soe we would drown in warnings from vlv_dpio_read() if we allowed the code to access all those registers. Another important detail in the DP code is the "TX latency optimal" setting. Normally the second TX lane acts as some kind of reset master, with the other lanes as slaves. But when only a single lane is enabled, that single lane obviously has to be the master. A bit of extra care is needed to reconstruct the initial state of the DISPLAY_PHY_CONTROL register since it can't be read safely. So instead read the actual lane status from the DPLL/PHY_STATUS registers and use that to determine which lanes ought to be powergated initially. We also need to switch the PHY power modes to "deep PSR" to avoid a hard system hang when powering down the single channel PHY. Also sprinkle a few debug prints around so that we can monitor the DISPLAY_PHY_STATUS changes without having to read it and risk corrupting it. v2: Add locking to chv_powergate_phy_lanes() v3: Actually enable dynamic powerdown in the PHY and deal with the fallout Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-08 23:45:54 +03:00
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
/*
* If all lanes are disabled we leave the override disabled
* with all power down bits cleared to match the state we
* would use after disabling the port. Otherwise enable the
* override and set the lane powerdown bits accding to the
* current lane status.
*/
if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
uint32_t status = I915_READ(DPLL(PIPE_A));
unsigned int mask;
mask = status & DPLL_PORTB_READY_MASK;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
mask = (status & DPLL_PORTC_READY_MASK) >> 4;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
drm/i915: Work around DISPLAY_PHY_CONTROL register corruption on CHV Sometimes (exactly when is a bit unclear) DISPLAY_PHY_CONTROL appears to get corrupted. The values I've managed to read from it seem to have some pattern but vary quite a lot. The corruption doesn't seem to just happen when the register is accessed, but can also happen spontaneosly during modeset. When this happens during a modeset things go south and the display doesn't light up. I've managed to hit the problemn when toggling HDMI on port D on and off. When things get corrupted the display doesn't light up, but as soon as I manually write the correct value to the register the display comes up. First I was suspicious that we ourselves accidentally overwrite it with garbage, but didn't catch anything with the reg_rw tracepoint. Also I sprinkled check all over the modeset path to see exactly when the corruption happens, and eg. the read back value was fine just before intel_dp_set_m(), and corrupted immediately after it. I also made my check function repair the register value whenever it was wrong, and with this approach the corruption repeated several times during the modeset operation, always seeming to trigger in the same exact calls to the check function, while other calls to the function never caught anything. So far I've not seen this problem occurring when carefully avoiding all read accesses to DISPLAY_PHY_CONTROL. Not sure if that's just pure luck or an actual workaround, but we can hope it works. So let's avoid reading the register and instead track the desired value of the register in dev_priv. v2: Read out the power well state to determine initial register value v3: Use DPIO_CHx names instead of raw numbers Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-10 18:21:28 +03:00
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
drm/i915: Implement PHY lane power gating for CHV Powergate the PHY lanes when they're not needed. For HDMI all four lanes are needed always, but for DP we can enable only the needed lanes. To power down the unused lanes we use some power down override bits in the DISPLAY_PHY_CONTROL register. Without the overrides it appears that the hardware always powers on all the lanes. When the port is disabled the power down override is not needed and the lanes will shut off on their own. That also means the override is critical to actually be able to access the DPIO registers before the port is actually enabled. Additionally the common lanes will power down when not needed. CL1 remains on as long as anything else is on, CL2 will shut down when all the lanes in the same channel will shut down. There is one exception for CL2 that will be dealt in a separate patch for clarity. With potentially some lanes powered down, the DP code now has to check the number of active lanes before accessing PCS/TX registers. All registers in powered down blocks will reads as 0xffffffff, and soe we would drown in warnings from vlv_dpio_read() if we allowed the code to access all those registers. Another important detail in the DP code is the "TX latency optimal" setting. Normally the second TX lane acts as some kind of reset master, with the other lanes as slaves. But when only a single lane is enabled, that single lane obviously has to be the master. A bit of extra care is needed to reconstruct the initial state of the DISPLAY_PHY_CONTROL register since it can't be read safely. So instead read the actual lane status from the DPLL/PHY_STATUS registers and use that to determine which lanes ought to be powergated initially. We also need to switch the PHY power modes to "deep PSR" to avoid a hard system hang when powering down the single channel PHY. Also sprinkle a few debug prints around so that we can monitor the DISPLAY_PHY_STATUS changes without having to read it and risk corrupting it. v2: Add locking to chv_powergate_phy_lanes() v3: Actually enable dynamic powerdown in the PHY and deal with the fallout Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-08 23:45:54 +03:00
}
if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
uint32_t status = I915_READ(DPIO_PHY_STATUS);
unsigned int mask;
mask = status & DPLL_PORTD_READY_MASK;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
drm/i915: Work around DISPLAY_PHY_CONTROL register corruption on CHV Sometimes (exactly when is a bit unclear) DISPLAY_PHY_CONTROL appears to get corrupted. The values I've managed to read from it seem to have some pattern but vary quite a lot. The corruption doesn't seem to just happen when the register is accessed, but can also happen spontaneosly during modeset. When this happens during a modeset things go south and the display doesn't light up. I've managed to hit the problemn when toggling HDMI on port D on and off. When things get corrupted the display doesn't light up, but as soon as I manually write the correct value to the register the display comes up. First I was suspicious that we ourselves accidentally overwrite it with garbage, but didn't catch anything with the reg_rw tracepoint. Also I sprinkled check all over the modeset path to see exactly when the corruption happens, and eg. the read back value was fine just before intel_dp_set_m(), and corrupted immediately after it. I also made my check function repair the register value whenever it was wrong, and with this approach the corruption repeated several times during the modeset operation, always seeming to trigger in the same exact calls to the check function, while other calls to the function never caught anything. So far I've not seen this problem occurring when carefully avoiding all read accesses to DISPLAY_PHY_CONTROL. Not sure if that's just pure luck or an actual workaround, but we can hope it works. So let's avoid reading the register and instead track the desired value of the register in dev_priv. v2: Read out the power well state to determine initial register value v3: Use DPIO_CHx names instead of raw numbers Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-10 18:21:28 +03:00
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
drm/i915: Implement PHY lane power gating for CHV Powergate the PHY lanes when they're not needed. For HDMI all four lanes are needed always, but for DP we can enable only the needed lanes. To power down the unused lanes we use some power down override bits in the DISPLAY_PHY_CONTROL register. Without the overrides it appears that the hardware always powers on all the lanes. When the port is disabled the power down override is not needed and the lanes will shut off on their own. That also means the override is critical to actually be able to access the DPIO registers before the port is actually enabled. Additionally the common lanes will power down when not needed. CL1 remains on as long as anything else is on, CL2 will shut down when all the lanes in the same channel will shut down. There is one exception for CL2 that will be dealt in a separate patch for clarity. With potentially some lanes powered down, the DP code now has to check the number of active lanes before accessing PCS/TX registers. All registers in powered down blocks will reads as 0xffffffff, and soe we would drown in warnings from vlv_dpio_read() if we allowed the code to access all those registers. Another important detail in the DP code is the "TX latency optimal" setting. Normally the second TX lane acts as some kind of reset master, with the other lanes as slaves. But when only a single lane is enabled, that single lane obviously has to be the master. A bit of extra care is needed to reconstruct the initial state of the DISPLAY_PHY_CONTROL register since it can't be read safely. So instead read the actual lane status from the DPLL/PHY_STATUS registers and use that to determine which lanes ought to be powergated initially. We also need to switch the PHY power modes to "deep PSR" to avoid a hard system hang when powering down the single channel PHY. Also sprinkle a few debug prints around so that we can monitor the DISPLAY_PHY_STATUS changes without having to read it and risk corrupting it. v2: Add locking to chv_powergate_phy_lanes() v3: Actually enable dynamic powerdown in the PHY and deal with the fallout Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-08 23:45:54 +03:00
}
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
dev_priv->chv_phy_control);
drm/i915: Work around DISPLAY_PHY_CONTROL register corruption on CHV Sometimes (exactly when is a bit unclear) DISPLAY_PHY_CONTROL appears to get corrupted. The values I've managed to read from it seem to have some pattern but vary quite a lot. The corruption doesn't seem to just happen when the register is accessed, but can also happen spontaneosly during modeset. When this happens during a modeset things go south and the display doesn't light up. I've managed to hit the problemn when toggling HDMI on port D on and off. When things get corrupted the display doesn't light up, but as soon as I manually write the correct value to the register the display comes up. First I was suspicious that we ourselves accidentally overwrite it with garbage, but didn't catch anything with the reg_rw tracepoint. Also I sprinkled check all over the modeset path to see exactly when the corruption happens, and eg. the read back value was fine just before intel_dp_set_m(), and corrupted immediately after it. I also made my check function repair the register value whenever it was wrong, and with this approach the corruption repeated several times during the modeset operation, always seeming to trigger in the same exact calls to the check function, while other calls to the function never caught anything. So far I've not seen this problem occurring when carefully avoiding all read accesses to DISPLAY_PHY_CONTROL. Not sure if that's just pure luck or an actual workaround, but we can hope it works. So let's avoid reading the register and instead track the desired value of the register in dev_priv. v2: Read out the power well state to determine initial register value v3: Use DPIO_CHx names instead of raw numbers Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-10 18:21:28 +03:00
}
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
struct i915_power_well *disp2d =
lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
/* If the display might be already active skip this */
if (cmn->ops->is_enabled(dev_priv, cmn) &&
disp2d->ops->is_enabled(dev_priv, disp2d) &&
I915_READ(DPIO_CTL) & DPIO_CMNRST)
return;
DRM_DEBUG_KMS("toggling display PHY side reset\n");
/* cmnlane needs DPLL registers */
disp2d->ops->enable(dev_priv, disp2d);
/*
* From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
* Need to assert and de-assert PHY SB reset by gating the
* common lane power, then un-gating it.
* Simply ungating isn't enough to reset the PHY enough to get
* ports and lanes running.
*/
cmn->ops->disable(dev_priv, cmn);
}
/**
* intel_power_domains_init_hw - initialize hardware power domain state
* @dev_priv: i915 device instance
*
* This function initializes the hardware power domain state and enables all
* power domains using intel_display_set_init_power().
*/
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct i915_power_domains *power_domains = &dev_priv->power_domains;
power_domains->initializing = true;
drm/i915: Work around DISPLAY_PHY_CONTROL register corruption on CHV Sometimes (exactly when is a bit unclear) DISPLAY_PHY_CONTROL appears to get corrupted. The values I've managed to read from it seem to have some pattern but vary quite a lot. The corruption doesn't seem to just happen when the register is accessed, but can also happen spontaneosly during modeset. When this happens during a modeset things go south and the display doesn't light up. I've managed to hit the problemn when toggling HDMI on port D on and off. When things get corrupted the display doesn't light up, but as soon as I manually write the correct value to the register the display comes up. First I was suspicious that we ourselves accidentally overwrite it with garbage, but didn't catch anything with the reg_rw tracepoint. Also I sprinkled check all over the modeset path to see exactly when the corruption happens, and eg. the read back value was fine just before intel_dp_set_m(), and corrupted immediately after it. I also made my check function repair the register value whenever it was wrong, and with this approach the corruption repeated several times during the modeset operation, always seeming to trigger in the same exact calls to the check function, while other calls to the function never caught anything. So far I've not seen this problem occurring when carefully avoiding all read accesses to DISPLAY_PHY_CONTROL. Not sure if that's just pure luck or an actual workaround, but we can hope it works. So let's avoid reading the register and instead track the desired value of the register in dev_priv. v2: Read out the power well state to determine initial register value v3: Use DPIO_CHx names instead of raw numbers Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-10 18:21:28 +03:00
if (IS_CHERRYVIEW(dev)) {
mutex_lock(&power_domains->lock);
drm/i915: Work around DISPLAY_PHY_CONTROL register corruption on CHV Sometimes (exactly when is a bit unclear) DISPLAY_PHY_CONTROL appears to get corrupted. The values I've managed to read from it seem to have some pattern but vary quite a lot. The corruption doesn't seem to just happen when the register is accessed, but can also happen spontaneosly during modeset. When this happens during a modeset things go south and the display doesn't light up. I've managed to hit the problemn when toggling HDMI on port D on and off. When things get corrupted the display doesn't light up, but as soon as I manually write the correct value to the register the display comes up. First I was suspicious that we ourselves accidentally overwrite it with garbage, but didn't catch anything with the reg_rw tracepoint. Also I sprinkled check all over the modeset path to see exactly when the corruption happens, and eg. the read back value was fine just before intel_dp_set_m(), and corrupted immediately after it. I also made my check function repair the register value whenever it was wrong, and with this approach the corruption repeated several times during the modeset operation, always seeming to trigger in the same exact calls to the check function, while other calls to the function never caught anything. So far I've not seen this problem occurring when carefully avoiding all read accesses to DISPLAY_PHY_CONTROL. Not sure if that's just pure luck or an actual workaround, but we can hope it works. So let's avoid reading the register and instead track the desired value of the register in dev_priv. v2: Read out the power well state to determine initial register value v3: Use DPIO_CHx names instead of raw numbers Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-10 18:21:28 +03:00
chv_phy_control_init(dev_priv);
mutex_unlock(&power_domains->lock);
drm/i915: Work around DISPLAY_PHY_CONTROL register corruption on CHV Sometimes (exactly when is a bit unclear) DISPLAY_PHY_CONTROL appears to get corrupted. The values I've managed to read from it seem to have some pattern but vary quite a lot. The corruption doesn't seem to just happen when the register is accessed, but can also happen spontaneosly during modeset. When this happens during a modeset things go south and the display doesn't light up. I've managed to hit the problemn when toggling HDMI on port D on and off. When things get corrupted the display doesn't light up, but as soon as I manually write the correct value to the register the display comes up. First I was suspicious that we ourselves accidentally overwrite it with garbage, but didn't catch anything with the reg_rw tracepoint. Also I sprinkled check all over the modeset path to see exactly when the corruption happens, and eg. the read back value was fine just before intel_dp_set_m(), and corrupted immediately after it. I also made my check function repair the register value whenever it was wrong, and with this approach the corruption repeated several times during the modeset operation, always seeming to trigger in the same exact calls to the check function, while other calls to the function never caught anything. So far I've not seen this problem occurring when carefully avoiding all read accesses to DISPLAY_PHY_CONTROL. Not sure if that's just pure luck or an actual workaround, but we can hope it works. So let's avoid reading the register and instead track the desired value of the register in dev_priv. v2: Read out the power well state to determine initial register value v3: Use DPIO_CHx names instead of raw numbers Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-10 18:21:28 +03:00
} else if (IS_VALLEYVIEW(dev)) {
mutex_lock(&power_domains->lock);
vlv_cmnlane_wa(dev_priv);
mutex_unlock(&power_domains->lock);
}
/* For now, we need the power well to be always enabled. */
intel_display_set_init_power(dev_priv, true);
intel_power_domains_resume(dev_priv);
power_domains->initializing = false;
}
/**
* intel_aux_display_runtime_get - grab an auxiliary power domain reference
* @dev_priv: i915 device instance
*
* This function grabs a power domain reference for the auxiliary power domain
* (for access to the GMBUS and DP AUX blocks) and ensures that it and all its
* parents are powered up. Therefore users should only grab a reference to the
* innermost power domain they need.
*
* Any power domain reference obtained by this function must have a symmetric
* call to intel_aux_display_runtime_put() to release the reference again.
*/
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
intel_runtime_pm_get(dev_priv);
}
/**
* intel_aux_display_runtime_put - release an auxiliary power domain reference
* @dev_priv: i915 device instance
*
* This function drops the auxiliary power domain reference obtained by
* intel_aux_display_runtime_get() and might power down the corresponding
* hardware block right away if this is the last reference.
*/
void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
intel_runtime_pm_put(dev_priv);
}
/**
* intel_runtime_pm_get - grab a runtime pm reference
* @dev_priv: i915 device instance
*
* This function grabs a device-level runtime pm reference (mostly used for GEM
* code to ensure the GTT or GT is on) and ensures that it is powered up.
*
* Any runtime pm reference obtained by this function must have a symmetric
* call to intel_runtime_pm_put() to release the reference again.
*/
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
pm_runtime_get_sync(device);
WARN(dev_priv->pm.suspended, "Device still suspended.\n");
}
/**
* intel_runtime_pm_get_noresume - grab a runtime pm reference
* @dev_priv: i915 device instance
*
* This function grabs a device-level runtime pm reference (mostly used for GEM
* code to ensure the GTT or GT is on).
*
* It will _not_ power up the device but instead only check that it's powered
* on. Therefore it is only valid to call this functions from contexts where
* the device is known to be powered up and where trying to power it up would
* result in hilarity and deadlocks. That pretty much means only the system
* suspend/resume code where this is used to grab runtime pm references for
* delayed setup down in work items.
*
* Any runtime pm reference obtained by this function must have a symmetric
* call to intel_runtime_pm_put() to release the reference again.
*/
void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
pm_runtime_get_noresume(device);
}
/**
* intel_runtime_pm_put - release a runtime pm reference
* @dev_priv: i915 device instance
*
* This function drops the device-level runtime pm reference obtained by
* intel_runtime_pm_get() and might power down the corresponding
* hardware block right away if this is the last reference.
*/
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
pm_runtime_mark_last_busy(device);
pm_runtime_put_autosuspend(device);
}
/**
* intel_runtime_pm_enable - enable runtime pm
* @dev_priv: i915 device instance
*
* This function enables runtime pm at the end of the driver load sequence.
*
* Note that this function does currently not enable runtime pm for the
* subordinate display power domains. That is only done on the first modeset
* using intel_display_set_init_power().
*/
void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct device *device = &dev->pdev->dev;
if (!HAS_RUNTIME_PM(dev))
return;
pm_runtime_set_active(device);
/*
* RPM depends on RC6 to save restore the GT HW context, so make RC6 a
* requirement.
*/
if (!intel_enable_rc6(dev)) {
DRM_INFO("RC6 disabled, disabling runtime PM support\n");
return;
}
pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
pm_runtime_mark_last_busy(device);
pm_runtime_use_autosuspend(device);
pm_runtime_put_autosuspend(device);
}