2005-04-16 15:20:36 -07:00
# ifndef _ASM_GENERIC_PGTABLE_H
# define _ASM_GENERIC_PGTABLE_H
2006-09-25 23:32:29 -07:00
# ifndef __ASSEMBLY__
2007-08-10 13:01:20 -07:00
# ifdef CONFIG_MMU
2006-09-25 23:32:29 -07:00
2011-02-27 05:41:35 +00:00
# include <linux/mm_types.h>
2011-11-23 20:12:59 -05:00
# include <linux/bug.h>
2011-02-27 05:41:35 +00:00
2013-04-29 15:07:44 -07:00
/*
* On almost all architectures and configurations , 0 can be used as the
* upper ceiling to free_pgtables ( ) : on many architectures it has the same
* effect as using TASK_SIZE . However , there is one configuration which
* must impose a more careful limit , to avoid freeing kernel pgtables .
*/
# ifndef USER_PGTABLES_CEILING
# define USER_PGTABLES_CEILING 0UL
# endif
2005-04-16 15:20:36 -07:00
# ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
2011-01-13 15:46:40 -08:00
extern int ptep_set_access_flags ( struct vm_area_struct * vma ,
unsigned long address , pte_t * ptep ,
pte_t entry , int dirty ) ;
# endif
# ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags ( struct vm_area_struct * vma ,
unsigned long address , pmd_t * pmdp ,
pmd_t entry , int dirty ) ;
2005-04-16 15:20:36 -07:00
# endif
# ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
2011-01-13 15:46:40 -08:00
static inline int ptep_test_and_clear_young ( struct vm_area_struct * vma ,
unsigned long address ,
pte_t * ptep )
{
pte_t pte = * ptep ;
int r = 1 ;
if ( ! pte_young ( pte ) )
r = 0 ;
else
set_pte_at ( vma - > vm_mm , address , ptep , pte_mkold ( pte ) ) ;
return r ;
}
# endif
# ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
# ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmdp_test_and_clear_young ( struct vm_area_struct * vma ,
unsigned long address ,
pmd_t * pmdp )
{
pmd_t pmd = * pmdp ;
int r = 1 ;
if ( ! pmd_young ( pmd ) )
r = 0 ;
else
set_pmd_at ( vma - > vm_mm , address , pmdp , pmd_mkold ( pmd ) ) ;
return r ;
}
# else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int pmdp_test_and_clear_young ( struct vm_area_struct * vma ,
unsigned long address ,
pmd_t * pmdp )
{
BUG ( ) ;
return 0 ;
}
# endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2005-04-16 15:20:36 -07:00
# endif
# ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
2011-01-13 15:46:40 -08:00
int ptep_clear_flush_young ( struct vm_area_struct * vma ,
unsigned long address , pte_t * ptep ) ;
# endif
# ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
int pmdp_clear_flush_young ( struct vm_area_struct * vma ,
unsigned long address , pmd_t * pmdp ) ;
2005-04-16 15:20:36 -07:00
# endif
# ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
2011-01-13 15:46:40 -08:00
static inline pte_t ptep_get_and_clear ( struct mm_struct * mm ,
unsigned long address ,
pte_t * ptep )
{
pte_t pte = * ptep ;
pte_clear ( mm , address , ptep ) ;
return pte ;
}
# endif
# ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
# ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline pmd_t pmdp_get_and_clear ( struct mm_struct * mm ,
unsigned long address ,
pmd_t * pmdp )
{
pmd_t pmd = * pmdp ;
2012-10-08 16:32:59 -07:00
pmd_clear ( pmdp ) ;
2011-01-13 15:46:40 -08:00
return pmd ;
2011-06-15 15:08:34 -07:00
}
2011-01-13 15:46:40 -08:00
# endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2005-04-16 15:20:36 -07:00
# endif
[PATCH] x86: ptep_clear optimization
Add a new accessor for PTEs, which passes the full hint from the mmu_gather
struct; this allows architectures with hardware pagetables to optimize away
atomic PTE operations when destroying an address space. Removing the
locked operation should allow better pipelining of memory access in this
loop. I measured an average savings of 30-35 cycles per zap_pte_range on
the first 500 destructions on Pentium-M, but I believe the optimization
would win more on older processors which still assert the bus lock on xchg
for an exclusive cacheline.
Update: I made some new measurements, and this saves exactly 26 cycles over
ptep_get_and_clear on Pentium M. On P4, with a PAE kernel, this saves 180
cycles per ptep_get_and_clear, for a whopping 92160 cycles savings for a
full address space destruction.
pte_clear_full is not yet used, but is provided for future optimizations
(in particular, when running inside of a hypervisor that queues page table
updates, the full hint allows us to avoid queueing unnecessary page table
update for an address space in the process of being destroyed.
This is not a huge win, but it does help a bit, and sets the stage for
further hypervisor optimization of the mm layer on all architectures.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Cc: Christoph Lameter <christoph@lameter.com>
Cc: <linux-mm@kvack.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-03 15:55:04 -07:00
# ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
2011-01-13 15:46:40 -08:00
static inline pte_t ptep_get_and_clear_full ( struct mm_struct * mm ,
unsigned long address , pte_t * ptep ,
int full )
{
pte_t pte ;
pte = ptep_get_and_clear ( mm , address , ptep ) ;
return pte ;
}
[PATCH] x86: ptep_clear optimization
Add a new accessor for PTEs, which passes the full hint from the mmu_gather
struct; this allows architectures with hardware pagetables to optimize away
atomic PTE operations when destroying an address space. Removing the
locked operation should allow better pipelining of memory access in this
loop. I measured an average savings of 30-35 cycles per zap_pte_range on
the first 500 destructions on Pentium-M, but I believe the optimization
would win more on older processors which still assert the bus lock on xchg
for an exclusive cacheline.
Update: I made some new measurements, and this saves exactly 26 cycles over
ptep_get_and_clear on Pentium M. On P4, with a PAE kernel, this saves 180
cycles per ptep_get_and_clear, for a whopping 92160 cycles savings for a
full address space destruction.
pte_clear_full is not yet used, but is provided for future optimizations
(in particular, when running inside of a hypervisor that queues page table
updates, the full hint allows us to avoid queueing unnecessary page table
update for an address space in the process of being destroyed.
This is not a huge win, but it does help a bit, and sets the stage for
further hypervisor optimization of the mm layer on all architectures.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Cc: Christoph Lameter <christoph@lameter.com>
Cc: <linux-mm@kvack.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-03 15:55:04 -07:00
# endif
2006-09-30 23:29:31 -07:00
/*
* Some architectures may be able to avoid expensive synchronization
* primitives when modifications are made to PTE ' s which are already
* not present , or in the process of an address space destruction .
*/
# ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
2011-01-13 15:46:40 -08:00
static inline void pte_clear_not_present_full ( struct mm_struct * mm ,
unsigned long address ,
pte_t * ptep ,
int full )
{
pte_clear ( mm , address , ptep ) ;
}
[PATCH] x86: ptep_clear optimization
Add a new accessor for PTEs, which passes the full hint from the mmu_gather
struct; this allows architectures with hardware pagetables to optimize away
atomic PTE operations when destroying an address space. Removing the
locked operation should allow better pipelining of memory access in this
loop. I measured an average savings of 30-35 cycles per zap_pte_range on
the first 500 destructions on Pentium-M, but I believe the optimization
would win more on older processors which still assert the bus lock on xchg
for an exclusive cacheline.
Update: I made some new measurements, and this saves exactly 26 cycles over
ptep_get_and_clear on Pentium M. On P4, with a PAE kernel, this saves 180
cycles per ptep_get_and_clear, for a whopping 92160 cycles savings for a
full address space destruction.
pte_clear_full is not yet used, but is provided for future optimizations
(in particular, when running inside of a hypervisor that queues page table
updates, the full hint allows us to avoid queueing unnecessary page table
update for an address space in the process of being destroyed.
This is not a huge win, but it does help a bit, and sets the stage for
further hypervisor optimization of the mm layer on all architectures.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Cc: Christoph Lameter <christoph@lameter.com>
Cc: <linux-mm@kvack.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-03 15:55:04 -07:00
# endif
2005-04-16 15:20:36 -07:00
# ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
2011-01-13 15:46:40 -08:00
extern pte_t ptep_clear_flush ( struct vm_area_struct * vma ,
unsigned long address ,
pte_t * ptep ) ;
# endif
# ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
extern pmd_t pmdp_clear_flush ( struct vm_area_struct * vma ,
unsigned long address ,
pmd_t * pmdp ) ;
2005-04-16 15:20:36 -07:00
# endif
# ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
2005-11-07 00:59:43 -08:00
struct mm_struct ;
2005-04-16 15:20:36 -07:00
static inline void ptep_set_wrprotect ( struct mm_struct * mm , unsigned long address , pte_t * ptep )
{
pte_t old_pte = * ptep ;
set_pte_at ( mm , address , ptep , pte_wrprotect ( old_pte ) ) ;
}
# endif
2011-01-13 15:46:40 -08:00
# ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
# ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void pmdp_set_wrprotect ( struct mm_struct * mm ,
unsigned long address , pmd_t * pmdp )
{
pmd_t old_pmd = * pmdp ;
set_pmd_at ( mm , address , pmdp , pmd_wrprotect ( old_pmd ) ) ;
}
# else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline void pmdp_set_wrprotect ( struct mm_struct * mm ,
unsigned long address , pmd_t * pmdp )
{
BUG ( ) ;
}
# endif /* CONFIG_TRANSPARENT_HUGEPAGE */
# endif
# ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
2012-03-28 13:59:18 -04:00
extern void pmdp_splitting_flush ( struct vm_area_struct * vma ,
unsigned long address , pmd_t * pmdp ) ;
2011-01-13 15:46:40 -08:00
# endif
2012-10-08 16:30:07 -07:00
# ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
2013-06-05 17:14:02 -07:00
extern void pgtable_trans_huge_deposit ( struct mm_struct * mm , pmd_t * pmdp ,
pgtable_t pgtable ) ;
2012-10-08 16:30:07 -07:00
# endif
# ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
2013-06-05 17:14:02 -07:00
extern pgtable_t pgtable_trans_huge_withdraw ( struct mm_struct * mm , pmd_t * pmdp ) ;
2012-10-08 16:30:07 -07:00
# endif
2012-10-08 16:30:09 -07:00
# ifndef __HAVE_ARCH_PMDP_INVALIDATE
extern void pmdp_invalidate ( struct vm_area_struct * vma , unsigned long address ,
pmd_t * pmdp ) ;
# endif
2005-04-16 15:20:36 -07:00
# ifndef __HAVE_ARCH_PTE_SAME
2011-01-13 15:46:40 -08:00
static inline int pte_same ( pte_t pte_a , pte_t pte_b )
{
return pte_val ( pte_a ) = = pte_val ( pte_b ) ;
}
# endif
2013-04-17 13:59:32 +02:00
# ifndef __HAVE_ARCH_PTE_UNUSED
/*
* Some architectures provide facilities to virtualization guests
* so that they can flag allocated pages as unused . This allows the
* host to transparently reclaim unused pages . This function returns
* whether the pte ' s page is unused .
*/
static inline int pte_unused ( pte_t pte )
{
return 0 ;
}
# endif
2011-01-13 15:46:40 -08:00
# ifndef __HAVE_ARCH_PMD_SAME
# ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_same ( pmd_t pmd_a , pmd_t pmd_b )
{
return pmd_val ( pmd_a ) = = pmd_val ( pmd_b ) ;
}
# else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int pmd_same ( pmd_t pmd_a , pmd_t pmd_b )
{
BUG ( ) ;
return 0 ;
}
# endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2005-04-16 15:20:36 -07:00
# endif
# ifndef __HAVE_ARCH_PGD_OFFSET_GATE
# define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
# endif
2006-06-01 17:47:25 -07:00
# ifndef __HAVE_ARCH_MOVE_PTE
2005-09-27 21:45:18 -07:00
# define move_pte(pte, prot, old_addr, new_addr) (pte)
# endif
2012-10-09 15:31:12 +02:00
# ifndef pte_accessible
mm: fix TLB flush race between migration, and change_protection_range
There are a few subtle races, between change_protection_range (used by
mprotect and change_prot_numa) on one side, and NUMA page migration and
compaction on the other side.
The basic race is that there is a time window between when the PTE gets
made non-present (PROT_NONE or NUMA), and the TLB is flushed.
During that time, a CPU may continue writing to the page.
This is fine most of the time, however compaction or the NUMA migration
code may come in, and migrate the page away.
When that happens, the CPU may continue writing, through the cached
translation, to what is no longer the current memory location of the
process.
This only affects x86, which has a somewhat optimistic pte_accessible.
All other architectures appear to be safe, and will either always flush,
or flush whenever there is a valid mapping, even with no permissions
(SPARC).
The basic race looks like this:
CPU A CPU B CPU C
load TLB entry
make entry PTE/PMD_NUMA
fault on entry
read/write old page
start migrating page
change PTE/PMD to new page
read/write old page [*]
flush TLB
reload TLB from new entry
read/write new page
lose data
[*] the old page may belong to a new user at this point!
The obvious fix is to flush remote TLB entries, by making sure that
pte_accessible aware of the fact that PROT_NONE and PROT_NUMA memory may
still be accessible if there is a TLB flush pending for the mm.
This should fix both NUMA migration and compaction.
[mgorman@suse.de: fix build]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18 17:08:44 -08:00
# define pte_accessible(mm, pte) ((void)(pte), 1)
2012-10-09 15:31:12 +02:00
# endif
2014-06-04 16:06:30 -07:00
# ifndef pte_present_nonuma
# define pte_present_nonuma(pte) pte_present(pte)
# endif
x86, mm: Avoid unnecessary TLB flush
In x86, access and dirty bits are set automatically by CPU when CPU accesses
memory. When we go into the code path of below flush_tlb_fix_spurious_fault(),
we already set dirty bit for pte and don't need flush tlb. This might mean
tlb entry in some CPUs hasn't dirty bit set, but this doesn't matter. When
the CPUs do page write, they will automatically check the bit and no software
involved.
On the other hand, flush tlb in below position is harmful. Test creates CPU
number of threads, each thread writes to a same but random address in same vma
range and we measure the total time. Under a 4 socket system, original time is
1.96s, while with the patch, the time is 0.8s. Under a 2 socket system, there is
20% time cut too. perf shows a lot of time are taking to send ipi/handle ipi for
tlb flush.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
LKML-Reference: <20100816011655.GA362@sli10-desk.sh.intel.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Andrea Archangeli <aarcange@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-16 09:16:55 +08:00
# ifndef flush_tlb_fix_spurious_fault
# define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
# endif
2009-06-23 13:51:19 +02:00
# ifndef pgprot_noncached
# define pgprot_noncached(prot) (prot)
# endif
2008-12-18 11:41:32 -08:00
# ifndef pgprot_writecombine
# define pgprot_writecombine pgprot_noncached
# endif
2014-09-29 15:29:30 +01:00
# ifndef pgprot_device
# define pgprot_device pgprot_noncached
# endif
mm: softdirty: enable write notifications on VMAs after VM_SOFTDIRTY cleared
For VMAs that don't want write notifications, PTEs created for read faults
have their write bit set. If the read fault happens after VM_SOFTDIRTY is
cleared, then the PTE's softdirty bit will remain clear after subsequent
writes.
Here's a simple code snippet to demonstrate the bug:
char* m = mmap(NULL, getpagesize(), PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED, -1, 0);
system("echo 4 > /proc/$PPID/clear_refs"); /* clear VM_SOFTDIRTY */
assert(*m == '\0'); /* new PTE allows write access */
assert(!soft_dirty(x));
*m = 'x'; /* should dirty the page */
assert(soft_dirty(x)); /* fails */
With this patch, write notifications are enabled when VM_SOFTDIRTY is
cleared. Furthermore, to avoid unnecessary faults, write notifications
are disabled when VM_SOFTDIRTY is set.
As a side effect of enabling and disabling write notifications with
care, this patch fixes a bug in mprotect where vm_page_prot bits set by
drivers were zapped on mprotect. An analogous bug was fixed in mmap by
commit c9d0bf241451 ("mm: uncached vma support with writenotify").
Signed-off-by: Peter Feiner <pfeiner@google.com>
Reported-by: Peter Feiner <pfeiner@google.com>
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Jamie Liu <jamieliu@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-13 15:55:46 -07:00
# ifndef pgprot_modify
# define pgprot_modify pgprot_modify
static inline pgprot_t pgprot_modify ( pgprot_t oldprot , pgprot_t newprot )
{
if ( pgprot_val ( oldprot ) = = pgprot_val ( pgprot_noncached ( oldprot ) ) )
newprot = pgprot_noncached ( newprot ) ;
if ( pgprot_val ( oldprot ) = = pgprot_val ( pgprot_writecombine ( oldprot ) ) )
newprot = pgprot_writecombine ( newprot ) ;
if ( pgprot_val ( oldprot ) = = pgprot_val ( pgprot_device ( oldprot ) ) )
newprot = pgprot_device ( newprot ) ;
return newprot ;
}
# endif
2005-04-16 15:20:36 -07:00
/*
2005-04-19 13:29:17 -07:00
* When walking page tables , get the address of the next boundary ,
* or the end address of the range if that comes earlier . Although no
* vma end wraps to 0 , rounded up __boundary may wrap to 0 throughout .
2005-04-16 15:20:36 -07:00
*/
# define pgd_addr_end(addr, end) \
( { unsigned long __boundary = ( ( addr ) + PGDIR_SIZE ) & PGDIR_MASK ; \
( __boundary - 1 < ( end ) - 1 ) ? __boundary : ( end ) ; \
} )
# ifndef pud_addr_end
# define pud_addr_end(addr, end) \
( { unsigned long __boundary = ( ( addr ) + PUD_SIZE ) & PUD_MASK ; \
( __boundary - 1 < ( end ) - 1 ) ? __boundary : ( end ) ; \
} )
# endif
# ifndef pmd_addr_end
# define pmd_addr_end(addr, end) \
( { unsigned long __boundary = ( ( addr ) + PMD_SIZE ) & PMD_MASK ; \
( __boundary - 1 < ( end ) - 1 ) ? __boundary : ( end ) ; \
} )
# endif
/*
* When walking page tables , we usually want to skip any p ? d_none entries ;
* and any p ? d_bad entries - reporting the error before resetting to none .
* Do the tests inline , but report and clear the bad entry in mm / memory . c .
*/
void pgd_clear_bad ( pgd_t * ) ;
void pud_clear_bad ( pud_t * ) ;
void pmd_clear_bad ( pmd_t * ) ;
static inline int pgd_none_or_clear_bad ( pgd_t * pgd )
{
if ( pgd_none ( * pgd ) )
return 1 ;
if ( unlikely ( pgd_bad ( * pgd ) ) ) {
pgd_clear_bad ( pgd ) ;
return 1 ;
}
return 0 ;
}
static inline int pud_none_or_clear_bad ( pud_t * pud )
{
if ( pud_none ( * pud ) )
return 1 ;
if ( unlikely ( pud_bad ( * pud ) ) ) {
pud_clear_bad ( pud ) ;
return 1 ;
}
return 0 ;
}
static inline int pmd_none_or_clear_bad ( pmd_t * pmd )
{
if ( pmd_none ( * pmd ) )
return 1 ;
if ( unlikely ( pmd_bad ( * pmd ) ) ) {
pmd_clear_bad ( pmd ) ;
return 1 ;
}
return 0 ;
}
2007-08-10 13:01:20 -07:00
mm: add a ptep_modify_prot transaction abstraction
This patch adds an API for doing read-modify-write updates to a pte's
protection bits which may race against hardware updates to the pte.
After reading the pte, the hardware may asynchonously set the accessed
or dirty bits on a pte, which would be lost when writing back the
modified pte value.
The existing technique to handle this race is to use
ptep_get_and_clear() atomically fetch the old pte value and clear it
in memory. This has the effect of marking the pte as non-present,
which will prevent the hardware from updating its state. When the new
value is written back, the pte will be present again, and the hardware
can resume updating the access/dirty flags.
When running in a virtualized environment, pagetable updates are
relatively expensive, since they generally involve some trap into the
hypervisor. To mitigate the cost of these updates, we tend to batch
them.
However, because of the atomic nature of ptep_get_and_clear(), it is
inherently non-batchable. This new interface allows batching by
giving the underlying implementation enough information to open a
transaction between the read and write phases:
ptep_modify_prot_start() returns the current pte value, and puts the
pte entry into a state where either the hardware will not update the
pte, or if it does, the updates will be preserved on commit.
ptep_modify_prot_commit() writes back the updated pte, makes sure that
any hardware updates made since ptep_modify_prot_start() are
preserved.
ptep_modify_prot_start() and _commit() must be exactly paired, and
used while holding the appropriate pte lock. They do not protect
against other software updates of the pte in any way.
The current implementations of ptep_modify_prot_start and _commit are
functionally unchanged from before: _start() uses ptep_get_and_clear()
fetch the pte and zero the entry, preventing any hardware updates.
_commit() simply writes the new pte value back knowing that the
hardware has not updated the pte in the meantime.
The only current user of this interface is mprotect
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-16 04:30:00 -07:00
static inline pte_t __ptep_modify_prot_start ( struct mm_struct * mm ,
unsigned long addr ,
pte_t * ptep )
{
/*
* Get the current pte state , but zero it out to make it
* non - present , preventing the hardware from asynchronously
* updating it .
*/
return ptep_get_and_clear ( mm , addr , ptep ) ;
}
static inline void __ptep_modify_prot_commit ( struct mm_struct * mm ,
unsigned long addr ,
pte_t * ptep , pte_t pte )
{
/*
* The pte is non - present , so there ' s no hardware state to
* preserve .
*/
set_pte_at ( mm , addr , ptep , pte ) ;
}
# ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
/*
* Start a pte protection read - modify - write transaction , which
* protects against asynchronous hardware modifications to the pte .
* The intention is not to prevent the hardware from making pte
* updates , but to prevent any updates it may make from being lost .
*
* This does not protect against other software modifications of the
* pte ; the appropriate pte lock must be held over the transation .
*
* Note that this interface is intended to be batchable , meaning that
* ptep_modify_prot_commit may not actually update the pte , but merely
* queue the update to be done at some later time . The update must be
* actually committed before the pte lock is released , however .
*/
static inline pte_t ptep_modify_prot_start ( struct mm_struct * mm ,
unsigned long addr ,
pte_t * ptep )
{
return __ptep_modify_prot_start ( mm , addr , ptep ) ;
}
/*
* Commit an update to a pte , leaving any hardware - controlled bits in
* the PTE unmodified .
*/
static inline void ptep_modify_prot_commit ( struct mm_struct * mm ,
unsigned long addr ,
pte_t * ptep , pte_t pte )
{
__ptep_modify_prot_commit ( mm , addr , ptep , pte ) ;
}
# endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
2008-07-15 22:28:46 +02:00
# endif /* CONFIG_MMU */
mm: add a ptep_modify_prot transaction abstraction
This patch adds an API for doing read-modify-write updates to a pte's
protection bits which may race against hardware updates to the pte.
After reading the pte, the hardware may asynchonously set the accessed
or dirty bits on a pte, which would be lost when writing back the
modified pte value.
The existing technique to handle this race is to use
ptep_get_and_clear() atomically fetch the old pte value and clear it
in memory. This has the effect of marking the pte as non-present,
which will prevent the hardware from updating its state. When the new
value is written back, the pte will be present again, and the hardware
can resume updating the access/dirty flags.
When running in a virtualized environment, pagetable updates are
relatively expensive, since they generally involve some trap into the
hypervisor. To mitigate the cost of these updates, we tend to batch
them.
However, because of the atomic nature of ptep_get_and_clear(), it is
inherently non-batchable. This new interface allows batching by
giving the underlying implementation enough information to open a
transaction between the read and write phases:
ptep_modify_prot_start() returns the current pte value, and puts the
pte entry into a state where either the hardware will not update the
pte, or if it does, the updates will be preserved on commit.
ptep_modify_prot_commit() writes back the updated pte, makes sure that
any hardware updates made since ptep_modify_prot_start() are
preserved.
ptep_modify_prot_start() and _commit() must be exactly paired, and
used while holding the appropriate pte lock. They do not protect
against other software updates of the pte in any way.
The current implementations of ptep_modify_prot_start and _commit are
functionally unchanged from before: _start() uses ptep_get_and_clear()
fetch the pte and zero the entry, preventing any hardware updates.
_commit() simply writes the new pte value back knowing that the
hardware has not updated the pte in the meantime.
The only current user of this interface is mprotect
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-16 04:30:00 -07:00
2007-08-10 13:01:20 -07:00
/*
* A facility to provide lazy MMU batching . This allows PTE updates and
* page invalidations to be delayed until a call to leave lazy MMU mode
* is issued . Some architectures may benefit from doing this , and it is
* beneficial for both shadow and direct mode hypervisors , which may batch
* the PTE updates which happen during this window . Note that using this
* interface requires that read hazards be removed from the code . A read
* hazard could result in the direct mode hypervisor case , since the actual
* write to the page tables may not yet have taken place , so reads though
* a raw PTE pointer after it has been modified are not guaranteed to be
* up to date . This mode can only be entered and left under the protection of
* the page table locks for all page tables which may be modified . In the UP
* case , this is required so that preemption is disabled , and in the SMP case ,
* it must synchronize the delayed page table writes properly on other CPUs .
*/
# ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
# define arch_enter_lazy_mmu_mode() do {} while (0)
# define arch_leave_lazy_mmu_mode() do {} while (0)
# define arch_flush_lazy_mmu_mode() do {} while (0)
# endif
/*
2009-02-17 23:24:03 -08:00
* A facility to provide batching of the reload of page tables and
* other process state with the actual context switch code for
* paravirtualized guests . By convention , only one of the batched
* update ( lazy ) modes ( CPU , MMU ) should be active at any given time ,
* entry should never be nested , and entry and exits should always be
* paired . This is for sanity of maintaining and reasoning about the
* kernel code . In this case , the exit ( end of the context switch ) is
* in architecture - specific code , and so doesn ' t need a generic
* definition .
2007-08-10 13:01:20 -07:00
*/
2009-02-17 23:24:03 -08:00
# ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
2009-02-18 11:18:57 -08:00
# define arch_start_context_switch(prev) do {} while (0)
2007-08-10 13:01:20 -07:00
# endif
mm: soft-dirty bits for user memory changes tracking
The soft-dirty is a bit on a PTE which helps to track which pages a task
writes to. In order to do this tracking one should
1. Clear soft-dirty bits from PTEs ("echo 4 > /proc/PID/clear_refs)
2. Wait some time.
3. Read soft-dirty bits (55'th in /proc/PID/pagemap2 entries)
To do this tracking, the writable bit is cleared from PTEs when the
soft-dirty bit is. Thus, after this, when the task tries to modify a
page at some virtual address the #PF occurs and the kernel sets the
soft-dirty bit on the respective PTE.
Note, that although all the task's address space is marked as r/o after
the soft-dirty bits clear, the #PF-s that occur after that are processed
fast. This is so, since the pages are still mapped to physical memory,
and thus all the kernel does is finds this fact out and puts back
writable, dirty and soft-dirty bits on the PTE.
Another thing to note, is that when mremap moves PTEs they are marked
with soft-dirty as well, since from the user perspective mremap modifies
the virtual memory at mremap's new address.
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 15:01:20 -07:00
# ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline int pte_soft_dirty ( pte_t pte )
{
return 0 ;
}
static inline int pmd_soft_dirty ( pmd_t pmd )
{
return 0 ;
}
static inline pte_t pte_mksoft_dirty ( pte_t pte )
{
return pte ;
}
static inline pmd_t pmd_mksoft_dirty ( pmd_t pmd )
{
return pmd ;
}
2013-08-13 16:00:49 -07:00
static inline pte_t pte_swp_mksoft_dirty ( pte_t pte )
{
return pte ;
}
static inline int pte_swp_soft_dirty ( pte_t pte )
{
return 0 ;
}
static inline pte_t pte_swp_clear_soft_dirty ( pte_t pte )
{
return pte ;
}
2013-08-13 16:00:51 -07:00
static inline pte_t pte_file_clear_soft_dirty ( pte_t pte )
{
return pte ;
}
static inline pte_t pte_file_mksoft_dirty ( pte_t pte )
{
return pte ;
}
static inline int pte_file_soft_dirty ( pte_t pte )
{
return 0 ;
}
mm: soft-dirty bits for user memory changes tracking
The soft-dirty is a bit on a PTE which helps to track which pages a task
writes to. In order to do this tracking one should
1. Clear soft-dirty bits from PTEs ("echo 4 > /proc/PID/clear_refs)
2. Wait some time.
3. Read soft-dirty bits (55'th in /proc/PID/pagemap2 entries)
To do this tracking, the writable bit is cleared from PTEs when the
soft-dirty bit is. Thus, after this, when the task tries to modify a
page at some virtual address the #PF occurs and the kernel sets the
soft-dirty bit on the respective PTE.
Note, that although all the task's address space is marked as r/o after
the soft-dirty bits clear, the #PF-s that occur after that are processed
fast. This is so, since the pages are still mapped to physical memory,
and thus all the kernel does is finds this fact out and puts back
writable, dirty and soft-dirty bits on the PTE.
Another thing to note, is that when mremap moves PTEs they are marked
with soft-dirty as well, since from the user perspective mremap modifies
the virtual memory at mremap's new address.
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 15:01:20 -07:00
# endif
2008-12-19 13:47:29 -08:00
# ifndef __HAVE_PFNMAP_TRACKING
/*
2012-10-08 16:28:29 -07:00
* Interfaces that can be used by architecture code to keep track of
* memory type of pfn mappings specified by the remap_pfn_range ,
* vm_insert_pfn .
*/
/*
* track_pfn_remap is called when a _new_ pfn mapping is being established
* by remap_pfn_range ( ) for physical range indicated by pfn and size .
2008-12-19 13:47:29 -08:00
*/
2012-10-08 16:28:29 -07:00
static inline int track_pfn_remap ( struct vm_area_struct * vma , pgprot_t * prot ,
2012-10-08 16:28:34 -07:00
unsigned long pfn , unsigned long addr ,
unsigned long size )
2008-12-19 13:47:29 -08:00
{
return 0 ;
}
/*
2012-10-08 16:28:29 -07:00
* track_pfn_insert is called when a _new_ single pfn is established
* by vm_insert_pfn ( ) .
*/
static inline int track_pfn_insert ( struct vm_area_struct * vma , pgprot_t * prot ,
unsigned long pfn )
{
return 0 ;
}
/*
* track_pfn_copy is called when vma that is covering the pfnmap gets
2008-12-19 13:47:29 -08:00
* copied through copy_page_range ( ) .
*/
2012-10-08 16:28:29 -07:00
static inline int track_pfn_copy ( struct vm_area_struct * vma )
2008-12-19 13:47:29 -08:00
{
return 0 ;
}
/*
* untrack_pfn_vma is called while unmapping a pfnmap for a region .
* untrack can be called for a specific region indicated by pfn and size or
2012-10-08 16:28:29 -07:00
* can be for the entire vma ( in which case pfn , size are zero ) .
2008-12-19 13:47:29 -08:00
*/
2012-10-08 16:28:29 -07:00
static inline void untrack_pfn ( struct vm_area_struct * vma ,
unsigned long pfn , unsigned long size )
2008-12-19 13:47:29 -08:00
{
}
# else
2012-10-08 16:28:29 -07:00
extern int track_pfn_remap ( struct vm_area_struct * vma , pgprot_t * prot ,
2012-10-08 16:28:34 -07:00
unsigned long pfn , unsigned long addr ,
unsigned long size ) ;
2012-10-08 16:28:29 -07:00
extern int track_pfn_insert ( struct vm_area_struct * vma , pgprot_t * prot ,
unsigned long pfn ) ;
extern int track_pfn_copy ( struct vm_area_struct * vma ) ;
extern void untrack_pfn ( struct vm_area_struct * vma , unsigned long pfn ,
unsigned long size ) ;
2008-12-19 13:47:29 -08:00
# endif
2012-12-12 13:52:36 -08:00
# ifdef __HAVE_COLOR_ZERO_PAGE
static inline int is_zero_pfn ( unsigned long pfn )
{
extern unsigned long zero_pfn ;
unsigned long offset_from_zero_pfn = pfn - zero_pfn ;
return offset_from_zero_pfn < = ( zero_page_mask > > PAGE_SHIFT ) ;
}
2012-12-26 03:19:55 +03:00
# define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
2012-12-12 13:52:36 -08:00
# else
static inline int is_zero_pfn ( unsigned long pfn )
{
extern unsigned long zero_pfn ;
return pfn = = zero_pfn ;
}
static inline unsigned long my_zero_pfn ( unsigned long addr )
{
extern unsigned long zero_pfn ;
return zero_pfn ;
}
# endif
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:42 -07:00
# ifdef CONFIG_MMU
2011-01-13 15:46:40 -08:00
# ifndef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge ( pmd_t pmd )
{
return 0 ;
}
static inline int pmd_trans_splitting ( pmd_t pmd )
{
return 0 ;
}
2011-01-13 15:46:40 -08:00
# ifndef __HAVE_ARCH_PMD_WRITE
static inline int pmd_write ( pmd_t pmd )
{
BUG ( ) ;
return 0 ;
}
# endif /* __HAVE_ARCH_PMD_WRITE */
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:42 -07:00
# endif /* CONFIG_TRANSPARENT_HUGEPAGE */
mm: pmd_read_atomic: fix 32bit PAE pmd walk vs pmd_populate SMP race condition
When holding the mmap_sem for reading, pmd_offset_map_lock should only
run on a pmd_t that has been read atomically from the pmdp pointer,
otherwise we may read only half of it leading to this crash.
PID: 11679 TASK: f06e8000 CPU: 3 COMMAND: "do_race_2_panic"
#0 [f06a9dd8] crash_kexec at c049b5ec
#1 [f06a9e2c] oops_end at c083d1c2
#2 [f06a9e40] no_context at c0433ded
#3 [f06a9e64] bad_area_nosemaphore at c043401a
#4 [f06a9e6c] __do_page_fault at c0434493
#5 [f06a9eec] do_page_fault at c083eb45
#6 [f06a9f04] error_code (via page_fault) at c083c5d5
EAX: 01fb470c EBX: fff35000 ECX: 00000003 EDX: 00000100 EBP:
00000000
DS: 007b ESI: 9e201000 ES: 007b EDI: 01fb4700 GS: 00e0
CS: 0060 EIP: c083bc14 ERR: ffffffff EFLAGS: 00010246
#7 [f06a9f38] _spin_lock at c083bc14
#8 [f06a9f44] sys_mincore at c0507b7d
#9 [f06a9fb0] system_call at c083becd
start len
EAX: ffffffda EBX: 9e200000 ECX: 00001000 EDX: 6228537f
DS: 007b ESI: 00000000 ES: 007b EDI: 003d0f00
SS: 007b ESP: 62285354 EBP: 62285388 GS: 0033
CS: 0073 EIP: 00291416 ERR: 000000da EFLAGS: 00000286
This should be a longstanding bug affecting x86 32bit PAE without THP.
Only archs with 64bit large pmd_t and 32bit unsigned long should be
affected.
With THP enabled the barrier() in pmd_none_or_trans_huge_or_clear_bad()
would partly hide the bug when the pmd transition from none to stable,
by forcing a re-read of the *pmd in pmd_offset_map_lock, but when THP is
enabled a new set of problem arises by the fact could then transition
freely in any of the none, pmd_trans_huge or pmd_trans_stable states.
So making the barrier in pmd_none_or_trans_huge_or_clear_bad()
unconditional isn't good idea and it would be a flakey solution.
This should be fully fixed by introducing a pmd_read_atomic that reads
the pmd in order with THP disabled, or by reading the pmd atomically
with cmpxchg8b with THP enabled.
Luckily this new race condition only triggers in the places that must
already be covered by pmd_none_or_trans_huge_or_clear_bad() so the fix
is localized there but this bug is not related to THP.
NOTE: this can trigger on x86 32bit systems with PAE enabled with more
than 4G of ram, otherwise the high part of the pmd will never risk to be
truncated because it would be zero at all times, in turn so hiding the
SMP race.
This bug was discovered and fully debugged by Ulrich, quote:
----
[..]
pmd_none_or_trans_huge_or_clear_bad() loads the content of edx and
eax.
496 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t
*pmd)
497 {
498 /* depend on compiler for an atomic pmd read */
499 pmd_t pmdval = *pmd;
// edi = pmd pointer
0xc0507a74 <sys_mincore+548>: mov 0x8(%esp),%edi
...
// edx = PTE page table high address
0xc0507a84 <sys_mincore+564>: mov 0x4(%edi),%edx
...
// eax = PTE page table low address
0xc0507a8e <sys_mincore+574>: mov (%edi),%eax
[..]
Please note that the PMD is not read atomically. These are two "mov"
instructions where the high order bits of the PMD entry are fetched
first. Hence, the above machine code is prone to the following race.
- The PMD entry {high|low} is 0x0000000000000000.
The "mov" at 0xc0507a84 loads 0x00000000 into edx.
- A page fault (on another CPU) sneaks in between the two "mov"
instructions and instantiates the PMD.
- The PMD entry {high|low} is now 0x00000003fda38067.
The "mov" at 0xc0507a8e loads 0xfda38067 into eax.
----
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Petr Matousek <pmatouse@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 15:06:49 -07:00
# ifndef pmd_read_atomic
static inline pmd_t pmd_read_atomic ( pmd_t * pmdp )
{
/*
* Depend on compiler for an atomic pmd read . NOTE : this is
* only going to work , if the pmdval_t isn ' t larger than
* an unsigned long .
*/
return * pmdp ;
}
# endif
2014-01-13 11:34:24 +05:30
# ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw ( spinlock_t * new_pmd_ptl ,
spinlock_t * old_pmd_ptl )
{
/*
* With split pmd lock we also need to move preallocated
* PTE page table if new_pmd is on different PMD page table .
*/
return new_pmd_ptl ! = old_pmd_ptl ;
}
# endif
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:42 -07:00
/*
* This function is meant to be used by sites walking pagetables with
* the mmap_sem hold in read mode to protect against MADV_DONTNEED and
* transhuge page faults . MADV_DONTNEED can convert a transhuge pmd
* into a null pmd and the transhuge page fault can convert a null pmd
* into an hugepmd or into a regular pmd ( if the hugepage allocation
* fails ) . While holding the mmap_sem in read mode the pmd becomes
* stable and stops changing under us only if it ' s not null and not a
* transhuge pmd . When those races occurs and this function makes a
* difference vs the standard pmd_none_or_clear_bad , the result is
* undefined so behaving like if the pmd was none is safe ( because it
* can return none anyway ) . The compiler level barrier ( ) is critically
* important to compute the two checks atomically on the same pmdval .
mm: pmd_read_atomic: fix 32bit PAE pmd walk vs pmd_populate SMP race condition
When holding the mmap_sem for reading, pmd_offset_map_lock should only
run on a pmd_t that has been read atomically from the pmdp pointer,
otherwise we may read only half of it leading to this crash.
PID: 11679 TASK: f06e8000 CPU: 3 COMMAND: "do_race_2_panic"
#0 [f06a9dd8] crash_kexec at c049b5ec
#1 [f06a9e2c] oops_end at c083d1c2
#2 [f06a9e40] no_context at c0433ded
#3 [f06a9e64] bad_area_nosemaphore at c043401a
#4 [f06a9e6c] __do_page_fault at c0434493
#5 [f06a9eec] do_page_fault at c083eb45
#6 [f06a9f04] error_code (via page_fault) at c083c5d5
EAX: 01fb470c EBX: fff35000 ECX: 00000003 EDX: 00000100 EBP:
00000000
DS: 007b ESI: 9e201000 ES: 007b EDI: 01fb4700 GS: 00e0
CS: 0060 EIP: c083bc14 ERR: ffffffff EFLAGS: 00010246
#7 [f06a9f38] _spin_lock at c083bc14
#8 [f06a9f44] sys_mincore at c0507b7d
#9 [f06a9fb0] system_call at c083becd
start len
EAX: ffffffda EBX: 9e200000 ECX: 00001000 EDX: 6228537f
DS: 007b ESI: 00000000 ES: 007b EDI: 003d0f00
SS: 007b ESP: 62285354 EBP: 62285388 GS: 0033
CS: 0073 EIP: 00291416 ERR: 000000da EFLAGS: 00000286
This should be a longstanding bug affecting x86 32bit PAE without THP.
Only archs with 64bit large pmd_t and 32bit unsigned long should be
affected.
With THP enabled the barrier() in pmd_none_or_trans_huge_or_clear_bad()
would partly hide the bug when the pmd transition from none to stable,
by forcing a re-read of the *pmd in pmd_offset_map_lock, but when THP is
enabled a new set of problem arises by the fact could then transition
freely in any of the none, pmd_trans_huge or pmd_trans_stable states.
So making the barrier in pmd_none_or_trans_huge_or_clear_bad()
unconditional isn't good idea and it would be a flakey solution.
This should be fully fixed by introducing a pmd_read_atomic that reads
the pmd in order with THP disabled, or by reading the pmd atomically
with cmpxchg8b with THP enabled.
Luckily this new race condition only triggers in the places that must
already be covered by pmd_none_or_trans_huge_or_clear_bad() so the fix
is localized there but this bug is not related to THP.
NOTE: this can trigger on x86 32bit systems with PAE enabled with more
than 4G of ram, otherwise the high part of the pmd will never risk to be
truncated because it would be zero at all times, in turn so hiding the
SMP race.
This bug was discovered and fully debugged by Ulrich, quote:
----
[..]
pmd_none_or_trans_huge_or_clear_bad() loads the content of edx and
eax.
496 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t
*pmd)
497 {
498 /* depend on compiler for an atomic pmd read */
499 pmd_t pmdval = *pmd;
// edi = pmd pointer
0xc0507a74 <sys_mincore+548>: mov 0x8(%esp),%edi
...
// edx = PTE page table high address
0xc0507a84 <sys_mincore+564>: mov 0x4(%edi),%edx
...
// eax = PTE page table low address
0xc0507a8e <sys_mincore+574>: mov (%edi),%eax
[..]
Please note that the PMD is not read atomically. These are two "mov"
instructions where the high order bits of the PMD entry are fetched
first. Hence, the above machine code is prone to the following race.
- The PMD entry {high|low} is 0x0000000000000000.
The "mov" at 0xc0507a84 loads 0x00000000 into edx.
- A page fault (on another CPU) sneaks in between the two "mov"
instructions and instantiates the PMD.
- The PMD entry {high|low} is now 0x00000003fda38067.
The "mov" at 0xc0507a8e loads 0xfda38067 into eax.
----
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Petr Matousek <pmatouse@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 15:06:49 -07:00
*
* For 32 bit kernels with a 64 bit large pmd_t this automatically takes
* care of reading the pmd atomically to avoid SMP race conditions
* against pmd_populate ( ) when the mmap_sem is hold for reading by the
* caller ( a special atomic read not done by " gcc " as in the generic
* version above , is also needed when THP is disabled because the page
* fault can populate the pmd from under us ) .
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:42 -07:00
*/
static inline int pmd_none_or_trans_huge_or_clear_bad ( pmd_t * pmd )
{
mm: pmd_read_atomic: fix 32bit PAE pmd walk vs pmd_populate SMP race condition
When holding the mmap_sem for reading, pmd_offset_map_lock should only
run on a pmd_t that has been read atomically from the pmdp pointer,
otherwise we may read only half of it leading to this crash.
PID: 11679 TASK: f06e8000 CPU: 3 COMMAND: "do_race_2_panic"
#0 [f06a9dd8] crash_kexec at c049b5ec
#1 [f06a9e2c] oops_end at c083d1c2
#2 [f06a9e40] no_context at c0433ded
#3 [f06a9e64] bad_area_nosemaphore at c043401a
#4 [f06a9e6c] __do_page_fault at c0434493
#5 [f06a9eec] do_page_fault at c083eb45
#6 [f06a9f04] error_code (via page_fault) at c083c5d5
EAX: 01fb470c EBX: fff35000 ECX: 00000003 EDX: 00000100 EBP:
00000000
DS: 007b ESI: 9e201000 ES: 007b EDI: 01fb4700 GS: 00e0
CS: 0060 EIP: c083bc14 ERR: ffffffff EFLAGS: 00010246
#7 [f06a9f38] _spin_lock at c083bc14
#8 [f06a9f44] sys_mincore at c0507b7d
#9 [f06a9fb0] system_call at c083becd
start len
EAX: ffffffda EBX: 9e200000 ECX: 00001000 EDX: 6228537f
DS: 007b ESI: 00000000 ES: 007b EDI: 003d0f00
SS: 007b ESP: 62285354 EBP: 62285388 GS: 0033
CS: 0073 EIP: 00291416 ERR: 000000da EFLAGS: 00000286
This should be a longstanding bug affecting x86 32bit PAE without THP.
Only archs with 64bit large pmd_t and 32bit unsigned long should be
affected.
With THP enabled the barrier() in pmd_none_or_trans_huge_or_clear_bad()
would partly hide the bug when the pmd transition from none to stable,
by forcing a re-read of the *pmd in pmd_offset_map_lock, but when THP is
enabled a new set of problem arises by the fact could then transition
freely in any of the none, pmd_trans_huge or pmd_trans_stable states.
So making the barrier in pmd_none_or_trans_huge_or_clear_bad()
unconditional isn't good idea and it would be a flakey solution.
This should be fully fixed by introducing a pmd_read_atomic that reads
the pmd in order with THP disabled, or by reading the pmd atomically
with cmpxchg8b with THP enabled.
Luckily this new race condition only triggers in the places that must
already be covered by pmd_none_or_trans_huge_or_clear_bad() so the fix
is localized there but this bug is not related to THP.
NOTE: this can trigger on x86 32bit systems with PAE enabled with more
than 4G of ram, otherwise the high part of the pmd will never risk to be
truncated because it would be zero at all times, in turn so hiding the
SMP race.
This bug was discovered and fully debugged by Ulrich, quote:
----
[..]
pmd_none_or_trans_huge_or_clear_bad() loads the content of edx and
eax.
496 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t
*pmd)
497 {
498 /* depend on compiler for an atomic pmd read */
499 pmd_t pmdval = *pmd;
// edi = pmd pointer
0xc0507a74 <sys_mincore+548>: mov 0x8(%esp),%edi
...
// edx = PTE page table high address
0xc0507a84 <sys_mincore+564>: mov 0x4(%edi),%edx
...
// eax = PTE page table low address
0xc0507a8e <sys_mincore+574>: mov (%edi),%eax
[..]
Please note that the PMD is not read atomically. These are two "mov"
instructions where the high order bits of the PMD entry are fetched
first. Hence, the above machine code is prone to the following race.
- The PMD entry {high|low} is 0x0000000000000000.
The "mov" at 0xc0507a84 loads 0x00000000 into edx.
- A page fault (on another CPU) sneaks in between the two "mov"
instructions and instantiates the PMD.
- The PMD entry {high|low} is now 0x00000003fda38067.
The "mov" at 0xc0507a8e loads 0xfda38067 into eax.
----
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Petr Matousek <pmatouse@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 15:06:49 -07:00
pmd_t pmdval = pmd_read_atomic ( pmd ) ;
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:42 -07:00
/*
* The barrier will stabilize the pmdval in a register or on
* the stack so that it will stop changing under the code .
2012-06-20 12:52:57 -07:00
*
* When CONFIG_TRANSPARENT_HUGEPAGE = y on x86 32 bit PAE ,
* pmd_read_atomic is allowed to return a not atomic pmdval
* ( for example pointing to an hugepage that has never been
* mapped in the pmd ) . The below checks will only care about
* the low part of the pmd with 32 bit PAE x86 anyway , with the
* exception of pmd_none ( ) . So the important thing is that if
* the low part of the pmd is found null , the high part will
* be also null or the pmd_none ( ) check below would be
* confused .
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:42 -07:00
*/
# ifdef CONFIG_TRANSPARENT_HUGEPAGE
barrier ( ) ;
# endif
2013-12-20 15:10:03 +02:00
if ( pmd_none ( pmdval ) | | pmd_trans_huge ( pmdval ) )
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:42 -07:00
return 1 ;
if ( unlikely ( pmd_bad ( pmdval ) ) ) {
2013-12-20 15:10:03 +02:00
pmd_clear_bad ( pmd ) ;
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:42 -07:00
return 1 ;
}
return 0 ;
}
/*
* This is a noop if Transparent Hugepage Support is not built into
* the kernel . Otherwise it is equivalent to
* pmd_none_or_trans_huge_or_clear_bad ( ) , and shall only be called in
* places that already verified the pmd is not none and they want to
* walk ptes while holding the mmap sem in read mode ( write mode don ' t
* need this ) . If THP is not enabled , the pmd can ' t go away under the
* code even if MADV_DONTNEED runs , but if THP is enabled we need to
* run a pmd_trans_unstable before walking the ptes after
* split_huge_page_pmd returns ( because it may have run when the pmd
* become null , but then a page fault can map in a THP and not a
* regular page ) .
*/
static inline int pmd_trans_unstable ( pmd_t * pmd )
{
# ifdef CONFIG_TRANSPARENT_HUGEPAGE
return pmd_none_or_trans_huge_or_clear_bad ( pmd ) ;
# else
return 0 ;
2011-01-13 15:46:40 -08:00
# endif
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:42 -07:00
}
2012-10-04 01:50:47 +02:00
# ifdef CONFIG_NUMA_BALANCING
/*
2014-10-09 15:26:33 -07:00
* _PAGE_NUMA distinguishes between an unmapped page table entry , an entry that
* is protected for PROT_NONE and a NUMA hinting fault entry . If the
* architecture defines __PAGE_PROTNONE then it should take that into account
* but those that do not can rely on the fact that the NUMA hinting scanner
* skips inaccessible VMAs .
2012-10-04 01:50:47 +02:00
*
* pte / pmd_present ( ) returns true if pte / pmd_numa returns true . Page
* fault triggers on those regions if pte / pmd_numa returns true
* ( because _PAGE_PRESENT is not set ) .
*/
# ifndef pte_numa
static inline int pte_numa ( pte_t pte )
{
2014-10-09 15:26:33 -07:00
return ptenuma_flags ( pte ) = = _PAGE_NUMA ;
2012-10-04 01:50:47 +02:00
}
# endif
# ifndef pmd_numa
static inline int pmd_numa ( pmd_t pmd )
{
2014-10-09 15:26:33 -07:00
return pmdnuma_flags ( pmd ) = = _PAGE_NUMA ;
2012-10-04 01:50:47 +02:00
}
# endif
/*
* pte / pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
* because they ' re called by the NUMA hinting minor page fault . If we
* wouldn ' t set the _PAGE_ACCESSED bitflag here , the TLB miss handler
* would be forced to set it later while filling the TLB after we
* return to userland . That would trigger a second write to memory
* that we optimize away by setting _PAGE_ACCESSED here .
*/
# ifndef pte_mknonnuma
static inline pte_t pte_mknonnuma ( pte_t pte )
{
2014-04-18 15:07:21 -07:00
pteval_t val = pte_val ( pte ) ;
val & = ~ _PAGE_NUMA ;
val | = ( _PAGE_PRESENT | _PAGE_ACCESSED ) ;
return __pte ( val ) ;
2012-10-04 01:50:47 +02:00
}
# endif
# ifndef pmd_mknonnuma
static inline pmd_t pmd_mknonnuma ( pmd_t pmd )
{
2014-04-18 15:07:21 -07:00
pmdval_t val = pmd_val ( pmd ) ;
val & = ~ _PAGE_NUMA ;
val | = ( _PAGE_PRESENT | _PAGE_ACCESSED ) ;
return __pmd ( val ) ;
2012-10-04 01:50:47 +02:00
}
# endif
# ifndef pte_mknuma
static inline pte_t pte_mknuma ( pte_t pte )
{
2014-04-18 15:07:21 -07:00
pteval_t val = pte_val ( pte ) ;
2014-10-09 15:26:33 -07:00
VM_BUG_ON ( ! ( val & _PAGE_PRESENT ) ) ;
2014-04-18 15:07:21 -07:00
val & = ~ _PAGE_PRESENT ;
val | = _PAGE_NUMA ;
return __pte ( val ) ;
2012-10-04 01:50:47 +02:00
}
# endif
2014-02-12 09:13:38 +05:30
# ifndef ptep_set_numa
static inline void ptep_set_numa ( struct mm_struct * mm , unsigned long addr ,
pte_t * ptep )
{
pte_t ptent = * ptep ;
ptent = pte_mknuma ( ptent ) ;
set_pte_at ( mm , addr , ptep , ptent ) ;
return ;
}
# endif
2012-10-04 01:50:47 +02:00
# ifndef pmd_mknuma
static inline pmd_t pmd_mknuma ( pmd_t pmd )
{
2014-04-18 15:07:21 -07:00
pmdval_t val = pmd_val ( pmd ) ;
val & = ~ _PAGE_PRESENT ;
val | = _PAGE_NUMA ;
return __pmd ( val ) ;
2012-10-04 01:50:47 +02:00
}
# endif
2014-02-12 09:13:38 +05:30
# ifndef pmdp_set_numa
static inline void pmdp_set_numa ( struct mm_struct * mm , unsigned long addr ,
pmd_t * pmdp )
{
pmd_t pmd = * pmdp ;
pmd = pmd_mknuma ( pmd ) ;
set_pmd_at ( mm , addr , pmdp , pmd ) ;
return ;
}
# endif
2012-10-04 01:50:47 +02:00
# else
static inline int pmd_numa ( pmd_t pmd )
{
return 0 ;
}
static inline int pte_numa ( pte_t pte )
{
return 0 ;
}
static inline pte_t pte_mknonnuma ( pte_t pte )
{
return pte ;
}
static inline pmd_t pmd_mknonnuma ( pmd_t pmd )
{
return pmd ;
}
static inline pte_t pte_mknuma ( pte_t pte )
{
return pte ;
}
2014-02-12 09:13:38 +05:30
static inline void ptep_set_numa ( struct mm_struct * mm , unsigned long addr ,
pte_t * ptep )
{
return ;
}
2012-10-04 01:50:47 +02:00
static inline pmd_t pmd_mknuma ( pmd_t pmd )
{
return pmd ;
}
2014-02-12 09:13:38 +05:30
static inline void pmdp_set_numa ( struct mm_struct * mm , unsigned long addr ,
pmd_t * pmdp )
{
return ;
}
2012-10-04 01:50:47 +02:00
# endif /* CONFIG_NUMA_BALANCING */
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 16:33:42 -07:00
# endif /* CONFIG_MMU */
2011-01-13 15:46:40 -08:00
2005-04-16 15:20:36 -07:00
# endif /* !__ASSEMBLY__ */
2013-05-11 12:13:10 -04:00
# ifndef io_remap_pfn_range
# define io_remap_pfn_range remap_pfn_range
# endif
2005-04-16 15:20:36 -07:00
# endif /* _ASM_GENERIC_PGTABLE_H */