2019-05-27 08:55:05 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
2015-07-05 22:48:21 -03:00
/*
Red Black Trees
( C ) 1999 Andrea Arcangeli < andrea @ suse . de >
( C ) 2002 David Woodhouse < dwmw2 @ infradead . org >
( C ) 2012 Michel Lespinasse < walken @ google . com >
linux / lib / rbtree . c
*/
# include <linux/rbtree_augmented.h>
2018-12-06 11:18:13 -08:00
# include <linux/export.h>
2015-07-05 22:48:21 -03:00
/*
2020-08-06 23:17:22 -07:00
* red - black trees properties : https : //en.wikipedia.org/wiki/Rbtree
2015-07-05 22:48:21 -03:00
*
* 1 ) A node is either red or black
* 2 ) The root is black
* 3 ) All leaves ( NULL ) are black
* 4 ) Both children of every red node are black
* 5 ) Every simple path from root to leaves contains the same number
* of black nodes .
*
* 4 and 5 give the O ( log n ) guarantee , since 4 implies you cannot have two
* consecutive red nodes in a path and every red node is therefore followed by
* a black . So if B is the number of black nodes on every simple path ( as per
* 5 ) , then the longest possible path due to 4 is 2 B .
*
* We shall indicate color with case , where black nodes are uppercase and red
* nodes will be lowercase . Unknown color nodes shall be drawn as red within
* parentheses and have some accompanying text comment .
*/
2018-12-06 11:18:13 -08:00
/*
* Notes on lockless lookups :
*
* All stores to the tree structure ( rb_left and rb_right ) must be done using
* WRITE_ONCE ( ) . And we must not inadvertently cause ( temporary ) loops in the
* tree structure as seen in program order .
*
* These two requirements will allow lockless iteration of the tree - - not
* correct iteration mind you , tree rotations are not atomic so a lookup might
* miss entire subtrees .
*
* But they do guarantee that any such traversal will only see valid elements
* and that it will indeed complete - - does not get stuck in a loop .
*
* It also guarantees that if the lookup returns an element it is the ' correct '
* one . But not returning an element does _NOT_ mean it ' s not present .
*
* NOTE :
*
* Stores to __rb_parent_color are not important for simple lookups so those
* are left undone as of now . Nor did I check for loops involving parent
* pointers .
*/
2015-07-05 22:48:21 -03:00
static inline void rb_set_black ( struct rb_node * rb )
{
rb - > __rb_parent_color | = RB_BLACK ;
}
static inline struct rb_node * rb_red_parent ( struct rb_node * red )
{
return ( struct rb_node * ) red - > __rb_parent_color ;
}
/*
* Helper function for rotations :
* - old ' s parent and color get assigned to new
* - old gets assigned new as a parent and ' color ' as a color .
*/
static inline void
__rb_rotate_set_parents ( struct rb_node * old , struct rb_node * new ,
struct rb_root * root , int color )
{
struct rb_node * parent = rb_parent ( old ) ;
new - > __rb_parent_color = old - > __rb_parent_color ;
rb_set_parent_color ( old , new , color ) ;
__rb_change_child ( old , new , parent , root ) ;
}
static __always_inline void
__rb_insert ( struct rb_node * node , struct rb_root * root ,
void ( * augment_rotate ) ( struct rb_node * old , struct rb_node * new ) )
{
struct rb_node * parent = rb_red_parent ( node ) , * gparent , * tmp ;
while ( true ) {
/*
2018-12-06 11:18:13 -08:00
* Loop invariant : node is red .
2015-07-05 22:48:21 -03:00
*/
2018-12-06 11:18:13 -08:00
if ( unlikely ( ! parent ) ) {
/*
* The inserted node is root . Either this is the
* first node , or we recursed at Case 1 below and
* are no longer violating 4 ) .
*/
2015-07-05 22:48:21 -03:00
rb_set_parent_color ( node , NULL , RB_BLACK ) ;
break ;
2018-12-06 11:18:13 -08:00
}
/*
* If there is a black parent , we are done .
* Otherwise , take some corrective action as ,
* per 4 ) , we don ' t want a red root or two
* consecutive red nodes .
*/
if ( rb_is_black ( parent ) )
2015-07-05 22:48:21 -03:00
break ;
gparent = rb_red_parent ( parent ) ;
tmp = gparent - > rb_right ;
if ( parent ! = tmp ) { /* parent == gparent->rb_left */
if ( tmp & & rb_is_red ( tmp ) ) {
/*
2018-12-06 11:18:13 -08:00
* Case 1 - node ' s uncle is red ( color flips ) .
2015-07-05 22:48:21 -03:00
*
* G g
* / \ / \
* p u - - > P U
* / /
* n n
*
* However , since g ' s parent might be red , and
* 4 ) does not allow this , we need to recurse
* at g .
*/
rb_set_parent_color ( tmp , gparent , RB_BLACK ) ;
rb_set_parent_color ( parent , gparent , RB_BLACK ) ;
node = gparent ;
parent = rb_parent ( node ) ;
rb_set_parent_color ( node , parent , RB_RED ) ;
continue ;
}
tmp = parent - > rb_right ;
if ( node = = tmp ) {
/*
2018-12-06 11:18:13 -08:00
* Case 2 - node ' s uncle is black and node is
* the parent ' s right child ( left rotate at parent ) .
2015-07-05 22:48:21 -03:00
*
* G G
* / \ / \
* p U - - > n U
* \ /
* n p
*
* This still leaves us in violation of 4 ) , the
* continuation into Case 3 will fix that .
*/
2018-12-06 11:18:13 -08:00
tmp = node - > rb_left ;
WRITE_ONCE ( parent - > rb_right , tmp ) ;
WRITE_ONCE ( node - > rb_left , parent ) ;
2015-07-05 22:48:21 -03:00
if ( tmp )
rb_set_parent_color ( tmp , parent ,
RB_BLACK ) ;
rb_set_parent_color ( parent , node , RB_RED ) ;
augment_rotate ( parent , node ) ;
parent = node ;
tmp = node - > rb_right ;
}
/*
2018-12-06 11:18:13 -08:00
* Case 3 - node ' s uncle is black and node is
* the parent ' s left child ( right rotate at gparent ) .
2015-07-05 22:48:21 -03:00
*
* G P
* / \ / \
* p U - - > n g
* / \
* n U
*/
2018-12-06 11:18:13 -08:00
WRITE_ONCE ( gparent - > rb_left , tmp ) ; /* == parent->rb_right */
WRITE_ONCE ( parent - > rb_right , gparent ) ;
2015-07-05 22:48:21 -03:00
if ( tmp )
rb_set_parent_color ( tmp , gparent , RB_BLACK ) ;
__rb_rotate_set_parents ( gparent , parent , root , RB_RED ) ;
augment_rotate ( gparent , parent ) ;
break ;
} else {
tmp = gparent - > rb_left ;
if ( tmp & & rb_is_red ( tmp ) ) {
/* Case 1 - color flips */
rb_set_parent_color ( tmp , gparent , RB_BLACK ) ;
rb_set_parent_color ( parent , gparent , RB_BLACK ) ;
node = gparent ;
parent = rb_parent ( node ) ;
rb_set_parent_color ( node , parent , RB_RED ) ;
continue ;
}
tmp = parent - > rb_left ;
if ( node = = tmp ) {
/* Case 2 - right rotate at parent */
2018-12-06 11:18:13 -08:00
tmp = node - > rb_right ;
WRITE_ONCE ( parent - > rb_left , tmp ) ;
WRITE_ONCE ( node - > rb_right , parent ) ;
2015-07-05 22:48:21 -03:00
if ( tmp )
rb_set_parent_color ( tmp , parent ,
RB_BLACK ) ;
rb_set_parent_color ( parent , node , RB_RED ) ;
augment_rotate ( parent , node ) ;
parent = node ;
tmp = node - > rb_left ;
}
/* Case 3 - left rotate at gparent */
2018-12-06 11:18:13 -08:00
WRITE_ONCE ( gparent - > rb_right , tmp ) ; /* == parent->rb_left */
WRITE_ONCE ( parent - > rb_left , gparent ) ;
2015-07-05 22:48:21 -03:00
if ( tmp )
rb_set_parent_color ( tmp , gparent , RB_BLACK ) ;
__rb_rotate_set_parents ( gparent , parent , root , RB_RED ) ;
augment_rotate ( gparent , parent ) ;
break ;
}
}
}
/*
* Inline version for rb_erase ( ) use - we want to be able to inline
* and eliminate the dummy_rotate callback there
*/
static __always_inline void
____rb_erase_color ( struct rb_node * parent , struct rb_root * root ,
void ( * augment_rotate ) ( struct rb_node * old , struct rb_node * new ) )
{
struct rb_node * node = NULL , * sibling , * tmp1 , * tmp2 ;
while ( true ) {
/*
* Loop invariants :
* - node is black ( or NULL on first iteration )
* - node is not the root ( parent is not NULL )
* - All leaf paths going through parent and node have a
* black node count that is 1 lower than other leaf paths .
*/
sibling = parent - > rb_right ;
if ( node ! = sibling ) { /* node == parent->rb_left */
if ( rb_is_red ( sibling ) ) {
/*
* Case 1 - left rotate at parent
*
* P S
* / \ / \
* N s - - > p Sr
* / \ / \
* Sl Sr N Sl
*/
2018-12-06 11:18:13 -08:00
tmp1 = sibling - > rb_left ;
WRITE_ONCE ( parent - > rb_right , tmp1 ) ;
WRITE_ONCE ( sibling - > rb_left , parent ) ;
2015-07-05 22:48:21 -03:00
rb_set_parent_color ( tmp1 , parent , RB_BLACK ) ;
__rb_rotate_set_parents ( parent , sibling , root ,
RB_RED ) ;
augment_rotate ( parent , sibling ) ;
sibling = tmp1 ;
}
tmp1 = sibling - > rb_right ;
if ( ! tmp1 | | rb_is_black ( tmp1 ) ) {
tmp2 = sibling - > rb_left ;
if ( ! tmp2 | | rb_is_black ( tmp2 ) ) {
/*
* Case 2 - sibling color flip
* ( p could be either color here )
*
* ( p ) ( p )
* / \ / \
* N S - - > N s
* / \ / \
* Sl Sr Sl Sr
*
* This leaves us violating 5 ) which
* can be fixed by flipping p to black
* if it was red , or by recursing at p .
* p is red when coming from Case 1.
*/
rb_set_parent_color ( sibling , parent ,
RB_RED ) ;
if ( rb_is_red ( parent ) )
rb_set_black ( parent ) ;
else {
node = parent ;
parent = rb_parent ( node ) ;
if ( parent )
continue ;
}
break ;
}
/*
* Case 3 - right rotate at sibling
* ( p could be either color here )
*
* ( p ) ( p )
* / \ / \
2018-12-06 11:18:13 -08:00
* N S - - > N sl
2015-07-05 22:48:21 -03:00
* / \ \
2018-12-06 11:18:13 -08:00
* sl Sr S
2015-07-05 22:48:21 -03:00
* \
* Sr
2018-12-06 11:18:13 -08:00
*
* Note : p might be red , and then both
* p and sl are red after rotation ( which
* breaks property 4 ) . This is fixed in
* Case 4 ( in __rb_rotate_set_parents ( )
* which set sl the color of p
* and set p RB_BLACK )
*
* ( p ) ( sl )
* / \ / \
* N sl - - > P S
* \ / \
* S N Sr
* \
* Sr
2015-07-05 22:48:21 -03:00
*/
2018-12-06 11:18:13 -08:00
tmp1 = tmp2 - > rb_right ;
WRITE_ONCE ( sibling - > rb_left , tmp1 ) ;
WRITE_ONCE ( tmp2 - > rb_right , sibling ) ;
WRITE_ONCE ( parent - > rb_right , tmp2 ) ;
2015-07-05 22:48:21 -03:00
if ( tmp1 )
rb_set_parent_color ( tmp1 , sibling ,
RB_BLACK ) ;
augment_rotate ( sibling , tmp2 ) ;
tmp1 = sibling ;
sibling = tmp2 ;
}
/*
* Case 4 - left rotate at parent + color flips
* ( p and sl could be either color here .
* After rotation , p becomes black , s acquires
* p ' s color , and sl keeps its color )
*
* ( p ) ( s )
* / \ / \
* N S - - > P Sr
* / \ / \
* ( sl ) sr N ( sl )
*/
2018-12-06 11:18:13 -08:00
tmp2 = sibling - > rb_left ;
WRITE_ONCE ( parent - > rb_right , tmp2 ) ;
WRITE_ONCE ( sibling - > rb_left , parent ) ;
2015-07-05 22:48:21 -03:00
rb_set_parent_color ( tmp1 , sibling , RB_BLACK ) ;
if ( tmp2 )
rb_set_parent ( tmp2 , parent ) ;
__rb_rotate_set_parents ( parent , sibling , root ,
RB_BLACK ) ;
augment_rotate ( parent , sibling ) ;
break ;
} else {
sibling = parent - > rb_left ;
if ( rb_is_red ( sibling ) ) {
/* Case 1 - right rotate at parent */
2018-12-06 11:18:13 -08:00
tmp1 = sibling - > rb_right ;
WRITE_ONCE ( parent - > rb_left , tmp1 ) ;
WRITE_ONCE ( sibling - > rb_right , parent ) ;
2015-07-05 22:48:21 -03:00
rb_set_parent_color ( tmp1 , parent , RB_BLACK ) ;
__rb_rotate_set_parents ( parent , sibling , root ,
RB_RED ) ;
augment_rotate ( parent , sibling ) ;
sibling = tmp1 ;
}
tmp1 = sibling - > rb_left ;
if ( ! tmp1 | | rb_is_black ( tmp1 ) ) {
tmp2 = sibling - > rb_right ;
if ( ! tmp2 | | rb_is_black ( tmp2 ) ) {
/* Case 2 - sibling color flip */
rb_set_parent_color ( sibling , parent ,
RB_RED ) ;
if ( rb_is_red ( parent ) )
rb_set_black ( parent ) ;
else {
node = parent ;
parent = rb_parent ( node ) ;
if ( parent )
continue ;
}
break ;
}
2018-12-06 11:18:13 -08:00
/* Case 3 - left rotate at sibling */
tmp1 = tmp2 - > rb_left ;
WRITE_ONCE ( sibling - > rb_right , tmp1 ) ;
WRITE_ONCE ( tmp2 - > rb_left , sibling ) ;
WRITE_ONCE ( parent - > rb_left , tmp2 ) ;
2015-07-05 22:48:21 -03:00
if ( tmp1 )
rb_set_parent_color ( tmp1 , sibling ,
RB_BLACK ) ;
augment_rotate ( sibling , tmp2 ) ;
tmp1 = sibling ;
sibling = tmp2 ;
}
2018-12-06 11:18:13 -08:00
/* Case 4 - right rotate at parent + color flips */
tmp2 = sibling - > rb_right ;
WRITE_ONCE ( parent - > rb_left , tmp2 ) ;
WRITE_ONCE ( sibling - > rb_right , parent ) ;
2015-07-05 22:48:21 -03:00
rb_set_parent_color ( tmp1 , sibling , RB_BLACK ) ;
if ( tmp2 )
rb_set_parent ( tmp2 , parent ) ;
__rb_rotate_set_parents ( parent , sibling , root ,
RB_BLACK ) ;
augment_rotate ( parent , sibling ) ;
break ;
}
}
}
/* Non-inline version for rb_erase_augmented() use */
void __rb_erase_color ( struct rb_node * parent , struct rb_root * root ,
void ( * augment_rotate ) ( struct rb_node * old , struct rb_node * new ) )
{
____rb_erase_color ( parent , root , augment_rotate ) ;
}
/*
* Non - augmented rbtree manipulation functions .
*
* We use dummy augmented callbacks here , and have the compiler optimize them
* out of the rb_insert_color ( ) and rb_erase ( ) function definitions .
*/
static inline void dummy_propagate ( struct rb_node * node , struct rb_node * stop ) { }
static inline void dummy_copy ( struct rb_node * old , struct rb_node * new ) { }
static inline void dummy_rotate ( struct rb_node * old , struct rb_node * new ) { }
static const struct rb_augment_callbacks dummy_callbacks = {
2018-12-06 11:18:13 -08:00
. propagate = dummy_propagate ,
. copy = dummy_copy ,
. rotate = dummy_rotate
2015-07-05 22:48:21 -03:00
} ;
void rb_insert_color ( struct rb_node * node , struct rb_root * root )
{
2019-09-25 16:46:02 -07:00
__rb_insert ( node , root , dummy_rotate ) ;
2015-07-05 22:48:21 -03:00
}
void rb_erase ( struct rb_node * node , struct rb_root * root )
{
struct rb_node * rebalance ;
2019-09-25 16:46:02 -07:00
rebalance = __rb_erase_augmented ( node , root , & dummy_callbacks ) ;
2015-07-05 22:48:21 -03:00
if ( rebalance )
____rb_erase_color ( rebalance , root , dummy_rotate ) ;
}
/*
* Augmented rbtree manipulation functions .
*
* This instantiates the same __always_inline functions as in the non - augmented
* case , but this time with user - defined callbacks .
*/
void __rb_insert_augmented ( struct rb_node * node , struct rb_root * root ,
void ( * augment_rotate ) ( struct rb_node * old , struct rb_node * new ) )
{
2019-09-25 16:46:02 -07:00
__rb_insert ( node , root , augment_rotate ) ;
2015-07-05 22:48:21 -03:00
}
/*
* This function returns the first node ( in sort order ) of the tree .
*/
struct rb_node * rb_first ( const struct rb_root * root )
{
struct rb_node * n ;
n = root - > rb_node ;
if ( ! n )
return NULL ;
while ( n - > rb_left )
n = n - > rb_left ;
return n ;
}
struct rb_node * rb_last ( const struct rb_root * root )
{
struct rb_node * n ;
n = root - > rb_node ;
if ( ! n )
return NULL ;
while ( n - > rb_right )
n = n - > rb_right ;
return n ;
}
struct rb_node * rb_next ( const struct rb_node * node )
{
struct rb_node * parent ;
if ( RB_EMPTY_NODE ( node ) )
return NULL ;
/*
* If we have a right - hand child , go down and then left as far
* as we can .
*/
if ( node - > rb_right ) {
node = node - > rb_right ;
while ( node - > rb_left )
2020-04-06 20:10:31 -07:00
node = node - > rb_left ;
2015-07-05 22:48:21 -03:00
return ( struct rb_node * ) node ;
}
/*
* No right - hand children . Everything down and left is smaller than us ,
* so any ' next ' node must be in the general direction of our parent .
* Go up the tree ; any time the ancestor is a right - hand child of its
* parent , keep going up . First time it ' s a left - hand child of its
* parent , said parent is our ' next ' node .
*/
while ( ( parent = rb_parent ( node ) ) & & node = = parent - > rb_right )
node = parent ;
return parent ;
}
struct rb_node * rb_prev ( const struct rb_node * node )
{
struct rb_node * parent ;
if ( RB_EMPTY_NODE ( node ) )
return NULL ;
/*
* If we have a left - hand child , go down and then right as far
* as we can .
*/
if ( node - > rb_left ) {
node = node - > rb_left ;
while ( node - > rb_right )
2020-04-06 20:10:31 -07:00
node = node - > rb_right ;
2015-07-05 22:48:21 -03:00
return ( struct rb_node * ) node ;
}
/*
* No left - hand children . Go up till we find an ancestor which
* is a right - hand child of its parent .
*/
while ( ( parent = rb_parent ( node ) ) & & node = = parent - > rb_left )
node = parent ;
return parent ;
}
void rb_replace_node ( struct rb_node * victim , struct rb_node * new ,
struct rb_root * root )
{
struct rb_node * parent = rb_parent ( victim ) ;
2018-12-06 11:18:13 -08:00
/* Copy the pointers/colour from the victim to the replacement */
* new = * victim ;
2015-07-05 22:48:21 -03:00
/* Set the surrounding nodes to point to the replacement */
if ( victim - > rb_left )
rb_set_parent ( victim - > rb_left , new ) ;
if ( victim - > rb_right )
rb_set_parent ( victim - > rb_right , new ) ;
2018-12-06 11:18:13 -08:00
__rb_change_child ( victim , new , parent , root ) ;
}
2015-07-05 22:48:21 -03:00
static struct rb_node * rb_left_deepest_node ( const struct rb_node * node )
{
for ( ; ; ) {
if ( node - > rb_left )
node = node - > rb_left ;
else if ( node - > rb_right )
node = node - > rb_right ;
else
return ( struct rb_node * ) node ;
}
}
struct rb_node * rb_next_postorder ( const struct rb_node * node )
{
const struct rb_node * parent ;
if ( ! node )
return NULL ;
parent = rb_parent ( node ) ;
/* If we're sitting on node, we've already seen our children */
if ( parent & & node = = parent - > rb_left & & parent - > rb_right ) {
/* If we are the parent's left node, go to the parent's right
* node then all the way down to the left */
return rb_left_deepest_node ( parent - > rb_right ) ;
} else
/* Otherwise we are the parent's right node, and the parent
* should be next */
return ( struct rb_node * ) parent ;
}
struct rb_node * rb_first_postorder ( const struct rb_root * root )
{
if ( ! root - > rb_node )
return NULL ;
return rb_left_deepest_node ( root - > rb_node ) ;
}