linux/fs/btrfs/qgroup.c

4453 lines
116 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2011 STRATO. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/btrfs.h>
#include <linux/sched/mm.h>
#include "ctree.h"
#include "transaction.h"
#include "disk-io.h"
#include "locking.h"
#include "ulist.h"
#include "backref.h"
#include "extent_io.h"
Btrfs: rework qgroup accounting Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-13 17:30:47 -07:00
#include "qgroup.h"
#include "block-group.h"
#include "sysfs.h"
#include "tree-mod-log.h"
#include "fs.h"
#include "accessors.h"
#include "extent-tree.h"
#include "root-tree.h"
#include "tree-checker.h"
/*
* Helpers to access qgroup reservation
*
* Callers should ensure the lock context and type are valid
*/
static u64 qgroup_rsv_total(const struct btrfs_qgroup *qgroup)
{
u64 ret = 0;
int i;
for (i = 0; i < BTRFS_QGROUP_RSV_LAST; i++)
ret += qgroup->rsv.values[i];
return ret;
}
#ifdef CONFIG_BTRFS_DEBUG
static const char *qgroup_rsv_type_str(enum btrfs_qgroup_rsv_type type)
{
if (type == BTRFS_QGROUP_RSV_DATA)
return "data";
if (type == BTRFS_QGROUP_RSV_META_PERTRANS)
return "meta_pertrans";
if (type == BTRFS_QGROUP_RSV_META_PREALLOC)
return "meta_prealloc";
return NULL;
}
#endif
static void qgroup_rsv_add(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup, u64 num_bytes,
enum btrfs_qgroup_rsv_type type)
{
trace_qgroup_update_reserve(fs_info, qgroup, num_bytes, type);
qgroup->rsv.values[type] += num_bytes;
}
static void qgroup_rsv_release(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup, u64 num_bytes,
enum btrfs_qgroup_rsv_type type)
{
trace_qgroup_update_reserve(fs_info, qgroup, -(s64)num_bytes, type);
if (qgroup->rsv.values[type] >= num_bytes) {
qgroup->rsv.values[type] -= num_bytes;
return;
}
#ifdef CONFIG_BTRFS_DEBUG
WARN_RATELIMIT(1,
"qgroup %llu %s reserved space underflow, have %llu to free %llu",
qgroup->qgroupid, qgroup_rsv_type_str(type),
qgroup->rsv.values[type], num_bytes);
#endif
qgroup->rsv.values[type] = 0;
}
static void qgroup_rsv_add_by_qgroup(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *dest,
struct btrfs_qgroup *src)
{
int i;
for (i = 0; i < BTRFS_QGROUP_RSV_LAST; i++)
qgroup_rsv_add(fs_info, dest, src->rsv.values[i], i);
}
static void qgroup_rsv_release_by_qgroup(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *dest,
struct btrfs_qgroup *src)
{
int i;
for (i = 0; i < BTRFS_QGROUP_RSV_LAST; i++)
qgroup_rsv_release(fs_info, dest, src->rsv.values[i], i);
}
static void btrfs_qgroup_update_old_refcnt(struct btrfs_qgroup *qg, u64 seq,
int mod)
{
if (qg->old_refcnt < seq)
qg->old_refcnt = seq;
qg->old_refcnt += mod;
}
static void btrfs_qgroup_update_new_refcnt(struct btrfs_qgroup *qg, u64 seq,
int mod)
{
if (qg->new_refcnt < seq)
qg->new_refcnt = seq;
qg->new_refcnt += mod;
}
static inline u64 btrfs_qgroup_get_old_refcnt(struct btrfs_qgroup *qg, u64 seq)
{
if (qg->old_refcnt < seq)
return 0;
return qg->old_refcnt - seq;
}
static inline u64 btrfs_qgroup_get_new_refcnt(struct btrfs_qgroup *qg, u64 seq)
{
if (qg->new_refcnt < seq)
return 0;
return qg->new_refcnt - seq;
}
/*
* glue structure to represent the relations between qgroups.
*/
struct btrfs_qgroup_list {
struct list_head next_group;
struct list_head next_member;
struct btrfs_qgroup *group;
struct btrfs_qgroup *member;
};
static inline u64 qgroup_to_aux(struct btrfs_qgroup *qg)
{
return (u64)(uintptr_t)qg;
}
static inline struct btrfs_qgroup* unode_aux_to_qgroup(struct ulist_node *n)
{
return (struct btrfs_qgroup *)(uintptr_t)n->aux;
}
Btrfs: rework qgroup accounting Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-13 17:30:47 -07:00
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
static int
qgroup_rescan_init(struct btrfs_fs_info *fs_info, u64 progress_objectid,
int init_flags);
static void qgroup_rescan_zero_tracking(struct btrfs_fs_info *fs_info);
/* must be called with qgroup_ioctl_lock held */
static struct btrfs_qgroup *find_qgroup_rb(struct btrfs_fs_info *fs_info,
u64 qgroupid)
{
struct rb_node *n = fs_info->qgroup_tree.rb_node;
struct btrfs_qgroup *qgroup;
while (n) {
qgroup = rb_entry(n, struct btrfs_qgroup, node);
if (qgroup->qgroupid < qgroupid)
n = n->rb_left;
else if (qgroup->qgroupid > qgroupid)
n = n->rb_right;
else
return qgroup;
}
return NULL;
}
/* must be called with qgroup_lock held */
static struct btrfs_qgroup *add_qgroup_rb(struct btrfs_fs_info *fs_info,
u64 qgroupid)
{
struct rb_node **p = &fs_info->qgroup_tree.rb_node;
struct rb_node *parent = NULL;
struct btrfs_qgroup *qgroup;
while (*p) {
parent = *p;
qgroup = rb_entry(parent, struct btrfs_qgroup, node);
if (qgroup->qgroupid < qgroupid)
p = &(*p)->rb_left;
else if (qgroup->qgroupid > qgroupid)
p = &(*p)->rb_right;
else
return qgroup;
}
qgroup = kzalloc(sizeof(*qgroup), GFP_ATOMIC);
if (!qgroup)
return ERR_PTR(-ENOMEM);
qgroup->qgroupid = qgroupid;
INIT_LIST_HEAD(&qgroup->groups);
INIT_LIST_HEAD(&qgroup->members);
INIT_LIST_HEAD(&qgroup->dirty);
rb_link_node(&qgroup->node, parent, p);
rb_insert_color(&qgroup->node, &fs_info->qgroup_tree);
return qgroup;
}
static void __del_qgroup_rb(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup)
{
struct btrfs_qgroup_list *list;
list_del(&qgroup->dirty);
while (!list_empty(&qgroup->groups)) {
list = list_first_entry(&qgroup->groups,
struct btrfs_qgroup_list, next_group);
list_del(&list->next_group);
list_del(&list->next_member);
kfree(list);
}
while (!list_empty(&qgroup->members)) {
list = list_first_entry(&qgroup->members,
struct btrfs_qgroup_list, next_member);
list_del(&list->next_group);
list_del(&list->next_member);
kfree(list);
}
}
/* must be called with qgroup_lock held */
static int del_qgroup_rb(struct btrfs_fs_info *fs_info, u64 qgroupid)
{
struct btrfs_qgroup *qgroup = find_qgroup_rb(fs_info, qgroupid);
if (!qgroup)
return -ENOENT;
rb_erase(&qgroup->node, &fs_info->qgroup_tree);
__del_qgroup_rb(fs_info, qgroup);
return 0;
}
/*
* Add relation specified by two qgroups.
*
* Must be called with qgroup_lock held.
*
* Return: 0 on success
* -ENOENT if one of the qgroups is NULL
* <0 other errors
*/
static int __add_relation_rb(struct btrfs_qgroup *member, struct btrfs_qgroup *parent)
{
struct btrfs_qgroup_list *list;
if (!member || !parent)
return -ENOENT;
list = kzalloc(sizeof(*list), GFP_ATOMIC);
if (!list)
return -ENOMEM;
list->group = parent;
list->member = member;
list_add_tail(&list->next_group, &member->groups);
list_add_tail(&list->next_member, &parent->members);
return 0;
}
/*
* Add relation specified by two qgroup ids.
*
* Must be called with qgroup_lock held.
*
* Return: 0 on success
* -ENOENT if one of the ids does not exist
* <0 other errors
*/
static int add_relation_rb(struct btrfs_fs_info *fs_info, u64 memberid, u64 parentid)
{
struct btrfs_qgroup *member;
struct btrfs_qgroup *parent;
member = find_qgroup_rb(fs_info, memberid);
parent = find_qgroup_rb(fs_info, parentid);
return __add_relation_rb(member, parent);
}
/* Must be called with qgroup_lock held */
static int del_relation_rb(struct btrfs_fs_info *fs_info,
u64 memberid, u64 parentid)
{
struct btrfs_qgroup *member;
struct btrfs_qgroup *parent;
struct btrfs_qgroup_list *list;
member = find_qgroup_rb(fs_info, memberid);
parent = find_qgroup_rb(fs_info, parentid);
if (!member || !parent)
return -ENOENT;
list_for_each_entry(list, &member->groups, next_group) {
if (list->group == parent) {
list_del(&list->next_group);
list_del(&list->next_member);
kfree(list);
return 0;
}
}
return -ENOENT;
}
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
int btrfs_verify_qgroup_counts(struct btrfs_fs_info *fs_info, u64 qgroupid,
u64 rfer, u64 excl)
{
struct btrfs_qgroup *qgroup;
qgroup = find_qgroup_rb(fs_info, qgroupid);
if (!qgroup)
return -EINVAL;
if (qgroup->rfer != rfer || qgroup->excl != excl)
return -EINVAL;
return 0;
}
#endif
static void qgroup_mark_inconsistent(struct btrfs_fs_info *fs_info)
{
fs_info->qgroup_flags |= (BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT |
BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN |
BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING);
}
/*
* The full config is read in one go, only called from open_ctree()
* It doesn't use any locking, as at this point we're still single-threaded
*/
int btrfs_read_qgroup_config(struct btrfs_fs_info *fs_info)
{
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_root *quota_root = fs_info->quota_root;
struct btrfs_path *path = NULL;
struct extent_buffer *l;
int slot;
int ret = 0;
u64 flags = 0;
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
u64 rescan_progress = 0;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
return 0;
fs_info->qgroup_ulist = ulist_alloc(GFP_KERNEL);
if (!fs_info->qgroup_ulist) {
ret = -ENOMEM;
goto out;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ret = btrfs_sysfs_add_qgroups(fs_info);
if (ret < 0)
goto out;
/* default this to quota off, in case no status key is found */
fs_info->qgroup_flags = 0;
/*
* pass 1: read status, all qgroup infos and limits
*/
key.objectid = 0;
key.type = 0;
key.offset = 0;
ret = btrfs_search_slot_for_read(quota_root, &key, path, 1, 1);
if (ret)
goto out;
while (1) {
struct btrfs_qgroup *qgroup;
slot = path->slots[0];
l = path->nodes[0];
btrfs_item_key_to_cpu(l, &found_key, slot);
if (found_key.type == BTRFS_QGROUP_STATUS_KEY) {
struct btrfs_qgroup_status_item *ptr;
ptr = btrfs_item_ptr(l, slot,
struct btrfs_qgroup_status_item);
if (btrfs_qgroup_status_version(l, ptr) !=
BTRFS_QGROUP_STATUS_VERSION) {
btrfs_err(fs_info,
"old qgroup version, quota disabled");
goto out;
}
if (btrfs_qgroup_status_generation(l, ptr) !=
fs_info->generation) {
qgroup_mark_inconsistent(fs_info);
btrfs_err(fs_info,
"qgroup generation mismatch, marked as inconsistent");
}
fs_info->qgroup_flags = btrfs_qgroup_status_flags(l,
ptr);
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
rescan_progress = btrfs_qgroup_status_rescan(l, ptr);
goto next1;
}
if (found_key.type != BTRFS_QGROUP_INFO_KEY &&
found_key.type != BTRFS_QGROUP_LIMIT_KEY)
goto next1;
qgroup = find_qgroup_rb(fs_info, found_key.offset);
if ((qgroup && found_key.type == BTRFS_QGROUP_INFO_KEY) ||
(!qgroup && found_key.type == BTRFS_QGROUP_LIMIT_KEY)) {
btrfs_err(fs_info, "inconsistent qgroup config");
qgroup_mark_inconsistent(fs_info);
}
if (!qgroup) {
qgroup = add_qgroup_rb(fs_info, found_key.offset);
if (IS_ERR(qgroup)) {
ret = PTR_ERR(qgroup);
goto out;
}
}
ret = btrfs_sysfs_add_one_qgroup(fs_info, qgroup);
if (ret < 0)
goto out;
switch (found_key.type) {
case BTRFS_QGROUP_INFO_KEY: {
struct btrfs_qgroup_info_item *ptr;
ptr = btrfs_item_ptr(l, slot,
struct btrfs_qgroup_info_item);
qgroup->rfer = btrfs_qgroup_info_rfer(l, ptr);
qgroup->rfer_cmpr = btrfs_qgroup_info_rfer_cmpr(l, ptr);
qgroup->excl = btrfs_qgroup_info_excl(l, ptr);
qgroup->excl_cmpr = btrfs_qgroup_info_excl_cmpr(l, ptr);
/* generation currently unused */
break;
}
case BTRFS_QGROUP_LIMIT_KEY: {
struct btrfs_qgroup_limit_item *ptr;
ptr = btrfs_item_ptr(l, slot,
struct btrfs_qgroup_limit_item);
qgroup->lim_flags = btrfs_qgroup_limit_flags(l, ptr);
qgroup->max_rfer = btrfs_qgroup_limit_max_rfer(l, ptr);
qgroup->max_excl = btrfs_qgroup_limit_max_excl(l, ptr);
qgroup->rsv_rfer = btrfs_qgroup_limit_rsv_rfer(l, ptr);
qgroup->rsv_excl = btrfs_qgroup_limit_rsv_excl(l, ptr);
break;
}
}
next1:
ret = btrfs_next_item(quota_root, path);
if (ret < 0)
goto out;
if (ret)
break;
}
btrfs_release_path(path);
/*
* pass 2: read all qgroup relations
*/
key.objectid = 0;
key.type = BTRFS_QGROUP_RELATION_KEY;
key.offset = 0;
ret = btrfs_search_slot_for_read(quota_root, &key, path, 1, 0);
if (ret)
goto out;
while (1) {
slot = path->slots[0];
l = path->nodes[0];
btrfs_item_key_to_cpu(l, &found_key, slot);
if (found_key.type != BTRFS_QGROUP_RELATION_KEY)
goto next2;
if (found_key.objectid > found_key.offset) {
/* parent <- member, not needed to build config */
/* FIXME should we omit the key completely? */
goto next2;
}
ret = add_relation_rb(fs_info, found_key.objectid,
found_key.offset);
if (ret == -ENOENT) {
btrfs_warn(fs_info,
"orphan qgroup relation 0x%llx->0x%llx",
found_key.objectid, found_key.offset);
ret = 0; /* ignore the error */
}
if (ret)
goto out;
next2:
ret = btrfs_next_item(quota_root, path);
if (ret < 0)
goto out;
if (ret)
break;
}
out:
btrfs: fix lockdep splat when reading qgroup config on mount Lockdep reported the following splat when running test btrfs/190 from fstests: [ 9482.126098] ====================================================== [ 9482.126184] WARNING: possible circular locking dependency detected [ 9482.126281] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 9482.126365] ------------------------------------------------------ [ 9482.126456] mount/24187 is trying to acquire lock: [ 9482.126534] ffffa0c869a7dac0 (&fs_info->qgroup_rescan_lock){+.+.}-{3:3}, at: qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.126647] but task is already holding lock: [ 9482.126777] ffffa0c892ebd3a0 (btrfs-quota-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x27/0x120 [btrfs] [ 9482.126886] which lock already depends on the new lock. [ 9482.127078] the existing dependency chain (in reverse order) is: [ 9482.127213] -> #1 (btrfs-quota-00){++++}-{3:3}: [ 9482.127366] lock_acquire+0xd8/0x490 [ 9482.127436] down_read_nested+0x45/0x220 [ 9482.127528] __btrfs_tree_read_lock+0x27/0x120 [btrfs] [ 9482.127613] btrfs_read_lock_root_node+0x41/0x130 [btrfs] [ 9482.127702] btrfs_search_slot+0x514/0xc30 [btrfs] [ 9482.127788] update_qgroup_status_item+0x72/0x140 [btrfs] [ 9482.127877] btrfs_qgroup_rescan_worker+0xde/0x680 [btrfs] [ 9482.127964] btrfs_work_helper+0xf1/0x600 [btrfs] [ 9482.128039] process_one_work+0x24e/0x5e0 [ 9482.128110] worker_thread+0x50/0x3b0 [ 9482.128181] kthread+0x153/0x170 [ 9482.128256] ret_from_fork+0x22/0x30 [ 9482.128327] -> #0 (&fs_info->qgroup_rescan_lock){+.+.}-{3:3}: [ 9482.128464] check_prev_add+0x91/0xc60 [ 9482.128551] __lock_acquire+0x1740/0x3110 [ 9482.128623] lock_acquire+0xd8/0x490 [ 9482.130029] __mutex_lock+0xa3/0xb30 [ 9482.130590] qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.131577] btrfs_read_qgroup_config+0x43a/0x550 [btrfs] [ 9482.132175] open_ctree+0x1228/0x18a0 [btrfs] [ 9482.132756] btrfs_mount_root.cold+0x13/0xed [btrfs] [ 9482.133325] legacy_get_tree+0x30/0x60 [ 9482.133866] vfs_get_tree+0x28/0xe0 [ 9482.134392] fc_mount+0xe/0x40 [ 9482.134908] vfs_kern_mount.part.0+0x71/0x90 [ 9482.135428] btrfs_mount+0x13b/0x3e0 [btrfs] [ 9482.135942] legacy_get_tree+0x30/0x60 [ 9482.136444] vfs_get_tree+0x28/0xe0 [ 9482.136949] path_mount+0x2d7/0xa70 [ 9482.137438] do_mount+0x75/0x90 [ 9482.137923] __x64_sys_mount+0x8e/0xd0 [ 9482.138400] do_syscall_64+0x33/0x80 [ 9482.138873] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 9482.139346] other info that might help us debug this: [ 9482.140735] Possible unsafe locking scenario: [ 9482.141594] CPU0 CPU1 [ 9482.142011] ---- ---- [ 9482.142411] lock(btrfs-quota-00); [ 9482.142806] lock(&fs_info->qgroup_rescan_lock); [ 9482.143216] lock(btrfs-quota-00); [ 9482.143629] lock(&fs_info->qgroup_rescan_lock); [ 9482.144056] *** DEADLOCK *** [ 9482.145242] 2 locks held by mount/24187: [ 9482.145637] #0: ffffa0c8411c40e8 (&type->s_umount_key#44/1){+.+.}-{3:3}, at: alloc_super+0xb9/0x400 [ 9482.146061] #1: ffffa0c892ebd3a0 (btrfs-quota-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x27/0x120 [btrfs] [ 9482.146509] stack backtrace: [ 9482.147350] CPU: 1 PID: 24187 Comm: mount Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 9482.147788] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 9482.148709] Call Trace: [ 9482.149169] dump_stack+0x8d/0xb5 [ 9482.149628] check_noncircular+0xff/0x110 [ 9482.150090] check_prev_add+0x91/0xc60 [ 9482.150561] ? kvm_clock_read+0x14/0x30 [ 9482.151017] ? kvm_sched_clock_read+0x5/0x10 [ 9482.151470] __lock_acquire+0x1740/0x3110 [ 9482.151941] ? __btrfs_tree_read_lock+0x27/0x120 [btrfs] [ 9482.152402] lock_acquire+0xd8/0x490 [ 9482.152887] ? qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.153354] __mutex_lock+0xa3/0xb30 [ 9482.153826] ? qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.154301] ? qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.154768] ? qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.155226] qgroup_rescan_init+0x43/0xf0 [btrfs] [ 9482.155690] btrfs_read_qgroup_config+0x43a/0x550 [btrfs] [ 9482.156160] open_ctree+0x1228/0x18a0 [btrfs] [ 9482.156643] btrfs_mount_root.cold+0x13/0xed [btrfs] [ 9482.157108] ? rcu_read_lock_sched_held+0x5d/0x90 [ 9482.157567] ? kfree+0x31f/0x3e0 [ 9482.158030] legacy_get_tree+0x30/0x60 [ 9482.158489] vfs_get_tree+0x28/0xe0 [ 9482.158947] fc_mount+0xe/0x40 [ 9482.159403] vfs_kern_mount.part.0+0x71/0x90 [ 9482.159875] btrfs_mount+0x13b/0x3e0 [btrfs] [ 9482.160335] ? rcu_read_lock_sched_held+0x5d/0x90 [ 9482.160805] ? kfree+0x31f/0x3e0 [ 9482.161260] ? legacy_get_tree+0x30/0x60 [ 9482.161714] legacy_get_tree+0x30/0x60 [ 9482.162166] vfs_get_tree+0x28/0xe0 [ 9482.162616] path_mount+0x2d7/0xa70 [ 9482.163070] do_mount+0x75/0x90 [ 9482.163525] __x64_sys_mount+0x8e/0xd0 [ 9482.163986] do_syscall_64+0x33/0x80 [ 9482.164437] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 9482.164902] RIP: 0033:0x7f51e907caaa This happens because at btrfs_read_qgroup_config() we can call qgroup_rescan_init() while holding a read lock on a quota btree leaf, acquired by the previous call to btrfs_search_slot_for_read(), and qgroup_rescan_init() acquires the mutex qgroup_rescan_lock. A qgroup rescan worker does the opposite: it acquires the mutex qgroup_rescan_lock, at btrfs_qgroup_rescan_worker(), and then tries to update the qgroup status item in the quota btree through the call to update_qgroup_status_item(). This inversion of locking order between the qgroup_rescan_lock mutex and quota btree locks causes the splat. Fix this simply by releasing and freeing the path before calling qgroup_rescan_init() at btrfs_read_qgroup_config(). CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 14:28:44 +00:00
btrfs_free_path(path);
fs_info->qgroup_flags |= flags;
if (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON))
clear_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
else if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN &&
ret >= 0)
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
ret = qgroup_rescan_init(fs_info, rescan_progress, 0);
if (ret < 0) {
ulist_free(fs_info->qgroup_ulist);
fs_info->qgroup_ulist = NULL;
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN;
btrfs_sysfs_del_qgroups(fs_info);
}
return ret < 0 ? ret : 0;
}
/*
* Called in close_ctree() when quota is still enabled. This verifies we don't
* leak some reserved space.
*
* Return false if no reserved space is left.
* Return true if some reserved space is leaked.
*/
bool btrfs_check_quota_leak(struct btrfs_fs_info *fs_info)
{
struct rb_node *node;
bool ret = false;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
return ret;
/*
* Since we're unmounting, there is no race and no need to grab qgroup
* lock. And here we don't go post-order to provide a more user
* friendly sorted result.
*/
for (node = rb_first(&fs_info->qgroup_tree); node; node = rb_next(node)) {
struct btrfs_qgroup *qgroup;
int i;
qgroup = rb_entry(node, struct btrfs_qgroup, node);
for (i = 0; i < BTRFS_QGROUP_RSV_LAST; i++) {
if (qgroup->rsv.values[i]) {
ret = true;
btrfs_warn(fs_info,
"qgroup %hu/%llu has unreleased space, type %d rsv %llu",
btrfs_qgroup_level(qgroup->qgroupid),
btrfs_qgroup_subvolid(qgroup->qgroupid),
i, qgroup->rsv.values[i]);
}
}
}
return ret;
}
/*
* This is called from close_ctree() or open_ctree() or btrfs_quota_disable(),
* first two are in single-threaded paths.And for the third one, we have set
* quota_root to be null with qgroup_lock held before, so it is safe to clean
* up the in-memory structures without qgroup_lock held.
*/
void btrfs_free_qgroup_config(struct btrfs_fs_info *fs_info)
{
struct rb_node *n;
struct btrfs_qgroup *qgroup;
while ((n = rb_first(&fs_info->qgroup_tree))) {
qgroup = rb_entry(n, struct btrfs_qgroup, node);
rb_erase(n, &fs_info->qgroup_tree);
__del_qgroup_rb(fs_info, qgroup);
btrfs: fix sleep while in non-sleep context during qgroup removal While removing a qgroup's sysfs entry we end up taking the kernfs_mutex, through kobject_del(), while holding the fs_info->qgroup_lock spinlock, producing the following trace: [821.843637] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:281 [821.843641] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 28214, name: podman [821.843644] CPU: 3 PID: 28214 Comm: podman Tainted: G W 5.11.6 #15 [821.843646] Hardware name: Dell Inc. PowerEdge R330/084XW4, BIOS 2.11.0 12/08/2020 [821.843647] Call Trace: [821.843650] dump_stack+0xa1/0xfb [821.843656] ___might_sleep+0x144/0x160 [821.843659] mutex_lock+0x17/0x40 [821.843662] kernfs_remove_by_name_ns+0x1f/0x80 [821.843666] sysfs_remove_group+0x7d/0xe0 [821.843668] sysfs_remove_groups+0x28/0x40 [821.843670] kobject_del+0x2a/0x80 [821.843672] btrfs_sysfs_del_one_qgroup+0x2b/0x40 [btrfs] [821.843685] __del_qgroup_rb+0x12/0x150 [btrfs] [821.843696] btrfs_remove_qgroup+0x288/0x2a0 [btrfs] [821.843707] btrfs_ioctl+0x3129/0x36a0 [btrfs] [821.843717] ? __mod_lruvec_page_state+0x5e/0xb0 [821.843719] ? page_add_new_anon_rmap+0xbc/0x150 [821.843723] ? kfree+0x1b4/0x300 [821.843725] ? mntput_no_expire+0x55/0x330 [821.843728] __x64_sys_ioctl+0x5a/0xa0 [821.843731] do_syscall_64+0x33/0x70 [821.843733] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [821.843736] RIP: 0033:0x4cd3fb [821.843741] RSP: 002b:000000c000906b20 EFLAGS: 00000206 ORIG_RAX: 0000000000000010 [821.843744] RAX: ffffffffffffffda RBX: 000000c000050000 RCX: 00000000004cd3fb [821.843745] RDX: 000000c000906b98 RSI: 000000004010942a RDI: 000000000000000f [821.843747] RBP: 000000c000907cd0 R08: 000000c000622901 R09: 0000000000000000 [821.843748] R10: 000000c000d992c0 R11: 0000000000000206 R12: 000000000000012d [821.843749] R13: 000000000000012c R14: 0000000000000200 R15: 0000000000000049 Fix this by removing the qgroup sysfs entry while not holding the spinlock, since the spinlock is only meant for protection of the qgroup rbtree. Reported-by: Stuart Shelton <srcshelton@gmail.com> Link: https://lore.kernel.org/linux-btrfs/7A5485BB-0628-419D-A4D3-27B1AF47E25A@gmail.com/ Fixes: 49e5fb46211de0 ("btrfs: qgroup: export qgroups in sysfs") CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-03-18 11:22:05 +00:00
btrfs_sysfs_del_one_qgroup(fs_info, qgroup);
kfree(qgroup);
}
/*
* We call btrfs_free_qgroup_config() when unmounting
* filesystem and disabling quota, so we set qgroup_ulist
* to be null here to avoid double free.
*/
ulist_free(fs_info->qgroup_ulist);
fs_info->qgroup_ulist = NULL;
btrfs_sysfs_del_qgroups(fs_info);
}
static int add_qgroup_relation_item(struct btrfs_trans_handle *trans, u64 src,
u64 dst)
{
int ret;
struct btrfs_root *quota_root = trans->fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = src;
key.type = BTRFS_QGROUP_RELATION_KEY;
key.offset = dst;
ret = btrfs_insert_empty_item(trans, quota_root, path, &key, 0);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_free_path(path);
return ret;
}
static int del_qgroup_relation_item(struct btrfs_trans_handle *trans, u64 src,
u64 dst)
{
int ret;
struct btrfs_root *quota_root = trans->fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = src;
key.type = BTRFS_QGROUP_RELATION_KEY;
key.offset = dst;
ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
ret = btrfs_del_item(trans, quota_root, path);
out:
btrfs_free_path(path);
return ret;
}
static int add_qgroup_item(struct btrfs_trans_handle *trans,
struct btrfs_root *quota_root, u64 qgroupid)
{
int ret;
struct btrfs_path *path;
struct btrfs_qgroup_info_item *qgroup_info;
struct btrfs_qgroup_limit_item *qgroup_limit;
struct extent_buffer *leaf;
struct btrfs_key key;
if (btrfs_is_testing(quota_root->fs_info))
return 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = 0;
key.type = BTRFS_QGROUP_INFO_KEY;
key.offset = qgroupid;
/*
* Avoid a transaction abort by catching -EEXIST here. In that
* case, we proceed by re-initializing the existing structure
* on disk.
*/
ret = btrfs_insert_empty_item(trans, quota_root, path, &key,
sizeof(*qgroup_info));
if (ret && ret != -EEXIST)
goto out;
leaf = path->nodes[0];
qgroup_info = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_qgroup_info_item);
btrfs_set_qgroup_info_generation(leaf, qgroup_info, trans->transid);
btrfs_set_qgroup_info_rfer(leaf, qgroup_info, 0);
btrfs_set_qgroup_info_rfer_cmpr(leaf, qgroup_info, 0);
btrfs_set_qgroup_info_excl(leaf, qgroup_info, 0);
btrfs_set_qgroup_info_excl_cmpr(leaf, qgroup_info, 0);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
key.type = BTRFS_QGROUP_LIMIT_KEY;
ret = btrfs_insert_empty_item(trans, quota_root, path, &key,
sizeof(*qgroup_limit));
if (ret && ret != -EEXIST)
goto out;
leaf = path->nodes[0];
qgroup_limit = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_qgroup_limit_item);
btrfs_set_qgroup_limit_flags(leaf, qgroup_limit, 0);
btrfs_set_qgroup_limit_max_rfer(leaf, qgroup_limit, 0);
btrfs_set_qgroup_limit_max_excl(leaf, qgroup_limit, 0);
btrfs_set_qgroup_limit_rsv_rfer(leaf, qgroup_limit, 0);
btrfs_set_qgroup_limit_rsv_excl(leaf, qgroup_limit, 0);
btrfs_mark_buffer_dirty(leaf);
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
static int del_qgroup_item(struct btrfs_trans_handle *trans, u64 qgroupid)
{
int ret;
struct btrfs_root *quota_root = trans->fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = 0;
key.type = BTRFS_QGROUP_INFO_KEY;
key.offset = qgroupid;
ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
ret = btrfs_del_item(trans, quota_root, path);
if (ret)
goto out;
btrfs_release_path(path);
key.type = BTRFS_QGROUP_LIMIT_KEY;
ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
ret = btrfs_del_item(trans, quota_root, path);
out:
btrfs_free_path(path);
return ret;
}
static int update_qgroup_limit_item(struct btrfs_trans_handle *trans,
struct btrfs_qgroup *qgroup)
{
struct btrfs_root *quota_root = trans->fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *l;
struct btrfs_qgroup_limit_item *qgroup_limit;
int ret;
int slot;
key.objectid = 0;
key.type = BTRFS_QGROUP_LIMIT_KEY;
key.offset = qgroup->qgroupid;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(trans, quota_root, &key, path, 0, 1);
if (ret > 0)
ret = -ENOENT;
if (ret)
goto out;
l = path->nodes[0];
slot = path->slots[0];
qgroup_limit = btrfs_item_ptr(l, slot, struct btrfs_qgroup_limit_item);
btrfs_set_qgroup_limit_flags(l, qgroup_limit, qgroup->lim_flags);
btrfs_set_qgroup_limit_max_rfer(l, qgroup_limit, qgroup->max_rfer);
btrfs_set_qgroup_limit_max_excl(l, qgroup_limit, qgroup->max_excl);
btrfs_set_qgroup_limit_rsv_rfer(l, qgroup_limit, qgroup->rsv_rfer);
btrfs_set_qgroup_limit_rsv_excl(l, qgroup_limit, qgroup->rsv_excl);
btrfs_mark_buffer_dirty(l);
out:
btrfs_free_path(path);
return ret;
}
static int update_qgroup_info_item(struct btrfs_trans_handle *trans,
struct btrfs_qgroup *qgroup)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *quota_root = fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *l;
struct btrfs_qgroup_info_item *qgroup_info;
int ret;
int slot;
if (btrfs_is_testing(fs_info))
return 0;
key.objectid = 0;
key.type = BTRFS_QGROUP_INFO_KEY;
key.offset = qgroup->qgroupid;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(trans, quota_root, &key, path, 0, 1);
if (ret > 0)
ret = -ENOENT;
if (ret)
goto out;
l = path->nodes[0];
slot = path->slots[0];
qgroup_info = btrfs_item_ptr(l, slot, struct btrfs_qgroup_info_item);
btrfs_set_qgroup_info_generation(l, qgroup_info, trans->transid);
btrfs_set_qgroup_info_rfer(l, qgroup_info, qgroup->rfer);
btrfs_set_qgroup_info_rfer_cmpr(l, qgroup_info, qgroup->rfer_cmpr);
btrfs_set_qgroup_info_excl(l, qgroup_info, qgroup->excl);
btrfs_set_qgroup_info_excl_cmpr(l, qgroup_info, qgroup->excl_cmpr);
btrfs_mark_buffer_dirty(l);
out:
btrfs_free_path(path);
return ret;
}
static int update_qgroup_status_item(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *quota_root = fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *l;
struct btrfs_qgroup_status_item *ptr;
int ret;
int slot;
key.objectid = 0;
key.type = BTRFS_QGROUP_STATUS_KEY;
key.offset = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(trans, quota_root, &key, path, 0, 1);
if (ret > 0)
ret = -ENOENT;
if (ret)
goto out;
l = path->nodes[0];
slot = path->slots[0];
ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_status_item);
btrfs_set_qgroup_status_flags(l, ptr, fs_info->qgroup_flags &
BTRFS_QGROUP_STATUS_FLAGS_MASK);
btrfs_set_qgroup_status_generation(l, ptr, trans->transid);
btrfs_set_qgroup_status_rescan(l, ptr,
fs_info->qgroup_rescan_progress.objectid);
btrfs_mark_buffer_dirty(l);
out:
btrfs_free_path(path);
return ret;
}
/*
* called with qgroup_lock held
*/
static int btrfs_clean_quota_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *leaf = NULL;
int ret;
int nr = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = 0;
key.offset = 0;
key.type = 0;
while (1) {
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
goto out;
leaf = path->nodes[0];
nr = btrfs_header_nritems(leaf);
if (!nr)
break;
/*
* delete the leaf one by one
* since the whole tree is going
* to be deleted.
*/
path->slots[0] = 0;
ret = btrfs_del_items(trans, root, path, 0, nr);
if (ret)
goto out;
btrfs_release_path(path);
}
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
int btrfs_quota_enable(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *quota_root;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_path *path = NULL;
struct btrfs_qgroup_status_item *ptr;
struct extent_buffer *leaf;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_qgroup *qgroup = NULL;
struct btrfs_trans_handle *trans = NULL;
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
struct ulist *ulist = NULL;
int ret = 0;
int slot;
btrfs: fix deadlock between quota enable and other quota operations When enabling quotas, we attempt to commit a transaction while holding the mutex fs_info->qgroup_ioctl_lock. This can result on a deadlock with other quota operations such as: - qgroup creation and deletion, ioctl BTRFS_IOC_QGROUP_CREATE; - adding and removing qgroup relations, ioctl BTRFS_IOC_QGROUP_ASSIGN. This is because these operations join a transaction and after that they attempt to lock the mutex fs_info->qgroup_ioctl_lock. Acquiring that mutex after joining or starting a transaction is a pattern followed everywhere in qgroups, so the quota enablement operation is the one at fault here, and should not commit a transaction while holding that mutex. Fix this by making the transaction commit while not holding the mutex. We are safe from two concurrent tasks trying to enable quotas because we are serialized by the rw semaphore fs_info->subvol_sem at btrfs_ioctl_quota_ctl(), which is the only call site for enabling quotas. When this deadlock happens, it produces a trace like the following: INFO: task syz-executor:25604 blocked for more than 143 seconds. Not tainted 5.15.0-rc6 #4 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:24800 pid:25604 ppid: 24873 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 btrfs_commit_transaction+0x994/0x2e90 fs/btrfs/transaction.c:2201 btrfs_quota_enable+0x95c/0x1790 fs/btrfs/qgroup.c:1120 btrfs_ioctl_quota_ctl fs/btrfs/ioctl.c:4229 [inline] btrfs_ioctl+0x637e/0x7b70 fs/btrfs/ioctl.c:5010 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f86920b2c4d RSP: 002b:00007f868f61ac58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f86921d90a0 RCX: 00007f86920b2c4d RDX: 0000000020005e40 RSI: 00000000c0109428 RDI: 0000000000000008 RBP: 00007f869212bd80 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f86921d90a0 R13: 00007fff6d233e4f R14: 00007fff6d233ff0 R15: 00007f868f61adc0 INFO: task syz-executor:25628 blocked for more than 143 seconds. Not tainted 5.15.0-rc6 #4 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:29080 pid:25628 ppid: 24873 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_remove_qgroup+0xb7/0x7d0 fs/btrfs/qgroup.c:1548 btrfs_ioctl_qgroup_create fs/btrfs/ioctl.c:4333 [inline] btrfs_ioctl+0x683c/0x7b70 fs/btrfs/ioctl.c:5014 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsZQF19bQ1C6=yetF3BvL10OSORpFUcWXTP6HErshDB4dQ@mail.gmail.com/ Fixes: 340f1aa27f36 ("btrfs: qgroups: Move transaction management inside btrfs_quota_enable/disable") CC: stable@vger.kernel.org # 4.19 Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-27 18:30:25 +01:00
/*
* We need to have subvol_sem write locked, to prevent races between
* concurrent tasks trying to enable quotas, because we will unlock
* and relock qgroup_ioctl_lock before setting fs_info->quota_root
* and before setting BTRFS_FS_QUOTA_ENABLED.
*/
lockdep_assert_held_write(&fs_info->subvol_sem);
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info,
"qgroups are currently unsupported in extent tree v2");
return -EINVAL;
}
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (fs_info->quota_root)
goto out;
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
ulist = ulist_alloc(GFP_KERNEL);
if (!ulist) {
ret = -ENOMEM;
goto out;
}
ret = btrfs_sysfs_add_qgroups(fs_info);
if (ret < 0)
goto out;
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
/*
* Unlock qgroup_ioctl_lock before starting the transaction. This is to
* avoid lock acquisition inversion problems (reported by lockdep) between
* qgroup_ioctl_lock and the vfs freeze semaphores, acquired when we
* start a transaction.
* After we started the transaction lock qgroup_ioctl_lock again and
* check if someone else created the quota root in the meanwhile. If so,
* just return success and release the transaction handle.
*
* Also we don't need to worry about someone else calling
* btrfs_sysfs_add_qgroups() after we unlock and getting an error because
* that function returns 0 (success) when the sysfs entries already exist.
*/
mutex_unlock(&fs_info->qgroup_ioctl_lock);
/*
* 1 for quota root item
* 1 for BTRFS_QGROUP_STATUS item
*
* Yet we also need 2*n items for a QGROUP_INFO/QGROUP_LIMIT items
* per subvolume. However those are not currently reserved since it
* would be a lot of overkill.
*/
trans = btrfs_start_transaction(tree_root, 2);
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
goto out;
}
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
if (fs_info->quota_root)
goto out;
fs_info->qgroup_ulist = ulist;
ulist = NULL;
/*
* initially create the quota tree
*/
quota_root = btrfs_create_tree(trans, BTRFS_QUOTA_TREE_OBJECTID);
if (IS_ERR(quota_root)) {
ret = PTR_ERR(quota_root);
btrfs_abort_transaction(trans, ret);
goto out;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
btrfs_abort_transaction(trans, ret);
goto out_free_root;
}
key.objectid = 0;
key.type = BTRFS_QGROUP_STATUS_KEY;
key.offset = 0;
ret = btrfs_insert_empty_item(trans, quota_root, path, &key,
sizeof(*ptr));
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
leaf = path->nodes[0];
ptr = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_qgroup_status_item);
btrfs_set_qgroup_status_generation(leaf, ptr, trans->transid);
btrfs_set_qgroup_status_version(leaf, ptr, BTRFS_QGROUP_STATUS_VERSION);
fs_info->qgroup_flags = BTRFS_QGROUP_STATUS_FLAG_ON |
BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT;
btrfs_set_qgroup_status_flags(leaf, ptr, fs_info->qgroup_flags &
BTRFS_QGROUP_STATUS_FLAGS_MASK);
btrfs_set_qgroup_status_rescan(leaf, ptr, 0);
btrfs_mark_buffer_dirty(leaf);
key.objectid = 0;
key.type = BTRFS_ROOT_REF_KEY;
key.offset = 0;
btrfs_release_path(path);
ret = btrfs_search_slot_for_read(tree_root, &key, path, 1, 0);
if (ret > 0)
goto out_add_root;
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
while (1) {
slot = path->slots[0];
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (found_key.type == BTRFS_ROOT_REF_KEY) {
btrfs: drop the path before adding qgroup items when enabling qgroups When enabling qgroups we walk the tree_root and then add a qgroup item for every root that we have. This creates a lock dependency on the tree_root and qgroup_root, which results in the following lockdep splat (with tree locks using rwsem), eg. in tests btrfs/017 or btrfs/022: ====================================================== WARNING: possible circular locking dependency detected 5.9.0-default+ #1299 Not tainted ------------------------------------------------------ btrfs/24552 is trying to acquire lock: ffff9142dfc5f630 (btrfs-quota-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] but task is already holding lock: ffff9142dfc5d0b0 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x3fb/0x730 lock_acquire.part.0+0x6a/0x130 down_read_nested+0x46/0x130 __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] __btrfs_read_lock_root_node+0x3a/0x50 [btrfs] btrfs_search_slot_get_root+0x11d/0x290 [btrfs] btrfs_search_slot+0xc3/0x9f0 [btrfs] btrfs_insert_item+0x6e/0x140 [btrfs] btrfs_create_tree+0x1cb/0x240 [btrfs] btrfs_quota_enable+0xcd/0x790 [btrfs] btrfs_ioctl_quota_ctl+0xc9/0xe0 [btrfs] __x64_sys_ioctl+0x83/0xa0 do_syscall_64+0x2d/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-quota-00){++++}-{3:3}: check_prev_add+0x91/0xc30 validate_chain+0x491/0x750 __lock_acquire+0x3fb/0x730 lock_acquire.part.0+0x6a/0x130 down_read_nested+0x46/0x130 __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] __btrfs_read_lock_root_node+0x3a/0x50 [btrfs] btrfs_search_slot_get_root+0x11d/0x290 [btrfs] btrfs_search_slot+0xc3/0x9f0 [btrfs] btrfs_insert_empty_items+0x58/0xa0 [btrfs] add_qgroup_item.part.0+0x72/0x210 [btrfs] btrfs_quota_enable+0x3bb/0x790 [btrfs] btrfs_ioctl_quota_ctl+0xc9/0xe0 [btrfs] __x64_sys_ioctl+0x83/0xa0 do_syscall_64+0x2d/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-root-00); lock(btrfs-quota-00); lock(btrfs-root-00); lock(btrfs-quota-00); *** DEADLOCK *** 5 locks held by btrfs/24552: #0: ffff9142df431478 (sb_writers#10){.+.+}-{0:0}, at: mnt_want_write_file+0x22/0xa0 #1: ffff9142f9b10cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl_quota_ctl+0x7b/0xe0 [btrfs] #2: ffff9142f9b11a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0x790 [btrfs] #3: ffff9142df431698 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x406/0x510 [btrfs] #4: ffff9142dfc5d0b0 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] stack backtrace: CPU: 1 PID: 24552 Comm: btrfs Not tainted 5.9.0-default+ #1299 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014 Call Trace: dump_stack+0x77/0x97 check_noncircular+0xf3/0x110 check_prev_add+0x91/0xc30 validate_chain+0x491/0x750 __lock_acquire+0x3fb/0x730 lock_acquire.part.0+0x6a/0x130 ? __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] ? lock_acquire+0xc4/0x140 ? __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] down_read_nested+0x46/0x130 ? __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] ? btrfs_root_node+0xd9/0x200 [btrfs] __btrfs_read_lock_root_node+0x3a/0x50 [btrfs] btrfs_search_slot_get_root+0x11d/0x290 [btrfs] btrfs_search_slot+0xc3/0x9f0 [btrfs] btrfs_insert_empty_items+0x58/0xa0 [btrfs] add_qgroup_item.part.0+0x72/0x210 [btrfs] btrfs_quota_enable+0x3bb/0x790 [btrfs] btrfs_ioctl_quota_ctl+0xc9/0xe0 [btrfs] __x64_sys_ioctl+0x83/0xa0 do_syscall_64+0x2d/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fix this by dropping the path whenever we find a root item, add the qgroup item, and then re-lookup the root item we found and continue processing roots. Reported-by: David Sterba <dsterba@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 16:02:29 -04:00
/* Release locks on tree_root before we access quota_root */
btrfs_release_path(path);
ret = add_qgroup_item(trans, quota_root,
found_key.offset);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
qgroup = add_qgroup_rb(fs_info, found_key.offset);
if (IS_ERR(qgroup)) {
ret = PTR_ERR(qgroup);
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
ret = btrfs_sysfs_add_one_qgroup(fs_info, qgroup);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
btrfs: drop the path before adding qgroup items when enabling qgroups When enabling qgroups we walk the tree_root and then add a qgroup item for every root that we have. This creates a lock dependency on the tree_root and qgroup_root, which results in the following lockdep splat (with tree locks using rwsem), eg. in tests btrfs/017 or btrfs/022: ====================================================== WARNING: possible circular locking dependency detected 5.9.0-default+ #1299 Not tainted ------------------------------------------------------ btrfs/24552 is trying to acquire lock: ffff9142dfc5f630 (btrfs-quota-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] but task is already holding lock: ffff9142dfc5d0b0 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x3fb/0x730 lock_acquire.part.0+0x6a/0x130 down_read_nested+0x46/0x130 __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] __btrfs_read_lock_root_node+0x3a/0x50 [btrfs] btrfs_search_slot_get_root+0x11d/0x290 [btrfs] btrfs_search_slot+0xc3/0x9f0 [btrfs] btrfs_insert_item+0x6e/0x140 [btrfs] btrfs_create_tree+0x1cb/0x240 [btrfs] btrfs_quota_enable+0xcd/0x790 [btrfs] btrfs_ioctl_quota_ctl+0xc9/0xe0 [btrfs] __x64_sys_ioctl+0x83/0xa0 do_syscall_64+0x2d/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-quota-00){++++}-{3:3}: check_prev_add+0x91/0xc30 validate_chain+0x491/0x750 __lock_acquire+0x3fb/0x730 lock_acquire.part.0+0x6a/0x130 down_read_nested+0x46/0x130 __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] __btrfs_read_lock_root_node+0x3a/0x50 [btrfs] btrfs_search_slot_get_root+0x11d/0x290 [btrfs] btrfs_search_slot+0xc3/0x9f0 [btrfs] btrfs_insert_empty_items+0x58/0xa0 [btrfs] add_qgroup_item.part.0+0x72/0x210 [btrfs] btrfs_quota_enable+0x3bb/0x790 [btrfs] btrfs_ioctl_quota_ctl+0xc9/0xe0 [btrfs] __x64_sys_ioctl+0x83/0xa0 do_syscall_64+0x2d/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-root-00); lock(btrfs-quota-00); lock(btrfs-root-00); lock(btrfs-quota-00); *** DEADLOCK *** 5 locks held by btrfs/24552: #0: ffff9142df431478 (sb_writers#10){.+.+}-{0:0}, at: mnt_want_write_file+0x22/0xa0 #1: ffff9142f9b10cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl_quota_ctl+0x7b/0xe0 [btrfs] #2: ffff9142f9b11a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0x790 [btrfs] #3: ffff9142df431698 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x406/0x510 [btrfs] #4: ffff9142dfc5d0b0 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] stack backtrace: CPU: 1 PID: 24552 Comm: btrfs Not tainted 5.9.0-default+ #1299 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014 Call Trace: dump_stack+0x77/0x97 check_noncircular+0xf3/0x110 check_prev_add+0x91/0xc30 validate_chain+0x491/0x750 __lock_acquire+0x3fb/0x730 lock_acquire.part.0+0x6a/0x130 ? __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] ? lock_acquire+0xc4/0x140 ? __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] down_read_nested+0x46/0x130 ? __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] __btrfs_tree_read_lock+0x35/0x1c0 [btrfs] ? btrfs_root_node+0xd9/0x200 [btrfs] __btrfs_read_lock_root_node+0x3a/0x50 [btrfs] btrfs_search_slot_get_root+0x11d/0x290 [btrfs] btrfs_search_slot+0xc3/0x9f0 [btrfs] btrfs_insert_empty_items+0x58/0xa0 [btrfs] add_qgroup_item.part.0+0x72/0x210 [btrfs] btrfs_quota_enable+0x3bb/0x790 [btrfs] btrfs_ioctl_quota_ctl+0xc9/0xe0 [btrfs] __x64_sys_ioctl+0x83/0xa0 do_syscall_64+0x2d/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fix this by dropping the path whenever we find a root item, add the qgroup item, and then re-lookup the root item we found and continue processing roots. Reported-by: David Sterba <dsterba@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 16:02:29 -04:00
ret = btrfs_search_slot_for_read(tree_root, &found_key,
path, 1, 0);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
if (ret > 0) {
/*
* Shouldn't happen, but in case it does we
* don't need to do the btrfs_next_item, just
* continue.
*/
continue;
}
}
ret = btrfs_next_item(tree_root, path);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
if (ret)
break;
}
out_add_root:
btrfs_release_path(path);
ret = add_qgroup_item(trans, quota_root, BTRFS_FS_TREE_OBJECTID);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
qgroup = add_qgroup_rb(fs_info, BTRFS_FS_TREE_OBJECTID);
if (IS_ERR(qgroup)) {
ret = PTR_ERR(qgroup);
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
ret = btrfs_sysfs_add_one_qgroup(fs_info, qgroup);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
btrfs: fix deadlock between quota enable and other quota operations When enabling quotas, we attempt to commit a transaction while holding the mutex fs_info->qgroup_ioctl_lock. This can result on a deadlock with other quota operations such as: - qgroup creation and deletion, ioctl BTRFS_IOC_QGROUP_CREATE; - adding and removing qgroup relations, ioctl BTRFS_IOC_QGROUP_ASSIGN. This is because these operations join a transaction and after that they attempt to lock the mutex fs_info->qgroup_ioctl_lock. Acquiring that mutex after joining or starting a transaction is a pattern followed everywhere in qgroups, so the quota enablement operation is the one at fault here, and should not commit a transaction while holding that mutex. Fix this by making the transaction commit while not holding the mutex. We are safe from two concurrent tasks trying to enable quotas because we are serialized by the rw semaphore fs_info->subvol_sem at btrfs_ioctl_quota_ctl(), which is the only call site for enabling quotas. When this deadlock happens, it produces a trace like the following: INFO: task syz-executor:25604 blocked for more than 143 seconds. Not tainted 5.15.0-rc6 #4 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:24800 pid:25604 ppid: 24873 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 btrfs_commit_transaction+0x994/0x2e90 fs/btrfs/transaction.c:2201 btrfs_quota_enable+0x95c/0x1790 fs/btrfs/qgroup.c:1120 btrfs_ioctl_quota_ctl fs/btrfs/ioctl.c:4229 [inline] btrfs_ioctl+0x637e/0x7b70 fs/btrfs/ioctl.c:5010 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f86920b2c4d RSP: 002b:00007f868f61ac58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f86921d90a0 RCX: 00007f86920b2c4d RDX: 0000000020005e40 RSI: 00000000c0109428 RDI: 0000000000000008 RBP: 00007f869212bd80 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f86921d90a0 R13: 00007fff6d233e4f R14: 00007fff6d233ff0 R15: 00007f868f61adc0 INFO: task syz-executor:25628 blocked for more than 143 seconds. Not tainted 5.15.0-rc6 #4 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:29080 pid:25628 ppid: 24873 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_remove_qgroup+0xb7/0x7d0 fs/btrfs/qgroup.c:1548 btrfs_ioctl_qgroup_create fs/btrfs/ioctl.c:4333 [inline] btrfs_ioctl+0x683c/0x7b70 fs/btrfs/ioctl.c:5014 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsZQF19bQ1C6=yetF3BvL10OSORpFUcWXTP6HErshDB4dQ@mail.gmail.com/ Fixes: 340f1aa27f36 ("btrfs: qgroups: Move transaction management inside btrfs_quota_enable/disable") CC: stable@vger.kernel.org # 4.19 Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-27 18:30:25 +01:00
mutex_unlock(&fs_info->qgroup_ioctl_lock);
/*
* Commit the transaction while not holding qgroup_ioctl_lock, to avoid
* a deadlock with tasks concurrently doing other qgroup operations, such
* adding/removing qgroups or adding/deleting qgroup relations for example,
* because all qgroup operations first start or join a transaction and then
* lock the qgroup_ioctl_lock mutex.
* We are safe from a concurrent task trying to enable quotas, by calling
* this function, since we are serialized by fs_info->subvol_sem.
*/
ret = btrfs_commit_transaction(trans);
trans = NULL;
btrfs: fix deadlock between quota enable and other quota operations When enabling quotas, we attempt to commit a transaction while holding the mutex fs_info->qgroup_ioctl_lock. This can result on a deadlock with other quota operations such as: - qgroup creation and deletion, ioctl BTRFS_IOC_QGROUP_CREATE; - adding and removing qgroup relations, ioctl BTRFS_IOC_QGROUP_ASSIGN. This is because these operations join a transaction and after that they attempt to lock the mutex fs_info->qgroup_ioctl_lock. Acquiring that mutex after joining or starting a transaction is a pattern followed everywhere in qgroups, so the quota enablement operation is the one at fault here, and should not commit a transaction while holding that mutex. Fix this by making the transaction commit while not holding the mutex. We are safe from two concurrent tasks trying to enable quotas because we are serialized by the rw semaphore fs_info->subvol_sem at btrfs_ioctl_quota_ctl(), which is the only call site for enabling quotas. When this deadlock happens, it produces a trace like the following: INFO: task syz-executor:25604 blocked for more than 143 seconds. Not tainted 5.15.0-rc6 #4 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:24800 pid:25604 ppid: 24873 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 btrfs_commit_transaction+0x994/0x2e90 fs/btrfs/transaction.c:2201 btrfs_quota_enable+0x95c/0x1790 fs/btrfs/qgroup.c:1120 btrfs_ioctl_quota_ctl fs/btrfs/ioctl.c:4229 [inline] btrfs_ioctl+0x637e/0x7b70 fs/btrfs/ioctl.c:5010 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f86920b2c4d RSP: 002b:00007f868f61ac58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f86921d90a0 RCX: 00007f86920b2c4d RDX: 0000000020005e40 RSI: 00000000c0109428 RDI: 0000000000000008 RBP: 00007f869212bd80 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f86921d90a0 R13: 00007fff6d233e4f R14: 00007fff6d233ff0 R15: 00007f868f61adc0 INFO: task syz-executor:25628 blocked for more than 143 seconds. Not tainted 5.15.0-rc6 #4 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:29080 pid:25628 ppid: 24873 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_remove_qgroup+0xb7/0x7d0 fs/btrfs/qgroup.c:1548 btrfs_ioctl_qgroup_create fs/btrfs/ioctl.c:4333 [inline] btrfs_ioctl+0x683c/0x7b70 fs/btrfs/ioctl.c:5014 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsZQF19bQ1C6=yetF3BvL10OSORpFUcWXTP6HErshDB4dQ@mail.gmail.com/ Fixes: 340f1aa27f36 ("btrfs: qgroups: Move transaction management inside btrfs_quota_enable/disable") CC: stable@vger.kernel.org # 4.19 Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-27 18:30:25 +01:00
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (ret)
goto out_free_path;
Btrfs: fix deadlock when enabling quotas due to concurrent snapshot creation If the quota enable and snapshot creation ioctls are called concurrently we can get into a deadlock where the task enabling quotas will deadlock on the fs_info->qgroup_ioctl_lock mutex because it attempts to lock it twice, or the task creating a snapshot tries to commit the transaction while the task enabling quota waits for the former task to commit the transaction while holding the mutex. The following time diagrams show how both cases happen. First scenario: CPU 0 CPU 1 btrfs_ioctl() btrfs_ioctl_quota_ctl() btrfs_quota_enable() mutex_lock(fs_info->qgroup_ioctl_lock) btrfs_start_transaction() btrfs_ioctl() btrfs_ioctl_snap_create_v2 create_snapshot() --> adds snapshot to the list pending_snapshots of the current transaction btrfs_commit_transaction() create_pending_snapshots() create_pending_snapshot() qgroup_account_snapshot() btrfs_qgroup_inherit() mutex_lock(fs_info->qgroup_ioctl_lock) --> deadlock, mutex already locked by this task at btrfs_quota_enable() Second scenario: CPU 0 CPU 1 btrfs_ioctl() btrfs_ioctl_quota_ctl() btrfs_quota_enable() mutex_lock(fs_info->qgroup_ioctl_lock) btrfs_start_transaction() btrfs_ioctl() btrfs_ioctl_snap_create_v2 create_snapshot() --> adds snapshot to the list pending_snapshots of the current transaction btrfs_commit_transaction() --> waits for task at CPU 0 to release its transaction handle btrfs_commit_transaction() --> sees another task started the transaction commit first --> releases its transaction handle --> waits for the transaction commit to be completed by the task at CPU 1 create_pending_snapshot() qgroup_account_snapshot() btrfs_qgroup_inherit() mutex_lock(fs_info->qgroup_ioctl_lock) --> deadlock, task at CPU 0 has the mutex locked but it is waiting for us to finish the transaction commit So fix this by setting the quota enabled flag in fs_info after committing the transaction at btrfs_quota_enable(). This ends up serializing quota enable and snapshot creation as if the snapshot creation happened just before the quota enable request. The quota rescan task, scheduled after committing the transaction in btrfs_quote_enable(), will do the accounting. Fixes: 6426c7ad697d ("btrfs: qgroup: Fix qgroup accounting when creating snapshot") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-19 14:15:36 +00:00
/*
* Set quota enabled flag after committing the transaction, to avoid
* deadlocks on fs_info->qgroup_ioctl_lock with concurrent snapshot
* creation.
*/
spin_lock(&fs_info->qgroup_lock);
fs_info->quota_root = quota_root;
set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
spin_unlock(&fs_info->qgroup_lock);
ret = qgroup_rescan_init(fs_info, 0, 1);
if (!ret) {
qgroup_rescan_zero_tracking(fs_info);
btrfs: qgroup: ensure qgroup_rescan_running is only set when the worker is at least queued [BUG] There are some reports about btrfs wait forever to unmount itself, with the following call trace: INFO: task umount:4631 blocked for more than 491 seconds. Tainted: G X 5.3.8-2-default #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. umount D 0 4631 3337 0x00000000 Call Trace: ([<00000000174adf7a>] __schedule+0x342/0x748) [<00000000174ae3ca>] schedule+0x4a/0xd8 [<00000000174b1f08>] schedule_timeout+0x218/0x420 [<00000000174af10c>] wait_for_common+0x104/0x1d8 [<000003ff804d6994>] btrfs_qgroup_wait_for_completion+0x84/0xb0 [btrfs] [<000003ff8044a616>] close_ctree+0x4e/0x380 [btrfs] [<0000000016fa3136>] generic_shutdown_super+0x8e/0x158 [<0000000016fa34d6>] kill_anon_super+0x26/0x40 [<000003ff8041ba88>] btrfs_kill_super+0x28/0xc8 [btrfs] [<0000000016fa39f8>] deactivate_locked_super+0x68/0x98 [<0000000016fcb198>] cleanup_mnt+0xc0/0x140 [<0000000016d6a846>] task_work_run+0xc6/0x110 [<0000000016d04f76>] do_notify_resume+0xae/0xb8 [<00000000174b30ae>] system_call+0xe2/0x2c8 [CAUSE] The problem happens when we have called qgroup_rescan_init(), but not queued the worker. It can be caused mostly by error handling. Qgroup ioctl thread | Unmount thread ----------------------------------------+----------------------------------- | btrfs_qgroup_rescan() | |- qgroup_rescan_init() | | |- qgroup_rescan_running = true; | | | |- trans = btrfs_join_transaction() | | Some error happened | | | |- btrfs_qgroup_rescan() returns error | But qgroup_rescan_running == true; | | close_ctree() | |- btrfs_qgroup_wait_for_completion() | |- running == true; | |- wait_for_completion(); btrfs_qgroup_rescan_worker is never queued, thus no one is going to wake up close_ctree() and we get a deadlock. All involved qgroup_rescan_init() callers are: - btrfs_qgroup_rescan() The example above. It's possible to trigger the deadlock when error happened. - btrfs_quota_enable() Not possible. Just after qgroup_rescan_init() we queue the work. - btrfs_read_qgroup_config() It's possible to trigger the deadlock. It only init the work, the work queueing happens in btrfs_qgroup_rescan_resume(). Thus if error happened in between, deadlock is possible. We shouldn't set fs_info->qgroup_rescan_running just in qgroup_rescan_init(), as at that stage we haven't yet queued qgroup rescan worker to run. [FIX] Set qgroup_rescan_running before queueing the work, so that we ensure the rescan work is queued when we wait for it. Fixes: 8d9eddad1946 ("Btrfs: fix qgroup rescan worker initialization") Signed-off-by: Jeff Mahoney <jeffm@suse.com> [ Change subject and cause analyse, use a smaller fix ] Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-02-07 13:38:20 +08:00
fs_info->qgroup_rescan_running = true;
btrfs_queue_work(fs_info->qgroup_rescan_workers,
&fs_info->qgroup_rescan_work);
} else {
/*
* We have set both BTRFS_FS_QUOTA_ENABLED and
* BTRFS_QGROUP_STATUS_FLAG_ON, so we can only fail with
* -EINPROGRESS. That can happen because someone started the
* rescan worker by calling quota rescan ioctl before we
* attempted to initialize the rescan worker. Failure due to
* quotas disabled in the meanwhile is not possible, because
* we are holding a write lock on fs_info->subvol_sem, which
* is also acquired when disabling quotas.
* Ignore such error, and any other error would need to undo
* everything we did in the transaction we just committed.
*/
ASSERT(ret == -EINPROGRESS);
ret = 0;
}
out_free_path:
btrfs_free_path(path);
out_free_root:
if (ret)
btrfs_put_root(quota_root);
out:
if (ret) {
ulist_free(fs_info->qgroup_ulist);
fs_info->qgroup_ulist = NULL;
btrfs_sysfs_del_qgroups(fs_info);
}
mutex_unlock(&fs_info->qgroup_ioctl_lock);
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
if (ret && trans)
btrfs_end_transaction(trans);
else if (trans)
ret = btrfs_end_transaction(trans);
ulist_free(ulist);
return ret;
}
int btrfs_quota_disable(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *quota_root;
struct btrfs_trans_handle *trans = NULL;
int ret = 0;
btrfs: fix deadlock between quota disable and qgroup rescan worker Quota disable ioctl starts a transaction before waiting for the qgroup rescan worker completes. However, this wait can be infinite and results in deadlock because of circular dependency among the quota disable ioctl, the qgroup rescan worker and the other task with transaction such as block group relocation task. The deadlock happens with the steps following: 1) Task A calls ioctl to disable quota. It starts a transaction and waits for qgroup rescan worker completes. 2) Task B such as block group relocation task starts a transaction and joins to the transaction that task A started. Then task B commits to the transaction. In this commit, task B waits for a commit by task A. 3) Task C as the qgroup rescan worker starts its job and starts a transaction. In this transaction start, task C waits for completion of the transaction that task A started and task B committed. This deadlock was found with fstests test case btrfs/115 and a zoned null_blk device. The test case enables and disables quota, and the block group reclaim was triggered during the quota disable by chance. The deadlock was also observed by running quota enable and disable in parallel with 'btrfs balance' command on regular null_blk devices. An example report of the deadlock: [372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds. [372.479944] Not tainted 5.16.0-rc8 #7 [372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.493898] task:kworker/u16:6 state:D stack: 0 pid: 103 ppid: 2 flags:0x00004000 [372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs] [372.510782] Call Trace: [372.514092] <TASK> [372.521684] __schedule+0xb56/0x4850 [372.530104] ? io_schedule_timeout+0x190/0x190 [372.538842] ? lockdep_hardirqs_on+0x7e/0x100 [372.547092] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.555591] schedule+0xe0/0x270 [372.561894] btrfs_commit_transaction+0x18bb/0x2610 [btrfs] [372.570506] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [372.578875] ? free_unref_page+0x3f2/0x650 [372.585484] ? finish_wait+0x270/0x270 [372.591594] ? release_extent_buffer+0x224/0x420 [btrfs] [372.599264] btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs] [372.607157] ? lock_release+0x3a9/0x6d0 [372.613054] ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs] [372.620960] ? do_raw_spin_lock+0x11e/0x250 [372.627137] ? rwlock_bug.part.0+0x90/0x90 [372.633215] ? lock_is_held_type+0xe4/0x140 [372.639404] btrfs_work_helper+0x1ae/0xa90 [btrfs] [372.646268] process_one_work+0x7e9/0x1320 [372.652321] ? lock_release+0x6d0/0x6d0 [372.658081] ? pwq_dec_nr_in_flight+0x230/0x230 [372.664513] ? rwlock_bug.part.0+0x90/0x90 [372.670529] worker_thread+0x59e/0xf90 [372.676172] ? process_one_work+0x1320/0x1320 [372.682440] kthread+0x3b9/0x490 [372.687550] ? _raw_spin_unlock_irq+0x24/0x50 [372.693811] ? set_kthread_struct+0x100/0x100 [372.700052] ret_from_fork+0x22/0x30 [372.705517] </TASK> [372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds. [372.729827] Not tainted 5.16.0-rc8 #7 [372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.767106] task:btrfs-transacti state:D stack: 0 pid: 2347 ppid: 2 flags:0x00004000 [372.787776] Call Trace: [372.801652] <TASK> [372.812961] __schedule+0xb56/0x4850 [372.830011] ? io_schedule_timeout+0x190/0x190 [372.852547] ? lockdep_hardirqs_on+0x7e/0x100 [372.871761] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.886792] schedule+0xe0/0x270 [372.901685] wait_current_trans+0x22c/0x310 [btrfs] [372.919743] ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs] [372.938923] ? finish_wait+0x270/0x270 [372.959085] ? join_transaction+0xc75/0xe30 [btrfs] [372.977706] start_transaction+0x938/0x10a0 [btrfs] [372.997168] transaction_kthread+0x19d/0x3c0 [btrfs] [373.013021] ? btrfs_cleanup_transaction.isra.0+0xfc0/0xfc0 [btrfs] [373.031678] kthread+0x3b9/0x490 [373.047420] ? _raw_spin_unlock_irq+0x24/0x50 [373.064645] ? set_kthread_struct+0x100/0x100 [373.078571] ret_from_fork+0x22/0x30 [373.091197] </TASK> [373.105611] INFO: task btrfs:3145 blocked for more than 123 seconds. [373.114147] Not tainted 5.16.0-rc8 #7 [373.120401] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.130393] task:btrfs state:D stack: 0 pid: 3145 ppid: 3141 flags:0x00004000 [373.140998] Call Trace: [373.145501] <TASK> [373.149654] __schedule+0xb56/0x4850 [373.155306] ? io_schedule_timeout+0x190/0x190 [373.161965] ? lockdep_hardirqs_on+0x7e/0x100 [373.168469] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [373.175468] schedule+0xe0/0x270 [373.180814] wait_for_commit+0x104/0x150 [btrfs] [373.187643] ? test_and_set_bit+0x20/0x20 [btrfs] [373.194772] ? kmem_cache_free+0x124/0x550 [373.201191] ? btrfs_put_transaction+0x69/0x3d0 [btrfs] [373.208738] ? finish_wait+0x270/0x270 [373.214704] ? __btrfs_end_transaction+0x347/0x7b0 [btrfs] [373.222342] btrfs_commit_transaction+0x44d/0x2610 [btrfs] [373.230233] ? join_transaction+0x255/0xe30 [btrfs] [373.237334] ? btrfs_record_root_in_trans+0x4d/0x170 [btrfs] [373.245251] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [373.253296] relocate_block_group+0x105/0xc20 [btrfs] [373.260533] ? mutex_lock_io_nested+0x1270/0x1270 [373.267516] ? btrfs_wait_nocow_writers+0x85/0x180 [btrfs] [373.275155] ? merge_reloc_roots+0x710/0x710 [btrfs] [373.283602] ? btrfs_wait_ordered_extents+0xd30/0xd30 [btrfs] [373.291934] ? kmem_cache_free+0x124/0x550 [373.298180] btrfs_relocate_block_group+0x35c/0x930 [btrfs] [373.306047] btrfs_relocate_chunk+0x85/0x210 [btrfs] [373.313229] btrfs_balance+0x12f4/0x2d20 [btrfs] [373.320227] ? lock_release+0x3a9/0x6d0 [373.326206] ? btrfs_relocate_chunk+0x210/0x210 [btrfs] [373.333591] ? lock_is_held_type+0xe4/0x140 [373.340031] ? rcu_read_lock_sched_held+0x3f/0x70 [373.346910] btrfs_ioctl_balance+0x548/0x700 [btrfs] [373.354207] btrfs_ioctl+0x7f2/0x71b0 [btrfs] [373.360774] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.367957] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.375327] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.383841] ? find_held_lock+0x2c/0x110 [373.389993] ? lock_release+0x3a9/0x6d0 [373.395828] ? mntput_no_expire+0xf7/0xad0 [373.402083] ? lock_is_held_type+0xe4/0x140 [373.408249] ? vfs_fileattr_set+0x9f0/0x9f0 [373.414486] ? selinux_file_ioctl+0x349/0x4e0 [373.420938] ? trace_raw_output_lock+0xb4/0xe0 [373.427442] ? selinux_inode_getsecctx+0x80/0x80 [373.434224] ? lockdep_hardirqs_on+0x7e/0x100 [373.440660] ? force_qs_rnp+0x2a0/0x6b0 [373.446534] ? lock_is_held_type+0x9b/0x140 [373.452763] ? __blkcg_punt_bio_submit+0x1b0/0x1b0 [373.459732] ? security_file_ioctl+0x50/0x90 [373.466089] __x64_sys_ioctl+0x127/0x190 [373.472022] do_syscall_64+0x3b/0x90 [373.477513] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.484823] RIP: 0033:0x7f8f4af7e2bb [373.490493] RSP: 002b:00007ffcbf936178 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [373.500197] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f8f4af7e2bb [373.509451] RDX: 00007ffcbf936220 RSI: 00000000c4009420 RDI: 0000000000000003 [373.518659] RBP: 00007ffcbf93774a R08: 0000000000000013 R09: 00007f8f4b02d4e0 [373.527872] R10: 00007f8f4ae87740 R11: 0000000000000246 R12: 0000000000000001 [373.537222] R13: 00007ffcbf936220 R14: 0000000000000000 R15: 0000000000000002 [373.546506] </TASK> [373.550878] INFO: task btrfs:3146 blocked for more than 123 seconds. [373.559383] Not tainted 5.16.0-rc8 #7 [373.565748] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.575748] task:btrfs state:D stack: 0 pid: 3146 ppid: 2168 flags:0x00000000 [373.586314] Call Trace: [373.590846] <TASK> [373.595121] __schedule+0xb56/0x4850 [373.600901] ? __lock_acquire+0x23db/0x5030 [373.607176] ? io_schedule_timeout+0x190/0x190 [373.613954] schedule+0xe0/0x270 [373.619157] schedule_timeout+0x168/0x220 [373.625170] ? usleep_range_state+0x150/0x150 [373.631653] ? mark_held_locks+0x9e/0xe0 [373.637767] ? do_raw_spin_lock+0x11e/0x250 [373.643993] ? lockdep_hardirqs_on_prepare+0x17b/0x410 [373.651267] ? _raw_spin_unlock_irq+0x24/0x50 [373.657677] ? lockdep_hardirqs_on+0x7e/0x100 [373.664103] wait_for_completion+0x163/0x250 [373.670437] ? bit_wait_timeout+0x160/0x160 [373.676585] btrfs_quota_disable+0x176/0x9a0 [btrfs] [373.683979] ? btrfs_quota_enable+0x12f0/0x12f0 [btrfs] [373.691340] ? down_write+0xd0/0x130 [373.696880] ? down_write_killable+0x150/0x150 [373.703352] btrfs_ioctl+0x3945/0x71b0 [btrfs] [373.710061] ? find_held_lock+0x2c/0x110 [373.716192] ? lock_release+0x3a9/0x6d0 [373.722047] ? __handle_mm_fault+0x23cd/0x3050 [373.728486] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.737032] ? set_pte+0x6a/0x90 [373.742271] ? do_raw_spin_unlock+0x55/0x1f0 [373.748506] ? lock_is_held_type+0xe4/0x140 [373.754792] ? vfs_fileattr_set+0x9f0/0x9f0 [373.761083] ? selinux_file_ioctl+0x349/0x4e0 [373.767521] ? selinux_inode_getsecctx+0x80/0x80 [373.774247] ? __up_read+0x182/0x6e0 [373.780026] ? count_memcg_events.constprop.0+0x46/0x60 [373.787281] ? up_write+0x460/0x460 [373.792932] ? security_file_ioctl+0x50/0x90 [373.799232] __x64_sys_ioctl+0x127/0x190 [373.805237] do_syscall_64+0x3b/0x90 [373.810947] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.818102] RIP: 0033:0x7f1383ea02bb [373.823847] RSP: 002b:00007fffeb4d71f8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [373.833641] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1383ea02bb [373.842961] RDX: 00007fffeb4d7210 RSI: 00000000c0109428 RDI: 0000000000000003 [373.852179] RBP: 0000000000000003 R08: 0000000000000003 R09: 0000000000000078 [373.861408] R10: 00007f1383daec78 R11: 0000000000000202 R12: 00007fffeb4d874a [373.870647] R13: 0000000000493099 R14: 0000000000000001 R15: 0000000000000000 [373.879838] </TASK> [373.884018] Showing all locks held in the system: [373.894250] 3 locks held by kworker/4:1/58: [373.900356] 1 lock held by khungtaskd/63: [373.906333] #0: ffffffff8945ff60 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260 [373.917307] 3 locks held by kworker/u16:6/103: [373.923938] #0: ffff888127b4f138 ((wq_completion)btrfs-qgroup-rescan){+.+.}-{0:0}, at: process_one_work+0x712/0x1320 [373.936555] #1: ffff88810b817dd8 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x73f/0x1320 [373.951109] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_qgroup_rescan_worker+0x1f6/0x10c0 [btrfs] [373.964027] 2 locks held by less/1803: [373.969982] #0: ffff88813ed56098 (&tty->ldisc_sem){++++}-{0:0}, at: tty_ldisc_ref_wait+0x24/0x80 [373.981295] #1: ffffc90000b3b2e8 (&ldata->atomic_read_lock){+.+.}-{3:3}, at: n_tty_read+0x9e2/0x1060 [373.992969] 1 lock held by btrfs-transacti/2347: [373.999893] #0: ffff88813d4887a8 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0xe3/0x3c0 [btrfs] [374.015872] 3 locks held by btrfs/3145: [374.022298] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl_balance+0xc3/0x700 [btrfs] [374.034456] #1: ffff88813d48a0a0 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0xfe5/0x2d20 [btrfs] [374.047646] #2: ffff88813d488838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x354/0x930 [btrfs] [374.063295] 4 locks held by btrfs/3146: [374.069647] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl+0x38b1/0x71b0 [btrfs] [374.081601] #1: ffff88813d488bb8 (&fs_info->subvol_sem){+.+.}-{3:3}, at: btrfs_ioctl+0x38fd/0x71b0 [btrfs] [374.094283] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_disable+0xc8/0x9a0 [btrfs] [374.106885] #3: ffff88813d489800 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_disable+0xd5/0x9a0 [btrfs] [374.126780] ============================================= To avoid the deadlock, wait for the qgroup rescan worker to complete before starting the transaction for the quota disable ioctl. Clear BTRFS_FS_QUOTA_ENABLE flag before the wait and the transaction to request the worker to complete. On transaction start failure, set the BTRFS_FS_QUOTA_ENABLE flag again. These BTRFS_FS_QUOTA_ENABLE flag changes can be done safely since the function btrfs_quota_disable is not called concurrently because of fs_info->subvol_sem. Also check the BTRFS_FS_QUOTA_ENABLE flag in qgroup_rescan_init to avoid another qgroup rescan worker to start after the previous qgroup worker completed. CC: stable@vger.kernel.org # 5.4+ Suggested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-20 20:09:16 +09:00
/*
btrfs: fix race between quota disable and relocation If we disable quotas while we have a relocation of a metadata block group that has extents belonging to the quota root, we can cause the relocation to fail with -ENOENT. This is because relocation builds backref nodes for extents of the quota root and later needs to walk the backrefs and access the quota root - however if in between a task disables quotas, it results in deleting the quota root from the root tree (with btrfs_del_root(), called from btrfs_quota_disable(). This can be sporadically triggered by test case btrfs/255 from fstests: $ ./check btrfs/255 FSTYP -- btrfs PLATFORM -- Linux/x86_64 debian0 6.4.0-rc6-btrfs-next-134+ #1 SMP PREEMPT_DYNAMIC Thu Jun 15 11:59:28 WEST 2023 MKFS_OPTIONS -- /dev/sdc MOUNT_OPTIONS -- /dev/sdc /home/fdmanana/btrfs-tests/scratch_1 btrfs/255 6s ... _check_dmesg: something found in dmesg (see /home/fdmanana/git/hub/xfstests/results//btrfs/255.dmesg) - output mismatch (see /home/fdmanana/git/hub/xfstests/results//btrfs/255.out.bad) --- tests/btrfs/255.out 2023-03-02 21:47:53.876609426 +0000 +++ /home/fdmanana/git/hub/xfstests/results//btrfs/255.out.bad 2023-06-16 10:20:39.267563212 +0100 @@ -1,2 +1,4 @@ QA output created by 255 +ERROR: error during balancing '/home/fdmanana/btrfs-tests/scratch_1': No such file or directory +There may be more info in syslog - try dmesg | tail Silence is golden ... (Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/255.out /home/fdmanana/git/hub/xfstests/results//btrfs/255.out.bad' to see the entire diff) Ran: btrfs/255 Failures: btrfs/255 Failed 1 of 1 tests To fix this make the quota disable operation take the cleaner mutex, as relocation of a block group also takes this mutex. This is also what we do when deleting a subvolume/snapshot, we take the cleaner mutex in the cleaner kthread (at cleaner_kthread()) and then we call btrfs_del_root() at btrfs_drop_snapshot() while under the protection of the cleaner mutex. Fixes: bed92eae26cc ("Btrfs: qgroup implementation and prototypes") CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 17:21:50 +01:00
* We need to have subvol_sem write locked to prevent races with
* snapshot creation.
btrfs: fix deadlock between quota disable and qgroup rescan worker Quota disable ioctl starts a transaction before waiting for the qgroup rescan worker completes. However, this wait can be infinite and results in deadlock because of circular dependency among the quota disable ioctl, the qgroup rescan worker and the other task with transaction such as block group relocation task. The deadlock happens with the steps following: 1) Task A calls ioctl to disable quota. It starts a transaction and waits for qgroup rescan worker completes. 2) Task B such as block group relocation task starts a transaction and joins to the transaction that task A started. Then task B commits to the transaction. In this commit, task B waits for a commit by task A. 3) Task C as the qgroup rescan worker starts its job and starts a transaction. In this transaction start, task C waits for completion of the transaction that task A started and task B committed. This deadlock was found with fstests test case btrfs/115 and a zoned null_blk device. The test case enables and disables quota, and the block group reclaim was triggered during the quota disable by chance. The deadlock was also observed by running quota enable and disable in parallel with 'btrfs balance' command on regular null_blk devices. An example report of the deadlock: [372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds. [372.479944] Not tainted 5.16.0-rc8 #7 [372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.493898] task:kworker/u16:6 state:D stack: 0 pid: 103 ppid: 2 flags:0x00004000 [372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs] [372.510782] Call Trace: [372.514092] <TASK> [372.521684] __schedule+0xb56/0x4850 [372.530104] ? io_schedule_timeout+0x190/0x190 [372.538842] ? lockdep_hardirqs_on+0x7e/0x100 [372.547092] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.555591] schedule+0xe0/0x270 [372.561894] btrfs_commit_transaction+0x18bb/0x2610 [btrfs] [372.570506] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [372.578875] ? free_unref_page+0x3f2/0x650 [372.585484] ? finish_wait+0x270/0x270 [372.591594] ? release_extent_buffer+0x224/0x420 [btrfs] [372.599264] btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs] [372.607157] ? lock_release+0x3a9/0x6d0 [372.613054] ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs] [372.620960] ? do_raw_spin_lock+0x11e/0x250 [372.627137] ? rwlock_bug.part.0+0x90/0x90 [372.633215] ? lock_is_held_type+0xe4/0x140 [372.639404] btrfs_work_helper+0x1ae/0xa90 [btrfs] [372.646268] process_one_work+0x7e9/0x1320 [372.652321] ? lock_release+0x6d0/0x6d0 [372.658081] ? pwq_dec_nr_in_flight+0x230/0x230 [372.664513] ? rwlock_bug.part.0+0x90/0x90 [372.670529] worker_thread+0x59e/0xf90 [372.676172] ? process_one_work+0x1320/0x1320 [372.682440] kthread+0x3b9/0x490 [372.687550] ? _raw_spin_unlock_irq+0x24/0x50 [372.693811] ? set_kthread_struct+0x100/0x100 [372.700052] ret_from_fork+0x22/0x30 [372.705517] </TASK> [372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds. [372.729827] Not tainted 5.16.0-rc8 #7 [372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.767106] task:btrfs-transacti state:D stack: 0 pid: 2347 ppid: 2 flags:0x00004000 [372.787776] Call Trace: [372.801652] <TASK> [372.812961] __schedule+0xb56/0x4850 [372.830011] ? io_schedule_timeout+0x190/0x190 [372.852547] ? lockdep_hardirqs_on+0x7e/0x100 [372.871761] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.886792] schedule+0xe0/0x270 [372.901685] wait_current_trans+0x22c/0x310 [btrfs] [372.919743] ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs] [372.938923] ? finish_wait+0x270/0x270 [372.959085] ? join_transaction+0xc75/0xe30 [btrfs] [372.977706] start_transaction+0x938/0x10a0 [btrfs] [372.997168] transaction_kthread+0x19d/0x3c0 [btrfs] [373.013021] ? btrfs_cleanup_transaction.isra.0+0xfc0/0xfc0 [btrfs] [373.031678] kthread+0x3b9/0x490 [373.047420] ? _raw_spin_unlock_irq+0x24/0x50 [373.064645] ? set_kthread_struct+0x100/0x100 [373.078571] ret_from_fork+0x22/0x30 [373.091197] </TASK> [373.105611] INFO: task btrfs:3145 blocked for more than 123 seconds. [373.114147] Not tainted 5.16.0-rc8 #7 [373.120401] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.130393] task:btrfs state:D stack: 0 pid: 3145 ppid: 3141 flags:0x00004000 [373.140998] Call Trace: [373.145501] <TASK> [373.149654] __schedule+0xb56/0x4850 [373.155306] ? io_schedule_timeout+0x190/0x190 [373.161965] ? lockdep_hardirqs_on+0x7e/0x100 [373.168469] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [373.175468] schedule+0xe0/0x270 [373.180814] wait_for_commit+0x104/0x150 [btrfs] [373.187643] ? test_and_set_bit+0x20/0x20 [btrfs] [373.194772] ? kmem_cache_free+0x124/0x550 [373.201191] ? btrfs_put_transaction+0x69/0x3d0 [btrfs] [373.208738] ? finish_wait+0x270/0x270 [373.214704] ? __btrfs_end_transaction+0x347/0x7b0 [btrfs] [373.222342] btrfs_commit_transaction+0x44d/0x2610 [btrfs] [373.230233] ? join_transaction+0x255/0xe30 [btrfs] [373.237334] ? btrfs_record_root_in_trans+0x4d/0x170 [btrfs] [373.245251] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [373.253296] relocate_block_group+0x105/0xc20 [btrfs] [373.260533] ? mutex_lock_io_nested+0x1270/0x1270 [373.267516] ? btrfs_wait_nocow_writers+0x85/0x180 [btrfs] [373.275155] ? merge_reloc_roots+0x710/0x710 [btrfs] [373.283602] ? btrfs_wait_ordered_extents+0xd30/0xd30 [btrfs] [373.291934] ? kmem_cache_free+0x124/0x550 [373.298180] btrfs_relocate_block_group+0x35c/0x930 [btrfs] [373.306047] btrfs_relocate_chunk+0x85/0x210 [btrfs] [373.313229] btrfs_balance+0x12f4/0x2d20 [btrfs] [373.320227] ? lock_release+0x3a9/0x6d0 [373.326206] ? btrfs_relocate_chunk+0x210/0x210 [btrfs] [373.333591] ? lock_is_held_type+0xe4/0x140 [373.340031] ? rcu_read_lock_sched_held+0x3f/0x70 [373.346910] btrfs_ioctl_balance+0x548/0x700 [btrfs] [373.354207] btrfs_ioctl+0x7f2/0x71b0 [btrfs] [373.360774] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.367957] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.375327] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.383841] ? find_held_lock+0x2c/0x110 [373.389993] ? lock_release+0x3a9/0x6d0 [373.395828] ? mntput_no_expire+0xf7/0xad0 [373.402083] ? lock_is_held_type+0xe4/0x140 [373.408249] ? vfs_fileattr_set+0x9f0/0x9f0 [373.414486] ? selinux_file_ioctl+0x349/0x4e0 [373.420938] ? trace_raw_output_lock+0xb4/0xe0 [373.427442] ? selinux_inode_getsecctx+0x80/0x80 [373.434224] ? lockdep_hardirqs_on+0x7e/0x100 [373.440660] ? force_qs_rnp+0x2a0/0x6b0 [373.446534] ? lock_is_held_type+0x9b/0x140 [373.452763] ? __blkcg_punt_bio_submit+0x1b0/0x1b0 [373.459732] ? security_file_ioctl+0x50/0x90 [373.466089] __x64_sys_ioctl+0x127/0x190 [373.472022] do_syscall_64+0x3b/0x90 [373.477513] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.484823] RIP: 0033:0x7f8f4af7e2bb [373.490493] RSP: 002b:00007ffcbf936178 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [373.500197] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f8f4af7e2bb [373.509451] RDX: 00007ffcbf936220 RSI: 00000000c4009420 RDI: 0000000000000003 [373.518659] RBP: 00007ffcbf93774a R08: 0000000000000013 R09: 00007f8f4b02d4e0 [373.527872] R10: 00007f8f4ae87740 R11: 0000000000000246 R12: 0000000000000001 [373.537222] R13: 00007ffcbf936220 R14: 0000000000000000 R15: 0000000000000002 [373.546506] </TASK> [373.550878] INFO: task btrfs:3146 blocked for more than 123 seconds. [373.559383] Not tainted 5.16.0-rc8 #7 [373.565748] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.575748] task:btrfs state:D stack: 0 pid: 3146 ppid: 2168 flags:0x00000000 [373.586314] Call Trace: [373.590846] <TASK> [373.595121] __schedule+0xb56/0x4850 [373.600901] ? __lock_acquire+0x23db/0x5030 [373.607176] ? io_schedule_timeout+0x190/0x190 [373.613954] schedule+0xe0/0x270 [373.619157] schedule_timeout+0x168/0x220 [373.625170] ? usleep_range_state+0x150/0x150 [373.631653] ? mark_held_locks+0x9e/0xe0 [373.637767] ? do_raw_spin_lock+0x11e/0x250 [373.643993] ? lockdep_hardirqs_on_prepare+0x17b/0x410 [373.651267] ? _raw_spin_unlock_irq+0x24/0x50 [373.657677] ? lockdep_hardirqs_on+0x7e/0x100 [373.664103] wait_for_completion+0x163/0x250 [373.670437] ? bit_wait_timeout+0x160/0x160 [373.676585] btrfs_quota_disable+0x176/0x9a0 [btrfs] [373.683979] ? btrfs_quota_enable+0x12f0/0x12f0 [btrfs] [373.691340] ? down_write+0xd0/0x130 [373.696880] ? down_write_killable+0x150/0x150 [373.703352] btrfs_ioctl+0x3945/0x71b0 [btrfs] [373.710061] ? find_held_lock+0x2c/0x110 [373.716192] ? lock_release+0x3a9/0x6d0 [373.722047] ? __handle_mm_fault+0x23cd/0x3050 [373.728486] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.737032] ? set_pte+0x6a/0x90 [373.742271] ? do_raw_spin_unlock+0x55/0x1f0 [373.748506] ? lock_is_held_type+0xe4/0x140 [373.754792] ? vfs_fileattr_set+0x9f0/0x9f0 [373.761083] ? selinux_file_ioctl+0x349/0x4e0 [373.767521] ? selinux_inode_getsecctx+0x80/0x80 [373.774247] ? __up_read+0x182/0x6e0 [373.780026] ? count_memcg_events.constprop.0+0x46/0x60 [373.787281] ? up_write+0x460/0x460 [373.792932] ? security_file_ioctl+0x50/0x90 [373.799232] __x64_sys_ioctl+0x127/0x190 [373.805237] do_syscall_64+0x3b/0x90 [373.810947] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.818102] RIP: 0033:0x7f1383ea02bb [373.823847] RSP: 002b:00007fffeb4d71f8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [373.833641] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1383ea02bb [373.842961] RDX: 00007fffeb4d7210 RSI: 00000000c0109428 RDI: 0000000000000003 [373.852179] RBP: 0000000000000003 R08: 0000000000000003 R09: 0000000000000078 [373.861408] R10: 00007f1383daec78 R11: 0000000000000202 R12: 00007fffeb4d874a [373.870647] R13: 0000000000493099 R14: 0000000000000001 R15: 0000000000000000 [373.879838] </TASK> [373.884018] Showing all locks held in the system: [373.894250] 3 locks held by kworker/4:1/58: [373.900356] 1 lock held by khungtaskd/63: [373.906333] #0: ffffffff8945ff60 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260 [373.917307] 3 locks held by kworker/u16:6/103: [373.923938] #0: ffff888127b4f138 ((wq_completion)btrfs-qgroup-rescan){+.+.}-{0:0}, at: process_one_work+0x712/0x1320 [373.936555] #1: ffff88810b817dd8 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x73f/0x1320 [373.951109] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_qgroup_rescan_worker+0x1f6/0x10c0 [btrfs] [373.964027] 2 locks held by less/1803: [373.969982] #0: ffff88813ed56098 (&tty->ldisc_sem){++++}-{0:0}, at: tty_ldisc_ref_wait+0x24/0x80 [373.981295] #1: ffffc90000b3b2e8 (&ldata->atomic_read_lock){+.+.}-{3:3}, at: n_tty_read+0x9e2/0x1060 [373.992969] 1 lock held by btrfs-transacti/2347: [373.999893] #0: ffff88813d4887a8 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0xe3/0x3c0 [btrfs] [374.015872] 3 locks held by btrfs/3145: [374.022298] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl_balance+0xc3/0x700 [btrfs] [374.034456] #1: ffff88813d48a0a0 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0xfe5/0x2d20 [btrfs] [374.047646] #2: ffff88813d488838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x354/0x930 [btrfs] [374.063295] 4 locks held by btrfs/3146: [374.069647] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl+0x38b1/0x71b0 [btrfs] [374.081601] #1: ffff88813d488bb8 (&fs_info->subvol_sem){+.+.}-{3:3}, at: btrfs_ioctl+0x38fd/0x71b0 [btrfs] [374.094283] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_disable+0xc8/0x9a0 [btrfs] [374.106885] #3: ffff88813d489800 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_disable+0xd5/0x9a0 [btrfs] [374.126780] ============================================= To avoid the deadlock, wait for the qgroup rescan worker to complete before starting the transaction for the quota disable ioctl. Clear BTRFS_FS_QUOTA_ENABLE flag before the wait and the transaction to request the worker to complete. On transaction start failure, set the BTRFS_FS_QUOTA_ENABLE flag again. These BTRFS_FS_QUOTA_ENABLE flag changes can be done safely since the function btrfs_quota_disable is not called concurrently because of fs_info->subvol_sem. Also check the BTRFS_FS_QUOTA_ENABLE flag in qgroup_rescan_init to avoid another qgroup rescan worker to start after the previous qgroup worker completed. CC: stable@vger.kernel.org # 5.4+ Suggested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-20 20:09:16 +09:00
*/
lockdep_assert_held_write(&fs_info->subvol_sem);
btrfs: fix race between quota disable and relocation If we disable quotas while we have a relocation of a metadata block group that has extents belonging to the quota root, we can cause the relocation to fail with -ENOENT. This is because relocation builds backref nodes for extents of the quota root and later needs to walk the backrefs and access the quota root - however if in between a task disables quotas, it results in deleting the quota root from the root tree (with btrfs_del_root(), called from btrfs_quota_disable(). This can be sporadically triggered by test case btrfs/255 from fstests: $ ./check btrfs/255 FSTYP -- btrfs PLATFORM -- Linux/x86_64 debian0 6.4.0-rc6-btrfs-next-134+ #1 SMP PREEMPT_DYNAMIC Thu Jun 15 11:59:28 WEST 2023 MKFS_OPTIONS -- /dev/sdc MOUNT_OPTIONS -- /dev/sdc /home/fdmanana/btrfs-tests/scratch_1 btrfs/255 6s ... _check_dmesg: something found in dmesg (see /home/fdmanana/git/hub/xfstests/results//btrfs/255.dmesg) - output mismatch (see /home/fdmanana/git/hub/xfstests/results//btrfs/255.out.bad) --- tests/btrfs/255.out 2023-03-02 21:47:53.876609426 +0000 +++ /home/fdmanana/git/hub/xfstests/results//btrfs/255.out.bad 2023-06-16 10:20:39.267563212 +0100 @@ -1,2 +1,4 @@ QA output created by 255 +ERROR: error during balancing '/home/fdmanana/btrfs-tests/scratch_1': No such file or directory +There may be more info in syslog - try dmesg | tail Silence is golden ... (Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/255.out /home/fdmanana/git/hub/xfstests/results//btrfs/255.out.bad' to see the entire diff) Ran: btrfs/255 Failures: btrfs/255 Failed 1 of 1 tests To fix this make the quota disable operation take the cleaner mutex, as relocation of a block group also takes this mutex. This is also what we do when deleting a subvolume/snapshot, we take the cleaner mutex in the cleaner kthread (at cleaner_kthread()) and then we call btrfs_del_root() at btrfs_drop_snapshot() while under the protection of the cleaner mutex. Fixes: bed92eae26cc ("Btrfs: qgroup implementation and prototypes") CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 17:21:50 +01:00
/*
* Lock the cleaner mutex to prevent races with concurrent relocation,
* because relocation may be building backrefs for blocks of the quota
* root while we are deleting the root. This is like dropping fs roots
* of deleted snapshots/subvolumes, we need the same protection.
*
* This also prevents races between concurrent tasks trying to disable
* quotas, because we will unlock and relock qgroup_ioctl_lock across
* BTRFS_FS_QUOTA_ENABLED changes.
*/
mutex_lock(&fs_info->cleaner_mutex);
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root)
goto out;
btrfs: fix deadlock between quota disable and qgroup rescan worker Quota disable ioctl starts a transaction before waiting for the qgroup rescan worker completes. However, this wait can be infinite and results in deadlock because of circular dependency among the quota disable ioctl, the qgroup rescan worker and the other task with transaction such as block group relocation task. The deadlock happens with the steps following: 1) Task A calls ioctl to disable quota. It starts a transaction and waits for qgroup rescan worker completes. 2) Task B such as block group relocation task starts a transaction and joins to the transaction that task A started. Then task B commits to the transaction. In this commit, task B waits for a commit by task A. 3) Task C as the qgroup rescan worker starts its job and starts a transaction. In this transaction start, task C waits for completion of the transaction that task A started and task B committed. This deadlock was found with fstests test case btrfs/115 and a zoned null_blk device. The test case enables and disables quota, and the block group reclaim was triggered during the quota disable by chance. The deadlock was also observed by running quota enable and disable in parallel with 'btrfs balance' command on regular null_blk devices. An example report of the deadlock: [372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds. [372.479944] Not tainted 5.16.0-rc8 #7 [372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.493898] task:kworker/u16:6 state:D stack: 0 pid: 103 ppid: 2 flags:0x00004000 [372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs] [372.510782] Call Trace: [372.514092] <TASK> [372.521684] __schedule+0xb56/0x4850 [372.530104] ? io_schedule_timeout+0x190/0x190 [372.538842] ? lockdep_hardirqs_on+0x7e/0x100 [372.547092] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.555591] schedule+0xe0/0x270 [372.561894] btrfs_commit_transaction+0x18bb/0x2610 [btrfs] [372.570506] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [372.578875] ? free_unref_page+0x3f2/0x650 [372.585484] ? finish_wait+0x270/0x270 [372.591594] ? release_extent_buffer+0x224/0x420 [btrfs] [372.599264] btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs] [372.607157] ? lock_release+0x3a9/0x6d0 [372.613054] ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs] [372.620960] ? do_raw_spin_lock+0x11e/0x250 [372.627137] ? rwlock_bug.part.0+0x90/0x90 [372.633215] ? lock_is_held_type+0xe4/0x140 [372.639404] btrfs_work_helper+0x1ae/0xa90 [btrfs] [372.646268] process_one_work+0x7e9/0x1320 [372.652321] ? lock_release+0x6d0/0x6d0 [372.658081] ? pwq_dec_nr_in_flight+0x230/0x230 [372.664513] ? rwlock_bug.part.0+0x90/0x90 [372.670529] worker_thread+0x59e/0xf90 [372.676172] ? process_one_work+0x1320/0x1320 [372.682440] kthread+0x3b9/0x490 [372.687550] ? _raw_spin_unlock_irq+0x24/0x50 [372.693811] ? set_kthread_struct+0x100/0x100 [372.700052] ret_from_fork+0x22/0x30 [372.705517] </TASK> [372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds. [372.729827] Not tainted 5.16.0-rc8 #7 [372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.767106] task:btrfs-transacti state:D stack: 0 pid: 2347 ppid: 2 flags:0x00004000 [372.787776] Call Trace: [372.801652] <TASK> [372.812961] __schedule+0xb56/0x4850 [372.830011] ? io_schedule_timeout+0x190/0x190 [372.852547] ? lockdep_hardirqs_on+0x7e/0x100 [372.871761] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.886792] schedule+0xe0/0x270 [372.901685] wait_current_trans+0x22c/0x310 [btrfs] [372.919743] ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs] [372.938923] ? finish_wait+0x270/0x270 [372.959085] ? join_transaction+0xc75/0xe30 [btrfs] [372.977706] start_transaction+0x938/0x10a0 [btrfs] [372.997168] transaction_kthread+0x19d/0x3c0 [btrfs] [373.013021] ? btrfs_cleanup_transaction.isra.0+0xfc0/0xfc0 [btrfs] [373.031678] kthread+0x3b9/0x490 [373.047420] ? _raw_spin_unlock_irq+0x24/0x50 [373.064645] ? set_kthread_struct+0x100/0x100 [373.078571] ret_from_fork+0x22/0x30 [373.091197] </TASK> [373.105611] INFO: task btrfs:3145 blocked for more than 123 seconds. [373.114147] Not tainted 5.16.0-rc8 #7 [373.120401] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.130393] task:btrfs state:D stack: 0 pid: 3145 ppid: 3141 flags:0x00004000 [373.140998] Call Trace: [373.145501] <TASK> [373.149654] __schedule+0xb56/0x4850 [373.155306] ? io_schedule_timeout+0x190/0x190 [373.161965] ? lockdep_hardirqs_on+0x7e/0x100 [373.168469] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [373.175468] schedule+0xe0/0x270 [373.180814] wait_for_commit+0x104/0x150 [btrfs] [373.187643] ? test_and_set_bit+0x20/0x20 [btrfs] [373.194772] ? kmem_cache_free+0x124/0x550 [373.201191] ? btrfs_put_transaction+0x69/0x3d0 [btrfs] [373.208738] ? finish_wait+0x270/0x270 [373.214704] ? __btrfs_end_transaction+0x347/0x7b0 [btrfs] [373.222342] btrfs_commit_transaction+0x44d/0x2610 [btrfs] [373.230233] ? join_transaction+0x255/0xe30 [btrfs] [373.237334] ? btrfs_record_root_in_trans+0x4d/0x170 [btrfs] [373.245251] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [373.253296] relocate_block_group+0x105/0xc20 [btrfs] [373.260533] ? mutex_lock_io_nested+0x1270/0x1270 [373.267516] ? btrfs_wait_nocow_writers+0x85/0x180 [btrfs] [373.275155] ? merge_reloc_roots+0x710/0x710 [btrfs] [373.283602] ? btrfs_wait_ordered_extents+0xd30/0xd30 [btrfs] [373.291934] ? kmem_cache_free+0x124/0x550 [373.298180] btrfs_relocate_block_group+0x35c/0x930 [btrfs] [373.306047] btrfs_relocate_chunk+0x85/0x210 [btrfs] [373.313229] btrfs_balance+0x12f4/0x2d20 [btrfs] [373.320227] ? lock_release+0x3a9/0x6d0 [373.326206] ? btrfs_relocate_chunk+0x210/0x210 [btrfs] [373.333591] ? lock_is_held_type+0xe4/0x140 [373.340031] ? rcu_read_lock_sched_held+0x3f/0x70 [373.346910] btrfs_ioctl_balance+0x548/0x700 [btrfs] [373.354207] btrfs_ioctl+0x7f2/0x71b0 [btrfs] [373.360774] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.367957] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.375327] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.383841] ? find_held_lock+0x2c/0x110 [373.389993] ? lock_release+0x3a9/0x6d0 [373.395828] ? mntput_no_expire+0xf7/0xad0 [373.402083] ? lock_is_held_type+0xe4/0x140 [373.408249] ? vfs_fileattr_set+0x9f0/0x9f0 [373.414486] ? selinux_file_ioctl+0x349/0x4e0 [373.420938] ? trace_raw_output_lock+0xb4/0xe0 [373.427442] ? selinux_inode_getsecctx+0x80/0x80 [373.434224] ? lockdep_hardirqs_on+0x7e/0x100 [373.440660] ? force_qs_rnp+0x2a0/0x6b0 [373.446534] ? lock_is_held_type+0x9b/0x140 [373.452763] ? __blkcg_punt_bio_submit+0x1b0/0x1b0 [373.459732] ? security_file_ioctl+0x50/0x90 [373.466089] __x64_sys_ioctl+0x127/0x190 [373.472022] do_syscall_64+0x3b/0x90 [373.477513] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.484823] RIP: 0033:0x7f8f4af7e2bb [373.490493] RSP: 002b:00007ffcbf936178 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [373.500197] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f8f4af7e2bb [373.509451] RDX: 00007ffcbf936220 RSI: 00000000c4009420 RDI: 0000000000000003 [373.518659] RBP: 00007ffcbf93774a R08: 0000000000000013 R09: 00007f8f4b02d4e0 [373.527872] R10: 00007f8f4ae87740 R11: 0000000000000246 R12: 0000000000000001 [373.537222] R13: 00007ffcbf936220 R14: 0000000000000000 R15: 0000000000000002 [373.546506] </TASK> [373.550878] INFO: task btrfs:3146 blocked for more than 123 seconds. [373.559383] Not tainted 5.16.0-rc8 #7 [373.565748] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.575748] task:btrfs state:D stack: 0 pid: 3146 ppid: 2168 flags:0x00000000 [373.586314] Call Trace: [373.590846] <TASK> [373.595121] __schedule+0xb56/0x4850 [373.600901] ? __lock_acquire+0x23db/0x5030 [373.607176] ? io_schedule_timeout+0x190/0x190 [373.613954] schedule+0xe0/0x270 [373.619157] schedule_timeout+0x168/0x220 [373.625170] ? usleep_range_state+0x150/0x150 [373.631653] ? mark_held_locks+0x9e/0xe0 [373.637767] ? do_raw_spin_lock+0x11e/0x250 [373.643993] ? lockdep_hardirqs_on_prepare+0x17b/0x410 [373.651267] ? _raw_spin_unlock_irq+0x24/0x50 [373.657677] ? lockdep_hardirqs_on+0x7e/0x100 [373.664103] wait_for_completion+0x163/0x250 [373.670437] ? bit_wait_timeout+0x160/0x160 [373.676585] btrfs_quota_disable+0x176/0x9a0 [btrfs] [373.683979] ? btrfs_quota_enable+0x12f0/0x12f0 [btrfs] [373.691340] ? down_write+0xd0/0x130 [373.696880] ? down_write_killable+0x150/0x150 [373.703352] btrfs_ioctl+0x3945/0x71b0 [btrfs] [373.710061] ? find_held_lock+0x2c/0x110 [373.716192] ? lock_release+0x3a9/0x6d0 [373.722047] ? __handle_mm_fault+0x23cd/0x3050 [373.728486] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.737032] ? set_pte+0x6a/0x90 [373.742271] ? do_raw_spin_unlock+0x55/0x1f0 [373.748506] ? lock_is_held_type+0xe4/0x140 [373.754792] ? vfs_fileattr_set+0x9f0/0x9f0 [373.761083] ? selinux_file_ioctl+0x349/0x4e0 [373.767521] ? selinux_inode_getsecctx+0x80/0x80 [373.774247] ? __up_read+0x182/0x6e0 [373.780026] ? count_memcg_events.constprop.0+0x46/0x60 [373.787281] ? up_write+0x460/0x460 [373.792932] ? security_file_ioctl+0x50/0x90 [373.799232] __x64_sys_ioctl+0x127/0x190 [373.805237] do_syscall_64+0x3b/0x90 [373.810947] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.818102] RIP: 0033:0x7f1383ea02bb [373.823847] RSP: 002b:00007fffeb4d71f8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [373.833641] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1383ea02bb [373.842961] RDX: 00007fffeb4d7210 RSI: 00000000c0109428 RDI: 0000000000000003 [373.852179] RBP: 0000000000000003 R08: 0000000000000003 R09: 0000000000000078 [373.861408] R10: 00007f1383daec78 R11: 0000000000000202 R12: 00007fffeb4d874a [373.870647] R13: 0000000000493099 R14: 0000000000000001 R15: 0000000000000000 [373.879838] </TASK> [373.884018] Showing all locks held in the system: [373.894250] 3 locks held by kworker/4:1/58: [373.900356] 1 lock held by khungtaskd/63: [373.906333] #0: ffffffff8945ff60 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260 [373.917307] 3 locks held by kworker/u16:6/103: [373.923938] #0: ffff888127b4f138 ((wq_completion)btrfs-qgroup-rescan){+.+.}-{0:0}, at: process_one_work+0x712/0x1320 [373.936555] #1: ffff88810b817dd8 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x73f/0x1320 [373.951109] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_qgroup_rescan_worker+0x1f6/0x10c0 [btrfs] [373.964027] 2 locks held by less/1803: [373.969982] #0: ffff88813ed56098 (&tty->ldisc_sem){++++}-{0:0}, at: tty_ldisc_ref_wait+0x24/0x80 [373.981295] #1: ffffc90000b3b2e8 (&ldata->atomic_read_lock){+.+.}-{3:3}, at: n_tty_read+0x9e2/0x1060 [373.992969] 1 lock held by btrfs-transacti/2347: [373.999893] #0: ffff88813d4887a8 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0xe3/0x3c0 [btrfs] [374.015872] 3 locks held by btrfs/3145: [374.022298] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl_balance+0xc3/0x700 [btrfs] [374.034456] #1: ffff88813d48a0a0 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0xfe5/0x2d20 [btrfs] [374.047646] #2: ffff88813d488838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x354/0x930 [btrfs] [374.063295] 4 locks held by btrfs/3146: [374.069647] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl+0x38b1/0x71b0 [btrfs] [374.081601] #1: ffff88813d488bb8 (&fs_info->subvol_sem){+.+.}-{3:3}, at: btrfs_ioctl+0x38fd/0x71b0 [btrfs] [374.094283] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_disable+0xc8/0x9a0 [btrfs] [374.106885] #3: ffff88813d489800 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_disable+0xd5/0x9a0 [btrfs] [374.126780] ============================================= To avoid the deadlock, wait for the qgroup rescan worker to complete before starting the transaction for the quota disable ioctl. Clear BTRFS_FS_QUOTA_ENABLE flag before the wait and the transaction to request the worker to complete. On transaction start failure, set the BTRFS_FS_QUOTA_ENABLE flag again. These BTRFS_FS_QUOTA_ENABLE flag changes can be done safely since the function btrfs_quota_disable is not called concurrently because of fs_info->subvol_sem. Also check the BTRFS_FS_QUOTA_ENABLE flag in qgroup_rescan_init to avoid another qgroup rescan worker to start after the previous qgroup worker completed. CC: stable@vger.kernel.org # 5.4+ Suggested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-20 20:09:16 +09:00
btrfs: qgroup: fix deadlock between rescan worker and remove qgroup The commit e804861bd4e6 ("btrfs: fix deadlock between quota disable and qgroup rescan worker") by Kawasaki resolves deadlock between quota disable and qgroup rescan worker. But also there is a deadlock case like it. It's about enabling or disabling quota and creating or removing qgroup. It can be reproduced in simple script below. for i in {1..100} do btrfs quota enable /mnt & btrfs qgroup create 1/0 /mnt & btrfs qgroup destroy 1/0 /mnt & btrfs quota disable /mnt & done Here's why the deadlock happens: 1) The quota rescan task is running. 2) Task A calls btrfs_quota_disable(), locks the qgroup_ioctl_lock mutex, and then calls btrfs_qgroup_wait_for_completion(), to wait for the quota rescan task to complete. 3) Task B calls btrfs_remove_qgroup() and it blocks when trying to lock the qgroup_ioctl_lock mutex, because it's being held by task A. At that point task B is holding a transaction handle for the current transaction. 4) The quota rescan task calls btrfs_commit_transaction(). This results in it waiting for all other tasks to release their handles on the transaction, but task B is blocked on the qgroup_ioctl_lock mutex while holding a handle on the transaction, and that mutex is being held by task A, which is waiting for the quota rescan task to complete, resulting in a deadlock between these 3 tasks. To resolve this issue, the thread disabling quota should unlock qgroup_ioctl_lock before waiting rescan completion. Move btrfs_qgroup_wait_for_completion() after unlock of qgroup_ioctl_lock. Fixes: e804861bd4e6 ("btrfs: fix deadlock between quota disable and qgroup rescan worker") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Sidong Yang <realwakka@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-02-28 01:43:40 +00:00
/*
* Unlock the qgroup_ioctl_lock mutex before waiting for the rescan worker to
* complete. Otherwise we can deadlock because btrfs_remove_qgroup() needs
* to lock that mutex while holding a transaction handle and the rescan
* worker needs to commit a transaction.
*/
mutex_unlock(&fs_info->qgroup_ioctl_lock);
btrfs: fix deadlock between quota disable and qgroup rescan worker Quota disable ioctl starts a transaction before waiting for the qgroup rescan worker completes. However, this wait can be infinite and results in deadlock because of circular dependency among the quota disable ioctl, the qgroup rescan worker and the other task with transaction such as block group relocation task. The deadlock happens with the steps following: 1) Task A calls ioctl to disable quota. It starts a transaction and waits for qgroup rescan worker completes. 2) Task B such as block group relocation task starts a transaction and joins to the transaction that task A started. Then task B commits to the transaction. In this commit, task B waits for a commit by task A. 3) Task C as the qgroup rescan worker starts its job and starts a transaction. In this transaction start, task C waits for completion of the transaction that task A started and task B committed. This deadlock was found with fstests test case btrfs/115 and a zoned null_blk device. The test case enables and disables quota, and the block group reclaim was triggered during the quota disable by chance. The deadlock was also observed by running quota enable and disable in parallel with 'btrfs balance' command on regular null_blk devices. An example report of the deadlock: [372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds. [372.479944] Not tainted 5.16.0-rc8 #7 [372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.493898] task:kworker/u16:6 state:D stack: 0 pid: 103 ppid: 2 flags:0x00004000 [372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs] [372.510782] Call Trace: [372.514092] <TASK> [372.521684] __schedule+0xb56/0x4850 [372.530104] ? io_schedule_timeout+0x190/0x190 [372.538842] ? lockdep_hardirqs_on+0x7e/0x100 [372.547092] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.555591] schedule+0xe0/0x270 [372.561894] btrfs_commit_transaction+0x18bb/0x2610 [btrfs] [372.570506] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [372.578875] ? free_unref_page+0x3f2/0x650 [372.585484] ? finish_wait+0x270/0x270 [372.591594] ? release_extent_buffer+0x224/0x420 [btrfs] [372.599264] btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs] [372.607157] ? lock_release+0x3a9/0x6d0 [372.613054] ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs] [372.620960] ? do_raw_spin_lock+0x11e/0x250 [372.627137] ? rwlock_bug.part.0+0x90/0x90 [372.633215] ? lock_is_held_type+0xe4/0x140 [372.639404] btrfs_work_helper+0x1ae/0xa90 [btrfs] [372.646268] process_one_work+0x7e9/0x1320 [372.652321] ? lock_release+0x6d0/0x6d0 [372.658081] ? pwq_dec_nr_in_flight+0x230/0x230 [372.664513] ? rwlock_bug.part.0+0x90/0x90 [372.670529] worker_thread+0x59e/0xf90 [372.676172] ? process_one_work+0x1320/0x1320 [372.682440] kthread+0x3b9/0x490 [372.687550] ? _raw_spin_unlock_irq+0x24/0x50 [372.693811] ? set_kthread_struct+0x100/0x100 [372.700052] ret_from_fork+0x22/0x30 [372.705517] </TASK> [372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds. [372.729827] Not tainted 5.16.0-rc8 #7 [372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.767106] task:btrfs-transacti state:D stack: 0 pid: 2347 ppid: 2 flags:0x00004000 [372.787776] Call Trace: [372.801652] <TASK> [372.812961] __schedule+0xb56/0x4850 [372.830011] ? io_schedule_timeout+0x190/0x190 [372.852547] ? lockdep_hardirqs_on+0x7e/0x100 [372.871761] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.886792] schedule+0xe0/0x270 [372.901685] wait_current_trans+0x22c/0x310 [btrfs] [372.919743] ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs] [372.938923] ? finish_wait+0x270/0x270 [372.959085] ? join_transaction+0xc75/0xe30 [btrfs] [372.977706] start_transaction+0x938/0x10a0 [btrfs] [372.997168] transaction_kthread+0x19d/0x3c0 [btrfs] [373.013021] ? btrfs_cleanup_transaction.isra.0+0xfc0/0xfc0 [btrfs] [373.031678] kthread+0x3b9/0x490 [373.047420] ? _raw_spin_unlock_irq+0x24/0x50 [373.064645] ? set_kthread_struct+0x100/0x100 [373.078571] ret_from_fork+0x22/0x30 [373.091197] </TASK> [373.105611] INFO: task btrfs:3145 blocked for more than 123 seconds. [373.114147] Not tainted 5.16.0-rc8 #7 [373.120401] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.130393] task:btrfs state:D stack: 0 pid: 3145 ppid: 3141 flags:0x00004000 [373.140998] Call Trace: [373.145501] <TASK> [373.149654] __schedule+0xb56/0x4850 [373.155306] ? io_schedule_timeout+0x190/0x190 [373.161965] ? lockdep_hardirqs_on+0x7e/0x100 [373.168469] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [373.175468] schedule+0xe0/0x270 [373.180814] wait_for_commit+0x104/0x150 [btrfs] [373.187643] ? test_and_set_bit+0x20/0x20 [btrfs] [373.194772] ? kmem_cache_free+0x124/0x550 [373.201191] ? btrfs_put_transaction+0x69/0x3d0 [btrfs] [373.208738] ? finish_wait+0x270/0x270 [373.214704] ? __btrfs_end_transaction+0x347/0x7b0 [btrfs] [373.222342] btrfs_commit_transaction+0x44d/0x2610 [btrfs] [373.230233] ? join_transaction+0x255/0xe30 [btrfs] [373.237334] ? btrfs_record_root_in_trans+0x4d/0x170 [btrfs] [373.245251] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [373.253296] relocate_block_group+0x105/0xc20 [btrfs] [373.260533] ? mutex_lock_io_nested+0x1270/0x1270 [373.267516] ? btrfs_wait_nocow_writers+0x85/0x180 [btrfs] [373.275155] ? merge_reloc_roots+0x710/0x710 [btrfs] [373.283602] ? btrfs_wait_ordered_extents+0xd30/0xd30 [btrfs] [373.291934] ? kmem_cache_free+0x124/0x550 [373.298180] btrfs_relocate_block_group+0x35c/0x930 [btrfs] [373.306047] btrfs_relocate_chunk+0x85/0x210 [btrfs] [373.313229] btrfs_balance+0x12f4/0x2d20 [btrfs] [373.320227] ? lock_release+0x3a9/0x6d0 [373.326206] ? btrfs_relocate_chunk+0x210/0x210 [btrfs] [373.333591] ? lock_is_held_type+0xe4/0x140 [373.340031] ? rcu_read_lock_sched_held+0x3f/0x70 [373.346910] btrfs_ioctl_balance+0x548/0x700 [btrfs] [373.354207] btrfs_ioctl+0x7f2/0x71b0 [btrfs] [373.360774] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.367957] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.375327] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.383841] ? find_held_lock+0x2c/0x110 [373.389993] ? lock_release+0x3a9/0x6d0 [373.395828] ? mntput_no_expire+0xf7/0xad0 [373.402083] ? lock_is_held_type+0xe4/0x140 [373.408249] ? vfs_fileattr_set+0x9f0/0x9f0 [373.414486] ? selinux_file_ioctl+0x349/0x4e0 [373.420938] ? trace_raw_output_lock+0xb4/0xe0 [373.427442] ? selinux_inode_getsecctx+0x80/0x80 [373.434224] ? lockdep_hardirqs_on+0x7e/0x100 [373.440660] ? force_qs_rnp+0x2a0/0x6b0 [373.446534] ? lock_is_held_type+0x9b/0x140 [373.452763] ? __blkcg_punt_bio_submit+0x1b0/0x1b0 [373.459732] ? security_file_ioctl+0x50/0x90 [373.466089] __x64_sys_ioctl+0x127/0x190 [373.472022] do_syscall_64+0x3b/0x90 [373.477513] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.484823] RIP: 0033:0x7f8f4af7e2bb [373.490493] RSP: 002b:00007ffcbf936178 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [373.500197] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f8f4af7e2bb [373.509451] RDX: 00007ffcbf936220 RSI: 00000000c4009420 RDI: 0000000000000003 [373.518659] RBP: 00007ffcbf93774a R08: 0000000000000013 R09: 00007f8f4b02d4e0 [373.527872] R10: 00007f8f4ae87740 R11: 0000000000000246 R12: 0000000000000001 [373.537222] R13: 00007ffcbf936220 R14: 0000000000000000 R15: 0000000000000002 [373.546506] </TASK> [373.550878] INFO: task btrfs:3146 blocked for more than 123 seconds. [373.559383] Not tainted 5.16.0-rc8 #7 [373.565748] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.575748] task:btrfs state:D stack: 0 pid: 3146 ppid: 2168 flags:0x00000000 [373.586314] Call Trace: [373.590846] <TASK> [373.595121] __schedule+0xb56/0x4850 [373.600901] ? __lock_acquire+0x23db/0x5030 [373.607176] ? io_schedule_timeout+0x190/0x190 [373.613954] schedule+0xe0/0x270 [373.619157] schedule_timeout+0x168/0x220 [373.625170] ? usleep_range_state+0x150/0x150 [373.631653] ? mark_held_locks+0x9e/0xe0 [373.637767] ? do_raw_spin_lock+0x11e/0x250 [373.643993] ? lockdep_hardirqs_on_prepare+0x17b/0x410 [373.651267] ? _raw_spin_unlock_irq+0x24/0x50 [373.657677] ? lockdep_hardirqs_on+0x7e/0x100 [373.664103] wait_for_completion+0x163/0x250 [373.670437] ? bit_wait_timeout+0x160/0x160 [373.676585] btrfs_quota_disable+0x176/0x9a0 [btrfs] [373.683979] ? btrfs_quota_enable+0x12f0/0x12f0 [btrfs] [373.691340] ? down_write+0xd0/0x130 [373.696880] ? down_write_killable+0x150/0x150 [373.703352] btrfs_ioctl+0x3945/0x71b0 [btrfs] [373.710061] ? find_held_lock+0x2c/0x110 [373.716192] ? lock_release+0x3a9/0x6d0 [373.722047] ? __handle_mm_fault+0x23cd/0x3050 [373.728486] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.737032] ? set_pte+0x6a/0x90 [373.742271] ? do_raw_spin_unlock+0x55/0x1f0 [373.748506] ? lock_is_held_type+0xe4/0x140 [373.754792] ? vfs_fileattr_set+0x9f0/0x9f0 [373.761083] ? selinux_file_ioctl+0x349/0x4e0 [373.767521] ? selinux_inode_getsecctx+0x80/0x80 [373.774247] ? __up_read+0x182/0x6e0 [373.780026] ? count_memcg_events.constprop.0+0x46/0x60 [373.787281] ? up_write+0x460/0x460 [373.792932] ? security_file_ioctl+0x50/0x90 [373.799232] __x64_sys_ioctl+0x127/0x190 [373.805237] do_syscall_64+0x3b/0x90 [373.810947] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.818102] RIP: 0033:0x7f1383ea02bb [373.823847] RSP: 002b:00007fffeb4d71f8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [373.833641] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1383ea02bb [373.842961] RDX: 00007fffeb4d7210 RSI: 00000000c0109428 RDI: 0000000000000003 [373.852179] RBP: 0000000000000003 R08: 0000000000000003 R09: 0000000000000078 [373.861408] R10: 00007f1383daec78 R11: 0000000000000202 R12: 00007fffeb4d874a [373.870647] R13: 0000000000493099 R14: 0000000000000001 R15: 0000000000000000 [373.879838] </TASK> [373.884018] Showing all locks held in the system: [373.894250] 3 locks held by kworker/4:1/58: [373.900356] 1 lock held by khungtaskd/63: [373.906333] #0: ffffffff8945ff60 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260 [373.917307] 3 locks held by kworker/u16:6/103: [373.923938] #0: ffff888127b4f138 ((wq_completion)btrfs-qgroup-rescan){+.+.}-{0:0}, at: process_one_work+0x712/0x1320 [373.936555] #1: ffff88810b817dd8 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x73f/0x1320 [373.951109] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_qgroup_rescan_worker+0x1f6/0x10c0 [btrfs] [373.964027] 2 locks held by less/1803: [373.969982] #0: ffff88813ed56098 (&tty->ldisc_sem){++++}-{0:0}, at: tty_ldisc_ref_wait+0x24/0x80 [373.981295] #1: ffffc90000b3b2e8 (&ldata->atomic_read_lock){+.+.}-{3:3}, at: n_tty_read+0x9e2/0x1060 [373.992969] 1 lock held by btrfs-transacti/2347: [373.999893] #0: ffff88813d4887a8 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0xe3/0x3c0 [btrfs] [374.015872] 3 locks held by btrfs/3145: [374.022298] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl_balance+0xc3/0x700 [btrfs] [374.034456] #1: ffff88813d48a0a0 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0xfe5/0x2d20 [btrfs] [374.047646] #2: ffff88813d488838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x354/0x930 [btrfs] [374.063295] 4 locks held by btrfs/3146: [374.069647] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl+0x38b1/0x71b0 [btrfs] [374.081601] #1: ffff88813d488bb8 (&fs_info->subvol_sem){+.+.}-{3:3}, at: btrfs_ioctl+0x38fd/0x71b0 [btrfs] [374.094283] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_disable+0xc8/0x9a0 [btrfs] [374.106885] #3: ffff88813d489800 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_disable+0xd5/0x9a0 [btrfs] [374.126780] ============================================= To avoid the deadlock, wait for the qgroup rescan worker to complete before starting the transaction for the quota disable ioctl. Clear BTRFS_FS_QUOTA_ENABLE flag before the wait and the transaction to request the worker to complete. On transaction start failure, set the BTRFS_FS_QUOTA_ENABLE flag again. These BTRFS_FS_QUOTA_ENABLE flag changes can be done safely since the function btrfs_quota_disable is not called concurrently because of fs_info->subvol_sem. Also check the BTRFS_FS_QUOTA_ENABLE flag in qgroup_rescan_init to avoid another qgroup rescan worker to start after the previous qgroup worker completed. CC: stable@vger.kernel.org # 5.4+ Suggested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-20 20:09:16 +09:00
/*
* Request qgroup rescan worker to complete and wait for it. This wait
* must be done before transaction start for quota disable since it may
* deadlock with transaction by the qgroup rescan worker.
*/
clear_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
btrfs_qgroup_wait_for_completion(fs_info, false);
/*
* 1 For the root item
*
* We should also reserve enough items for the quota tree deletion in
* btrfs_clean_quota_tree but this is not done.
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
*
* Also, we must always start a transaction without holding the mutex
* qgroup_ioctl_lock, see btrfs_quota_enable().
*/
trans = btrfs_start_transaction(fs_info->tree_root, 1);
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
trans = NULL;
btrfs: fix deadlock between quota disable and qgroup rescan worker Quota disable ioctl starts a transaction before waiting for the qgroup rescan worker completes. However, this wait can be infinite and results in deadlock because of circular dependency among the quota disable ioctl, the qgroup rescan worker and the other task with transaction such as block group relocation task. The deadlock happens with the steps following: 1) Task A calls ioctl to disable quota. It starts a transaction and waits for qgroup rescan worker completes. 2) Task B such as block group relocation task starts a transaction and joins to the transaction that task A started. Then task B commits to the transaction. In this commit, task B waits for a commit by task A. 3) Task C as the qgroup rescan worker starts its job and starts a transaction. In this transaction start, task C waits for completion of the transaction that task A started and task B committed. This deadlock was found with fstests test case btrfs/115 and a zoned null_blk device. The test case enables and disables quota, and the block group reclaim was triggered during the quota disable by chance. The deadlock was also observed by running quota enable and disable in parallel with 'btrfs balance' command on regular null_blk devices. An example report of the deadlock: [372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds. [372.479944] Not tainted 5.16.0-rc8 #7 [372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.493898] task:kworker/u16:6 state:D stack: 0 pid: 103 ppid: 2 flags:0x00004000 [372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs] [372.510782] Call Trace: [372.514092] <TASK> [372.521684] __schedule+0xb56/0x4850 [372.530104] ? io_schedule_timeout+0x190/0x190 [372.538842] ? lockdep_hardirqs_on+0x7e/0x100 [372.547092] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.555591] schedule+0xe0/0x270 [372.561894] btrfs_commit_transaction+0x18bb/0x2610 [btrfs] [372.570506] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [372.578875] ? free_unref_page+0x3f2/0x650 [372.585484] ? finish_wait+0x270/0x270 [372.591594] ? release_extent_buffer+0x224/0x420 [btrfs] [372.599264] btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs] [372.607157] ? lock_release+0x3a9/0x6d0 [372.613054] ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs] [372.620960] ? do_raw_spin_lock+0x11e/0x250 [372.627137] ? rwlock_bug.part.0+0x90/0x90 [372.633215] ? lock_is_held_type+0xe4/0x140 [372.639404] btrfs_work_helper+0x1ae/0xa90 [btrfs] [372.646268] process_one_work+0x7e9/0x1320 [372.652321] ? lock_release+0x6d0/0x6d0 [372.658081] ? pwq_dec_nr_in_flight+0x230/0x230 [372.664513] ? rwlock_bug.part.0+0x90/0x90 [372.670529] worker_thread+0x59e/0xf90 [372.676172] ? process_one_work+0x1320/0x1320 [372.682440] kthread+0x3b9/0x490 [372.687550] ? _raw_spin_unlock_irq+0x24/0x50 [372.693811] ? set_kthread_struct+0x100/0x100 [372.700052] ret_from_fork+0x22/0x30 [372.705517] </TASK> [372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds. [372.729827] Not tainted 5.16.0-rc8 #7 [372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.767106] task:btrfs-transacti state:D stack: 0 pid: 2347 ppid: 2 flags:0x00004000 [372.787776] Call Trace: [372.801652] <TASK> [372.812961] __schedule+0xb56/0x4850 [372.830011] ? io_schedule_timeout+0x190/0x190 [372.852547] ? lockdep_hardirqs_on+0x7e/0x100 [372.871761] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.886792] schedule+0xe0/0x270 [372.901685] wait_current_trans+0x22c/0x310 [btrfs] [372.919743] ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs] [372.938923] ? finish_wait+0x270/0x270 [372.959085] ? join_transaction+0xc75/0xe30 [btrfs] [372.977706] start_transaction+0x938/0x10a0 [btrfs] [372.997168] transaction_kthread+0x19d/0x3c0 [btrfs] [373.013021] ? btrfs_cleanup_transaction.isra.0+0xfc0/0xfc0 [btrfs] [373.031678] kthread+0x3b9/0x490 [373.047420] ? _raw_spin_unlock_irq+0x24/0x50 [373.064645] ? set_kthread_struct+0x100/0x100 [373.078571] ret_from_fork+0x22/0x30 [373.091197] </TASK> [373.105611] INFO: task btrfs:3145 blocked for more than 123 seconds. [373.114147] Not tainted 5.16.0-rc8 #7 [373.120401] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.130393] task:btrfs state:D stack: 0 pid: 3145 ppid: 3141 flags:0x00004000 [373.140998] Call Trace: [373.145501] <TASK> [373.149654] __schedule+0xb56/0x4850 [373.155306] ? io_schedule_timeout+0x190/0x190 [373.161965] ? lockdep_hardirqs_on+0x7e/0x100 [373.168469] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [373.175468] schedule+0xe0/0x270 [373.180814] wait_for_commit+0x104/0x150 [btrfs] [373.187643] ? test_and_set_bit+0x20/0x20 [btrfs] [373.194772] ? kmem_cache_free+0x124/0x550 [373.201191] ? btrfs_put_transaction+0x69/0x3d0 [btrfs] [373.208738] ? finish_wait+0x270/0x270 [373.214704] ? __btrfs_end_transaction+0x347/0x7b0 [btrfs] [373.222342] btrfs_commit_transaction+0x44d/0x2610 [btrfs] [373.230233] ? join_transaction+0x255/0xe30 [btrfs] [373.237334] ? btrfs_record_root_in_trans+0x4d/0x170 [btrfs] [373.245251] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [373.253296] relocate_block_group+0x105/0xc20 [btrfs] [373.260533] ? mutex_lock_io_nested+0x1270/0x1270 [373.267516] ? btrfs_wait_nocow_writers+0x85/0x180 [btrfs] [373.275155] ? merge_reloc_roots+0x710/0x710 [btrfs] [373.283602] ? btrfs_wait_ordered_extents+0xd30/0xd30 [btrfs] [373.291934] ? kmem_cache_free+0x124/0x550 [373.298180] btrfs_relocate_block_group+0x35c/0x930 [btrfs] [373.306047] btrfs_relocate_chunk+0x85/0x210 [btrfs] [373.313229] btrfs_balance+0x12f4/0x2d20 [btrfs] [373.320227] ? lock_release+0x3a9/0x6d0 [373.326206] ? btrfs_relocate_chunk+0x210/0x210 [btrfs] [373.333591] ? lock_is_held_type+0xe4/0x140 [373.340031] ? rcu_read_lock_sched_held+0x3f/0x70 [373.346910] btrfs_ioctl_balance+0x548/0x700 [btrfs] [373.354207] btrfs_ioctl+0x7f2/0x71b0 [btrfs] [373.360774] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.367957] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.375327] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.383841] ? find_held_lock+0x2c/0x110 [373.389993] ? lock_release+0x3a9/0x6d0 [373.395828] ? mntput_no_expire+0xf7/0xad0 [373.402083] ? lock_is_held_type+0xe4/0x140 [373.408249] ? vfs_fileattr_set+0x9f0/0x9f0 [373.414486] ? selinux_file_ioctl+0x349/0x4e0 [373.420938] ? trace_raw_output_lock+0xb4/0xe0 [373.427442] ? selinux_inode_getsecctx+0x80/0x80 [373.434224] ? lockdep_hardirqs_on+0x7e/0x100 [373.440660] ? force_qs_rnp+0x2a0/0x6b0 [373.446534] ? lock_is_held_type+0x9b/0x140 [373.452763] ? __blkcg_punt_bio_submit+0x1b0/0x1b0 [373.459732] ? security_file_ioctl+0x50/0x90 [373.466089] __x64_sys_ioctl+0x127/0x190 [373.472022] do_syscall_64+0x3b/0x90 [373.477513] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.484823] RIP: 0033:0x7f8f4af7e2bb [373.490493] RSP: 002b:00007ffcbf936178 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [373.500197] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f8f4af7e2bb [373.509451] RDX: 00007ffcbf936220 RSI: 00000000c4009420 RDI: 0000000000000003 [373.518659] RBP: 00007ffcbf93774a R08: 0000000000000013 R09: 00007f8f4b02d4e0 [373.527872] R10: 00007f8f4ae87740 R11: 0000000000000246 R12: 0000000000000001 [373.537222] R13: 00007ffcbf936220 R14: 0000000000000000 R15: 0000000000000002 [373.546506] </TASK> [373.550878] INFO: task btrfs:3146 blocked for more than 123 seconds. [373.559383] Not tainted 5.16.0-rc8 #7 [373.565748] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.575748] task:btrfs state:D stack: 0 pid: 3146 ppid: 2168 flags:0x00000000 [373.586314] Call Trace: [373.590846] <TASK> [373.595121] __schedule+0xb56/0x4850 [373.600901] ? __lock_acquire+0x23db/0x5030 [373.607176] ? io_schedule_timeout+0x190/0x190 [373.613954] schedule+0xe0/0x270 [373.619157] schedule_timeout+0x168/0x220 [373.625170] ? usleep_range_state+0x150/0x150 [373.631653] ? mark_held_locks+0x9e/0xe0 [373.637767] ? do_raw_spin_lock+0x11e/0x250 [373.643993] ? lockdep_hardirqs_on_prepare+0x17b/0x410 [373.651267] ? _raw_spin_unlock_irq+0x24/0x50 [373.657677] ? lockdep_hardirqs_on+0x7e/0x100 [373.664103] wait_for_completion+0x163/0x250 [373.670437] ? bit_wait_timeout+0x160/0x160 [373.676585] btrfs_quota_disable+0x176/0x9a0 [btrfs] [373.683979] ? btrfs_quota_enable+0x12f0/0x12f0 [btrfs] [373.691340] ? down_write+0xd0/0x130 [373.696880] ? down_write_killable+0x150/0x150 [373.703352] btrfs_ioctl+0x3945/0x71b0 [btrfs] [373.710061] ? find_held_lock+0x2c/0x110 [373.716192] ? lock_release+0x3a9/0x6d0 [373.722047] ? __handle_mm_fault+0x23cd/0x3050 [373.728486] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.737032] ? set_pte+0x6a/0x90 [373.742271] ? do_raw_spin_unlock+0x55/0x1f0 [373.748506] ? lock_is_held_type+0xe4/0x140 [373.754792] ? vfs_fileattr_set+0x9f0/0x9f0 [373.761083] ? selinux_file_ioctl+0x349/0x4e0 [373.767521] ? selinux_inode_getsecctx+0x80/0x80 [373.774247] ? __up_read+0x182/0x6e0 [373.780026] ? count_memcg_events.constprop.0+0x46/0x60 [373.787281] ? up_write+0x460/0x460 [373.792932] ? security_file_ioctl+0x50/0x90 [373.799232] __x64_sys_ioctl+0x127/0x190 [373.805237] do_syscall_64+0x3b/0x90 [373.810947] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.818102] RIP: 0033:0x7f1383ea02bb [373.823847] RSP: 002b:00007fffeb4d71f8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [373.833641] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1383ea02bb [373.842961] RDX: 00007fffeb4d7210 RSI: 00000000c0109428 RDI: 0000000000000003 [373.852179] RBP: 0000000000000003 R08: 0000000000000003 R09: 0000000000000078 [373.861408] R10: 00007f1383daec78 R11: 0000000000000202 R12: 00007fffeb4d874a [373.870647] R13: 0000000000493099 R14: 0000000000000001 R15: 0000000000000000 [373.879838] </TASK> [373.884018] Showing all locks held in the system: [373.894250] 3 locks held by kworker/4:1/58: [373.900356] 1 lock held by khungtaskd/63: [373.906333] #0: ffffffff8945ff60 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260 [373.917307] 3 locks held by kworker/u16:6/103: [373.923938] #0: ffff888127b4f138 ((wq_completion)btrfs-qgroup-rescan){+.+.}-{0:0}, at: process_one_work+0x712/0x1320 [373.936555] #1: ffff88810b817dd8 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x73f/0x1320 [373.951109] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_qgroup_rescan_worker+0x1f6/0x10c0 [btrfs] [373.964027] 2 locks held by less/1803: [373.969982] #0: ffff88813ed56098 (&tty->ldisc_sem){++++}-{0:0}, at: tty_ldisc_ref_wait+0x24/0x80 [373.981295] #1: ffffc90000b3b2e8 (&ldata->atomic_read_lock){+.+.}-{3:3}, at: n_tty_read+0x9e2/0x1060 [373.992969] 1 lock held by btrfs-transacti/2347: [373.999893] #0: ffff88813d4887a8 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0xe3/0x3c0 [btrfs] [374.015872] 3 locks held by btrfs/3145: [374.022298] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl_balance+0xc3/0x700 [btrfs] [374.034456] #1: ffff88813d48a0a0 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0xfe5/0x2d20 [btrfs] [374.047646] #2: ffff88813d488838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x354/0x930 [btrfs] [374.063295] 4 locks held by btrfs/3146: [374.069647] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl+0x38b1/0x71b0 [btrfs] [374.081601] #1: ffff88813d488bb8 (&fs_info->subvol_sem){+.+.}-{3:3}, at: btrfs_ioctl+0x38fd/0x71b0 [btrfs] [374.094283] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_disable+0xc8/0x9a0 [btrfs] [374.106885] #3: ffff88813d489800 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_disable+0xd5/0x9a0 [btrfs] [374.126780] ============================================= To avoid the deadlock, wait for the qgroup rescan worker to complete before starting the transaction for the quota disable ioctl. Clear BTRFS_FS_QUOTA_ENABLE flag before the wait and the transaction to request the worker to complete. On transaction start failure, set the BTRFS_FS_QUOTA_ENABLE flag again. These BTRFS_FS_QUOTA_ENABLE flag changes can be done safely since the function btrfs_quota_disable is not called concurrently because of fs_info->subvol_sem. Also check the BTRFS_FS_QUOTA_ENABLE flag in qgroup_rescan_init to avoid another qgroup rescan worker to start after the previous qgroup worker completed. CC: stable@vger.kernel.org # 5.4+ Suggested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-20 20:09:16 +09:00
set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
goto out;
}
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
if (!fs_info->quota_root)
goto out;
spin_lock(&fs_info->qgroup_lock);
quota_root = fs_info->quota_root;
fs_info->quota_root = NULL;
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_ON;
fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
spin_unlock(&fs_info->qgroup_lock);
btrfs_free_qgroup_config(fs_info);
ret = btrfs_clean_quota_tree(trans, quota_root);
if (ret) {
btrfs_abort_transaction(trans, ret);
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
goto out;
}
ret = btrfs_del_root(trans, &quota_root->root_key);
if (ret) {
btrfs_abort_transaction(trans, ret);
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
goto out;
}
btrfs: fix race when deleting quota root from the dirty cow roots list When disabling quotas we are deleting the quota root from the list fs_info->dirty_cowonly_roots without taking the lock that protects it, which is struct btrfs_fs_info::trans_lock. This unsynchronized list manipulation may cause chaos if there's another concurrent manipulation of this list, such as when adding a root to it with ctree.c:add_root_to_dirty_list(). This can result in all sorts of weird failures caused by a race, such as the following crash: [337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI [337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1 [337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.279928] Code: 85 38 06 00 (...) [337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206 [337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000 [337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070 [337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b [337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600 [337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48 [337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000 [337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0 [337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [337571.282874] Call Trace: [337571.283101] <TASK> [337571.283327] ? __die_body+0x1b/0x60 [337571.283570] ? die_addr+0x39/0x60 [337571.283796] ? exc_general_protection+0x22e/0x430 [337571.284022] ? asm_exc_general_protection+0x22/0x30 [337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs] [337571.284803] ? _raw_spin_unlock+0x15/0x30 [337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs] [337571.285305] reset_balance_state+0x152/0x1b0 [btrfs] [337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs] [337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410 [337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs] [337571.286358] ? mod_objcg_state+0xd2/0x360 [337571.286577] ? refill_obj_stock+0xb0/0x160 [337571.286798] ? seq_release+0x25/0x30 [337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0 [337571.287235] ? percpu_counter_add_batch+0x2e/0xa0 [337571.287455] ? __x64_sys_ioctl+0x88/0xc0 [337571.287675] __x64_sys_ioctl+0x88/0xc0 [337571.287901] do_syscall_64+0x38/0x90 [337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc [337571.288352] RIP: 0033:0x7f478aaffe9b So fix this by locking struct btrfs_fs_info::trans_lock before deleting the quota root from that list. Fixes: bed92eae26cc ("Btrfs: qgroup implementation and prototypes") CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 17:21:47 +01:00
spin_lock(&fs_info->trans_lock);
list_del(&quota_root->dirty_list);
btrfs: fix race when deleting quota root from the dirty cow roots list When disabling quotas we are deleting the quota root from the list fs_info->dirty_cowonly_roots without taking the lock that protects it, which is struct btrfs_fs_info::trans_lock. This unsynchronized list manipulation may cause chaos if there's another concurrent manipulation of this list, such as when adding a root to it with ctree.c:add_root_to_dirty_list(). This can result in all sorts of weird failures caused by a race, such as the following crash: [337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI [337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1 [337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.279928] Code: 85 38 06 00 (...) [337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206 [337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000 [337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070 [337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b [337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600 [337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48 [337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000 [337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0 [337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [337571.282874] Call Trace: [337571.283101] <TASK> [337571.283327] ? __die_body+0x1b/0x60 [337571.283570] ? die_addr+0x39/0x60 [337571.283796] ? exc_general_protection+0x22e/0x430 [337571.284022] ? asm_exc_general_protection+0x22/0x30 [337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs] [337571.284803] ? _raw_spin_unlock+0x15/0x30 [337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs] [337571.285305] reset_balance_state+0x152/0x1b0 [btrfs] [337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs] [337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410 [337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs] [337571.286358] ? mod_objcg_state+0xd2/0x360 [337571.286577] ? refill_obj_stock+0xb0/0x160 [337571.286798] ? seq_release+0x25/0x30 [337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0 [337571.287235] ? percpu_counter_add_batch+0x2e/0xa0 [337571.287455] ? __x64_sys_ioctl+0x88/0xc0 [337571.287675] __x64_sys_ioctl+0x88/0xc0 [337571.287901] do_syscall_64+0x38/0x90 [337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc [337571.288352] RIP: 0033:0x7f478aaffe9b So fix this by locking struct btrfs_fs_info::trans_lock before deleting the quota root from that list. Fixes: bed92eae26cc ("Btrfs: qgroup implementation and prototypes") CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 17:21:47 +01:00
spin_unlock(&fs_info->trans_lock);
btrfs_tree_lock(quota_root->node);
btrfs_clear_buffer_dirty(trans, quota_root->node);
btrfs_tree_unlock(quota_root->node);
btrfs: fix invalid delayed ref after subvolume creation failure When creating a subvolume, at ioctl.c:create_subvol(), if we fail to insert the new root's root item into the root tree, we are freeing the metadata extent we reserved for the new root to prevent a metadata extent leak, as we don't abort the transaction at that point (since there is nothing at that point that is irreversible). However we allocated the metadata extent for the new root which we are creating for the new subvolume, so its delayed reference refers to the ID of this new root. But when we free the metadata extent we pass the root of the subvolume where the new subvolume is located to btrfs_free_tree_block() - this is incorrect because this will generate a delayed reference that refers to the ID of the parent subvolume's root, and not to ID of the new root. This results in a failure when running delayed references that leads to a transaction abort and a trace like the following: [3868.738042] RIP: 0010:__btrfs_free_extent+0x709/0x950 [btrfs] [3868.739857] Code: 68 0f 85 e6 fb ff (...) [3868.742963] RSP: 0018:ffffb0e9045cf910 EFLAGS: 00010246 [3868.743908] RAX: 00000000fffffffe RBX: 00000000fffffffe RCX: 0000000000000002 [3868.745312] RDX: 00000000fffffffe RSI: 0000000000000002 RDI: ffff90b0cd793b88 [3868.746643] RBP: 000000000e5d8000 R08: 0000000000000000 R09: ffff90b0cd793b88 [3868.747979] R10: 0000000000000002 R11: 00014ded97944d68 R12: 0000000000000000 [3868.749373] R13: ffff90b09afe4a28 R14: 0000000000000000 R15: ffff90b0cd793b88 [3868.750725] FS: 00007f281c4a8b80(0000) GS:ffff90b3ada00000(0000) knlGS:0000000000000000 [3868.752275] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [3868.753515] CR2: 00007f281c6a5000 CR3: 0000000108a42006 CR4: 0000000000370ee0 [3868.754869] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [3868.756228] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [3868.757803] Call Trace: [3868.758281] <TASK> [3868.758655] ? btrfs_merge_delayed_refs+0x178/0x1c0 [btrfs] [3868.759827] __btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs] [3868.761047] btrfs_run_delayed_refs+0x86/0x210 [btrfs] [3868.762069] ? lock_acquired+0x19f/0x420 [3868.762829] btrfs_commit_transaction+0x69/0xb20 [btrfs] [3868.763860] ? _raw_spin_unlock+0x29/0x40 [3868.764614] ? btrfs_block_rsv_release+0x1c2/0x1e0 [btrfs] [3868.765870] create_subvol+0x1d8/0x9a0 [btrfs] [3868.766766] btrfs_mksubvol+0x447/0x4c0 [btrfs] [3868.767669] ? preempt_count_add+0x49/0xa0 [3868.768444] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs] [3868.769639] ? _copy_from_user+0x66/0xa0 [3868.770391] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs] [3868.771495] btrfs_ioctl+0xd1e/0x35c0 [btrfs] [3868.772364] ? __slab_free+0x10a/0x360 [3868.773198] ? rcu_read_lock_sched_held+0x12/0x60 [3868.774121] ? lock_release+0x223/0x4a0 [3868.774863] ? lock_acquired+0x19f/0x420 [3868.775634] ? rcu_read_lock_sched_held+0x12/0x60 [3868.776530] ? trace_hardirqs_on+0x1b/0xe0 [3868.777373] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [3868.778280] ? kmem_cache_free+0x321/0x3c0 [3868.779011] ? __x64_sys_ioctl+0x83/0xb0 [3868.779718] __x64_sys_ioctl+0x83/0xb0 [3868.780387] do_syscall_64+0x3b/0xc0 [3868.781059] entry_SYSCALL_64_after_hwframe+0x44/0xae [3868.781953] RIP: 0033:0x7f281c59e957 [3868.782585] Code: 3c 1c 48 f7 d8 4c (...) [3868.785867] RSP: 002b:00007ffe1f83e2b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [3868.787198] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f281c59e957 [3868.788450] RDX: 00007ffe1f83e2c0 RSI: 0000000050009418 RDI: 0000000000000003 [3868.789748] RBP: 00007ffe1f83f300 R08: 0000000000000000 R09: 00007ffe1f83fe36 [3868.791214] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000003 [3868.792468] R13: 0000000000000003 R14: 00007ffe1f83e2c0 R15: 00000000000003cc [3868.793765] </TASK> [3868.794037] irq event stamp: 0 [3868.794548] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [3868.795670] hardirqs last disabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040 [3868.797086] softirqs last enabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040 [3868.798309] softirqs last disabled at (0): [<0000000000000000>] 0x0 [3868.799284] ---[ end trace be24c7002fe27747 ]--- [3868.799928] BTRFS info (device dm-0): leaf 241188864 gen 1268 total ptrs 214 free space 469 owner 2 [3868.801133] BTRFS info (device dm-0): refs 2 lock_owner 225627 current 225627 [3868.802056] item 0 key (237436928 169 0) itemoff 16250 itemsize 33 [3868.802863] extent refs 1 gen 1265 flags 2 [3868.803447] ref#0: tree block backref root 1610 (...) [3869.064354] item 114 key (241008640 169 0) itemoff 12488 itemsize 33 [3869.065421] extent refs 1 gen 1268 flags 2 [3869.066115] ref#0: tree block backref root 1689 (...) [3869.403834] BTRFS error (device dm-0): unable to find ref byte nr 241008640 parent 0 root 1622 owner 0 offset 0 [3869.405641] BTRFS: error (device dm-0) in __btrfs_free_extent:3076: errno=-2 No such entry [3869.407138] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2159: errno=-2 No such entry Fix this by passing the new subvolume's root ID to btrfs_free_tree_block(). This requires changing the root argument of btrfs_free_tree_block() from struct btrfs_root * to a u64, since at this point during the subvolume creation we have not yet created the struct btrfs_root for the new subvolume, and btrfs_free_tree_block() only needs a root ID and nothing else from a struct btrfs_root. This was triggered by test case generic/475 from fstests. Fixes: 67addf29004c5b ("btrfs: fix metadata extent leak after failure to create subvolume") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-13 08:45:12 +00:00
btrfs_free_tree_block(trans, btrfs_root_id(quota_root),
quota_root->node, 0, 1);
btrfs_put_root(quota_root);
out:
mutex_unlock(&fs_info->qgroup_ioctl_lock);
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
if (ret && trans)
btrfs_end_transaction(trans);
else if (trans)
ret = btrfs_end_transaction(trans);
btrfs: fix race between quota disable and relocation If we disable quotas while we have a relocation of a metadata block group that has extents belonging to the quota root, we can cause the relocation to fail with -ENOENT. This is because relocation builds backref nodes for extents of the quota root and later needs to walk the backrefs and access the quota root - however if in between a task disables quotas, it results in deleting the quota root from the root tree (with btrfs_del_root(), called from btrfs_quota_disable(). This can be sporadically triggered by test case btrfs/255 from fstests: $ ./check btrfs/255 FSTYP -- btrfs PLATFORM -- Linux/x86_64 debian0 6.4.0-rc6-btrfs-next-134+ #1 SMP PREEMPT_DYNAMIC Thu Jun 15 11:59:28 WEST 2023 MKFS_OPTIONS -- /dev/sdc MOUNT_OPTIONS -- /dev/sdc /home/fdmanana/btrfs-tests/scratch_1 btrfs/255 6s ... _check_dmesg: something found in dmesg (see /home/fdmanana/git/hub/xfstests/results//btrfs/255.dmesg) - output mismatch (see /home/fdmanana/git/hub/xfstests/results//btrfs/255.out.bad) --- tests/btrfs/255.out 2023-03-02 21:47:53.876609426 +0000 +++ /home/fdmanana/git/hub/xfstests/results//btrfs/255.out.bad 2023-06-16 10:20:39.267563212 +0100 @@ -1,2 +1,4 @@ QA output created by 255 +ERROR: error during balancing '/home/fdmanana/btrfs-tests/scratch_1': No such file or directory +There may be more info in syslog - try dmesg | tail Silence is golden ... (Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/255.out /home/fdmanana/git/hub/xfstests/results//btrfs/255.out.bad' to see the entire diff) Ran: btrfs/255 Failures: btrfs/255 Failed 1 of 1 tests To fix this make the quota disable operation take the cleaner mutex, as relocation of a block group also takes this mutex. This is also what we do when deleting a subvolume/snapshot, we take the cleaner mutex in the cleaner kthread (at cleaner_kthread()) and then we call btrfs_del_root() at btrfs_drop_snapshot() while under the protection of the cleaner mutex. Fixes: bed92eae26cc ("Btrfs: qgroup implementation and prototypes") CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 17:21:50 +01:00
mutex_unlock(&fs_info->cleaner_mutex);
btrfs: fix lockdep splat when enabling and disabling qgroups When running test case btrfs/017 from fstests, lockdep reported the following splat: [ 1297.067385] ====================================================== [ 1297.067708] WARNING: possible circular locking dependency detected [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted [ 1297.068322] ------------------------------------------------------ [ 1297.068629] btrfs/189080 is trying to acquire lock: [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.069274] but task is already holding lock: [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.070219] which lock already depends on the new lock. [ 1297.071131] the existing dependency chain (in reverse order) is: [ 1297.071721] -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}: [ 1297.072375] lock_acquire+0xd8/0x490 [ 1297.072710] __mutex_lock+0xa3/0xb30 [ 1297.073061] btrfs_qgroup_inherit+0x59/0x6a0 [btrfs] [ 1297.073421] create_subvol+0x194/0x990 [btrfs] [ 1297.073780] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [ 1297.074133] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [ 1297.074498] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] [ 1297.074872] btrfs_ioctl+0x1a90/0x36f0 [btrfs] [ 1297.075245] __x64_sys_ioctl+0x83/0xb0 [ 1297.075617] do_syscall_64+0x33/0x80 [ 1297.075993] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.076380] -> #0 (sb_internal#2){.+.+}-{0:0}: [ 1297.077166] check_prev_add+0x91/0xc60 [ 1297.077572] __lock_acquire+0x1740/0x3110 [ 1297.077984] lock_acquire+0xd8/0x490 [ 1297.078411] start_transaction+0x3c5/0x760 [btrfs] [ 1297.078853] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.079323] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.079789] __x64_sys_ioctl+0x83/0xb0 [ 1297.080232] do_syscall_64+0x33/0x80 [ 1297.080680] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.081139] other info that might help us debug this: [ 1297.082536] Possible unsafe locking scenario: [ 1297.083510] CPU0 CPU1 [ 1297.084005] ---- ---- [ 1297.084500] lock(&fs_info->qgroup_ioctl_lock); [ 1297.084994] lock(sb_internal#2); [ 1297.085485] lock(&fs_info->qgroup_ioctl_lock); [ 1297.085974] lock(sb_internal#2); [ 1297.086454] *** DEADLOCK *** [ 1297.087880] 3 locks held by btrfs/189080: [ 1297.088324] #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs] [ 1297.088799] #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.089284] #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs] [ 1297.089771] stack backtrace: [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1 [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 1297.092123] Call Trace: [ 1297.092629] dump_stack+0x8d/0xb5 [ 1297.093115] check_noncircular+0xff/0x110 [ 1297.093596] check_prev_add+0x91/0xc60 [ 1297.094076] ? kvm_clock_read+0x14/0x30 [ 1297.094553] ? kvm_sched_clock_read+0x5/0x10 [ 1297.095029] __lock_acquire+0x1740/0x3110 [ 1297.095510] lock_acquire+0xd8/0x490 [ 1297.095993] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.096476] start_transaction+0x3c5/0x760 [btrfs] [ 1297.096962] ? btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097451] btrfs_quota_enable+0xaf/0xa70 [btrfs] [ 1297.097941] ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs] [ 1297.098429] btrfs_ioctl+0x2c60/0x36f0 [btrfs] [ 1297.098904] ? do_user_addr_fault+0x20c/0x430 [ 1297.099382] ? kvm_clock_read+0x14/0x30 [ 1297.099854] ? kvm_sched_clock_read+0x5/0x10 [ 1297.100328] ? sched_clock+0x5/0x10 [ 1297.100801] ? sched_clock_cpu+0x12/0x180 [ 1297.101272] ? __x64_sys_ioctl+0x83/0xb0 [ 1297.101739] __x64_sys_ioctl+0x83/0xb0 [ 1297.102207] do_syscall_64+0x33/0x80 [ 1297.102673] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 1297.103148] RIP: 0033:0x7f773ff65d87 This is because during the quota enable ioctl we lock first the mutex qgroup_ioctl_lock and then start a transaction, and starting a transaction acquires a fs freeze semaphore (at the VFS level). However, every other code path, except for the quota disable ioctl path, we do the opposite: we start a transaction and then lock the mutex. So fix this by making the quota enable and disable paths to start the transaction without having the mutex locked, and then, after starting the transaction, lock the mutex and check if some other task already enabled or disabled the quotas, bailing with success if that was the case. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-23 18:31:02 +00:00
return ret;
}
static void qgroup_dirty(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup)
{
if (list_empty(&qgroup->dirty))
list_add(&qgroup->dirty, &fs_info->dirty_qgroups);
}
/*
btrfs: qgroup: Fix wrong qgroup reservation update for relationship modification When modifying qgroup relationship, for qgroup which only owns exclusive extents, we will go through quick update path. In this path, we will add/subtract exclusive and reference number for parent qgroup, since the source (child) qgroup only has exclusive extents, destination (parent) qgroup will also own or lose those extents exclusively. The same should be the same for reservation, since later reservation adding/releasing will also affect parent qgroup, without the reservation carried from child, parent will underflow reservation or have dead reservation which will never be freed. However original code doesn't do the same thing for reservation. It handles qgroup reservation quite differently: It removes qgroup reservation, as it's allocating space from the reserved qgroup for relationship adding. But does nothing for qgroup reservation if we're removing a qgroup relationship. According to the original code, it looks just like because we're adding qgroup->rfer, the code assumes we're writing new data, so it's follows the normal write routine, by reducing qgroup->reserved and adding qgroup->rfer/excl. This old behavior is wrong, and should be fixed to follow the same excl/rfer behavior. Just fix it by using the correct behavior described above. Fixes: 31193213f1f9 ("Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-12-12 15:34:26 +08:00
* The easy accounting, we're updating qgroup relationship whose child qgroup
* only has exclusive extents.
*
* In this case, all exclusive extents will also be exclusive for parent, so
btrfs: qgroup: Fix wrong qgroup reservation update for relationship modification When modifying qgroup relationship, for qgroup which only owns exclusive extents, we will go through quick update path. In this path, we will add/subtract exclusive and reference number for parent qgroup, since the source (child) qgroup only has exclusive extents, destination (parent) qgroup will also own or lose those extents exclusively. The same should be the same for reservation, since later reservation adding/releasing will also affect parent qgroup, without the reservation carried from child, parent will underflow reservation or have dead reservation which will never be freed. However original code doesn't do the same thing for reservation. It handles qgroup reservation quite differently: It removes qgroup reservation, as it's allocating space from the reserved qgroup for relationship adding. But does nothing for qgroup reservation if we're removing a qgroup relationship. According to the original code, it looks just like because we're adding qgroup->rfer, the code assumes we're writing new data, so it's follows the normal write routine, by reducing qgroup->reserved and adding qgroup->rfer/excl. This old behavior is wrong, and should be fixed to follow the same excl/rfer behavior. Just fix it by using the correct behavior described above. Fixes: 31193213f1f9 ("Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-12-12 15:34:26 +08:00
* excl/rfer just get added/removed.
*
* So is qgroup reservation space, which should also be added/removed to
* parent.
* Or when child tries to release reservation space, parent will underflow its
* reservation (for relationship adding case).
*
* Caller should hold fs_info->qgroup_lock.
*/
static int __qgroup_excl_accounting(struct btrfs_fs_info *fs_info,
struct ulist *tmp, u64 ref_root,
btrfs: qgroup: Fix wrong qgroup reservation update for relationship modification When modifying qgroup relationship, for qgroup which only owns exclusive extents, we will go through quick update path. In this path, we will add/subtract exclusive and reference number for parent qgroup, since the source (child) qgroup only has exclusive extents, destination (parent) qgroup will also own or lose those extents exclusively. The same should be the same for reservation, since later reservation adding/releasing will also affect parent qgroup, without the reservation carried from child, parent will underflow reservation or have dead reservation which will never be freed. However original code doesn't do the same thing for reservation. It handles qgroup reservation quite differently: It removes qgroup reservation, as it's allocating space from the reserved qgroup for relationship adding. But does nothing for qgroup reservation if we're removing a qgroup relationship. According to the original code, it looks just like because we're adding qgroup->rfer, the code assumes we're writing new data, so it's follows the normal write routine, by reducing qgroup->reserved and adding qgroup->rfer/excl. This old behavior is wrong, and should be fixed to follow the same excl/rfer behavior. Just fix it by using the correct behavior described above. Fixes: 31193213f1f9 ("Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-12-12 15:34:26 +08:00
struct btrfs_qgroup *src, int sign)
{
struct btrfs_qgroup *qgroup;
struct btrfs_qgroup_list *glist;
struct ulist_node *unode;
struct ulist_iterator uiter;
btrfs: qgroup: Fix wrong qgroup reservation update for relationship modification When modifying qgroup relationship, for qgroup which only owns exclusive extents, we will go through quick update path. In this path, we will add/subtract exclusive and reference number for parent qgroup, since the source (child) qgroup only has exclusive extents, destination (parent) qgroup will also own or lose those extents exclusively. The same should be the same for reservation, since later reservation adding/releasing will also affect parent qgroup, without the reservation carried from child, parent will underflow reservation or have dead reservation which will never be freed. However original code doesn't do the same thing for reservation. It handles qgroup reservation quite differently: It removes qgroup reservation, as it's allocating space from the reserved qgroup for relationship adding. But does nothing for qgroup reservation if we're removing a qgroup relationship. According to the original code, it looks just like because we're adding qgroup->rfer, the code assumes we're writing new data, so it's follows the normal write routine, by reducing qgroup->reserved and adding qgroup->rfer/excl. This old behavior is wrong, and should be fixed to follow the same excl/rfer behavior. Just fix it by using the correct behavior described above. Fixes: 31193213f1f9 ("Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-12-12 15:34:26 +08:00
u64 num_bytes = src->excl;
int ret = 0;
qgroup = find_qgroup_rb(fs_info, ref_root);
if (!qgroup)
goto out;
qgroup->rfer += sign * num_bytes;
qgroup->rfer_cmpr += sign * num_bytes;
WARN_ON(sign < 0 && qgroup->excl < num_bytes);
qgroup->excl += sign * num_bytes;
qgroup->excl_cmpr += sign * num_bytes;
btrfs: qgroup: Fix wrong qgroup reservation update for relationship modification When modifying qgroup relationship, for qgroup which only owns exclusive extents, we will go through quick update path. In this path, we will add/subtract exclusive and reference number for parent qgroup, since the source (child) qgroup only has exclusive extents, destination (parent) qgroup will also own or lose those extents exclusively. The same should be the same for reservation, since later reservation adding/releasing will also affect parent qgroup, without the reservation carried from child, parent will underflow reservation or have dead reservation which will never be freed. However original code doesn't do the same thing for reservation. It handles qgroup reservation quite differently: It removes qgroup reservation, as it's allocating space from the reserved qgroup for relationship adding. But does nothing for qgroup reservation if we're removing a qgroup relationship. According to the original code, it looks just like because we're adding qgroup->rfer, the code assumes we're writing new data, so it's follows the normal write routine, by reducing qgroup->reserved and adding qgroup->rfer/excl. This old behavior is wrong, and should be fixed to follow the same excl/rfer behavior. Just fix it by using the correct behavior described above. Fixes: 31193213f1f9 ("Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-12-12 15:34:26 +08:00
if (sign > 0)
qgroup_rsv_add_by_qgroup(fs_info, qgroup, src);
btrfs: qgroup: Fix wrong qgroup reservation update for relationship modification When modifying qgroup relationship, for qgroup which only owns exclusive extents, we will go through quick update path. In this path, we will add/subtract exclusive and reference number for parent qgroup, since the source (child) qgroup only has exclusive extents, destination (parent) qgroup will also own or lose those extents exclusively. The same should be the same for reservation, since later reservation adding/releasing will also affect parent qgroup, without the reservation carried from child, parent will underflow reservation or have dead reservation which will never be freed. However original code doesn't do the same thing for reservation. It handles qgroup reservation quite differently: It removes qgroup reservation, as it's allocating space from the reserved qgroup for relationship adding. But does nothing for qgroup reservation if we're removing a qgroup relationship. According to the original code, it looks just like because we're adding qgroup->rfer, the code assumes we're writing new data, so it's follows the normal write routine, by reducing qgroup->reserved and adding qgroup->rfer/excl. This old behavior is wrong, and should be fixed to follow the same excl/rfer behavior. Just fix it by using the correct behavior described above. Fixes: 31193213f1f9 ("Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-12-12 15:34:26 +08:00
else
qgroup_rsv_release_by_qgroup(fs_info, qgroup, src);
qgroup_dirty(fs_info, qgroup);
/* Get all of the parent groups that contain this qgroup */
list_for_each_entry(glist, &qgroup->groups, next_group) {
ret = ulist_add(tmp, glist->group->qgroupid,
qgroup_to_aux(glist->group), GFP_ATOMIC);
if (ret < 0)
goto out;
}
/* Iterate all of the parents and adjust their reference counts */
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(tmp, &uiter))) {
qgroup = unode_aux_to_qgroup(unode);
qgroup->rfer += sign * num_bytes;
qgroup->rfer_cmpr += sign * num_bytes;
WARN_ON(sign < 0 && qgroup->excl < num_bytes);
qgroup->excl += sign * num_bytes;
btrfs: qgroup: Fix wrong qgroup reservation update for relationship modification When modifying qgroup relationship, for qgroup which only owns exclusive extents, we will go through quick update path. In this path, we will add/subtract exclusive and reference number for parent qgroup, since the source (child) qgroup only has exclusive extents, destination (parent) qgroup will also own or lose those extents exclusively. The same should be the same for reservation, since later reservation adding/releasing will also affect parent qgroup, without the reservation carried from child, parent will underflow reservation or have dead reservation which will never be freed. However original code doesn't do the same thing for reservation. It handles qgroup reservation quite differently: It removes qgroup reservation, as it's allocating space from the reserved qgroup for relationship adding. But does nothing for qgroup reservation if we're removing a qgroup relationship. According to the original code, it looks just like because we're adding qgroup->rfer, the code assumes we're writing new data, so it's follows the normal write routine, by reducing qgroup->reserved and adding qgroup->rfer/excl. This old behavior is wrong, and should be fixed to follow the same excl/rfer behavior. Just fix it by using the correct behavior described above. Fixes: 31193213f1f9 ("Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-12-12 15:34:26 +08:00
if (sign > 0)
qgroup_rsv_add_by_qgroup(fs_info, qgroup, src);
btrfs: qgroup: Fix wrong qgroup reservation update for relationship modification When modifying qgroup relationship, for qgroup which only owns exclusive extents, we will go through quick update path. In this path, we will add/subtract exclusive and reference number for parent qgroup, since the source (child) qgroup only has exclusive extents, destination (parent) qgroup will also own or lose those extents exclusively. The same should be the same for reservation, since later reservation adding/releasing will also affect parent qgroup, without the reservation carried from child, parent will underflow reservation or have dead reservation which will never be freed. However original code doesn't do the same thing for reservation. It handles qgroup reservation quite differently: It removes qgroup reservation, as it's allocating space from the reserved qgroup for relationship adding. But does nothing for qgroup reservation if we're removing a qgroup relationship. According to the original code, it looks just like because we're adding qgroup->rfer, the code assumes we're writing new data, so it's follows the normal write routine, by reducing qgroup->reserved and adding qgroup->rfer/excl. This old behavior is wrong, and should be fixed to follow the same excl/rfer behavior. Just fix it by using the correct behavior described above. Fixes: 31193213f1f9 ("Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-12-12 15:34:26 +08:00
else
qgroup_rsv_release_by_qgroup(fs_info, qgroup, src);
qgroup->excl_cmpr += sign * num_bytes;
qgroup_dirty(fs_info, qgroup);
/* Add any parents of the parents */
list_for_each_entry(glist, &qgroup->groups, next_group) {
ret = ulist_add(tmp, glist->group->qgroupid,
qgroup_to_aux(glist->group), GFP_ATOMIC);
if (ret < 0)
goto out;
}
}
ret = 0;
out:
return ret;
}
/*
* Quick path for updating qgroup with only excl refs.
*
* In that case, just update all parent will be enough.
* Or we needs to do a full rescan.
* Caller should also hold fs_info->qgroup_lock.
*
* Return 0 for quick update, return >0 for need to full rescan
* and mark INCONSISTENT flag.
* Return < 0 for other error.
*/
static int quick_update_accounting(struct btrfs_fs_info *fs_info,
struct ulist *tmp, u64 src, u64 dst,
int sign)
{
struct btrfs_qgroup *qgroup;
int ret = 1;
int err = 0;
qgroup = find_qgroup_rb(fs_info, src);
if (!qgroup)
goto out;
if (qgroup->excl == qgroup->rfer) {
ret = 0;
err = __qgroup_excl_accounting(fs_info, tmp, dst,
btrfs: qgroup: Fix wrong qgroup reservation update for relationship modification When modifying qgroup relationship, for qgroup which only owns exclusive extents, we will go through quick update path. In this path, we will add/subtract exclusive and reference number for parent qgroup, since the source (child) qgroup only has exclusive extents, destination (parent) qgroup will also own or lose those extents exclusively. The same should be the same for reservation, since later reservation adding/releasing will also affect parent qgroup, without the reservation carried from child, parent will underflow reservation or have dead reservation which will never be freed. However original code doesn't do the same thing for reservation. It handles qgroup reservation quite differently: It removes qgroup reservation, as it's allocating space from the reserved qgroup for relationship adding. But does nothing for qgroup reservation if we're removing a qgroup relationship. According to the original code, it looks just like because we're adding qgroup->rfer, the code assumes we're writing new data, so it's follows the normal write routine, by reducing qgroup->reserved and adding qgroup->rfer/excl. This old behavior is wrong, and should be fixed to follow the same excl/rfer behavior. Just fix it by using the correct behavior described above. Fixes: 31193213f1f9 ("Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-12-12 15:34:26 +08:00
qgroup, sign);
if (err < 0) {
ret = err;
goto out;
}
}
out:
if (ret)
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT;
return ret;
}
int btrfs_add_qgroup_relation(struct btrfs_trans_handle *trans, u64 src,
u64 dst)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup *parent;
struct btrfs_qgroup *member;
struct btrfs_qgroup_list *list;
struct ulist *tmp;
unsigned int nofs_flag;
int ret = 0;
/* Check the level of src and dst first */
if (btrfs_qgroup_level(src) >= btrfs_qgroup_level(dst))
return -EINVAL;
/* We hold a transaction handle open, must do a NOFS allocation. */
nofs_flag = memalloc_nofs_save();
tmp = ulist_alloc(GFP_KERNEL);
memalloc_nofs_restore(nofs_flag);
if (!tmp)
return -ENOMEM;
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root) {
ret = -ENOTCONN;
goto out;
}
member = find_qgroup_rb(fs_info, src);
parent = find_qgroup_rb(fs_info, dst);
if (!member || !parent) {
ret = -EINVAL;
goto out;
}
/* check if such qgroup relation exist firstly */
list_for_each_entry(list, &member->groups, next_group) {
if (list->group == parent) {
ret = -EEXIST;
goto out;
}
}
ret = add_qgroup_relation_item(trans, src, dst);
if (ret)
goto out;
ret = add_qgroup_relation_item(trans, dst, src);
if (ret) {
del_qgroup_relation_item(trans, src, dst);
goto out;
}
spin_lock(&fs_info->qgroup_lock);
ret = __add_relation_rb(member, parent);
if (ret < 0) {
spin_unlock(&fs_info->qgroup_lock);
goto out;
}
ret = quick_update_accounting(fs_info, tmp, src, dst, 1);
spin_unlock(&fs_info->qgroup_lock);
out:
mutex_unlock(&fs_info->qgroup_ioctl_lock);
ulist_free(tmp);
return ret;
}
static int __del_qgroup_relation(struct btrfs_trans_handle *trans, u64 src,
u64 dst)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup *parent;
struct btrfs_qgroup *member;
struct btrfs_qgroup_list *list;
struct ulist *tmp;
bool found = false;
unsigned int nofs_flag;
int ret = 0;
int ret2;
/* We hold a transaction handle open, must do a NOFS allocation. */
nofs_flag = memalloc_nofs_save();
tmp = ulist_alloc(GFP_KERNEL);
memalloc_nofs_restore(nofs_flag);
if (!tmp)
return -ENOMEM;
if (!fs_info->quota_root) {
ret = -ENOTCONN;
goto out;
}
member = find_qgroup_rb(fs_info, src);
parent = find_qgroup_rb(fs_info, dst);
/*
* The parent/member pair doesn't exist, then try to delete the dead
* relation items only.
*/
if (!member || !parent)
goto delete_item;
/* check if such qgroup relation exist firstly */
list_for_each_entry(list, &member->groups, next_group) {
if (list->group == parent) {
found = true;
break;
}
}
delete_item:
ret = del_qgroup_relation_item(trans, src, dst);
if (ret < 0 && ret != -ENOENT)
goto out;
ret2 = del_qgroup_relation_item(trans, dst, src);
if (ret2 < 0 && ret2 != -ENOENT)
goto out;
/* At least one deletion succeeded, return 0 */
if (!ret || !ret2)
ret = 0;
if (found) {
spin_lock(&fs_info->qgroup_lock);
del_relation_rb(fs_info, src, dst);
ret = quick_update_accounting(fs_info, tmp, src, dst, -1);
spin_unlock(&fs_info->qgroup_lock);
}
out:
ulist_free(tmp);
return ret;
}
int btrfs_del_qgroup_relation(struct btrfs_trans_handle *trans, u64 src,
u64 dst)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int ret = 0;
mutex_lock(&fs_info->qgroup_ioctl_lock);
ret = __del_qgroup_relation(trans, src, dst);
mutex_unlock(&fs_info->qgroup_ioctl_lock);
return ret;
}
int btrfs_create_qgroup(struct btrfs_trans_handle *trans, u64 qgroupid)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *quota_root;
struct btrfs_qgroup *qgroup;
int ret = 0;
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root) {
ret = -ENOTCONN;
goto out;
}
quota_root = fs_info->quota_root;
qgroup = find_qgroup_rb(fs_info, qgroupid);
if (qgroup) {
ret = -EEXIST;
goto out;
}
ret = add_qgroup_item(trans, quota_root, qgroupid);
if (ret)
goto out;
spin_lock(&fs_info->qgroup_lock);
qgroup = add_qgroup_rb(fs_info, qgroupid);
spin_unlock(&fs_info->qgroup_lock);
if (IS_ERR(qgroup)) {
ret = PTR_ERR(qgroup);
goto out;
}
ret = btrfs_sysfs_add_one_qgroup(fs_info, qgroup);
out:
mutex_unlock(&fs_info->qgroup_ioctl_lock);
return ret;
}
int btrfs_remove_qgroup(struct btrfs_trans_handle *trans, u64 qgroupid)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup *qgroup;
struct btrfs_qgroup_list *list;
int ret = 0;
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root) {
ret = -ENOTCONN;
goto out;
}
qgroup = find_qgroup_rb(fs_info, qgroupid);
if (!qgroup) {
ret = -ENOENT;
goto out;
}
/* Check if there are no children of this qgroup */
if (!list_empty(&qgroup->members)) {
ret = -EBUSY;
goto out;
}
ret = del_qgroup_item(trans, qgroupid);
if (ret && ret != -ENOENT)
goto out;
while (!list_empty(&qgroup->groups)) {
list = list_first_entry(&qgroup->groups,
struct btrfs_qgroup_list, next_group);
ret = __del_qgroup_relation(trans, qgroupid,
list->group->qgroupid);
if (ret)
goto out;
}
spin_lock(&fs_info->qgroup_lock);
del_qgroup_rb(fs_info, qgroupid);
spin_unlock(&fs_info->qgroup_lock);
btrfs: fix sleep while in non-sleep context during qgroup removal While removing a qgroup's sysfs entry we end up taking the kernfs_mutex, through kobject_del(), while holding the fs_info->qgroup_lock spinlock, producing the following trace: [821.843637] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:281 [821.843641] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 28214, name: podman [821.843644] CPU: 3 PID: 28214 Comm: podman Tainted: G W 5.11.6 #15 [821.843646] Hardware name: Dell Inc. PowerEdge R330/084XW4, BIOS 2.11.0 12/08/2020 [821.843647] Call Trace: [821.843650] dump_stack+0xa1/0xfb [821.843656] ___might_sleep+0x144/0x160 [821.843659] mutex_lock+0x17/0x40 [821.843662] kernfs_remove_by_name_ns+0x1f/0x80 [821.843666] sysfs_remove_group+0x7d/0xe0 [821.843668] sysfs_remove_groups+0x28/0x40 [821.843670] kobject_del+0x2a/0x80 [821.843672] btrfs_sysfs_del_one_qgroup+0x2b/0x40 [btrfs] [821.843685] __del_qgroup_rb+0x12/0x150 [btrfs] [821.843696] btrfs_remove_qgroup+0x288/0x2a0 [btrfs] [821.843707] btrfs_ioctl+0x3129/0x36a0 [btrfs] [821.843717] ? __mod_lruvec_page_state+0x5e/0xb0 [821.843719] ? page_add_new_anon_rmap+0xbc/0x150 [821.843723] ? kfree+0x1b4/0x300 [821.843725] ? mntput_no_expire+0x55/0x330 [821.843728] __x64_sys_ioctl+0x5a/0xa0 [821.843731] do_syscall_64+0x33/0x70 [821.843733] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [821.843736] RIP: 0033:0x4cd3fb [821.843741] RSP: 002b:000000c000906b20 EFLAGS: 00000206 ORIG_RAX: 0000000000000010 [821.843744] RAX: ffffffffffffffda RBX: 000000c000050000 RCX: 00000000004cd3fb [821.843745] RDX: 000000c000906b98 RSI: 000000004010942a RDI: 000000000000000f [821.843747] RBP: 000000c000907cd0 R08: 000000c000622901 R09: 0000000000000000 [821.843748] R10: 000000c000d992c0 R11: 0000000000000206 R12: 000000000000012d [821.843749] R13: 000000000000012c R14: 0000000000000200 R15: 0000000000000049 Fix this by removing the qgroup sysfs entry while not holding the spinlock, since the spinlock is only meant for protection of the qgroup rbtree. Reported-by: Stuart Shelton <srcshelton@gmail.com> Link: https://lore.kernel.org/linux-btrfs/7A5485BB-0628-419D-A4D3-27B1AF47E25A@gmail.com/ Fixes: 49e5fb46211de0 ("btrfs: qgroup: export qgroups in sysfs") CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-03-18 11:22:05 +00:00
/*
* Remove the qgroup from sysfs now without holding the qgroup_lock
* spinlock, since the sysfs_remove_group() function needs to take
* the mutex kernfs_mutex through kernfs_remove_by_name_ns().
*/
btrfs_sysfs_del_one_qgroup(fs_info, qgroup);
kfree(qgroup);
out:
mutex_unlock(&fs_info->qgroup_ioctl_lock);
return ret;
}
int btrfs_limit_qgroup(struct btrfs_trans_handle *trans, u64 qgroupid,
struct btrfs_qgroup_limit *limit)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup *qgroup;
int ret = 0;
/* Sometimes we would want to clear the limit on this qgroup.
* To meet this requirement, we treat the -1 as a special value
* which tell kernel to clear the limit on this qgroup.
*/
const u64 CLEAR_VALUE = -1;
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root) {
ret = -ENOTCONN;
goto out;
}
qgroup = find_qgroup_rb(fs_info, qgroupid);
if (!qgroup) {
ret = -ENOENT;
goto out;
}
spin_lock(&fs_info->qgroup_lock);
if (limit->flags & BTRFS_QGROUP_LIMIT_MAX_RFER) {
if (limit->max_rfer == CLEAR_VALUE) {
qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_MAX_RFER;
limit->flags &= ~BTRFS_QGROUP_LIMIT_MAX_RFER;
qgroup->max_rfer = 0;
} else {
qgroup->max_rfer = limit->max_rfer;
}
}
if (limit->flags & BTRFS_QGROUP_LIMIT_MAX_EXCL) {
if (limit->max_excl == CLEAR_VALUE) {
qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_MAX_EXCL;
limit->flags &= ~BTRFS_QGROUP_LIMIT_MAX_EXCL;
qgroup->max_excl = 0;
} else {
qgroup->max_excl = limit->max_excl;
}
}
if (limit->flags & BTRFS_QGROUP_LIMIT_RSV_RFER) {
if (limit->rsv_rfer == CLEAR_VALUE) {
qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_RSV_RFER;
limit->flags &= ~BTRFS_QGROUP_LIMIT_RSV_RFER;
qgroup->rsv_rfer = 0;
} else {
qgroup->rsv_rfer = limit->rsv_rfer;
}
}
if (limit->flags & BTRFS_QGROUP_LIMIT_RSV_EXCL) {
if (limit->rsv_excl == CLEAR_VALUE) {
qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_RSV_EXCL;
limit->flags &= ~BTRFS_QGROUP_LIMIT_RSV_EXCL;
qgroup->rsv_excl = 0;
} else {
qgroup->rsv_excl = limit->rsv_excl;
}
}
qgroup->lim_flags |= limit->flags;
spin_unlock(&fs_info->qgroup_lock);
ret = update_qgroup_limit_item(trans, qgroup);
if (ret) {
qgroup_mark_inconsistent(fs_info);
btrfs_info(fs_info, "unable to update quota limit for %llu",
qgroupid);
}
out:
mutex_unlock(&fs_info->qgroup_ioctl_lock);
return ret;
}
int btrfs_qgroup_trace_extent_nolock(struct btrfs_fs_info *fs_info,
struct btrfs_delayed_ref_root *delayed_refs,
struct btrfs_qgroup_extent_record *record)
{
struct rb_node **p = &delayed_refs->dirty_extent_root.rb_node;
struct rb_node *parent_node = NULL;
struct btrfs_qgroup_extent_record *entry;
u64 bytenr = record->bytenr;
lockdep_assert_held(&delayed_refs->lock);
trace_btrfs_qgroup_trace_extent(fs_info, record);
while (*p) {
parent_node = *p;
entry = rb_entry(parent_node, struct btrfs_qgroup_extent_record,
node);
btrfs: qgroup: Move reserved data accounting from btrfs_delayed_ref_head to btrfs_qgroup_extent_record [BUG] Btrfs/139 will fail with a high probability if the testing machine (VM) has only 2G RAM. Resulting the final write success while it should fail due to EDQUOT, and the fs will have quota exceeding the limit by 16K. The simplified reproducer will be: (needs a 2G ram VM) $ mkfs.btrfs -f $dev $ mount $dev $mnt $ btrfs subv create $mnt/subv $ btrfs quota enable $mnt $ btrfs quota rescan -w $mnt $ btrfs qgroup limit -e 1G $mnt/subv $ for i in $(seq -w 1 8); do xfs_io -f -c "pwrite 0 128M" $mnt/subv/file_$i > /dev/null echo "file $i written" > /dev/kmsg done $ sync $ btrfs qgroup show -pcre --raw $mnt The last pwrite will not trigger EDQUOT and final 'qgroup show' will show something like: qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16384 16384 none none --- --- 0/256 1073758208 1073758208 none 1073741824 --- --- And 1073758208 is larger than > 1073741824. [CAUSE] It's a bug in btrfs qgroup data reserved space management. For quota limit, we must ensure that: reserved (data + metadata) + rfer/excl <= limit Since rfer/excl is only updated at transaction commmit time, reserved space needs to be taken special care. One important part of reserved space is data, and for a new data extent written to disk, we still need to take the reserved space until rfer/excl numbers get updated. Originally when an ordered extent finishes, we migrate the reserved qgroup data space from extent_io tree to delayed ref head of the data extent, expecting delayed ref will only be cleaned up at commit transaction time. However for small RAM machine, due to memory pressure dirty pages can be flushed back to disk without committing a transaction. The related events will be something like: file 1 written btrfs_finish_ordered_io: ino=258 ordered offset=0 len=54947840 btrfs_finish_ordered_io: ino=258 ordered offset=54947840 len=5636096 btrfs_finish_ordered_io: ino=258 ordered offset=61153280 len=57344 btrfs_finish_ordered_io: ino=258 ordered offset=61210624 len=8192 btrfs_finish_ordered_io: ino=258 ordered offset=60583936 len=569344 cleanup_ref_head: num_bytes=54947840 cleanup_ref_head: num_bytes=5636096 cleanup_ref_head: num_bytes=569344 cleanup_ref_head: num_bytes=57344 cleanup_ref_head: num_bytes=8192 ^^^^^^^^^^^^^^^^ This will free qgroup data reserved space file 2 written ... file 8 written cleanup_ref_head: num_bytes=8192 ... btrfs_commit_transaction <<< the only transaction committed during the test When file 2 is written, we have already freed 128M reserved qgroup data space for ino 258. Thus later write won't trigger EDQUOT. This allows us to write more data beyond qgroup limit. In my 2G ram VM, it could reach about 1.2G before hitting EDQUOT. [FIX] By moving reserved qgroup data space from btrfs_delayed_ref_head to btrfs_qgroup_extent_record, we can ensure that reserved qgroup data space won't be freed half way before commit transaction, thus fix the problem. Fixes: f64d5ca86821 ("btrfs: delayed_ref: Add new function to record reserved space into delayed ref") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:12 +08:00
if (bytenr < entry->bytenr) {
p = &(*p)->rb_left;
btrfs: qgroup: Move reserved data accounting from btrfs_delayed_ref_head to btrfs_qgroup_extent_record [BUG] Btrfs/139 will fail with a high probability if the testing machine (VM) has only 2G RAM. Resulting the final write success while it should fail due to EDQUOT, and the fs will have quota exceeding the limit by 16K. The simplified reproducer will be: (needs a 2G ram VM) $ mkfs.btrfs -f $dev $ mount $dev $mnt $ btrfs subv create $mnt/subv $ btrfs quota enable $mnt $ btrfs quota rescan -w $mnt $ btrfs qgroup limit -e 1G $mnt/subv $ for i in $(seq -w 1 8); do xfs_io -f -c "pwrite 0 128M" $mnt/subv/file_$i > /dev/null echo "file $i written" > /dev/kmsg done $ sync $ btrfs qgroup show -pcre --raw $mnt The last pwrite will not trigger EDQUOT and final 'qgroup show' will show something like: qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16384 16384 none none --- --- 0/256 1073758208 1073758208 none 1073741824 --- --- And 1073758208 is larger than > 1073741824. [CAUSE] It's a bug in btrfs qgroup data reserved space management. For quota limit, we must ensure that: reserved (data + metadata) + rfer/excl <= limit Since rfer/excl is only updated at transaction commmit time, reserved space needs to be taken special care. One important part of reserved space is data, and for a new data extent written to disk, we still need to take the reserved space until rfer/excl numbers get updated. Originally when an ordered extent finishes, we migrate the reserved qgroup data space from extent_io tree to delayed ref head of the data extent, expecting delayed ref will only be cleaned up at commit transaction time. However for small RAM machine, due to memory pressure dirty pages can be flushed back to disk without committing a transaction. The related events will be something like: file 1 written btrfs_finish_ordered_io: ino=258 ordered offset=0 len=54947840 btrfs_finish_ordered_io: ino=258 ordered offset=54947840 len=5636096 btrfs_finish_ordered_io: ino=258 ordered offset=61153280 len=57344 btrfs_finish_ordered_io: ino=258 ordered offset=61210624 len=8192 btrfs_finish_ordered_io: ino=258 ordered offset=60583936 len=569344 cleanup_ref_head: num_bytes=54947840 cleanup_ref_head: num_bytes=5636096 cleanup_ref_head: num_bytes=569344 cleanup_ref_head: num_bytes=57344 cleanup_ref_head: num_bytes=8192 ^^^^^^^^^^^^^^^^ This will free qgroup data reserved space file 2 written ... file 8 written cleanup_ref_head: num_bytes=8192 ... btrfs_commit_transaction <<< the only transaction committed during the test When file 2 is written, we have already freed 128M reserved qgroup data space for ino 258. Thus later write won't trigger EDQUOT. This allows us to write more data beyond qgroup limit. In my 2G ram VM, it could reach about 1.2G before hitting EDQUOT. [FIX] By moving reserved qgroup data space from btrfs_delayed_ref_head to btrfs_qgroup_extent_record, we can ensure that reserved qgroup data space won't be freed half way before commit transaction, thus fix the problem. Fixes: f64d5ca86821 ("btrfs: delayed_ref: Add new function to record reserved space into delayed ref") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:12 +08:00
} else if (bytenr > entry->bytenr) {
p = &(*p)->rb_right;
btrfs: qgroup: Move reserved data accounting from btrfs_delayed_ref_head to btrfs_qgroup_extent_record [BUG] Btrfs/139 will fail with a high probability if the testing machine (VM) has only 2G RAM. Resulting the final write success while it should fail due to EDQUOT, and the fs will have quota exceeding the limit by 16K. The simplified reproducer will be: (needs a 2G ram VM) $ mkfs.btrfs -f $dev $ mount $dev $mnt $ btrfs subv create $mnt/subv $ btrfs quota enable $mnt $ btrfs quota rescan -w $mnt $ btrfs qgroup limit -e 1G $mnt/subv $ for i in $(seq -w 1 8); do xfs_io -f -c "pwrite 0 128M" $mnt/subv/file_$i > /dev/null echo "file $i written" > /dev/kmsg done $ sync $ btrfs qgroup show -pcre --raw $mnt The last pwrite will not trigger EDQUOT and final 'qgroup show' will show something like: qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16384 16384 none none --- --- 0/256 1073758208 1073758208 none 1073741824 --- --- And 1073758208 is larger than > 1073741824. [CAUSE] It's a bug in btrfs qgroup data reserved space management. For quota limit, we must ensure that: reserved (data + metadata) + rfer/excl <= limit Since rfer/excl is only updated at transaction commmit time, reserved space needs to be taken special care. One important part of reserved space is data, and for a new data extent written to disk, we still need to take the reserved space until rfer/excl numbers get updated. Originally when an ordered extent finishes, we migrate the reserved qgroup data space from extent_io tree to delayed ref head of the data extent, expecting delayed ref will only be cleaned up at commit transaction time. However for small RAM machine, due to memory pressure dirty pages can be flushed back to disk without committing a transaction. The related events will be something like: file 1 written btrfs_finish_ordered_io: ino=258 ordered offset=0 len=54947840 btrfs_finish_ordered_io: ino=258 ordered offset=54947840 len=5636096 btrfs_finish_ordered_io: ino=258 ordered offset=61153280 len=57344 btrfs_finish_ordered_io: ino=258 ordered offset=61210624 len=8192 btrfs_finish_ordered_io: ino=258 ordered offset=60583936 len=569344 cleanup_ref_head: num_bytes=54947840 cleanup_ref_head: num_bytes=5636096 cleanup_ref_head: num_bytes=569344 cleanup_ref_head: num_bytes=57344 cleanup_ref_head: num_bytes=8192 ^^^^^^^^^^^^^^^^ This will free qgroup data reserved space file 2 written ... file 8 written cleanup_ref_head: num_bytes=8192 ... btrfs_commit_transaction <<< the only transaction committed during the test When file 2 is written, we have already freed 128M reserved qgroup data space for ino 258. Thus later write won't trigger EDQUOT. This allows us to write more data beyond qgroup limit. In my 2G ram VM, it could reach about 1.2G before hitting EDQUOT. [FIX] By moving reserved qgroup data space from btrfs_delayed_ref_head to btrfs_qgroup_extent_record, we can ensure that reserved qgroup data space won't be freed half way before commit transaction, thus fix the problem. Fixes: f64d5ca86821 ("btrfs: delayed_ref: Add new function to record reserved space into delayed ref") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:12 +08:00
} else {
if (record->data_rsv && !entry->data_rsv) {
entry->data_rsv = record->data_rsv;
entry->data_rsv_refroot =
record->data_rsv_refroot;
}
return 1;
btrfs: qgroup: Move reserved data accounting from btrfs_delayed_ref_head to btrfs_qgroup_extent_record [BUG] Btrfs/139 will fail with a high probability if the testing machine (VM) has only 2G RAM. Resulting the final write success while it should fail due to EDQUOT, and the fs will have quota exceeding the limit by 16K. The simplified reproducer will be: (needs a 2G ram VM) $ mkfs.btrfs -f $dev $ mount $dev $mnt $ btrfs subv create $mnt/subv $ btrfs quota enable $mnt $ btrfs quota rescan -w $mnt $ btrfs qgroup limit -e 1G $mnt/subv $ for i in $(seq -w 1 8); do xfs_io -f -c "pwrite 0 128M" $mnt/subv/file_$i > /dev/null echo "file $i written" > /dev/kmsg done $ sync $ btrfs qgroup show -pcre --raw $mnt The last pwrite will not trigger EDQUOT and final 'qgroup show' will show something like: qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16384 16384 none none --- --- 0/256 1073758208 1073758208 none 1073741824 --- --- And 1073758208 is larger than > 1073741824. [CAUSE] It's a bug in btrfs qgroup data reserved space management. For quota limit, we must ensure that: reserved (data + metadata) + rfer/excl <= limit Since rfer/excl is only updated at transaction commmit time, reserved space needs to be taken special care. One important part of reserved space is data, and for a new data extent written to disk, we still need to take the reserved space until rfer/excl numbers get updated. Originally when an ordered extent finishes, we migrate the reserved qgroup data space from extent_io tree to delayed ref head of the data extent, expecting delayed ref will only be cleaned up at commit transaction time. However for small RAM machine, due to memory pressure dirty pages can be flushed back to disk without committing a transaction. The related events will be something like: file 1 written btrfs_finish_ordered_io: ino=258 ordered offset=0 len=54947840 btrfs_finish_ordered_io: ino=258 ordered offset=54947840 len=5636096 btrfs_finish_ordered_io: ino=258 ordered offset=61153280 len=57344 btrfs_finish_ordered_io: ino=258 ordered offset=61210624 len=8192 btrfs_finish_ordered_io: ino=258 ordered offset=60583936 len=569344 cleanup_ref_head: num_bytes=54947840 cleanup_ref_head: num_bytes=5636096 cleanup_ref_head: num_bytes=569344 cleanup_ref_head: num_bytes=57344 cleanup_ref_head: num_bytes=8192 ^^^^^^^^^^^^^^^^ This will free qgroup data reserved space file 2 written ... file 8 written cleanup_ref_head: num_bytes=8192 ... btrfs_commit_transaction <<< the only transaction committed during the test When file 2 is written, we have already freed 128M reserved qgroup data space for ino 258. Thus later write won't trigger EDQUOT. This allows us to write more data beyond qgroup limit. In my 2G ram VM, it could reach about 1.2G before hitting EDQUOT. [FIX] By moving reserved qgroup data space from btrfs_delayed_ref_head to btrfs_qgroup_extent_record, we can ensure that reserved qgroup data space won't be freed half way before commit transaction, thus fix the problem. Fixes: f64d5ca86821 ("btrfs: delayed_ref: Add new function to record reserved space into delayed ref") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:12 +08:00
}
}
rb_link_node(&record->node, parent_node, p);
rb_insert_color(&record->node, &delayed_refs->dirty_extent_root);
return 0;
}
btrfs: fix lock inversion problem when doing qgroup extent tracing At btrfs_qgroup_trace_extent_post() we call btrfs_find_all_roots() with a NULL value as the transaction handle argument, which makes that function take the commit_root_sem semaphore, which is necessary when we don't hold a transaction handle or any other mechanism to prevent a transaction commit from wiping out commit roots. However btrfs_qgroup_trace_extent_post() can be called in a context where we are holding a write lock on an extent buffer from a subvolume tree, namely from btrfs_truncate_inode_items(), called either during truncate or unlink operations. In this case we end up with a lock inversion problem because the commit_root_sem is a higher level lock, always supposed to be acquired before locking any extent buffer. Lockdep detects this lock inversion problem since we switched the extent buffer locks from custom locks to semaphores, and when running btrfs/158 from fstests, it reported the following trace: [ 9057.626435] ====================================================== [ 9057.627541] WARNING: possible circular locking dependency detected [ 9057.628334] 5.14.0-rc2-btrfs-next-93 #1 Not tainted [ 9057.628961] ------------------------------------------------------ [ 9057.629867] kworker/u16:4/30781 is trying to acquire lock: [ 9057.630824] ffff8e2590f58760 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.632542] but task is already holding lock: [ 9057.633551] ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.635255] which lock already depends on the new lock. [ 9057.636292] the existing dependency chain (in reverse order) is: [ 9057.637240] -> #1 (&fs_info->commit_root_sem){++++}-{3:3}: [ 9057.638138] down_read+0x46/0x140 [ 9057.638648] btrfs_find_all_roots+0x41/0x80 [btrfs] [ 9057.639398] btrfs_qgroup_trace_extent_post+0x37/0x70 [btrfs] [ 9057.640283] btrfs_add_delayed_data_ref+0x418/0x490 [btrfs] [ 9057.641114] btrfs_free_extent+0x35/0xb0 [btrfs] [ 9057.641819] btrfs_truncate_inode_items+0x424/0xf70 [btrfs] [ 9057.642643] btrfs_evict_inode+0x454/0x4f0 [btrfs] [ 9057.643418] evict+0xcf/0x1d0 [ 9057.643895] do_unlinkat+0x1e9/0x300 [ 9057.644525] do_syscall_64+0x3b/0xc0 [ 9057.645110] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 9057.645835] -> #0 (btrfs-tree-00){++++}-{3:3}: [ 9057.646600] __lock_acquire+0x130e/0x2210 [ 9057.647248] lock_acquire+0xd7/0x310 [ 9057.647773] down_read_nested+0x4b/0x140 [ 9057.648350] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.649175] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.650010] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.650849] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.651733] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.652501] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.653264] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.654295] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.655111] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.655831] process_one_work+0x247/0x5a0 [ 9057.656425] worker_thread+0x55/0x3c0 [ 9057.656993] kthread+0x155/0x180 [ 9057.657494] ret_from_fork+0x22/0x30 [ 9057.658030] other info that might help us debug this: [ 9057.659064] Possible unsafe locking scenario: [ 9057.659824] CPU0 CPU1 [ 9057.660402] ---- ---- [ 9057.660988] lock(&fs_info->commit_root_sem); [ 9057.661581] lock(btrfs-tree-00); [ 9057.662348] lock(&fs_info->commit_root_sem); [ 9057.663254] lock(btrfs-tree-00); [ 9057.663690] *** DEADLOCK *** [ 9057.664437] 4 locks held by kworker/u16:4/30781: [ 9057.665023] #0: ffff8e25922a1148 ((wq_completion)btrfs-scrub){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.666260] #1: ffffabb3451ffe70 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.667639] #2: ffff8e25922da198 (&ret->mutex){+.+.}-{3:3}, at: scrub_handle_errored_block.isra.0+0x5d2/0x1640 [btrfs] [ 9057.669017] #3: ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.670408] stack backtrace: [ 9057.670976] CPU: 7 PID: 30781 Comm: kworker/u16:4 Not tainted 5.14.0-rc2-btrfs-next-93 #1 [ 9057.672030] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 9057.673492] Workqueue: btrfs-scrub btrfs_work_helper [btrfs] [ 9057.674258] Call Trace: [ 9057.674588] dump_stack_lvl+0x57/0x72 [ 9057.675083] check_noncircular+0xf3/0x110 [ 9057.675611] __lock_acquire+0x130e/0x2210 [ 9057.676132] lock_acquire+0xd7/0x310 [ 9057.676605] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.677313] ? lock_is_held_type+0xe8/0x140 [ 9057.677849] down_read_nested+0x4b/0x140 [ 9057.678349] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679068] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679760] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.680458] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.681083] ? _raw_spin_unlock+0x29/0x40 [ 9057.681594] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.682336] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.683058] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.683834] ? scrub_write_block_to_dev_replace+0xb0/0xb0 [btrfs] [ 9057.684632] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.685316] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.685977] ? ___ratelimit+0xa4/0x110 [ 9057.686460] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.687316] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.688021] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.688649] ? lock_is_held_type+0xe8/0x140 [ 9057.689180] process_one_work+0x247/0x5a0 [ 9057.689696] worker_thread+0x55/0x3c0 [ 9057.690175] ? process_one_work+0x5a0/0x5a0 [ 9057.690731] kthread+0x155/0x180 [ 9057.691158] ? set_kthread_struct+0x40/0x40 [ 9057.691697] ret_from_fork+0x22/0x30 Fix this by making btrfs_find_all_roots() never attempt to lock the commit_root_sem when it is called from btrfs_qgroup_trace_extent_post(). We can't just pass a non-NULL transaction handle to btrfs_find_all_roots() from btrfs_qgroup_trace_extent_post(), because that would make backref lookup not use commit roots and acquire read locks on extent buffers, and therefore could deadlock when btrfs_qgroup_trace_extent_post() is called from the btrfs_truncate_inode_items() code path which has acquired a write lock on an extent buffer of the subvolume btree. CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-21 17:31:48 +01:00
int btrfs_qgroup_trace_extent_post(struct btrfs_trans_handle *trans,
struct btrfs_qgroup_extent_record *qrecord)
{
struct btrfs_backref_walk_ctx ctx = { 0 };
int ret;
btrfs: fix lock inversion problem when doing qgroup extent tracing At btrfs_qgroup_trace_extent_post() we call btrfs_find_all_roots() with a NULL value as the transaction handle argument, which makes that function take the commit_root_sem semaphore, which is necessary when we don't hold a transaction handle or any other mechanism to prevent a transaction commit from wiping out commit roots. However btrfs_qgroup_trace_extent_post() can be called in a context where we are holding a write lock on an extent buffer from a subvolume tree, namely from btrfs_truncate_inode_items(), called either during truncate or unlink operations. In this case we end up with a lock inversion problem because the commit_root_sem is a higher level lock, always supposed to be acquired before locking any extent buffer. Lockdep detects this lock inversion problem since we switched the extent buffer locks from custom locks to semaphores, and when running btrfs/158 from fstests, it reported the following trace: [ 9057.626435] ====================================================== [ 9057.627541] WARNING: possible circular locking dependency detected [ 9057.628334] 5.14.0-rc2-btrfs-next-93 #1 Not tainted [ 9057.628961] ------------------------------------------------------ [ 9057.629867] kworker/u16:4/30781 is trying to acquire lock: [ 9057.630824] ffff8e2590f58760 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.632542] but task is already holding lock: [ 9057.633551] ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.635255] which lock already depends on the new lock. [ 9057.636292] the existing dependency chain (in reverse order) is: [ 9057.637240] -> #1 (&fs_info->commit_root_sem){++++}-{3:3}: [ 9057.638138] down_read+0x46/0x140 [ 9057.638648] btrfs_find_all_roots+0x41/0x80 [btrfs] [ 9057.639398] btrfs_qgroup_trace_extent_post+0x37/0x70 [btrfs] [ 9057.640283] btrfs_add_delayed_data_ref+0x418/0x490 [btrfs] [ 9057.641114] btrfs_free_extent+0x35/0xb0 [btrfs] [ 9057.641819] btrfs_truncate_inode_items+0x424/0xf70 [btrfs] [ 9057.642643] btrfs_evict_inode+0x454/0x4f0 [btrfs] [ 9057.643418] evict+0xcf/0x1d0 [ 9057.643895] do_unlinkat+0x1e9/0x300 [ 9057.644525] do_syscall_64+0x3b/0xc0 [ 9057.645110] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 9057.645835] -> #0 (btrfs-tree-00){++++}-{3:3}: [ 9057.646600] __lock_acquire+0x130e/0x2210 [ 9057.647248] lock_acquire+0xd7/0x310 [ 9057.647773] down_read_nested+0x4b/0x140 [ 9057.648350] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.649175] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.650010] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.650849] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.651733] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.652501] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.653264] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.654295] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.655111] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.655831] process_one_work+0x247/0x5a0 [ 9057.656425] worker_thread+0x55/0x3c0 [ 9057.656993] kthread+0x155/0x180 [ 9057.657494] ret_from_fork+0x22/0x30 [ 9057.658030] other info that might help us debug this: [ 9057.659064] Possible unsafe locking scenario: [ 9057.659824] CPU0 CPU1 [ 9057.660402] ---- ---- [ 9057.660988] lock(&fs_info->commit_root_sem); [ 9057.661581] lock(btrfs-tree-00); [ 9057.662348] lock(&fs_info->commit_root_sem); [ 9057.663254] lock(btrfs-tree-00); [ 9057.663690] *** DEADLOCK *** [ 9057.664437] 4 locks held by kworker/u16:4/30781: [ 9057.665023] #0: ffff8e25922a1148 ((wq_completion)btrfs-scrub){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.666260] #1: ffffabb3451ffe70 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.667639] #2: ffff8e25922da198 (&ret->mutex){+.+.}-{3:3}, at: scrub_handle_errored_block.isra.0+0x5d2/0x1640 [btrfs] [ 9057.669017] #3: ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.670408] stack backtrace: [ 9057.670976] CPU: 7 PID: 30781 Comm: kworker/u16:4 Not tainted 5.14.0-rc2-btrfs-next-93 #1 [ 9057.672030] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 9057.673492] Workqueue: btrfs-scrub btrfs_work_helper [btrfs] [ 9057.674258] Call Trace: [ 9057.674588] dump_stack_lvl+0x57/0x72 [ 9057.675083] check_noncircular+0xf3/0x110 [ 9057.675611] __lock_acquire+0x130e/0x2210 [ 9057.676132] lock_acquire+0xd7/0x310 [ 9057.676605] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.677313] ? lock_is_held_type+0xe8/0x140 [ 9057.677849] down_read_nested+0x4b/0x140 [ 9057.678349] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679068] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679760] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.680458] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.681083] ? _raw_spin_unlock+0x29/0x40 [ 9057.681594] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.682336] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.683058] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.683834] ? scrub_write_block_to_dev_replace+0xb0/0xb0 [btrfs] [ 9057.684632] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.685316] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.685977] ? ___ratelimit+0xa4/0x110 [ 9057.686460] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.687316] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.688021] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.688649] ? lock_is_held_type+0xe8/0x140 [ 9057.689180] process_one_work+0x247/0x5a0 [ 9057.689696] worker_thread+0x55/0x3c0 [ 9057.690175] ? process_one_work+0x5a0/0x5a0 [ 9057.690731] kthread+0x155/0x180 [ 9057.691158] ? set_kthread_struct+0x40/0x40 [ 9057.691697] ret_from_fork+0x22/0x30 Fix this by making btrfs_find_all_roots() never attempt to lock the commit_root_sem when it is called from btrfs_qgroup_trace_extent_post(). We can't just pass a non-NULL transaction handle to btrfs_find_all_roots() from btrfs_qgroup_trace_extent_post(), because that would make backref lookup not use commit roots and acquire read locks on extent buffers, and therefore could deadlock when btrfs_qgroup_trace_extent_post() is called from the btrfs_truncate_inode_items() code path which has acquired a write lock on an extent buffer of the subvolume btree. CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-21 17:31:48 +01:00
/*
* We are always called in a context where we are already holding a
* transaction handle. Often we are called when adding a data delayed
* reference from btrfs_truncate_inode_items() (truncating or unlinking),
* in which case we will be holding a write lock on extent buffer from a
* subvolume tree. In this case we can't allow btrfs_find_all_roots() to
* acquire fs_info->commit_root_sem, because that is a higher level lock
* that must be acquired before locking any extent buffers.
*
* So we want btrfs_find_all_roots() to not acquire the commit_root_sem
* but we can't pass it a non-NULL transaction handle, because otherwise
* it would not use commit roots and would lock extent buffers, causing
* a deadlock if it ends up trying to read lock the same extent buffer
* that was previously write locked at btrfs_truncate_inode_items().
*
* So pass a NULL transaction handle to btrfs_find_all_roots() and
* explicitly tell it to not acquire the commit_root_sem - if we are
* holding a transaction handle we don't need its protection.
*/
ASSERT(trans != NULL);
if (trans->fs_info->qgroup_flags & BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING)
return 0;
ctx.bytenr = qrecord->bytenr;
ctx.fs_info = trans->fs_info;
ret = btrfs_find_all_roots(&ctx, true);
if (ret < 0) {
qgroup_mark_inconsistent(trans->fs_info);
btrfs: fix lock inversion problem when doing qgroup extent tracing At btrfs_qgroup_trace_extent_post() we call btrfs_find_all_roots() with a NULL value as the transaction handle argument, which makes that function take the commit_root_sem semaphore, which is necessary when we don't hold a transaction handle or any other mechanism to prevent a transaction commit from wiping out commit roots. However btrfs_qgroup_trace_extent_post() can be called in a context where we are holding a write lock on an extent buffer from a subvolume tree, namely from btrfs_truncate_inode_items(), called either during truncate or unlink operations. In this case we end up with a lock inversion problem because the commit_root_sem is a higher level lock, always supposed to be acquired before locking any extent buffer. Lockdep detects this lock inversion problem since we switched the extent buffer locks from custom locks to semaphores, and when running btrfs/158 from fstests, it reported the following trace: [ 9057.626435] ====================================================== [ 9057.627541] WARNING: possible circular locking dependency detected [ 9057.628334] 5.14.0-rc2-btrfs-next-93 #1 Not tainted [ 9057.628961] ------------------------------------------------------ [ 9057.629867] kworker/u16:4/30781 is trying to acquire lock: [ 9057.630824] ffff8e2590f58760 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.632542] but task is already holding lock: [ 9057.633551] ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.635255] which lock already depends on the new lock. [ 9057.636292] the existing dependency chain (in reverse order) is: [ 9057.637240] -> #1 (&fs_info->commit_root_sem){++++}-{3:3}: [ 9057.638138] down_read+0x46/0x140 [ 9057.638648] btrfs_find_all_roots+0x41/0x80 [btrfs] [ 9057.639398] btrfs_qgroup_trace_extent_post+0x37/0x70 [btrfs] [ 9057.640283] btrfs_add_delayed_data_ref+0x418/0x490 [btrfs] [ 9057.641114] btrfs_free_extent+0x35/0xb0 [btrfs] [ 9057.641819] btrfs_truncate_inode_items+0x424/0xf70 [btrfs] [ 9057.642643] btrfs_evict_inode+0x454/0x4f0 [btrfs] [ 9057.643418] evict+0xcf/0x1d0 [ 9057.643895] do_unlinkat+0x1e9/0x300 [ 9057.644525] do_syscall_64+0x3b/0xc0 [ 9057.645110] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 9057.645835] -> #0 (btrfs-tree-00){++++}-{3:3}: [ 9057.646600] __lock_acquire+0x130e/0x2210 [ 9057.647248] lock_acquire+0xd7/0x310 [ 9057.647773] down_read_nested+0x4b/0x140 [ 9057.648350] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.649175] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.650010] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.650849] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.651733] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.652501] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.653264] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.654295] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.655111] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.655831] process_one_work+0x247/0x5a0 [ 9057.656425] worker_thread+0x55/0x3c0 [ 9057.656993] kthread+0x155/0x180 [ 9057.657494] ret_from_fork+0x22/0x30 [ 9057.658030] other info that might help us debug this: [ 9057.659064] Possible unsafe locking scenario: [ 9057.659824] CPU0 CPU1 [ 9057.660402] ---- ---- [ 9057.660988] lock(&fs_info->commit_root_sem); [ 9057.661581] lock(btrfs-tree-00); [ 9057.662348] lock(&fs_info->commit_root_sem); [ 9057.663254] lock(btrfs-tree-00); [ 9057.663690] *** DEADLOCK *** [ 9057.664437] 4 locks held by kworker/u16:4/30781: [ 9057.665023] #0: ffff8e25922a1148 ((wq_completion)btrfs-scrub){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.666260] #1: ffffabb3451ffe70 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.667639] #2: ffff8e25922da198 (&ret->mutex){+.+.}-{3:3}, at: scrub_handle_errored_block.isra.0+0x5d2/0x1640 [btrfs] [ 9057.669017] #3: ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.670408] stack backtrace: [ 9057.670976] CPU: 7 PID: 30781 Comm: kworker/u16:4 Not tainted 5.14.0-rc2-btrfs-next-93 #1 [ 9057.672030] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 9057.673492] Workqueue: btrfs-scrub btrfs_work_helper [btrfs] [ 9057.674258] Call Trace: [ 9057.674588] dump_stack_lvl+0x57/0x72 [ 9057.675083] check_noncircular+0xf3/0x110 [ 9057.675611] __lock_acquire+0x130e/0x2210 [ 9057.676132] lock_acquire+0xd7/0x310 [ 9057.676605] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.677313] ? lock_is_held_type+0xe8/0x140 [ 9057.677849] down_read_nested+0x4b/0x140 [ 9057.678349] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679068] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679760] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.680458] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.681083] ? _raw_spin_unlock+0x29/0x40 [ 9057.681594] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.682336] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.683058] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.683834] ? scrub_write_block_to_dev_replace+0xb0/0xb0 [btrfs] [ 9057.684632] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.685316] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.685977] ? ___ratelimit+0xa4/0x110 [ 9057.686460] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.687316] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.688021] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.688649] ? lock_is_held_type+0xe8/0x140 [ 9057.689180] process_one_work+0x247/0x5a0 [ 9057.689696] worker_thread+0x55/0x3c0 [ 9057.690175] ? process_one_work+0x5a0/0x5a0 [ 9057.690731] kthread+0x155/0x180 [ 9057.691158] ? set_kthread_struct+0x40/0x40 [ 9057.691697] ret_from_fork+0x22/0x30 Fix this by making btrfs_find_all_roots() never attempt to lock the commit_root_sem when it is called from btrfs_qgroup_trace_extent_post(). We can't just pass a non-NULL transaction handle to btrfs_find_all_roots() from btrfs_qgroup_trace_extent_post(), because that would make backref lookup not use commit roots and acquire read locks on extent buffers, and therefore could deadlock when btrfs_qgroup_trace_extent_post() is called from the btrfs_truncate_inode_items() code path which has acquired a write lock on an extent buffer of the subvolume btree. CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-21 17:31:48 +01:00
btrfs_warn(trans->fs_info,
"error accounting new delayed refs extent (err code: %d), quota inconsistent",
ret);
return 0;
}
/*
* Here we don't need to get the lock of
* trans->transaction->delayed_refs, since inserted qrecord won't
* be deleted, only qrecord->node may be modified (new qrecord insert)
*
* So modifying qrecord->old_roots is safe here
*/
qrecord->old_roots = ctx.roots;
return 0;
}
int btrfs_qgroup_trace_extent(struct btrfs_trans_handle *trans, u64 bytenr,
u64 num_bytes)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup_extent_record *record;
struct btrfs_delayed_ref_root *delayed_refs;
int ret;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)
|| bytenr == 0 || num_bytes == 0)
return 0;
record = kzalloc(sizeof(*record), GFP_NOFS);
if (!record)
return -ENOMEM;
delayed_refs = &trans->transaction->delayed_refs;
record->bytenr = bytenr;
record->num_bytes = num_bytes;
record->old_roots = NULL;
spin_lock(&delayed_refs->lock);
ret = btrfs_qgroup_trace_extent_nolock(fs_info, delayed_refs, record);
spin_unlock(&delayed_refs->lock);
if (ret > 0) {
kfree(record);
return 0;
}
btrfs: fix lock inversion problem when doing qgroup extent tracing At btrfs_qgroup_trace_extent_post() we call btrfs_find_all_roots() with a NULL value as the transaction handle argument, which makes that function take the commit_root_sem semaphore, which is necessary when we don't hold a transaction handle or any other mechanism to prevent a transaction commit from wiping out commit roots. However btrfs_qgroup_trace_extent_post() can be called in a context where we are holding a write lock on an extent buffer from a subvolume tree, namely from btrfs_truncate_inode_items(), called either during truncate or unlink operations. In this case we end up with a lock inversion problem because the commit_root_sem is a higher level lock, always supposed to be acquired before locking any extent buffer. Lockdep detects this lock inversion problem since we switched the extent buffer locks from custom locks to semaphores, and when running btrfs/158 from fstests, it reported the following trace: [ 9057.626435] ====================================================== [ 9057.627541] WARNING: possible circular locking dependency detected [ 9057.628334] 5.14.0-rc2-btrfs-next-93 #1 Not tainted [ 9057.628961] ------------------------------------------------------ [ 9057.629867] kworker/u16:4/30781 is trying to acquire lock: [ 9057.630824] ffff8e2590f58760 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.632542] but task is already holding lock: [ 9057.633551] ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.635255] which lock already depends on the new lock. [ 9057.636292] the existing dependency chain (in reverse order) is: [ 9057.637240] -> #1 (&fs_info->commit_root_sem){++++}-{3:3}: [ 9057.638138] down_read+0x46/0x140 [ 9057.638648] btrfs_find_all_roots+0x41/0x80 [btrfs] [ 9057.639398] btrfs_qgroup_trace_extent_post+0x37/0x70 [btrfs] [ 9057.640283] btrfs_add_delayed_data_ref+0x418/0x490 [btrfs] [ 9057.641114] btrfs_free_extent+0x35/0xb0 [btrfs] [ 9057.641819] btrfs_truncate_inode_items+0x424/0xf70 [btrfs] [ 9057.642643] btrfs_evict_inode+0x454/0x4f0 [btrfs] [ 9057.643418] evict+0xcf/0x1d0 [ 9057.643895] do_unlinkat+0x1e9/0x300 [ 9057.644525] do_syscall_64+0x3b/0xc0 [ 9057.645110] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 9057.645835] -> #0 (btrfs-tree-00){++++}-{3:3}: [ 9057.646600] __lock_acquire+0x130e/0x2210 [ 9057.647248] lock_acquire+0xd7/0x310 [ 9057.647773] down_read_nested+0x4b/0x140 [ 9057.648350] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.649175] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.650010] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.650849] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.651733] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.652501] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.653264] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.654295] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.655111] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.655831] process_one_work+0x247/0x5a0 [ 9057.656425] worker_thread+0x55/0x3c0 [ 9057.656993] kthread+0x155/0x180 [ 9057.657494] ret_from_fork+0x22/0x30 [ 9057.658030] other info that might help us debug this: [ 9057.659064] Possible unsafe locking scenario: [ 9057.659824] CPU0 CPU1 [ 9057.660402] ---- ---- [ 9057.660988] lock(&fs_info->commit_root_sem); [ 9057.661581] lock(btrfs-tree-00); [ 9057.662348] lock(&fs_info->commit_root_sem); [ 9057.663254] lock(btrfs-tree-00); [ 9057.663690] *** DEADLOCK *** [ 9057.664437] 4 locks held by kworker/u16:4/30781: [ 9057.665023] #0: ffff8e25922a1148 ((wq_completion)btrfs-scrub){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.666260] #1: ffffabb3451ffe70 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x1c7/0x5a0 [ 9057.667639] #2: ffff8e25922da198 (&ret->mutex){+.+.}-{3:3}, at: scrub_handle_errored_block.isra.0+0x5d2/0x1640 [btrfs] [ 9057.669017] #3: ffff8e25582d4b70 (&fs_info->commit_root_sem){++++}-{3:3}, at: iterate_extent_inodes+0x10b/0x280 [btrfs] [ 9057.670408] stack backtrace: [ 9057.670976] CPU: 7 PID: 30781 Comm: kworker/u16:4 Not tainted 5.14.0-rc2-btrfs-next-93 #1 [ 9057.672030] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 9057.673492] Workqueue: btrfs-scrub btrfs_work_helper [btrfs] [ 9057.674258] Call Trace: [ 9057.674588] dump_stack_lvl+0x57/0x72 [ 9057.675083] check_noncircular+0xf3/0x110 [ 9057.675611] __lock_acquire+0x130e/0x2210 [ 9057.676132] lock_acquire+0xd7/0x310 [ 9057.676605] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.677313] ? lock_is_held_type+0xe8/0x140 [ 9057.677849] down_read_nested+0x4b/0x140 [ 9057.678349] ? __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679068] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 9057.679760] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 9057.680458] btrfs_search_slot+0x537/0xc00 [btrfs] [ 9057.681083] ? _raw_spin_unlock+0x29/0x40 [ 9057.681594] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.682336] scrub_print_warning_inode+0x89/0x370 [btrfs] [ 9057.683058] ? btrfs_find_all_roots_safe+0x11f/0x140 [btrfs] [ 9057.683834] ? scrub_write_block_to_dev_replace+0xb0/0xb0 [btrfs] [ 9057.684632] iterate_extent_inodes+0x1e3/0x280 [btrfs] [ 9057.685316] scrub_print_warning+0x15d/0x2f0 [btrfs] [ 9057.685977] ? ___ratelimit+0xa4/0x110 [ 9057.686460] scrub_handle_errored_block.isra.0+0x135f/0x1640 [btrfs] [ 9057.687316] scrub_bio_end_io_worker+0x101/0x2e0 [btrfs] [ 9057.688021] btrfs_work_helper+0xf8/0x400 [btrfs] [ 9057.688649] ? lock_is_held_type+0xe8/0x140 [ 9057.689180] process_one_work+0x247/0x5a0 [ 9057.689696] worker_thread+0x55/0x3c0 [ 9057.690175] ? process_one_work+0x5a0/0x5a0 [ 9057.690731] kthread+0x155/0x180 [ 9057.691158] ? set_kthread_struct+0x40/0x40 [ 9057.691697] ret_from_fork+0x22/0x30 Fix this by making btrfs_find_all_roots() never attempt to lock the commit_root_sem when it is called from btrfs_qgroup_trace_extent_post(). We can't just pass a non-NULL transaction handle to btrfs_find_all_roots() from btrfs_qgroup_trace_extent_post(), because that would make backref lookup not use commit roots and acquire read locks on extent buffers, and therefore could deadlock when btrfs_qgroup_trace_extent_post() is called from the btrfs_truncate_inode_items() code path which has acquired a write lock on an extent buffer of the subvolume btree. CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-21 17:31:48 +01:00
return btrfs_qgroup_trace_extent_post(trans, record);
}
int btrfs_qgroup_trace_leaf_items(struct btrfs_trans_handle *trans,
struct extent_buffer *eb)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int nr = btrfs_header_nritems(eb);
int i, extent_type, ret;
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
u64 bytenr, num_bytes;
/* We can be called directly from walk_up_proc() */
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
return 0;
for (i = 0; i < nr; i++) {
btrfs_item_key_to_cpu(eb, &key, i);
if (key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
/* filter out non qgroup-accountable extents */
extent_type = btrfs_file_extent_type(eb, fi);
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
if (!bytenr)
continue;
num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
ret = btrfs_qgroup_trace_extent(trans, bytenr, num_bytes);
if (ret)
return ret;
}
cond_resched();
return 0;
}
/*
* Walk up the tree from the bottom, freeing leaves and any interior
* nodes which have had all slots visited. If a node (leaf or
* interior) is freed, the node above it will have it's slot
* incremented. The root node will never be freed.
*
* At the end of this function, we should have a path which has all
* slots incremented to the next position for a search. If we need to
* read a new node it will be NULL and the node above it will have the
* correct slot selected for a later read.
*
* If we increment the root nodes slot counter past the number of
* elements, 1 is returned to signal completion of the search.
*/
static int adjust_slots_upwards(struct btrfs_path *path, int root_level)
{
int level = 0;
int nr, slot;
struct extent_buffer *eb;
if (root_level == 0)
return 1;
while (level <= root_level) {
eb = path->nodes[level];
nr = btrfs_header_nritems(eb);
path->slots[level]++;
slot = path->slots[level];
if (slot >= nr || level == 0) {
/*
* Don't free the root - we will detect this
* condition after our loop and return a
* positive value for caller to stop walking the tree.
*/
if (level != root_level) {
btrfs_tree_unlock_rw(eb, path->locks[level]);
path->locks[level] = 0;
free_extent_buffer(eb);
path->nodes[level] = NULL;
path->slots[level] = 0;
}
} else {
/*
* We have a valid slot to walk back down
* from. Stop here so caller can process these
* new nodes.
*/
break;
}
level++;
}
eb = path->nodes[root_level];
if (path->slots[root_level] >= btrfs_header_nritems(eb))
return 1;
return 0;
}
btrfs: qgroup: Introduce function to trace two swaped extents Introduce a new function, qgroup_trace_extent_swap(), which will be used later for balance qgroup speedup. The basis idea of balance is swapping tree blocks between reloc tree and the real file tree. The swap will happen in highest tree block, but there may be a lot of tree blocks involved. For example: OO = Old tree blocks NN = New tree blocks allocated during balance File tree (257) Reloc tree for 257 L2 OO NN / \ / \ L1 OO OO (a) OO NN (a) / \ / \ / \ / \ L0 OO OO OO OO OO OO NN NN (b) (c) (b) (c) When calling qgroup_trace_extent_swap(), we will pass: @src_eb = OO(a) @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ] @dst_level = 0 @root_level = 1 In that case, qgroup_trace_extent_swap() will search from OO(a) to reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty. The main work of qgroup_trace_extent_swap() can be split into 3 parts: 1) Tree search from @src_eb It should acts as a simplified btrfs_search_slot(). The key for search can be extracted from @dst_path->nodes[dst_level] (first key). 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty. They should be marked during preivous (@dst_level = 1) iteration. 3) Mark file extents in leaves dirty We don't have good way to pick out new file extents only. So we still follow the old method by scanning all file extents in the leave. This function can free us from keeping two pathes, thus later we only need to care about how to iterate all new tree blocks in reloc tree. Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy changelog to function comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:30 +08:00
/*
* Helper function to trace a subtree tree block swap.
*
* The swap will happen in highest tree block, but there may be a lot of
* tree blocks involved.
*
* For example:
* OO = Old tree blocks
* NN = New tree blocks allocated during balance
*
* File tree (257) Reloc tree for 257
* L2 OO NN
* / \ / \
* L1 OO OO (a) OO NN (a)
* / \ / \ / \ / \
* L0 OO OO OO OO OO OO NN NN
* (b) (c) (b) (c)
*
* When calling qgroup_trace_extent_swap(), we will pass:
* @src_eb = OO(a)
* @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ]
* @dst_level = 0
* @root_level = 1
*
* In that case, qgroup_trace_extent_swap() will search from OO(a) to
* reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty.
*
* The main work of qgroup_trace_extent_swap() can be split into 3 parts:
*
* 1) Tree search from @src_eb
* It should acts as a simplified btrfs_search_slot().
* The key for search can be extracted from @dst_path->nodes[dst_level]
* (first key).
*
* 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty
* NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty.
* They should be marked during previous (@dst_level = 1) iteration.
btrfs: qgroup: Introduce function to trace two swaped extents Introduce a new function, qgroup_trace_extent_swap(), which will be used later for balance qgroup speedup. The basis idea of balance is swapping tree blocks between reloc tree and the real file tree. The swap will happen in highest tree block, but there may be a lot of tree blocks involved. For example: OO = Old tree blocks NN = New tree blocks allocated during balance File tree (257) Reloc tree for 257 L2 OO NN / \ / \ L1 OO OO (a) OO NN (a) / \ / \ / \ / \ L0 OO OO OO OO OO OO NN NN (b) (c) (b) (c) When calling qgroup_trace_extent_swap(), we will pass: @src_eb = OO(a) @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ] @dst_level = 0 @root_level = 1 In that case, qgroup_trace_extent_swap() will search from OO(a) to reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty. The main work of qgroup_trace_extent_swap() can be split into 3 parts: 1) Tree search from @src_eb It should acts as a simplified btrfs_search_slot(). The key for search can be extracted from @dst_path->nodes[dst_level] (first key). 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty. They should be marked during preivous (@dst_level = 1) iteration. 3) Mark file extents in leaves dirty We don't have good way to pick out new file extents only. So we still follow the old method by scanning all file extents in the leave. This function can free us from keeping two pathes, thus later we only need to care about how to iterate all new tree blocks in reloc tree. Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy changelog to function comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:30 +08:00
*
* 3) Mark file extents in leaves dirty
* We don't have good way to pick out new file extents only.
* So we still follow the old method by scanning all file extents in
* the leave.
*
* This function can free us from keeping two paths, thus later we only need
btrfs: qgroup: Introduce function to trace two swaped extents Introduce a new function, qgroup_trace_extent_swap(), which will be used later for balance qgroup speedup. The basis idea of balance is swapping tree blocks between reloc tree and the real file tree. The swap will happen in highest tree block, but there may be a lot of tree blocks involved. For example: OO = Old tree blocks NN = New tree blocks allocated during balance File tree (257) Reloc tree for 257 L2 OO NN / \ / \ L1 OO OO (a) OO NN (a) / \ / \ / \ / \ L0 OO OO OO OO OO OO NN NN (b) (c) (b) (c) When calling qgroup_trace_extent_swap(), we will pass: @src_eb = OO(a) @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ] @dst_level = 0 @root_level = 1 In that case, qgroup_trace_extent_swap() will search from OO(a) to reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty. The main work of qgroup_trace_extent_swap() can be split into 3 parts: 1) Tree search from @src_eb It should acts as a simplified btrfs_search_slot(). The key for search can be extracted from @dst_path->nodes[dst_level] (first key). 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty. They should be marked during preivous (@dst_level = 1) iteration. 3) Mark file extents in leaves dirty We don't have good way to pick out new file extents only. So we still follow the old method by scanning all file extents in the leave. This function can free us from keeping two pathes, thus later we only need to care about how to iterate all new tree blocks in reloc tree. Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy changelog to function comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:30 +08:00
* to care about how to iterate all new tree blocks in reloc tree.
*/
static int qgroup_trace_extent_swap(struct btrfs_trans_handle* trans,
struct extent_buffer *src_eb,
struct btrfs_path *dst_path,
btrfs: qgroup: Only trace data extents in leaves if we're relocating data block group For qgroup_trace_extent_swap(), if we find one leaf that needs to be traced, we will also iterate all file extents and trace them. This is OK if we're relocating data block groups, but if we're relocating metadata block groups, balance code itself has ensured that both subtree of file tree and reloc tree contain the same contents. That's to say, if we're relocating metadata block groups, all file extents in reloc and file tree should match, thus no need to trace them. This should reduce the total number of dirty extents processed in metadata block group balance. [[Benchmark]] (with all previous enhancement) Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. | v4.19-rc1 | w/ patchset | diff (*) --------------------------------------------------------------- relocated extents | 22929 | 22851 | -0.3% qgroup dirty extents | 227757 | 140886 | -38.1% time (sys) | 65.253s | 37.464s | -42.6% time (real) | 74.032s | 44.722s | -39.6% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:35 +08:00
int dst_level, int root_level,
bool trace_leaf)
btrfs: qgroup: Introduce function to trace two swaped extents Introduce a new function, qgroup_trace_extent_swap(), which will be used later for balance qgroup speedup. The basis idea of balance is swapping tree blocks between reloc tree and the real file tree. The swap will happen in highest tree block, but there may be a lot of tree blocks involved. For example: OO = Old tree blocks NN = New tree blocks allocated during balance File tree (257) Reloc tree for 257 L2 OO NN / \ / \ L1 OO OO (a) OO NN (a) / \ / \ / \ / \ L0 OO OO OO OO OO OO NN NN (b) (c) (b) (c) When calling qgroup_trace_extent_swap(), we will pass: @src_eb = OO(a) @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ] @dst_level = 0 @root_level = 1 In that case, qgroup_trace_extent_swap() will search from OO(a) to reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty. The main work of qgroup_trace_extent_swap() can be split into 3 parts: 1) Tree search from @src_eb It should acts as a simplified btrfs_search_slot(). The key for search can be extracted from @dst_path->nodes[dst_level] (first key). 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty. They should be marked during preivous (@dst_level = 1) iteration. 3) Mark file extents in leaves dirty We don't have good way to pick out new file extents only. So we still follow the old method by scanning all file extents in the leave. This function can free us from keeping two pathes, thus later we only need to care about how to iterate all new tree blocks in reloc tree. Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy changelog to function comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:30 +08:00
{
struct btrfs_key key;
struct btrfs_path *src_path;
struct btrfs_fs_info *fs_info = trans->fs_info;
u32 nodesize = fs_info->nodesize;
int cur_level = root_level;
int ret;
BUG_ON(dst_level > root_level);
/* Level mismatch */
if (btrfs_header_level(src_eb) != root_level)
return -EINVAL;
src_path = btrfs_alloc_path();
if (!src_path) {
ret = -ENOMEM;
goto out;
}
if (dst_level)
btrfs_node_key_to_cpu(dst_path->nodes[dst_level], &key, 0);
else
btrfs_item_key_to_cpu(dst_path->nodes[dst_level], &key, 0);
/* For src_path */
atomic_inc(&src_eb->refs);
btrfs: qgroup: Introduce function to trace two swaped extents Introduce a new function, qgroup_trace_extent_swap(), which will be used later for balance qgroup speedup. The basis idea of balance is swapping tree blocks between reloc tree and the real file tree. The swap will happen in highest tree block, but there may be a lot of tree blocks involved. For example: OO = Old tree blocks NN = New tree blocks allocated during balance File tree (257) Reloc tree for 257 L2 OO NN / \ / \ L1 OO OO (a) OO NN (a) / \ / \ / \ / \ L0 OO OO OO OO OO OO NN NN (b) (c) (b) (c) When calling qgroup_trace_extent_swap(), we will pass: @src_eb = OO(a) @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ] @dst_level = 0 @root_level = 1 In that case, qgroup_trace_extent_swap() will search from OO(a) to reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty. The main work of qgroup_trace_extent_swap() can be split into 3 parts: 1) Tree search from @src_eb It should acts as a simplified btrfs_search_slot(). The key for search can be extracted from @dst_path->nodes[dst_level] (first key). 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty. They should be marked during preivous (@dst_level = 1) iteration. 3) Mark file extents in leaves dirty We don't have good way to pick out new file extents only. So we still follow the old method by scanning all file extents in the leave. This function can free us from keeping two pathes, thus later we only need to care about how to iterate all new tree blocks in reloc tree. Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy changelog to function comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:30 +08:00
src_path->nodes[root_level] = src_eb;
src_path->slots[root_level] = dst_path->slots[root_level];
src_path->locks[root_level] = 0;
/* A simplified version of btrfs_search_slot() */
while (cur_level >= dst_level) {
struct btrfs_key src_key;
struct btrfs_key dst_key;
if (src_path->nodes[cur_level] == NULL) {
struct extent_buffer *eb;
int parent_slot;
eb = src_path->nodes[cur_level + 1];
parent_slot = src_path->slots[cur_level + 1];
eb = btrfs_read_node_slot(eb, parent_slot);
btrfs: qgroup: Introduce function to trace two swaped extents Introduce a new function, qgroup_trace_extent_swap(), which will be used later for balance qgroup speedup. The basis idea of balance is swapping tree blocks between reloc tree and the real file tree. The swap will happen in highest tree block, but there may be a lot of tree blocks involved. For example: OO = Old tree blocks NN = New tree blocks allocated during balance File tree (257) Reloc tree for 257 L2 OO NN / \ / \ L1 OO OO (a) OO NN (a) / \ / \ / \ / \ L0 OO OO OO OO OO OO NN NN (b) (c) (b) (c) When calling qgroup_trace_extent_swap(), we will pass: @src_eb = OO(a) @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ] @dst_level = 0 @root_level = 1 In that case, qgroup_trace_extent_swap() will search from OO(a) to reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty. The main work of qgroup_trace_extent_swap() can be split into 3 parts: 1) Tree search from @src_eb It should acts as a simplified btrfs_search_slot(). The key for search can be extracted from @dst_path->nodes[dst_level] (first key). 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty. They should be marked during preivous (@dst_level = 1) iteration. 3) Mark file extents in leaves dirty We don't have good way to pick out new file extents only. So we still follow the old method by scanning all file extents in the leave. This function can free us from keeping two pathes, thus later we only need to care about how to iterate all new tree blocks in reloc tree. Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy changelog to function comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:30 +08:00
if (IS_ERR(eb)) {
ret = PTR_ERR(eb);
goto out;
}
src_path->nodes[cur_level] = eb;
btrfs_tree_read_lock(eb);
src_path->locks[cur_level] = BTRFS_READ_LOCK;
btrfs: qgroup: Introduce function to trace two swaped extents Introduce a new function, qgroup_trace_extent_swap(), which will be used later for balance qgroup speedup. The basis idea of balance is swapping tree blocks between reloc tree and the real file tree. The swap will happen in highest tree block, but there may be a lot of tree blocks involved. For example: OO = Old tree blocks NN = New tree blocks allocated during balance File tree (257) Reloc tree for 257 L2 OO NN / \ / \ L1 OO OO (a) OO NN (a) / \ / \ / \ / \ L0 OO OO OO OO OO OO NN NN (b) (c) (b) (c) When calling qgroup_trace_extent_swap(), we will pass: @src_eb = OO(a) @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ] @dst_level = 0 @root_level = 1 In that case, qgroup_trace_extent_swap() will search from OO(a) to reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty. The main work of qgroup_trace_extent_swap() can be split into 3 parts: 1) Tree search from @src_eb It should acts as a simplified btrfs_search_slot(). The key for search can be extracted from @dst_path->nodes[dst_level] (first key). 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty. They should be marked during preivous (@dst_level = 1) iteration. 3) Mark file extents in leaves dirty We don't have good way to pick out new file extents only. So we still follow the old method by scanning all file extents in the leave. This function can free us from keeping two pathes, thus later we only need to care about how to iterate all new tree blocks in reloc tree. Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy changelog to function comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:30 +08:00
}
src_path->slots[cur_level] = dst_path->slots[cur_level];
if (cur_level) {
btrfs_node_key_to_cpu(dst_path->nodes[cur_level],
&dst_key, dst_path->slots[cur_level]);
btrfs_node_key_to_cpu(src_path->nodes[cur_level],
&src_key, src_path->slots[cur_level]);
} else {
btrfs_item_key_to_cpu(dst_path->nodes[cur_level],
&dst_key, dst_path->slots[cur_level]);
btrfs_item_key_to_cpu(src_path->nodes[cur_level],
&src_key, src_path->slots[cur_level]);
}
/* Content mismatch, something went wrong */
if (btrfs_comp_cpu_keys(&dst_key, &src_key)) {
ret = -ENOENT;
goto out;
}
cur_level--;
}
/*
* Now both @dst_path and @src_path have been populated, record the tree
* blocks for qgroup accounting.
*/
ret = btrfs_qgroup_trace_extent(trans, src_path->nodes[dst_level]->start,
nodesize);
btrfs: qgroup: Introduce function to trace two swaped extents Introduce a new function, qgroup_trace_extent_swap(), which will be used later for balance qgroup speedup. The basis idea of balance is swapping tree blocks between reloc tree and the real file tree. The swap will happen in highest tree block, but there may be a lot of tree blocks involved. For example: OO = Old tree blocks NN = New tree blocks allocated during balance File tree (257) Reloc tree for 257 L2 OO NN / \ / \ L1 OO OO (a) OO NN (a) / \ / \ / \ / \ L0 OO OO OO OO OO OO NN NN (b) (c) (b) (c) When calling qgroup_trace_extent_swap(), we will pass: @src_eb = OO(a) @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ] @dst_level = 0 @root_level = 1 In that case, qgroup_trace_extent_swap() will search from OO(a) to reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty. The main work of qgroup_trace_extent_swap() can be split into 3 parts: 1) Tree search from @src_eb It should acts as a simplified btrfs_search_slot(). The key for search can be extracted from @dst_path->nodes[dst_level] (first key). 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty. They should be marked during preivous (@dst_level = 1) iteration. 3) Mark file extents in leaves dirty We don't have good way to pick out new file extents only. So we still follow the old method by scanning all file extents in the leave. This function can free us from keeping two pathes, thus later we only need to care about how to iterate all new tree blocks in reloc tree. Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy changelog to function comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:30 +08:00
if (ret < 0)
goto out;
ret = btrfs_qgroup_trace_extent(trans, dst_path->nodes[dst_level]->start,
nodesize);
btrfs: qgroup: Introduce function to trace two swaped extents Introduce a new function, qgroup_trace_extent_swap(), which will be used later for balance qgroup speedup. The basis idea of balance is swapping tree blocks between reloc tree and the real file tree. The swap will happen in highest tree block, but there may be a lot of tree blocks involved. For example: OO = Old tree blocks NN = New tree blocks allocated during balance File tree (257) Reloc tree for 257 L2 OO NN / \ / \ L1 OO OO (a) OO NN (a) / \ / \ / \ / \ L0 OO OO OO OO OO OO NN NN (b) (c) (b) (c) When calling qgroup_trace_extent_swap(), we will pass: @src_eb = OO(a) @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ] @dst_level = 0 @root_level = 1 In that case, qgroup_trace_extent_swap() will search from OO(a) to reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty. The main work of qgroup_trace_extent_swap() can be split into 3 parts: 1) Tree search from @src_eb It should acts as a simplified btrfs_search_slot(). The key for search can be extracted from @dst_path->nodes[dst_level] (first key). 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty. They should be marked during preivous (@dst_level = 1) iteration. 3) Mark file extents in leaves dirty We don't have good way to pick out new file extents only. So we still follow the old method by scanning all file extents in the leave. This function can free us from keeping two pathes, thus later we only need to care about how to iterate all new tree blocks in reloc tree. Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy changelog to function comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:30 +08:00
if (ret < 0)
goto out;
/* Record leaf file extents */
btrfs: qgroup: Only trace data extents in leaves if we're relocating data block group For qgroup_trace_extent_swap(), if we find one leaf that needs to be traced, we will also iterate all file extents and trace them. This is OK if we're relocating data block groups, but if we're relocating metadata block groups, balance code itself has ensured that both subtree of file tree and reloc tree contain the same contents. That's to say, if we're relocating metadata block groups, all file extents in reloc and file tree should match, thus no need to trace them. This should reduce the total number of dirty extents processed in metadata block group balance. [[Benchmark]] (with all previous enhancement) Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. | v4.19-rc1 | w/ patchset | diff (*) --------------------------------------------------------------- relocated extents | 22929 | 22851 | -0.3% qgroup dirty extents | 227757 | 140886 | -38.1% time (sys) | 65.253s | 37.464s | -42.6% time (real) | 74.032s | 44.722s | -39.6% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:35 +08:00
if (dst_level == 0 && trace_leaf) {
btrfs: qgroup: Introduce function to trace two swaped extents Introduce a new function, qgroup_trace_extent_swap(), which will be used later for balance qgroup speedup. The basis idea of balance is swapping tree blocks between reloc tree and the real file tree. The swap will happen in highest tree block, but there may be a lot of tree blocks involved. For example: OO = Old tree blocks NN = New tree blocks allocated during balance File tree (257) Reloc tree for 257 L2 OO NN / \ / \ L1 OO OO (a) OO NN (a) / \ / \ / \ / \ L0 OO OO OO OO OO OO NN NN (b) (c) (b) (c) When calling qgroup_trace_extent_swap(), we will pass: @src_eb = OO(a) @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ] @dst_level = 0 @root_level = 1 In that case, qgroup_trace_extent_swap() will search from OO(a) to reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty. The main work of qgroup_trace_extent_swap() can be split into 3 parts: 1) Tree search from @src_eb It should acts as a simplified btrfs_search_slot(). The key for search can be extracted from @dst_path->nodes[dst_level] (first key). 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty. They should be marked during preivous (@dst_level = 1) iteration. 3) Mark file extents in leaves dirty We don't have good way to pick out new file extents only. So we still follow the old method by scanning all file extents in the leave. This function can free us from keeping two pathes, thus later we only need to care about how to iterate all new tree blocks in reloc tree. Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy changelog to function comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:30 +08:00
ret = btrfs_qgroup_trace_leaf_items(trans, src_path->nodes[0]);
if (ret < 0)
goto out;
ret = btrfs_qgroup_trace_leaf_items(trans, dst_path->nodes[0]);
}
out:
btrfs_free_path(src_path);
return ret;
}
/*
* Helper function to do recursive generation-aware depth-first search, to
* locate all new tree blocks in a subtree of reloc tree.
*
* E.g. (OO = Old tree blocks, NN = New tree blocks, whose gen == last_snapshot)
* reloc tree
* L2 NN (a)
* / \
* L1 OO NN (b)
* / \ / \
* L0 OO OO OO NN
* (c) (d)
* If we pass:
* @dst_path = [ nodes[1] = NN(b), nodes[0] = NULL ],
* @cur_level = 1
* @root_level = 1
*
* We will iterate through tree blocks NN(b), NN(d) and info qgroup to trace
* above tree blocks along with their counter parts in file tree.
* While during search, old tree blocks OO(c) will be skipped as tree block swap
* won't affect OO(c).
*/
static int qgroup_trace_new_subtree_blocks(struct btrfs_trans_handle* trans,
struct extent_buffer *src_eb,
struct btrfs_path *dst_path,
int cur_level, int root_level,
btrfs: qgroup: Only trace data extents in leaves if we're relocating data block group For qgroup_trace_extent_swap(), if we find one leaf that needs to be traced, we will also iterate all file extents and trace them. This is OK if we're relocating data block groups, but if we're relocating metadata block groups, balance code itself has ensured that both subtree of file tree and reloc tree contain the same contents. That's to say, if we're relocating metadata block groups, all file extents in reloc and file tree should match, thus no need to trace them. This should reduce the total number of dirty extents processed in metadata block group balance. [[Benchmark]] (with all previous enhancement) Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. | v4.19-rc1 | w/ patchset | diff (*) --------------------------------------------------------------- relocated extents | 22929 | 22851 | -0.3% qgroup dirty extents | 227757 | 140886 | -38.1% time (sys) | 65.253s | 37.464s | -42.6% time (real) | 74.032s | 44.722s | -39.6% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:35 +08:00
u64 last_snapshot, bool trace_leaf)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct extent_buffer *eb;
bool need_cleanup = false;
int ret = 0;
int i;
/* Level sanity check */
if (cur_level < 0 || cur_level >= BTRFS_MAX_LEVEL - 1 ||
root_level < 0 || root_level >= BTRFS_MAX_LEVEL - 1 ||
root_level < cur_level) {
btrfs_err_rl(fs_info,
"%s: bad levels, cur_level=%d root_level=%d",
__func__, cur_level, root_level);
return -EUCLEAN;
}
/* Read the tree block if needed */
if (dst_path->nodes[cur_level] == NULL) {
int parent_slot;
u64 child_gen;
/*
* dst_path->nodes[root_level] must be initialized before
* calling this function.
*/
if (cur_level == root_level) {
btrfs_err_rl(fs_info,
"%s: dst_path->nodes[%d] not initialized, root_level=%d cur_level=%d",
__func__, root_level, root_level, cur_level);
return -EUCLEAN;
}
/*
* We need to get child blockptr/gen from parent before we can
* read it.
*/
eb = dst_path->nodes[cur_level + 1];
parent_slot = dst_path->slots[cur_level + 1];
child_gen = btrfs_node_ptr_generation(eb, parent_slot);
/* This node is old, no need to trace */
if (child_gen < last_snapshot)
goto out;
eb = btrfs_read_node_slot(eb, parent_slot);
if (IS_ERR(eb)) {
ret = PTR_ERR(eb);
goto out;
}
dst_path->nodes[cur_level] = eb;
dst_path->slots[cur_level] = 0;
btrfs_tree_read_lock(eb);
dst_path->locks[cur_level] = BTRFS_READ_LOCK;
need_cleanup = true;
}
/* Now record this tree block and its counter part for qgroups */
ret = qgroup_trace_extent_swap(trans, src_eb, dst_path, cur_level,
btrfs: qgroup: Only trace data extents in leaves if we're relocating data block group For qgroup_trace_extent_swap(), if we find one leaf that needs to be traced, we will also iterate all file extents and trace them. This is OK if we're relocating data block groups, but if we're relocating metadata block groups, balance code itself has ensured that both subtree of file tree and reloc tree contain the same contents. That's to say, if we're relocating metadata block groups, all file extents in reloc and file tree should match, thus no need to trace them. This should reduce the total number of dirty extents processed in metadata block group balance. [[Benchmark]] (with all previous enhancement) Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. | v4.19-rc1 | w/ patchset | diff (*) --------------------------------------------------------------- relocated extents | 22929 | 22851 | -0.3% qgroup dirty extents | 227757 | 140886 | -38.1% time (sys) | 65.253s | 37.464s | -42.6% time (real) | 74.032s | 44.722s | -39.6% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:35 +08:00
root_level, trace_leaf);
if (ret < 0)
goto cleanup;
eb = dst_path->nodes[cur_level];
if (cur_level > 0) {
/* Iterate all child tree blocks */
for (i = 0; i < btrfs_header_nritems(eb); i++) {
/* Skip old tree blocks as they won't be swapped */
if (btrfs_node_ptr_generation(eb, i) < last_snapshot)
continue;
dst_path->slots[cur_level] = i;
/* Recursive call (at most 7 times) */
ret = qgroup_trace_new_subtree_blocks(trans, src_eb,
dst_path, cur_level - 1, root_level,
btrfs: qgroup: Only trace data extents in leaves if we're relocating data block group For qgroup_trace_extent_swap(), if we find one leaf that needs to be traced, we will also iterate all file extents and trace them. This is OK if we're relocating data block groups, but if we're relocating metadata block groups, balance code itself has ensured that both subtree of file tree and reloc tree contain the same contents. That's to say, if we're relocating metadata block groups, all file extents in reloc and file tree should match, thus no need to trace them. This should reduce the total number of dirty extents processed in metadata block group balance. [[Benchmark]] (with all previous enhancement) Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. | v4.19-rc1 | w/ patchset | diff (*) --------------------------------------------------------------- relocated extents | 22929 | 22851 | -0.3% qgroup dirty extents | 227757 | 140886 | -38.1% time (sys) | 65.253s | 37.464s | -42.6% time (real) | 74.032s | 44.722s | -39.6% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 14:42:35 +08:00
last_snapshot, trace_leaf);
if (ret < 0)
goto cleanup;
}
}
cleanup:
if (need_cleanup) {
/* Clean up */
btrfs_tree_unlock_rw(dst_path->nodes[cur_level],
dst_path->locks[cur_level]);
free_extent_buffer(dst_path->nodes[cur_level]);
dst_path->nodes[cur_level] = NULL;
dst_path->slots[cur_level] = 0;
dst_path->locks[cur_level] = 0;
}
out:
return ret;
}
static int qgroup_trace_subtree_swap(struct btrfs_trans_handle *trans,
struct extent_buffer *src_eb,
struct extent_buffer *dst_eb,
u64 last_snapshot, bool trace_leaf)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_path *dst_path = NULL;
int level;
int ret;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
return 0;
/* Wrong parameter order */
if (btrfs_header_generation(src_eb) > btrfs_header_generation(dst_eb)) {
btrfs_err_rl(fs_info,
"%s: bad parameter order, src_gen=%llu dst_gen=%llu", __func__,
btrfs_header_generation(src_eb),
btrfs_header_generation(dst_eb));
return -EUCLEAN;
}
if (!extent_buffer_uptodate(src_eb) || !extent_buffer_uptodate(dst_eb)) {
ret = -EIO;
goto out;
}
level = btrfs_header_level(dst_eb);
dst_path = btrfs_alloc_path();
if (!dst_path) {
ret = -ENOMEM;
goto out;
}
/* For dst_path */
atomic_inc(&dst_eb->refs);
dst_path->nodes[level] = dst_eb;
dst_path->slots[level] = 0;
dst_path->locks[level] = 0;
/* Do the generation aware breadth-first search */
ret = qgroup_trace_new_subtree_blocks(trans, src_eb, dst_path, level,
level, last_snapshot, trace_leaf);
if (ret < 0)
goto out;
ret = 0;
out:
btrfs_free_path(dst_path);
if (ret < 0)
qgroup_mark_inconsistent(fs_info);
return ret;
}
int btrfs_qgroup_trace_subtree(struct btrfs_trans_handle *trans,
struct extent_buffer *root_eb,
u64 root_gen, int root_level)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int ret = 0;
int level;
u8 drop_subptree_thres;
struct extent_buffer *eb = root_eb;
struct btrfs_path *path = NULL;
BUG_ON(root_level < 0 || root_level >= BTRFS_MAX_LEVEL);
BUG_ON(root_eb == NULL);
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
return 0;
spin_lock(&fs_info->qgroup_lock);
drop_subptree_thres = fs_info->qgroup_drop_subtree_thres;
spin_unlock(&fs_info->qgroup_lock);
/*
* This function only gets called for snapshot drop, if we hit a high
* node here, it means we are going to change ownership for quite a lot
* of extents, which will greatly slow down btrfs_commit_transaction().
*
* So here if we find a high tree here, we just skip the accounting and
* mark qgroup inconsistent.
*/
if (root_level >= drop_subptree_thres) {
qgroup_mark_inconsistent(fs_info);
return 0;
}
if (!extent_buffer_uptodate(root_eb)) {
struct btrfs_tree_parent_check check = {
.has_first_key = false,
.transid = root_gen,
.level = root_level
};
ret = btrfs_read_extent_buffer(root_eb, &check);
if (ret)
goto out;
}
if (root_level == 0) {
ret = btrfs_qgroup_trace_leaf_items(trans, root_eb);
goto out;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/*
* Walk down the tree. Missing extent blocks are filled in as
* we go. Metadata is accounted every time we read a new
* extent block.
*
* When we reach a leaf, we account for file extent items in it,
* walk back up the tree (adjusting slot pointers as we go)
* and restart the search process.
*/
atomic_inc(&root_eb->refs); /* For path */
path->nodes[root_level] = root_eb;
path->slots[root_level] = 0;
path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
walk_down:
level = root_level;
while (level >= 0) {
if (path->nodes[level] == NULL) {
int parent_slot;
u64 child_bytenr;
/*
* We need to get child blockptr from parent before we
* can read it.
*/
eb = path->nodes[level + 1];
parent_slot = path->slots[level + 1];
child_bytenr = btrfs_node_blockptr(eb, parent_slot);
eb = btrfs_read_node_slot(eb, parent_slot);
if (IS_ERR(eb)) {
ret = PTR_ERR(eb);
goto out;
}
path->nodes[level] = eb;
path->slots[level] = 0;
btrfs_tree_read_lock(eb);
path->locks[level] = BTRFS_READ_LOCK;
ret = btrfs_qgroup_trace_extent(trans, child_bytenr,
fs_info->nodesize);
if (ret)
goto out;
}
if (level == 0) {
ret = btrfs_qgroup_trace_leaf_items(trans,
path->nodes[level]);
if (ret)
goto out;
/* Nonzero return here means we completed our search */
ret = adjust_slots_upwards(path, root_level);
if (ret)
break;
/* Restart search with new slots */
goto walk_down;
}
level--;
}
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
#define UPDATE_NEW 0
#define UPDATE_OLD 1
/*
* Walk all of the roots that points to the bytenr and adjust their refcnts.
*/
static int qgroup_update_refcnt(struct btrfs_fs_info *fs_info,
struct ulist *roots, struct ulist *tmp,
struct ulist *qgroups, u64 seq, int update_old)
{
struct ulist_node *unode;
struct ulist_iterator uiter;
struct ulist_node *tmp_unode;
struct ulist_iterator tmp_uiter;
struct btrfs_qgroup *qg;
int ret = 0;
if (!roots)
return 0;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(roots, &uiter))) {
qg = find_qgroup_rb(fs_info, unode->val);
if (!qg)
continue;
ulist_reinit(tmp);
ret = ulist_add(qgroups, qg->qgroupid, qgroup_to_aux(qg),
GFP_ATOMIC);
if (ret < 0)
return ret;
ret = ulist_add(tmp, qg->qgroupid, qgroup_to_aux(qg), GFP_ATOMIC);
if (ret < 0)
return ret;
ULIST_ITER_INIT(&tmp_uiter);
while ((tmp_unode = ulist_next(tmp, &tmp_uiter))) {
struct btrfs_qgroup_list *glist;
qg = unode_aux_to_qgroup(tmp_unode);
if (update_old)
btrfs_qgroup_update_old_refcnt(qg, seq, 1);
else
btrfs_qgroup_update_new_refcnt(qg, seq, 1);
list_for_each_entry(glist, &qg->groups, next_group) {
ret = ulist_add(qgroups, glist->group->qgroupid,
qgroup_to_aux(glist->group),
GFP_ATOMIC);
if (ret < 0)
return ret;
ret = ulist_add(tmp, glist->group->qgroupid,
qgroup_to_aux(glist->group),
GFP_ATOMIC);
if (ret < 0)
return ret;
}
}
}
return 0;
}
/*
* Update qgroup rfer/excl counters.
* Rfer update is easy, codes can explain themselves.
*
* Excl update is tricky, the update is split into 2 parts.
* Part 1: Possible exclusive <-> sharing detect:
* | A | !A |
* -------------------------------------
* B | * | - |
* -------------------------------------
* !B | + | ** |
* -------------------------------------
*
* Conditions:
* A: cur_old_roots < nr_old_roots (not exclusive before)
* !A: cur_old_roots == nr_old_roots (possible exclusive before)
* B: cur_new_roots < nr_new_roots (not exclusive now)
* !B: cur_new_roots == nr_new_roots (possible exclusive now)
*
* Results:
* +: Possible sharing -> exclusive -: Possible exclusive -> sharing
* *: Definitely not changed. **: Possible unchanged.
*
* For !A and !B condition, the exception is cur_old/new_roots == 0 case.
*
* To make the logic clear, we first use condition A and B to split
* combination into 4 results.
*
* Then, for result "+" and "-", check old/new_roots == 0 case, as in them
* only on variant maybe 0.
*
* Lastly, check result **, since there are 2 variants maybe 0, split them
* again(2x2).
* But this time we don't need to consider other things, the codes and logic
* is easy to understand now.
*/
static int qgroup_update_counters(struct btrfs_fs_info *fs_info,
struct ulist *qgroups,
u64 nr_old_roots,
u64 nr_new_roots,
u64 num_bytes, u64 seq)
{
struct ulist_node *unode;
struct ulist_iterator uiter;
struct btrfs_qgroup *qg;
u64 cur_new_count, cur_old_count;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(qgroups, &uiter))) {
bool dirty = false;
qg = unode_aux_to_qgroup(unode);
cur_old_count = btrfs_qgroup_get_old_refcnt(qg, seq);
cur_new_count = btrfs_qgroup_get_new_refcnt(qg, seq);
trace_qgroup_update_counters(fs_info, qg, cur_old_count,
cur_new_count);
/* Rfer update part */
if (cur_old_count == 0 && cur_new_count > 0) {
qg->rfer += num_bytes;
qg->rfer_cmpr += num_bytes;
dirty = true;
}
if (cur_old_count > 0 && cur_new_count == 0) {
qg->rfer -= num_bytes;
qg->rfer_cmpr -= num_bytes;
dirty = true;
}
/* Excl update part */
/* Exclusive/none -> shared case */
if (cur_old_count == nr_old_roots &&
cur_new_count < nr_new_roots) {
/* Exclusive -> shared */
if (cur_old_count != 0) {
qg->excl -= num_bytes;
qg->excl_cmpr -= num_bytes;
dirty = true;
}
}
/* Shared -> exclusive/none case */
if (cur_old_count < nr_old_roots &&
cur_new_count == nr_new_roots) {
/* Shared->exclusive */
if (cur_new_count != 0) {
qg->excl += num_bytes;
qg->excl_cmpr += num_bytes;
dirty = true;
}
}
/* Exclusive/none -> exclusive/none case */
if (cur_old_count == nr_old_roots &&
cur_new_count == nr_new_roots) {
if (cur_old_count == 0) {
/* None -> exclusive/none */
if (cur_new_count != 0) {
/* None -> exclusive */
qg->excl += num_bytes;
qg->excl_cmpr += num_bytes;
dirty = true;
}
/* None -> none, nothing changed */
} else {
/* Exclusive -> exclusive/none */
if (cur_new_count == 0) {
/* Exclusive -> none */
qg->excl -= num_bytes;
qg->excl_cmpr -= num_bytes;
dirty = true;
}
/* Exclusive -> exclusive, nothing changed */
}
}
if (dirty)
qgroup_dirty(fs_info, qg);
}
return 0;
}
btrfs: qgroup: Add quick exit for non-fs extents Modify btrfs_qgroup_account_extent() to exit quicker for non-fs extents. The quick exit condition is: 1) The extent belongs to a non-fs tree Only fs-tree extents can affect qgroup numbers and is the only case where extent can be shared between different trees. Although strictly speaking extent in data-reloc or tree-reloc tree can be shared, data/tree-reloc root won't appear in the result of btrfs_find_all_roots(), so we can ignore such case. So we can check the first root in old_roots/new_roots ulist. - if we find the 1st root is a not a fs/subvol root, then we can skip the extent - if we find the 1st root is a fs/subvol root, then we must continue calculation OR 2) both 'nr_old_roots' and 'nr_new_roots' are 0 This means either such extent got allocated then freed in current transaction or it's a new reloc tree extent, whose nr_new_roots is 0. Either way it won't affect qgroup accounting and can be skipped safely. Such quick exit can make trace output more quite and less confusing: (example with fs uuid and time stamp removed) Before: ------ add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0 btrfs_qgroup_account_extent: bytenr=29556736 num_bytes=16384 nr_old_roots=0 nr_new_roots=1 ------ Extent tree block will trigger btrfs_qgroup_account_extent() trace point while no qgroup number is changed, as extent tree won't affect qgroup accounting. After: ------ add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0 ------ Now such unrelated extent won't trigger btrfs_qgroup_account_extent() trace point, making the trace less noisy. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> [ changelog and comment adjustments ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:34 +08:00
/*
* Check if the @roots potentially is a list of fs tree roots
*
* Return 0 for definitely not a fs/subvol tree roots ulist
* Return 1 for possible fs/subvol tree roots in the list (considering an empty
* one as well)
*/
static int maybe_fs_roots(struct ulist *roots)
{
struct ulist_node *unode;
struct ulist_iterator uiter;
/* Empty one, still possible for fs roots */
if (!roots || roots->nnodes == 0)
return 1;
ULIST_ITER_INIT(&uiter);
unode = ulist_next(roots, &uiter);
if (!unode)
return 1;
/*
* If it contains fs tree roots, then it must belong to fs/subvol
* trees.
* If it contains a non-fs tree, it won't be shared with fs/subvol trees.
*/
return is_fstree(unode->val);
}
int btrfs_qgroup_account_extent(struct btrfs_trans_handle *trans, u64 bytenr,
u64 num_bytes, struct ulist *old_roots,
struct ulist *new_roots)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct ulist *qgroups = NULL;
struct ulist *tmp = NULL;
u64 seq;
u64 nr_new_roots = 0;
u64 nr_old_roots = 0;
int ret = 0;
btrfs: fix memory leak in qgroup accounting When running xfstests on the current btrfs I get the following splat from kmemleak: unreferenced object 0xffff88821b2404e0 (size 32): comm "kworker/u4:7", pid 26663, jiffies 4295283698 (age 8.776s) hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 10 ff fd 26 82 88 ff ff ...........&.... 10 ff fd 26 82 88 ff ff 20 ff fd 26 82 88 ff ff ...&.... ..&.... backtrace: [<00000000f94fd43f>] ulist_alloc+0x25/0x60 [btrfs] [<00000000fd023d99>] btrfs_find_all_roots_safe+0x41/0x100 [btrfs] [<000000008f17bd32>] btrfs_find_all_roots+0x52/0x70 [btrfs] [<00000000b7660afb>] btrfs_qgroup_rescan_worker+0x343/0x680 [btrfs] [<0000000058e66778>] btrfs_work_helper+0xac/0x1e0 [btrfs] [<00000000f0188930>] process_one_work+0x1cf/0x350 [<00000000af5f2f8e>] worker_thread+0x28/0x3c0 [<00000000b55a1add>] kthread+0x109/0x120 [<00000000f88cbd17>] ret_from_fork+0x35/0x40 This corresponds to: (gdb) l *(btrfs_find_all_roots_safe+0x41) 0x8d7e1 is in btrfs_find_all_roots_safe (fs/btrfs/backref.c:1413). 1408 1409 tmp = ulist_alloc(GFP_NOFS); 1410 if (!tmp) 1411 return -ENOMEM; 1412 *roots = ulist_alloc(GFP_NOFS); 1413 if (!*roots) { 1414 ulist_free(tmp); 1415 return -ENOMEM; 1416 } 1417 Following the lifetime of the allocated 'roots' ulist, it gets freed again in btrfs_qgroup_account_extent(). But this does not happen if the function is called with the 'BTRFS_FS_QUOTA_ENABLED' flag cleared, then btrfs_qgroup_account_extent() does a short leave and directly returns. Instead of directly returning we should jump to the 'out_free' in order to free all resources as expected. CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> [ add comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 21:07:32 +09:00
/*
* If quotas get disabled meanwhile, the resources need to be freed and
btrfs: fix memory leak in qgroup accounting When running xfstests on the current btrfs I get the following splat from kmemleak: unreferenced object 0xffff88821b2404e0 (size 32): comm "kworker/u4:7", pid 26663, jiffies 4295283698 (age 8.776s) hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 10 ff fd 26 82 88 ff ff ...........&.... 10 ff fd 26 82 88 ff ff 20 ff fd 26 82 88 ff ff ...&.... ..&.... backtrace: [<00000000f94fd43f>] ulist_alloc+0x25/0x60 [btrfs] [<00000000fd023d99>] btrfs_find_all_roots_safe+0x41/0x100 [btrfs] [<000000008f17bd32>] btrfs_find_all_roots+0x52/0x70 [btrfs] [<00000000b7660afb>] btrfs_qgroup_rescan_worker+0x343/0x680 [btrfs] [<0000000058e66778>] btrfs_work_helper+0xac/0x1e0 [btrfs] [<00000000f0188930>] process_one_work+0x1cf/0x350 [<00000000af5f2f8e>] worker_thread+0x28/0x3c0 [<00000000b55a1add>] kthread+0x109/0x120 [<00000000f88cbd17>] ret_from_fork+0x35/0x40 This corresponds to: (gdb) l *(btrfs_find_all_roots_safe+0x41) 0x8d7e1 is in btrfs_find_all_roots_safe (fs/btrfs/backref.c:1413). 1408 1409 tmp = ulist_alloc(GFP_NOFS); 1410 if (!tmp) 1411 return -ENOMEM; 1412 *roots = ulist_alloc(GFP_NOFS); 1413 if (!*roots) { 1414 ulist_free(tmp); 1415 return -ENOMEM; 1416 } 1417 Following the lifetime of the allocated 'roots' ulist, it gets freed again in btrfs_qgroup_account_extent(). But this does not happen if the function is called with the 'BTRFS_FS_QUOTA_ENABLED' flag cleared, then btrfs_qgroup_account_extent() does a short leave and directly returns. Instead of directly returning we should jump to the 'out_free' in order to free all resources as expected. CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> [ add comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 21:07:32 +09:00
* we can't just exit here.
*/
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) ||
fs_info->qgroup_flags & BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING)
btrfs: fix memory leak in qgroup accounting When running xfstests on the current btrfs I get the following splat from kmemleak: unreferenced object 0xffff88821b2404e0 (size 32): comm "kworker/u4:7", pid 26663, jiffies 4295283698 (age 8.776s) hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 10 ff fd 26 82 88 ff ff ...........&.... 10 ff fd 26 82 88 ff ff 20 ff fd 26 82 88 ff ff ...&.... ..&.... backtrace: [<00000000f94fd43f>] ulist_alloc+0x25/0x60 [btrfs] [<00000000fd023d99>] btrfs_find_all_roots_safe+0x41/0x100 [btrfs] [<000000008f17bd32>] btrfs_find_all_roots+0x52/0x70 [btrfs] [<00000000b7660afb>] btrfs_qgroup_rescan_worker+0x343/0x680 [btrfs] [<0000000058e66778>] btrfs_work_helper+0xac/0x1e0 [btrfs] [<00000000f0188930>] process_one_work+0x1cf/0x350 [<00000000af5f2f8e>] worker_thread+0x28/0x3c0 [<00000000b55a1add>] kthread+0x109/0x120 [<00000000f88cbd17>] ret_from_fork+0x35/0x40 This corresponds to: (gdb) l *(btrfs_find_all_roots_safe+0x41) 0x8d7e1 is in btrfs_find_all_roots_safe (fs/btrfs/backref.c:1413). 1408 1409 tmp = ulist_alloc(GFP_NOFS); 1410 if (!tmp) 1411 return -ENOMEM; 1412 *roots = ulist_alloc(GFP_NOFS); 1413 if (!*roots) { 1414 ulist_free(tmp); 1415 return -ENOMEM; 1416 } 1417 Following the lifetime of the allocated 'roots' ulist, it gets freed again in btrfs_qgroup_account_extent(). But this does not happen if the function is called with the 'BTRFS_FS_QUOTA_ENABLED' flag cleared, then btrfs_qgroup_account_extent() does a short leave and directly returns. Instead of directly returning we should jump to the 'out_free' in order to free all resources as expected. CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> [ add comment ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 21:07:32 +09:00
goto out_free;
btrfs: qgroup: Add quick exit for non-fs extents Modify btrfs_qgroup_account_extent() to exit quicker for non-fs extents. The quick exit condition is: 1) The extent belongs to a non-fs tree Only fs-tree extents can affect qgroup numbers and is the only case where extent can be shared between different trees. Although strictly speaking extent in data-reloc or tree-reloc tree can be shared, data/tree-reloc root won't appear in the result of btrfs_find_all_roots(), so we can ignore such case. So we can check the first root in old_roots/new_roots ulist. - if we find the 1st root is a not a fs/subvol root, then we can skip the extent - if we find the 1st root is a fs/subvol root, then we must continue calculation OR 2) both 'nr_old_roots' and 'nr_new_roots' are 0 This means either such extent got allocated then freed in current transaction or it's a new reloc tree extent, whose nr_new_roots is 0. Either way it won't affect qgroup accounting and can be skipped safely. Such quick exit can make trace output more quite and less confusing: (example with fs uuid and time stamp removed) Before: ------ add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0 btrfs_qgroup_account_extent: bytenr=29556736 num_bytes=16384 nr_old_roots=0 nr_new_roots=1 ------ Extent tree block will trigger btrfs_qgroup_account_extent() trace point while no qgroup number is changed, as extent tree won't affect qgroup accounting. After: ------ add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0 ------ Now such unrelated extent won't trigger btrfs_qgroup_account_extent() trace point, making the trace less noisy. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> [ changelog and comment adjustments ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:34 +08:00
if (new_roots) {
if (!maybe_fs_roots(new_roots))
goto out_free;
nr_new_roots = new_roots->nnodes;
btrfs: qgroup: Add quick exit for non-fs extents Modify btrfs_qgroup_account_extent() to exit quicker for non-fs extents. The quick exit condition is: 1) The extent belongs to a non-fs tree Only fs-tree extents can affect qgroup numbers and is the only case where extent can be shared between different trees. Although strictly speaking extent in data-reloc or tree-reloc tree can be shared, data/tree-reloc root won't appear in the result of btrfs_find_all_roots(), so we can ignore such case. So we can check the first root in old_roots/new_roots ulist. - if we find the 1st root is a not a fs/subvol root, then we can skip the extent - if we find the 1st root is a fs/subvol root, then we must continue calculation OR 2) both 'nr_old_roots' and 'nr_new_roots' are 0 This means either such extent got allocated then freed in current transaction or it's a new reloc tree extent, whose nr_new_roots is 0. Either way it won't affect qgroup accounting and can be skipped safely. Such quick exit can make trace output more quite and less confusing: (example with fs uuid and time stamp removed) Before: ------ add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0 btrfs_qgroup_account_extent: bytenr=29556736 num_bytes=16384 nr_old_roots=0 nr_new_roots=1 ------ Extent tree block will trigger btrfs_qgroup_account_extent() trace point while no qgroup number is changed, as extent tree won't affect qgroup accounting. After: ------ add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0 ------ Now such unrelated extent won't trigger btrfs_qgroup_account_extent() trace point, making the trace less noisy. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> [ changelog and comment adjustments ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:34 +08:00
}
if (old_roots) {
if (!maybe_fs_roots(old_roots))
goto out_free;
nr_old_roots = old_roots->nnodes;
btrfs: qgroup: Add quick exit for non-fs extents Modify btrfs_qgroup_account_extent() to exit quicker for non-fs extents. The quick exit condition is: 1) The extent belongs to a non-fs tree Only fs-tree extents can affect qgroup numbers and is the only case where extent can be shared between different trees. Although strictly speaking extent in data-reloc or tree-reloc tree can be shared, data/tree-reloc root won't appear in the result of btrfs_find_all_roots(), so we can ignore such case. So we can check the first root in old_roots/new_roots ulist. - if we find the 1st root is a not a fs/subvol root, then we can skip the extent - if we find the 1st root is a fs/subvol root, then we must continue calculation OR 2) both 'nr_old_roots' and 'nr_new_roots' are 0 This means either such extent got allocated then freed in current transaction or it's a new reloc tree extent, whose nr_new_roots is 0. Either way it won't affect qgroup accounting and can be skipped safely. Such quick exit can make trace output more quite and less confusing: (example with fs uuid and time stamp removed) Before: ------ add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0 btrfs_qgroup_account_extent: bytenr=29556736 num_bytes=16384 nr_old_roots=0 nr_new_roots=1 ------ Extent tree block will trigger btrfs_qgroup_account_extent() trace point while no qgroup number is changed, as extent tree won't affect qgroup accounting. After: ------ add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0 ------ Now such unrelated extent won't trigger btrfs_qgroup_account_extent() trace point, making the trace less noisy. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> [ changelog and comment adjustments ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:34 +08:00
}
/* Quick exit, either not fs tree roots, or won't affect any qgroup */
if (nr_old_roots == 0 && nr_new_roots == 0)
goto out_free;
BUG_ON(!fs_info->quota_root);
trace_btrfs_qgroup_account_extent(fs_info, trans->transid, bytenr,
num_bytes, nr_old_roots, nr_new_roots);
qgroups = ulist_alloc(GFP_NOFS);
if (!qgroups) {
ret = -ENOMEM;
goto out_free;
}
tmp = ulist_alloc(GFP_NOFS);
if (!tmp) {
ret = -ENOMEM;
goto out_free;
}
mutex_lock(&fs_info->qgroup_rescan_lock);
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
if (fs_info->qgroup_rescan_progress.objectid <= bytenr) {
mutex_unlock(&fs_info->qgroup_rescan_lock);
ret = 0;
goto out_free;
}
}
mutex_unlock(&fs_info->qgroup_rescan_lock);
spin_lock(&fs_info->qgroup_lock);
seq = fs_info->qgroup_seq;
/* Update old refcnts using old_roots */
ret = qgroup_update_refcnt(fs_info, old_roots, tmp, qgroups, seq,
UPDATE_OLD);
if (ret < 0)
goto out;
/* Update new refcnts using new_roots */
ret = qgroup_update_refcnt(fs_info, new_roots, tmp, qgroups, seq,
UPDATE_NEW);
if (ret < 0)
goto out;
qgroup_update_counters(fs_info, qgroups, nr_old_roots, nr_new_roots,
num_bytes, seq);
/*
* Bump qgroup_seq to avoid seq overlap
*/
fs_info->qgroup_seq += max(nr_old_roots, nr_new_roots) + 1;
out:
spin_unlock(&fs_info->qgroup_lock);
out_free:
ulist_free(tmp);
ulist_free(qgroups);
ulist_free(old_roots);
ulist_free(new_roots);
return ret;
}
int btrfs_qgroup_account_extents(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup_extent_record *record;
struct btrfs_delayed_ref_root *delayed_refs;
struct ulist *new_roots = NULL;
struct rb_node *node;
u64 num_dirty_extents = 0;
u64 qgroup_to_skip;
int ret = 0;
delayed_refs = &trans->transaction->delayed_refs;
qgroup_to_skip = delayed_refs->qgroup_to_skip;
while ((node = rb_first(&delayed_refs->dirty_extent_root))) {
record = rb_entry(node, struct btrfs_qgroup_extent_record,
node);
num_dirty_extents++;
trace_btrfs_qgroup_account_extents(fs_info, record);
if (!ret && !(fs_info->qgroup_flags &
BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING)) {
struct btrfs_backref_walk_ctx ctx = { 0 };
ctx.bytenr = record->bytenr;
ctx.fs_info = fs_info;
/*
* Old roots should be searched when inserting qgroup
btrfs: qgroup: do not warn on record without old_roots populated [BUG] There are some reports from the mailing list that since v6.1 kernel, the WARN_ON() inside btrfs_qgroup_account_extent() gets triggered during rescan: WARNING: CPU: 3 PID: 6424 at fs/btrfs/qgroup.c:2756 btrfs_qgroup_account_extents+0x1ae/0x260 [btrfs] CPU: 3 PID: 6424 Comm: snapperd Tainted: P OE 6.1.2-1-default #1 openSUSE Tumbleweed 05c7a1b1b61d5627475528f71f50444637b5aad7 RIP: 0010:btrfs_qgroup_account_extents+0x1ae/0x260 [btrfs] Call Trace: <TASK> btrfs_commit_transaction+0x30c/0xb40 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] ? start_transaction+0xc3/0x5b0 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] btrfs_qgroup_rescan+0x42/0xc0 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] btrfs_ioctl+0x1ab9/0x25c0 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] ? __rseq_handle_notify_resume+0xa9/0x4a0 ? mntput_no_expire+0x4a/0x240 ? __seccomp_filter+0x319/0x4d0 __x64_sys_ioctl+0x90/0xd0 do_syscall_64+0x5b/0x80 ? syscall_exit_to_user_mode+0x17/0x40 ? do_syscall_64+0x67/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7fd9b790d9bf </TASK> [CAUSE] Since commit e15e9f43c7ca ("btrfs: introduce BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING to skip qgroup accounting"), if our qgroup is already in inconsistent state, we will no longer do the time-consuming backref walk. This can leave some qgroup records without a valid old_roots ulist. Normally this is fine, as btrfs_qgroup_account_extents() would also skip those records if we have NO_ACCOUNTING flag set. But there is a small window, if we have NO_ACCOUNTING flag set, and inserted some qgroup_record without a old_roots ulist, but then the user triggered a qgroup rescan. During btrfs_qgroup_rescan(), we firstly clear NO_ACCOUNTING flag, then commit current transaction. And since we have a qgroup_record with old_roots = NULL, we trigger the WARN_ON() during btrfs_qgroup_account_extents(). [FIX] Unfortunately due to the introduction of NO_ACCOUNTING flag, the assumption that every qgroup_record would have its old_roots populated is no longer correct. Fix the false alerts and drop the WARN_ON(). Reported-by: Lukas Straub <lukasstraub2@web.de> Reported-by: HanatoK <summersnow9403@gmail.com> Fixes: e15e9f43c7ca ("btrfs: introduce BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING to skip qgroup accounting") CC: stable@vger.kernel.org # 6.1 Link: https://lore.kernel.org/linux-btrfs/2403c697-ddaf-58ad-3829-0335fc89df09@gmail.com/ Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-10 15:14:17 +08:00
* extent record.
*
* But for INCONSISTENT (NO_ACCOUNTING) -> rescan case,
* we may have some record inserted during
* NO_ACCOUNTING (thus no old_roots populated), but
* later we start rescan, which clears NO_ACCOUNTING,
* leaving some inserted records without old_roots
* populated.
*
* Those cases are rare and should not cause too much
* time spent during commit_transaction().
*/
btrfs: qgroup: do not warn on record without old_roots populated [BUG] There are some reports from the mailing list that since v6.1 kernel, the WARN_ON() inside btrfs_qgroup_account_extent() gets triggered during rescan: WARNING: CPU: 3 PID: 6424 at fs/btrfs/qgroup.c:2756 btrfs_qgroup_account_extents+0x1ae/0x260 [btrfs] CPU: 3 PID: 6424 Comm: snapperd Tainted: P OE 6.1.2-1-default #1 openSUSE Tumbleweed 05c7a1b1b61d5627475528f71f50444637b5aad7 RIP: 0010:btrfs_qgroup_account_extents+0x1ae/0x260 [btrfs] Call Trace: <TASK> btrfs_commit_transaction+0x30c/0xb40 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] ? start_transaction+0xc3/0x5b0 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] btrfs_qgroup_rescan+0x42/0xc0 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] btrfs_ioctl+0x1ab9/0x25c0 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] ? __rseq_handle_notify_resume+0xa9/0x4a0 ? mntput_no_expire+0x4a/0x240 ? __seccomp_filter+0x319/0x4d0 __x64_sys_ioctl+0x90/0xd0 do_syscall_64+0x5b/0x80 ? syscall_exit_to_user_mode+0x17/0x40 ? do_syscall_64+0x67/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7fd9b790d9bf </TASK> [CAUSE] Since commit e15e9f43c7ca ("btrfs: introduce BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING to skip qgroup accounting"), if our qgroup is already in inconsistent state, we will no longer do the time-consuming backref walk. This can leave some qgroup records without a valid old_roots ulist. Normally this is fine, as btrfs_qgroup_account_extents() would also skip those records if we have NO_ACCOUNTING flag set. But there is a small window, if we have NO_ACCOUNTING flag set, and inserted some qgroup_record without a old_roots ulist, but then the user triggered a qgroup rescan. During btrfs_qgroup_rescan(), we firstly clear NO_ACCOUNTING flag, then commit current transaction. And since we have a qgroup_record with old_roots = NULL, we trigger the WARN_ON() during btrfs_qgroup_account_extents(). [FIX] Unfortunately due to the introduction of NO_ACCOUNTING flag, the assumption that every qgroup_record would have its old_roots populated is no longer correct. Fix the false alerts and drop the WARN_ON(). Reported-by: Lukas Straub <lukasstraub2@web.de> Reported-by: HanatoK <summersnow9403@gmail.com> Fixes: e15e9f43c7ca ("btrfs: introduce BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING to skip qgroup accounting") CC: stable@vger.kernel.org # 6.1 Link: https://lore.kernel.org/linux-btrfs/2403c697-ddaf-58ad-3829-0335fc89df09@gmail.com/ Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-10 15:14:17 +08:00
if (!record->old_roots) {
/* Search commit root to find old_roots */
ret = btrfs_find_all_roots(&ctx, false);
if (ret < 0)
goto cleanup;
record->old_roots = ctx.roots;
ctx.roots = NULL;
}
btrfs: qgroup: Move reserved data accounting from btrfs_delayed_ref_head to btrfs_qgroup_extent_record [BUG] Btrfs/139 will fail with a high probability if the testing machine (VM) has only 2G RAM. Resulting the final write success while it should fail due to EDQUOT, and the fs will have quota exceeding the limit by 16K. The simplified reproducer will be: (needs a 2G ram VM) $ mkfs.btrfs -f $dev $ mount $dev $mnt $ btrfs subv create $mnt/subv $ btrfs quota enable $mnt $ btrfs quota rescan -w $mnt $ btrfs qgroup limit -e 1G $mnt/subv $ for i in $(seq -w 1 8); do xfs_io -f -c "pwrite 0 128M" $mnt/subv/file_$i > /dev/null echo "file $i written" > /dev/kmsg done $ sync $ btrfs qgroup show -pcre --raw $mnt The last pwrite will not trigger EDQUOT and final 'qgroup show' will show something like: qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16384 16384 none none --- --- 0/256 1073758208 1073758208 none 1073741824 --- --- And 1073758208 is larger than > 1073741824. [CAUSE] It's a bug in btrfs qgroup data reserved space management. For quota limit, we must ensure that: reserved (data + metadata) + rfer/excl <= limit Since rfer/excl is only updated at transaction commmit time, reserved space needs to be taken special care. One important part of reserved space is data, and for a new data extent written to disk, we still need to take the reserved space until rfer/excl numbers get updated. Originally when an ordered extent finishes, we migrate the reserved qgroup data space from extent_io tree to delayed ref head of the data extent, expecting delayed ref will only be cleaned up at commit transaction time. However for small RAM machine, due to memory pressure dirty pages can be flushed back to disk without committing a transaction. The related events will be something like: file 1 written btrfs_finish_ordered_io: ino=258 ordered offset=0 len=54947840 btrfs_finish_ordered_io: ino=258 ordered offset=54947840 len=5636096 btrfs_finish_ordered_io: ino=258 ordered offset=61153280 len=57344 btrfs_finish_ordered_io: ino=258 ordered offset=61210624 len=8192 btrfs_finish_ordered_io: ino=258 ordered offset=60583936 len=569344 cleanup_ref_head: num_bytes=54947840 cleanup_ref_head: num_bytes=5636096 cleanup_ref_head: num_bytes=569344 cleanup_ref_head: num_bytes=57344 cleanup_ref_head: num_bytes=8192 ^^^^^^^^^^^^^^^^ This will free qgroup data reserved space file 2 written ... file 8 written cleanup_ref_head: num_bytes=8192 ... btrfs_commit_transaction <<< the only transaction committed during the test When file 2 is written, we have already freed 128M reserved qgroup data space for ino 258. Thus later write won't trigger EDQUOT. This allows us to write more data beyond qgroup limit. In my 2G ram VM, it could reach about 1.2G before hitting EDQUOT. [FIX] By moving reserved qgroup data space from btrfs_delayed_ref_head to btrfs_qgroup_extent_record, we can ensure that reserved qgroup data space won't be freed half way before commit transaction, thus fix the problem. Fixes: f64d5ca86821 ("btrfs: delayed_ref: Add new function to record reserved space into delayed ref") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:12 +08:00
/* Free the reserved data space */
btrfs_qgroup_free_refroot(fs_info,
record->data_rsv_refroot,
record->data_rsv,
BTRFS_QGROUP_RSV_DATA);
/*
* Use BTRFS_SEQ_LAST as time_seq to do special search,
* which doesn't lock tree or delayed_refs and search
* current root. It's safe inside commit_transaction().
*/
ctx.trans = trans;
ctx.time_seq = BTRFS_SEQ_LAST;
ret = btrfs_find_all_roots(&ctx, false);
if (ret < 0)
goto cleanup;
new_roots = ctx.roots;
if (qgroup_to_skip) {
ulist_del(new_roots, qgroup_to_skip, 0);
ulist_del(record->old_roots, qgroup_to_skip,
0);
}
ret = btrfs_qgroup_account_extent(trans, record->bytenr,
record->num_bytes,
record->old_roots,
new_roots);
record->old_roots = NULL;
new_roots = NULL;
}
cleanup:
ulist_free(record->old_roots);
ulist_free(new_roots);
new_roots = NULL;
rb_erase(node, &delayed_refs->dirty_extent_root);
kfree(record);
}
trace_qgroup_num_dirty_extents(fs_info, trans->transid,
num_dirty_extents);
return ret;
}
/*
btrfs: fix race between quota disable and quota assign ioctls The quota assign ioctl can currently run in parallel with a quota disable ioctl call. The assign ioctl uses the quota root, while the disable ioctl frees that root, and therefore we can have a use-after-free triggered in the assign ioctl, leading to a trace like the following when KASAN is enabled: [672.723][T736] BUG: KASAN: slab-use-after-free in btrfs_search_slot+0x2962/0x2db0 [672.723][T736] Read of size 8 at addr ffff888022ec0208 by task btrfs_search_sl/27736 [672.724][T736] [672.725][T736] CPU: 1 PID: 27736 Comm: btrfs_search_sl Not tainted 6.3.0-rc3 #37 [672.723][T736] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [672.727][T736] Call Trace: [672.728][T736] <TASK> [672.728][T736] dump_stack_lvl+0xd9/0x150 [672.725][T736] print_report+0xc1/0x5e0 [672.720][T736] ? __virt_addr_valid+0x61/0x2e0 [672.727][T736] ? __phys_addr+0xc9/0x150 [672.725][T736] ? btrfs_search_slot+0x2962/0x2db0 [672.722][T736] kasan_report+0xc0/0xf0 [672.729][T736] ? btrfs_search_slot+0x2962/0x2db0 [672.724][T736] btrfs_search_slot+0x2962/0x2db0 [672.723][T736] ? fs_reclaim_acquire+0xba/0x160 [672.722][T736] ? split_leaf+0x13d0/0x13d0 [672.726][T736] ? rcu_is_watching+0x12/0xb0 [672.723][T736] ? kmem_cache_alloc+0x338/0x3c0 [672.722][T736] update_qgroup_status_item+0xf7/0x320 [672.724][T736] ? add_qgroup_rb+0x3d0/0x3d0 [672.739][T736] ? do_raw_spin_lock+0x12d/0x2b0 [672.730][T736] ? spin_bug+0x1d0/0x1d0 [672.737][T736] btrfs_run_qgroups+0x5de/0x840 [672.730][T736] ? btrfs_qgroup_rescan_worker+0xa70/0xa70 [672.738][T736] ? __del_qgroup_relation+0x4ba/0xe00 [672.738][T736] btrfs_ioctl+0x3d58/0x5d80 [672.735][T736] ? tomoyo_path_number_perm+0x16a/0x550 [672.737][T736] ? tomoyo_execute_permission+0x4a0/0x4a0 [672.731][T736] ? btrfs_ioctl_get_supported_features+0x50/0x50 [672.737][T736] ? __sanitizer_cov_trace_switch+0x54/0x90 [672.734][T736] ? do_vfs_ioctl+0x132/0x1660 [672.730][T736] ? vfs_fileattr_set+0xc40/0xc40 [672.730][T736] ? _raw_spin_unlock_irq+0x2e/0x50 [672.732][T736] ? sigprocmask+0xf2/0x340 [672.737][T736] ? __fget_files+0x26a/0x480 [672.732][T736] ? bpf_lsm_file_ioctl+0x9/0x10 [672.738][T736] ? btrfs_ioctl_get_supported_features+0x50/0x50 [672.736][T736] __x64_sys_ioctl+0x198/0x210 [672.736][T736] do_syscall_64+0x39/0xb0 [672.731][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.739][T736] RIP: 0033:0x4556ad [672.742][T736] </TASK> [672.743][T736] [672.748][T736] Allocated by task 27677: [672.743][T736] kasan_save_stack+0x22/0x40 [672.741][T736] kasan_set_track+0x25/0x30 [672.741][T736] __kasan_kmalloc+0xa4/0xb0 [672.749][T736] btrfs_alloc_root+0x48/0x90 [672.746][T736] btrfs_create_tree+0x146/0xa20 [672.744][T736] btrfs_quota_enable+0x461/0x1d20 [672.743][T736] btrfs_ioctl+0x4a1c/0x5d80 [672.747][T736] __x64_sys_ioctl+0x198/0x210 [672.749][T736] do_syscall_64+0x39/0xb0 [672.744][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.756][T736] [672.757][T736] Freed by task 27677: [672.759][T736] kasan_save_stack+0x22/0x40 [672.759][T736] kasan_set_track+0x25/0x30 [672.756][T736] kasan_save_free_info+0x2e/0x50 [672.751][T736] ____kasan_slab_free+0x162/0x1c0 [672.758][T736] slab_free_freelist_hook+0x89/0x1c0 [672.752][T736] __kmem_cache_free+0xaf/0x2e0 [672.752][T736] btrfs_put_root+0x1ff/0x2b0 [672.759][T736] btrfs_quota_disable+0x80a/0xbc0 [672.752][T736] btrfs_ioctl+0x3e5f/0x5d80 [672.756][T736] __x64_sys_ioctl+0x198/0x210 [672.753][T736] do_syscall_64+0x39/0xb0 [672.765][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.769][T736] [672.768][T736] The buggy address belongs to the object at ffff888022ec0000 [672.768][T736] which belongs to the cache kmalloc-4k of size 4096 [672.769][T736] The buggy address is located 520 bytes inside of [672.769][T736] freed 4096-byte region [ffff888022ec0000, ffff888022ec1000) [672.760][T736] [672.764][T736] The buggy address belongs to the physical page: [672.761][T736] page:ffffea00008bb000 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x22ec0 [672.766][T736] head:ffffea00008bb000 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 [672.779][T736] flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff) [672.770][T736] raw: 00fff00000010200 ffff888012842140 ffffea000054ba00 dead000000000002 [672.770][T736] raw: 0000000000000000 0000000000040004 00000001ffffffff 0000000000000000 [672.771][T736] page dumped because: kasan: bad access detected [672.778][T736] page_owner tracks the page as allocated [672.777][T736] page last allocated via order 3, migratetype Unmovable, gfp_mask 0xd2040(__GFP_IO|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 88 [672.779][T736] get_page_from_freelist+0x119c/0x2d50 [672.779][T736] __alloc_pages+0x1cb/0x4a0 [672.776][T736] alloc_pages+0x1aa/0x270 [672.773][T736] allocate_slab+0x260/0x390 [672.771][T736] ___slab_alloc+0xa9a/0x13e0 [672.778][T736] __slab_alloc.constprop.0+0x56/0xb0 [672.771][T736] __kmem_cache_alloc_node+0x136/0x320 [672.789][T736] __kmalloc+0x4e/0x1a0 [672.783][T736] tomoyo_realpath_from_path+0xc3/0x600 [672.781][T736] tomoyo_path_perm+0x22f/0x420 [672.782][T736] tomoyo_path_unlink+0x92/0xd0 [672.780][T736] security_path_unlink+0xdb/0x150 [672.788][T736] do_unlinkat+0x377/0x680 [672.788][T736] __x64_sys_unlink+0xca/0x110 [672.789][T736] do_syscall_64+0x39/0xb0 [672.783][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.784][T736] page last free stack trace: [672.787][T736] free_pcp_prepare+0x4e5/0x920 [672.787][T736] free_unref_page+0x1d/0x4e0 [672.784][T736] __unfreeze_partials+0x17c/0x1a0 [672.797][T736] qlist_free_all+0x6a/0x180 [672.796][T736] kasan_quarantine_reduce+0x189/0x1d0 [672.797][T736] __kasan_slab_alloc+0x64/0x90 [672.793][T736] kmem_cache_alloc+0x17c/0x3c0 [672.799][T736] getname_flags.part.0+0x50/0x4e0 [672.799][T736] getname_flags+0x9e/0xe0 [672.792][T736] vfs_fstatat+0x77/0xb0 [672.791][T736] __do_sys_newlstat+0x84/0x100 [672.798][T736] do_syscall_64+0x39/0xb0 [672.796][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.790][T736] [672.791][T736] Memory state around the buggy address: [672.799][T736] ffff888022ec0100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.805][T736] ffff888022ec0180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.802][T736] >ffff888022ec0200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.809][T736] ^ [672.809][T736] ffff888022ec0280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.809][T736] ffff888022ec0300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fix this by having the qgroup assign ioctl take the qgroup ioctl mutex before calling btrfs_run_qgroups(), which is what all qgroup ioctls should call. Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CAFcO6XN3VD8ogmHwqRk4kbiwtpUSNySu2VAxN8waEPciCHJvMA@mail.gmail.com/ CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-03-22 10:33:28 +00:00
* Writes all changed qgroups to disk.
* Called by the transaction commit path and the qgroup assign ioctl.
*/
int btrfs_run_qgroups(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int ret = 0;
btrfs: fix race between quota disable and quota assign ioctls The quota assign ioctl can currently run in parallel with a quota disable ioctl call. The assign ioctl uses the quota root, while the disable ioctl frees that root, and therefore we can have a use-after-free triggered in the assign ioctl, leading to a trace like the following when KASAN is enabled: [672.723][T736] BUG: KASAN: slab-use-after-free in btrfs_search_slot+0x2962/0x2db0 [672.723][T736] Read of size 8 at addr ffff888022ec0208 by task btrfs_search_sl/27736 [672.724][T736] [672.725][T736] CPU: 1 PID: 27736 Comm: btrfs_search_sl Not tainted 6.3.0-rc3 #37 [672.723][T736] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [672.727][T736] Call Trace: [672.728][T736] <TASK> [672.728][T736] dump_stack_lvl+0xd9/0x150 [672.725][T736] print_report+0xc1/0x5e0 [672.720][T736] ? __virt_addr_valid+0x61/0x2e0 [672.727][T736] ? __phys_addr+0xc9/0x150 [672.725][T736] ? btrfs_search_slot+0x2962/0x2db0 [672.722][T736] kasan_report+0xc0/0xf0 [672.729][T736] ? btrfs_search_slot+0x2962/0x2db0 [672.724][T736] btrfs_search_slot+0x2962/0x2db0 [672.723][T736] ? fs_reclaim_acquire+0xba/0x160 [672.722][T736] ? split_leaf+0x13d0/0x13d0 [672.726][T736] ? rcu_is_watching+0x12/0xb0 [672.723][T736] ? kmem_cache_alloc+0x338/0x3c0 [672.722][T736] update_qgroup_status_item+0xf7/0x320 [672.724][T736] ? add_qgroup_rb+0x3d0/0x3d0 [672.739][T736] ? do_raw_spin_lock+0x12d/0x2b0 [672.730][T736] ? spin_bug+0x1d0/0x1d0 [672.737][T736] btrfs_run_qgroups+0x5de/0x840 [672.730][T736] ? btrfs_qgroup_rescan_worker+0xa70/0xa70 [672.738][T736] ? __del_qgroup_relation+0x4ba/0xe00 [672.738][T736] btrfs_ioctl+0x3d58/0x5d80 [672.735][T736] ? tomoyo_path_number_perm+0x16a/0x550 [672.737][T736] ? tomoyo_execute_permission+0x4a0/0x4a0 [672.731][T736] ? btrfs_ioctl_get_supported_features+0x50/0x50 [672.737][T736] ? __sanitizer_cov_trace_switch+0x54/0x90 [672.734][T736] ? do_vfs_ioctl+0x132/0x1660 [672.730][T736] ? vfs_fileattr_set+0xc40/0xc40 [672.730][T736] ? _raw_spin_unlock_irq+0x2e/0x50 [672.732][T736] ? sigprocmask+0xf2/0x340 [672.737][T736] ? __fget_files+0x26a/0x480 [672.732][T736] ? bpf_lsm_file_ioctl+0x9/0x10 [672.738][T736] ? btrfs_ioctl_get_supported_features+0x50/0x50 [672.736][T736] __x64_sys_ioctl+0x198/0x210 [672.736][T736] do_syscall_64+0x39/0xb0 [672.731][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.739][T736] RIP: 0033:0x4556ad [672.742][T736] </TASK> [672.743][T736] [672.748][T736] Allocated by task 27677: [672.743][T736] kasan_save_stack+0x22/0x40 [672.741][T736] kasan_set_track+0x25/0x30 [672.741][T736] __kasan_kmalloc+0xa4/0xb0 [672.749][T736] btrfs_alloc_root+0x48/0x90 [672.746][T736] btrfs_create_tree+0x146/0xa20 [672.744][T736] btrfs_quota_enable+0x461/0x1d20 [672.743][T736] btrfs_ioctl+0x4a1c/0x5d80 [672.747][T736] __x64_sys_ioctl+0x198/0x210 [672.749][T736] do_syscall_64+0x39/0xb0 [672.744][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.756][T736] [672.757][T736] Freed by task 27677: [672.759][T736] kasan_save_stack+0x22/0x40 [672.759][T736] kasan_set_track+0x25/0x30 [672.756][T736] kasan_save_free_info+0x2e/0x50 [672.751][T736] ____kasan_slab_free+0x162/0x1c0 [672.758][T736] slab_free_freelist_hook+0x89/0x1c0 [672.752][T736] __kmem_cache_free+0xaf/0x2e0 [672.752][T736] btrfs_put_root+0x1ff/0x2b0 [672.759][T736] btrfs_quota_disable+0x80a/0xbc0 [672.752][T736] btrfs_ioctl+0x3e5f/0x5d80 [672.756][T736] __x64_sys_ioctl+0x198/0x210 [672.753][T736] do_syscall_64+0x39/0xb0 [672.765][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.769][T736] [672.768][T736] The buggy address belongs to the object at ffff888022ec0000 [672.768][T736] which belongs to the cache kmalloc-4k of size 4096 [672.769][T736] The buggy address is located 520 bytes inside of [672.769][T736] freed 4096-byte region [ffff888022ec0000, ffff888022ec1000) [672.760][T736] [672.764][T736] The buggy address belongs to the physical page: [672.761][T736] page:ffffea00008bb000 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x22ec0 [672.766][T736] head:ffffea00008bb000 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 [672.779][T736] flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff) [672.770][T736] raw: 00fff00000010200 ffff888012842140 ffffea000054ba00 dead000000000002 [672.770][T736] raw: 0000000000000000 0000000000040004 00000001ffffffff 0000000000000000 [672.771][T736] page dumped because: kasan: bad access detected [672.778][T736] page_owner tracks the page as allocated [672.777][T736] page last allocated via order 3, migratetype Unmovable, gfp_mask 0xd2040(__GFP_IO|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 88 [672.779][T736] get_page_from_freelist+0x119c/0x2d50 [672.779][T736] __alloc_pages+0x1cb/0x4a0 [672.776][T736] alloc_pages+0x1aa/0x270 [672.773][T736] allocate_slab+0x260/0x390 [672.771][T736] ___slab_alloc+0xa9a/0x13e0 [672.778][T736] __slab_alloc.constprop.0+0x56/0xb0 [672.771][T736] __kmem_cache_alloc_node+0x136/0x320 [672.789][T736] __kmalloc+0x4e/0x1a0 [672.783][T736] tomoyo_realpath_from_path+0xc3/0x600 [672.781][T736] tomoyo_path_perm+0x22f/0x420 [672.782][T736] tomoyo_path_unlink+0x92/0xd0 [672.780][T736] security_path_unlink+0xdb/0x150 [672.788][T736] do_unlinkat+0x377/0x680 [672.788][T736] __x64_sys_unlink+0xca/0x110 [672.789][T736] do_syscall_64+0x39/0xb0 [672.783][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.784][T736] page last free stack trace: [672.787][T736] free_pcp_prepare+0x4e5/0x920 [672.787][T736] free_unref_page+0x1d/0x4e0 [672.784][T736] __unfreeze_partials+0x17c/0x1a0 [672.797][T736] qlist_free_all+0x6a/0x180 [672.796][T736] kasan_quarantine_reduce+0x189/0x1d0 [672.797][T736] __kasan_slab_alloc+0x64/0x90 [672.793][T736] kmem_cache_alloc+0x17c/0x3c0 [672.799][T736] getname_flags.part.0+0x50/0x4e0 [672.799][T736] getname_flags+0x9e/0xe0 [672.792][T736] vfs_fstatat+0x77/0xb0 [672.791][T736] __do_sys_newlstat+0x84/0x100 [672.798][T736] do_syscall_64+0x39/0xb0 [672.796][T736] entry_SYSCALL_64_after_hwframe+0x63/0xcd [672.790][T736] [672.791][T736] Memory state around the buggy address: [672.799][T736] ffff888022ec0100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.805][T736] ffff888022ec0180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.802][T736] >ffff888022ec0200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.809][T736] ^ [672.809][T736] ffff888022ec0280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [672.809][T736] ffff888022ec0300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fix this by having the qgroup assign ioctl take the qgroup ioctl mutex before calling btrfs_run_qgroups(), which is what all qgroup ioctls should call. Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CAFcO6XN3VD8ogmHwqRk4kbiwtpUSNySu2VAxN8waEPciCHJvMA@mail.gmail.com/ CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-03-22 10:33:28 +00:00
/*
* In case we are called from the qgroup assign ioctl, assert that we
* are holding the qgroup_ioctl_lock, otherwise we can race with a quota
* disable operation (ioctl) and access a freed quota root.
*/
if (trans->transaction->state != TRANS_STATE_COMMIT_DOING)
lockdep_assert_held(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root)
return ret;
spin_lock(&fs_info->qgroup_lock);
while (!list_empty(&fs_info->dirty_qgroups)) {
struct btrfs_qgroup *qgroup;
qgroup = list_first_entry(&fs_info->dirty_qgroups,
struct btrfs_qgroup, dirty);
list_del_init(&qgroup->dirty);
spin_unlock(&fs_info->qgroup_lock);
ret = update_qgroup_info_item(trans, qgroup);
if (ret)
qgroup_mark_inconsistent(fs_info);
ret = update_qgroup_limit_item(trans, qgroup);
if (ret)
qgroup_mark_inconsistent(fs_info);
spin_lock(&fs_info->qgroup_lock);
}
if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_ON;
else
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_ON;
spin_unlock(&fs_info->qgroup_lock);
ret = update_qgroup_status_item(trans);
if (ret)
qgroup_mark_inconsistent(fs_info);
return ret;
}
/*
* Copy the accounting information between qgroups. This is necessary
* when a snapshot or a subvolume is created. Throwing an error will
* cause a transaction abort so we take extra care here to only error
* when a readonly fs is a reasonable outcome.
*/
int btrfs_qgroup_inherit(struct btrfs_trans_handle *trans, u64 srcid,
u64 objectid, struct btrfs_qgroup_inherit *inherit)
{
int ret = 0;
int i;
u64 *i_qgroups;
btrfs: qgroup: Don't hold qgroup_ioctl_lock in btrfs_qgroup_inherit() [BUG] Lockdep will report the following circular locking dependency: WARNING: possible circular locking dependency detected 5.2.0-rc2-custom #24 Tainted: G O ------------------------------------------------------ btrfs/8631 is trying to acquire lock: 000000002536438c (&fs_info->qgroup_ioctl_lock#2){+.+.}, at: btrfs_qgroup_inherit+0x40/0x620 [btrfs] but task is already holding lock: 000000003d52cc23 (&fs_info->tree_log_mutex){+.+.}, at: create_pending_snapshot+0x8b6/0xe60 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (&fs_info->tree_log_mutex){+.+.}: __mutex_lock+0x76/0x940 mutex_lock_nested+0x1b/0x20 btrfs_commit_transaction+0x475/0xa00 [btrfs] btrfs_commit_super+0x71/0x80 [btrfs] close_ctree+0x2bd/0x320 [btrfs] btrfs_put_super+0x15/0x20 [btrfs] generic_shutdown_super+0x72/0x110 kill_anon_super+0x18/0x30 btrfs_kill_super+0x16/0xa0 [btrfs] deactivate_locked_super+0x3a/0x80 deactivate_super+0x51/0x60 cleanup_mnt+0x3f/0x80 __cleanup_mnt+0x12/0x20 task_work_run+0x94/0xb0 exit_to_usermode_loop+0xd8/0xe0 do_syscall_64+0x210/0x240 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #1 (&fs_info->reloc_mutex){+.+.}: __mutex_lock+0x76/0x940 mutex_lock_nested+0x1b/0x20 btrfs_commit_transaction+0x40d/0xa00 [btrfs] btrfs_quota_enable+0x2da/0x730 [btrfs] btrfs_ioctl+0x2691/0x2b40 [btrfs] do_vfs_ioctl+0xa9/0x6d0 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x65/0x240 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #0 (&fs_info->qgroup_ioctl_lock#2){+.+.}: lock_acquire+0xa7/0x190 __mutex_lock+0x76/0x940 mutex_lock_nested+0x1b/0x20 btrfs_qgroup_inherit+0x40/0x620 [btrfs] create_pending_snapshot+0x9d7/0xe60 [btrfs] create_pending_snapshots+0x94/0xb0 [btrfs] btrfs_commit_transaction+0x415/0xa00 [btrfs] btrfs_mksubvol+0x496/0x4e0 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0xa90/0x2b40 [btrfs] do_vfs_ioctl+0xa9/0x6d0 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x65/0x240 entry_SYSCALL_64_after_hwframe+0x49/0xbe other info that might help us debug this: Chain exists of: &fs_info->qgroup_ioctl_lock#2 --> &fs_info->reloc_mutex --> &fs_info->tree_log_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->tree_log_mutex); lock(&fs_info->reloc_mutex); lock(&fs_info->tree_log_mutex); lock(&fs_info->qgroup_ioctl_lock#2); *** DEADLOCK *** 6 locks held by btrfs/8631: #0: 00000000ed8f23f6 (sb_writers#12){.+.+}, at: mnt_want_write_file+0x28/0x60 #1: 000000009fb1597a (&type->i_mutex_dir_key#10/1){+.+.}, at: btrfs_mksubvol+0x70/0x4e0 [btrfs] #2: 0000000088c5ad88 (&fs_info->subvol_sem){++++}, at: btrfs_mksubvol+0x128/0x4e0 [btrfs] #3: 000000009606fc3e (sb_internal#2){.+.+}, at: start_transaction+0x37a/0x520 [btrfs] #4: 00000000f82bbdf5 (&fs_info->reloc_mutex){+.+.}, at: btrfs_commit_transaction+0x40d/0xa00 [btrfs] #5: 000000003d52cc23 (&fs_info->tree_log_mutex){+.+.}, at: create_pending_snapshot+0x8b6/0xe60 [btrfs] [CAUSE] Due to the delayed subvolume creation, we need to call btrfs_qgroup_inherit() inside commit transaction code, with a lot of other mutex hold. This hell of lock chain can lead to above problem. [FIX] On the other hand, we don't really need to hold qgroup_ioctl_lock if we're in the context of create_pending_snapshot(). As in that context, we're the only one being able to modify qgroup. All other qgroup functions which needs qgroup_ioctl_lock are either holding a transaction handle, or will start a new transaction: Functions will start a new transaction(): * btrfs_quota_enable() * btrfs_quota_disable() Functions hold a transaction handler: * btrfs_add_qgroup_relation() * btrfs_del_qgroup_relation() * btrfs_create_qgroup() * btrfs_remove_qgroup() * btrfs_limit_qgroup() * btrfs_qgroup_inherit() call inside create_subvol() So we have a higher level protection provided by transaction, thus we don't need to always hold qgroup_ioctl_lock in btrfs_qgroup_inherit(). Only the btrfs_qgroup_inherit() call in create_subvol() needs to hold qgroup_ioctl_lock, while the btrfs_qgroup_inherit() call in create_pending_snapshot() is already protected by transaction. So the fix is to detect the context by checking trans->transaction->state. If we're at TRANS_STATE_COMMIT_DOING, then we're in commit transaction context and no need to get the mutex. Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-06-13 17:31:24 +08:00
bool committing = false;
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *quota_root;
struct btrfs_qgroup *srcgroup;
struct btrfs_qgroup *dstgroup;
btrfs: qgroup: mark qgroup inconsistent if we're inherting snapshot to a new qgroup [BUG] For the following operation, qgroup is guaranteed to be screwed up due to snapshot adding to a new qgroup: # mkfs.btrfs -f $dev # mount $dev $mnt # btrfs qgroup en $mnt # btrfs subv create $mnt/src # xfs_io -f -c "pwrite 0 1m" $mnt/src/file # sync # btrfs qgroup create 1/0 $mnt/src # btrfs subv snapshot -i 1/0 $mnt/src $mnt/snapshot # btrfs qgroup show -prce $mnt/src qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16.00KiB 16.00KiB none none --- --- 0/257 1.02MiB 16.00KiB none none --- --- 0/258 1.02MiB 16.00KiB none none 1/0 --- 1/0 0.00B 0.00B none none --- 0/258 ^^^^^^^^^^^^^^^^^^^^ [CAUSE] The problem is in btrfs_qgroup_inherit(), we don't have good enough check to determine if the new relation would break the existing accounting. Unlike btrfs_add_qgroup_relation(), which has proper check to determine if we can do quick update without a rescan, in btrfs_qgroup_inherit() we can even assign a snapshot to multiple qgroups. [FIX] Fix it by manually marking qgroup inconsistent for snapshot inheritance. For subvolume creation, since all its extents are exclusively owned, we don't need to rescan. In theory, we should call relation check like quick_update_accounting() when doing qgroup inheritance and inform user about qgroup accounting inconsistency. But we don't have good mechanism to relay that back to the user in the snapshot creation context, thus we can only silently mark the qgroup inconsistent. Anyway, user shouldn't use qgroup inheritance during snapshot creation, and should add qgroup relationship after snapshot creation by 'btrfs qgroup assign', which has a much better UI to inform user about qgroup inconsistent and kick in rescan automatically. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-04-02 14:37:35 +08:00
bool need_rescan = false;
u32 level_size = 0;
u64 nums;
btrfs: qgroup: Don't hold qgroup_ioctl_lock in btrfs_qgroup_inherit() [BUG] Lockdep will report the following circular locking dependency: WARNING: possible circular locking dependency detected 5.2.0-rc2-custom #24 Tainted: G O ------------------------------------------------------ btrfs/8631 is trying to acquire lock: 000000002536438c (&fs_info->qgroup_ioctl_lock#2){+.+.}, at: btrfs_qgroup_inherit+0x40/0x620 [btrfs] but task is already holding lock: 000000003d52cc23 (&fs_info->tree_log_mutex){+.+.}, at: create_pending_snapshot+0x8b6/0xe60 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (&fs_info->tree_log_mutex){+.+.}: __mutex_lock+0x76/0x940 mutex_lock_nested+0x1b/0x20 btrfs_commit_transaction+0x475/0xa00 [btrfs] btrfs_commit_super+0x71/0x80 [btrfs] close_ctree+0x2bd/0x320 [btrfs] btrfs_put_super+0x15/0x20 [btrfs] generic_shutdown_super+0x72/0x110 kill_anon_super+0x18/0x30 btrfs_kill_super+0x16/0xa0 [btrfs] deactivate_locked_super+0x3a/0x80 deactivate_super+0x51/0x60 cleanup_mnt+0x3f/0x80 __cleanup_mnt+0x12/0x20 task_work_run+0x94/0xb0 exit_to_usermode_loop+0xd8/0xe0 do_syscall_64+0x210/0x240 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #1 (&fs_info->reloc_mutex){+.+.}: __mutex_lock+0x76/0x940 mutex_lock_nested+0x1b/0x20 btrfs_commit_transaction+0x40d/0xa00 [btrfs] btrfs_quota_enable+0x2da/0x730 [btrfs] btrfs_ioctl+0x2691/0x2b40 [btrfs] do_vfs_ioctl+0xa9/0x6d0 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x65/0x240 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #0 (&fs_info->qgroup_ioctl_lock#2){+.+.}: lock_acquire+0xa7/0x190 __mutex_lock+0x76/0x940 mutex_lock_nested+0x1b/0x20 btrfs_qgroup_inherit+0x40/0x620 [btrfs] create_pending_snapshot+0x9d7/0xe60 [btrfs] create_pending_snapshots+0x94/0xb0 [btrfs] btrfs_commit_transaction+0x415/0xa00 [btrfs] btrfs_mksubvol+0x496/0x4e0 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0xa90/0x2b40 [btrfs] do_vfs_ioctl+0xa9/0x6d0 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x65/0x240 entry_SYSCALL_64_after_hwframe+0x49/0xbe other info that might help us debug this: Chain exists of: &fs_info->qgroup_ioctl_lock#2 --> &fs_info->reloc_mutex --> &fs_info->tree_log_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->tree_log_mutex); lock(&fs_info->reloc_mutex); lock(&fs_info->tree_log_mutex); lock(&fs_info->qgroup_ioctl_lock#2); *** DEADLOCK *** 6 locks held by btrfs/8631: #0: 00000000ed8f23f6 (sb_writers#12){.+.+}, at: mnt_want_write_file+0x28/0x60 #1: 000000009fb1597a (&type->i_mutex_dir_key#10/1){+.+.}, at: btrfs_mksubvol+0x70/0x4e0 [btrfs] #2: 0000000088c5ad88 (&fs_info->subvol_sem){++++}, at: btrfs_mksubvol+0x128/0x4e0 [btrfs] #3: 000000009606fc3e (sb_internal#2){.+.+}, at: start_transaction+0x37a/0x520 [btrfs] #4: 00000000f82bbdf5 (&fs_info->reloc_mutex){+.+.}, at: btrfs_commit_transaction+0x40d/0xa00 [btrfs] #5: 000000003d52cc23 (&fs_info->tree_log_mutex){+.+.}, at: create_pending_snapshot+0x8b6/0xe60 [btrfs] [CAUSE] Due to the delayed subvolume creation, we need to call btrfs_qgroup_inherit() inside commit transaction code, with a lot of other mutex hold. This hell of lock chain can lead to above problem. [FIX] On the other hand, we don't really need to hold qgroup_ioctl_lock if we're in the context of create_pending_snapshot(). As in that context, we're the only one being able to modify qgroup. All other qgroup functions which needs qgroup_ioctl_lock are either holding a transaction handle, or will start a new transaction: Functions will start a new transaction(): * btrfs_quota_enable() * btrfs_quota_disable() Functions hold a transaction handler: * btrfs_add_qgroup_relation() * btrfs_del_qgroup_relation() * btrfs_create_qgroup() * btrfs_remove_qgroup() * btrfs_limit_qgroup() * btrfs_qgroup_inherit() call inside create_subvol() So we have a higher level protection provided by transaction, thus we don't need to always hold qgroup_ioctl_lock in btrfs_qgroup_inherit(). Only the btrfs_qgroup_inherit() call in create_subvol() needs to hold qgroup_ioctl_lock, while the btrfs_qgroup_inherit() call in create_pending_snapshot() is already protected by transaction. So the fix is to detect the context by checking trans->transaction->state. If we're at TRANS_STATE_COMMIT_DOING, then we're in commit transaction context and no need to get the mutex. Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-06-13 17:31:24 +08:00
/*
* There are only two callers of this function.
*
* One in create_subvol() in the ioctl context, which needs to hold
* the qgroup_ioctl_lock.
*
* The other one in create_pending_snapshot() where no other qgroup
* code can modify the fs as they all need to either start a new trans
* or hold a trans handler, thus we don't need to hold
* qgroup_ioctl_lock.
* This would avoid long and complex lock chain and make lockdep happy.
*/
spin_lock(&fs_info->trans_lock);
if (trans->transaction->state == TRANS_STATE_COMMIT_DOING)
committing = true;
spin_unlock(&fs_info->trans_lock);
if (!committing)
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
goto out;
quota_root = fs_info->quota_root;
if (!quota_root) {
ret = -EINVAL;
goto out;
}
if (inherit) {
i_qgroups = (u64 *)(inherit + 1);
nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2 * inherit->num_excl_copies;
for (i = 0; i < nums; ++i) {
srcgroup = find_qgroup_rb(fs_info, *i_qgroups);
/*
* Zero out invalid groups so we can ignore
* them later.
*/
if (!srcgroup ||
((srcgroup->qgroupid >> 48) <= (objectid >> 48)))
*i_qgroups = 0ULL;
++i_qgroups;
}
}
/*
* create a tracking group for the subvol itself
*/
ret = add_qgroup_item(trans, quota_root, objectid);
if (ret)
goto out;
/*
* add qgroup to all inherited groups
*/
if (inherit) {
i_qgroups = (u64 *)(inherit + 1);
for (i = 0; i < inherit->num_qgroups; ++i, ++i_qgroups) {
if (*i_qgroups == 0)
continue;
ret = add_qgroup_relation_item(trans, objectid,
*i_qgroups);
if (ret && ret != -EEXIST)
goto out;
ret = add_qgroup_relation_item(trans, *i_qgroups,
objectid);
if (ret && ret != -EEXIST)
goto out;
}
ret = 0;
}
spin_lock(&fs_info->qgroup_lock);
dstgroup = add_qgroup_rb(fs_info, objectid);
if (IS_ERR(dstgroup)) {
ret = PTR_ERR(dstgroup);
goto unlock;
}
if (inherit && inherit->flags & BTRFS_QGROUP_INHERIT_SET_LIMITS) {
dstgroup->lim_flags = inherit->lim.flags;
dstgroup->max_rfer = inherit->lim.max_rfer;
dstgroup->max_excl = inherit->lim.max_excl;
dstgroup->rsv_rfer = inherit->lim.rsv_rfer;
dstgroup->rsv_excl = inherit->lim.rsv_excl;
qgroup_dirty(fs_info, dstgroup);
}
if (srcid) {
srcgroup = find_qgroup_rb(fs_info, srcid);
if (!srcgroup)
goto unlock;
Btrfs: rework qgroup accounting Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-13 17:30:47 -07:00
/*
* We call inherit after we clone the root in order to make sure
* our counts don't go crazy, so at this point the only
* difference between the two roots should be the root node.
*/
level_size = fs_info->nodesize;
Btrfs: rework qgroup accounting Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-13 17:30:47 -07:00
dstgroup->rfer = srcgroup->rfer;
dstgroup->rfer_cmpr = srcgroup->rfer_cmpr;
dstgroup->excl = level_size;
dstgroup->excl_cmpr = level_size;
srcgroup->excl = level_size;
srcgroup->excl_cmpr = level_size;
/* inherit the limit info */
dstgroup->lim_flags = srcgroup->lim_flags;
dstgroup->max_rfer = srcgroup->max_rfer;
dstgroup->max_excl = srcgroup->max_excl;
dstgroup->rsv_rfer = srcgroup->rsv_rfer;
dstgroup->rsv_excl = srcgroup->rsv_excl;
qgroup_dirty(fs_info, dstgroup);
qgroup_dirty(fs_info, srcgroup);
}
if (!inherit)
goto unlock;
i_qgroups = (u64 *)(inherit + 1);
for (i = 0; i < inherit->num_qgroups; ++i) {
if (*i_qgroups) {
ret = add_relation_rb(fs_info, objectid, *i_qgroups);
if (ret)
goto unlock;
}
++i_qgroups;
btrfs: qgroup: mark qgroup inconsistent if we're inherting snapshot to a new qgroup [BUG] For the following operation, qgroup is guaranteed to be screwed up due to snapshot adding to a new qgroup: # mkfs.btrfs -f $dev # mount $dev $mnt # btrfs qgroup en $mnt # btrfs subv create $mnt/src # xfs_io -f -c "pwrite 0 1m" $mnt/src/file # sync # btrfs qgroup create 1/0 $mnt/src # btrfs subv snapshot -i 1/0 $mnt/src $mnt/snapshot # btrfs qgroup show -prce $mnt/src qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16.00KiB 16.00KiB none none --- --- 0/257 1.02MiB 16.00KiB none none --- --- 0/258 1.02MiB 16.00KiB none none 1/0 --- 1/0 0.00B 0.00B none none --- 0/258 ^^^^^^^^^^^^^^^^^^^^ [CAUSE] The problem is in btrfs_qgroup_inherit(), we don't have good enough check to determine if the new relation would break the existing accounting. Unlike btrfs_add_qgroup_relation(), which has proper check to determine if we can do quick update without a rescan, in btrfs_qgroup_inherit() we can even assign a snapshot to multiple qgroups. [FIX] Fix it by manually marking qgroup inconsistent for snapshot inheritance. For subvolume creation, since all its extents are exclusively owned, we don't need to rescan. In theory, we should call relation check like quick_update_accounting() when doing qgroup inheritance and inform user about qgroup accounting inconsistency. But we don't have good mechanism to relay that back to the user in the snapshot creation context, thus we can only silently mark the qgroup inconsistent. Anyway, user shouldn't use qgroup inheritance during snapshot creation, and should add qgroup relationship after snapshot creation by 'btrfs qgroup assign', which has a much better UI to inform user about qgroup inconsistent and kick in rescan automatically. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-04-02 14:37:35 +08:00
/*
* If we're doing a snapshot, and adding the snapshot to a new
* qgroup, the numbers are guaranteed to be incorrect.
*/
if (srcid)
need_rescan = true;
}
for (i = 0; i < inherit->num_ref_copies; ++i, i_qgroups += 2) {
struct btrfs_qgroup *src;
struct btrfs_qgroup *dst;
if (!i_qgroups[0] || !i_qgroups[1])
continue;
src = find_qgroup_rb(fs_info, i_qgroups[0]);
dst = find_qgroup_rb(fs_info, i_qgroups[1]);
if (!src || !dst) {
ret = -EINVAL;
goto unlock;
}
dst->rfer = src->rfer - level_size;
dst->rfer_cmpr = src->rfer_cmpr - level_size;
btrfs: qgroup: mark qgroup inconsistent if we're inherting snapshot to a new qgroup [BUG] For the following operation, qgroup is guaranteed to be screwed up due to snapshot adding to a new qgroup: # mkfs.btrfs -f $dev # mount $dev $mnt # btrfs qgroup en $mnt # btrfs subv create $mnt/src # xfs_io -f -c "pwrite 0 1m" $mnt/src/file # sync # btrfs qgroup create 1/0 $mnt/src # btrfs subv snapshot -i 1/0 $mnt/src $mnt/snapshot # btrfs qgroup show -prce $mnt/src qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16.00KiB 16.00KiB none none --- --- 0/257 1.02MiB 16.00KiB none none --- --- 0/258 1.02MiB 16.00KiB none none 1/0 --- 1/0 0.00B 0.00B none none --- 0/258 ^^^^^^^^^^^^^^^^^^^^ [CAUSE] The problem is in btrfs_qgroup_inherit(), we don't have good enough check to determine if the new relation would break the existing accounting. Unlike btrfs_add_qgroup_relation(), which has proper check to determine if we can do quick update without a rescan, in btrfs_qgroup_inherit() we can even assign a snapshot to multiple qgroups. [FIX] Fix it by manually marking qgroup inconsistent for snapshot inheritance. For subvolume creation, since all its extents are exclusively owned, we don't need to rescan. In theory, we should call relation check like quick_update_accounting() when doing qgroup inheritance and inform user about qgroup accounting inconsistency. But we don't have good mechanism to relay that back to the user in the snapshot creation context, thus we can only silently mark the qgroup inconsistent. Anyway, user shouldn't use qgroup inheritance during snapshot creation, and should add qgroup relationship after snapshot creation by 'btrfs qgroup assign', which has a much better UI to inform user about qgroup inconsistent and kick in rescan automatically. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-04-02 14:37:35 +08:00
/* Manually tweaking numbers certainly needs a rescan */
need_rescan = true;
}
for (i = 0; i < inherit->num_excl_copies; ++i, i_qgroups += 2) {
struct btrfs_qgroup *src;
struct btrfs_qgroup *dst;
if (!i_qgroups[0] || !i_qgroups[1])
continue;
src = find_qgroup_rb(fs_info, i_qgroups[0]);
dst = find_qgroup_rb(fs_info, i_qgroups[1]);
if (!src || !dst) {
ret = -EINVAL;
goto unlock;
}
dst->excl = src->excl + level_size;
dst->excl_cmpr = src->excl_cmpr + level_size;
btrfs: qgroup: mark qgroup inconsistent if we're inherting snapshot to a new qgroup [BUG] For the following operation, qgroup is guaranteed to be screwed up due to snapshot adding to a new qgroup: # mkfs.btrfs -f $dev # mount $dev $mnt # btrfs qgroup en $mnt # btrfs subv create $mnt/src # xfs_io -f -c "pwrite 0 1m" $mnt/src/file # sync # btrfs qgroup create 1/0 $mnt/src # btrfs subv snapshot -i 1/0 $mnt/src $mnt/snapshot # btrfs qgroup show -prce $mnt/src qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16.00KiB 16.00KiB none none --- --- 0/257 1.02MiB 16.00KiB none none --- --- 0/258 1.02MiB 16.00KiB none none 1/0 --- 1/0 0.00B 0.00B none none --- 0/258 ^^^^^^^^^^^^^^^^^^^^ [CAUSE] The problem is in btrfs_qgroup_inherit(), we don't have good enough check to determine if the new relation would break the existing accounting. Unlike btrfs_add_qgroup_relation(), which has proper check to determine if we can do quick update without a rescan, in btrfs_qgroup_inherit() we can even assign a snapshot to multiple qgroups. [FIX] Fix it by manually marking qgroup inconsistent for snapshot inheritance. For subvolume creation, since all its extents are exclusively owned, we don't need to rescan. In theory, we should call relation check like quick_update_accounting() when doing qgroup inheritance and inform user about qgroup accounting inconsistency. But we don't have good mechanism to relay that back to the user in the snapshot creation context, thus we can only silently mark the qgroup inconsistent. Anyway, user shouldn't use qgroup inheritance during snapshot creation, and should add qgroup relationship after snapshot creation by 'btrfs qgroup assign', which has a much better UI to inform user about qgroup inconsistent and kick in rescan automatically. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-04-02 14:37:35 +08:00
need_rescan = true;
}
unlock:
spin_unlock(&fs_info->qgroup_lock);
if (!ret)
ret = btrfs_sysfs_add_one_qgroup(fs_info, dstgroup);
out:
btrfs: qgroup: Don't hold qgroup_ioctl_lock in btrfs_qgroup_inherit() [BUG] Lockdep will report the following circular locking dependency: WARNING: possible circular locking dependency detected 5.2.0-rc2-custom #24 Tainted: G O ------------------------------------------------------ btrfs/8631 is trying to acquire lock: 000000002536438c (&fs_info->qgroup_ioctl_lock#2){+.+.}, at: btrfs_qgroup_inherit+0x40/0x620 [btrfs] but task is already holding lock: 000000003d52cc23 (&fs_info->tree_log_mutex){+.+.}, at: create_pending_snapshot+0x8b6/0xe60 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (&fs_info->tree_log_mutex){+.+.}: __mutex_lock+0x76/0x940 mutex_lock_nested+0x1b/0x20 btrfs_commit_transaction+0x475/0xa00 [btrfs] btrfs_commit_super+0x71/0x80 [btrfs] close_ctree+0x2bd/0x320 [btrfs] btrfs_put_super+0x15/0x20 [btrfs] generic_shutdown_super+0x72/0x110 kill_anon_super+0x18/0x30 btrfs_kill_super+0x16/0xa0 [btrfs] deactivate_locked_super+0x3a/0x80 deactivate_super+0x51/0x60 cleanup_mnt+0x3f/0x80 __cleanup_mnt+0x12/0x20 task_work_run+0x94/0xb0 exit_to_usermode_loop+0xd8/0xe0 do_syscall_64+0x210/0x240 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #1 (&fs_info->reloc_mutex){+.+.}: __mutex_lock+0x76/0x940 mutex_lock_nested+0x1b/0x20 btrfs_commit_transaction+0x40d/0xa00 [btrfs] btrfs_quota_enable+0x2da/0x730 [btrfs] btrfs_ioctl+0x2691/0x2b40 [btrfs] do_vfs_ioctl+0xa9/0x6d0 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x65/0x240 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #0 (&fs_info->qgroup_ioctl_lock#2){+.+.}: lock_acquire+0xa7/0x190 __mutex_lock+0x76/0x940 mutex_lock_nested+0x1b/0x20 btrfs_qgroup_inherit+0x40/0x620 [btrfs] create_pending_snapshot+0x9d7/0xe60 [btrfs] create_pending_snapshots+0x94/0xb0 [btrfs] btrfs_commit_transaction+0x415/0xa00 [btrfs] btrfs_mksubvol+0x496/0x4e0 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0xa90/0x2b40 [btrfs] do_vfs_ioctl+0xa9/0x6d0 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x65/0x240 entry_SYSCALL_64_after_hwframe+0x49/0xbe other info that might help us debug this: Chain exists of: &fs_info->qgroup_ioctl_lock#2 --> &fs_info->reloc_mutex --> &fs_info->tree_log_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->tree_log_mutex); lock(&fs_info->reloc_mutex); lock(&fs_info->tree_log_mutex); lock(&fs_info->qgroup_ioctl_lock#2); *** DEADLOCK *** 6 locks held by btrfs/8631: #0: 00000000ed8f23f6 (sb_writers#12){.+.+}, at: mnt_want_write_file+0x28/0x60 #1: 000000009fb1597a (&type->i_mutex_dir_key#10/1){+.+.}, at: btrfs_mksubvol+0x70/0x4e0 [btrfs] #2: 0000000088c5ad88 (&fs_info->subvol_sem){++++}, at: btrfs_mksubvol+0x128/0x4e0 [btrfs] #3: 000000009606fc3e (sb_internal#2){.+.+}, at: start_transaction+0x37a/0x520 [btrfs] #4: 00000000f82bbdf5 (&fs_info->reloc_mutex){+.+.}, at: btrfs_commit_transaction+0x40d/0xa00 [btrfs] #5: 000000003d52cc23 (&fs_info->tree_log_mutex){+.+.}, at: create_pending_snapshot+0x8b6/0xe60 [btrfs] [CAUSE] Due to the delayed subvolume creation, we need to call btrfs_qgroup_inherit() inside commit transaction code, with a lot of other mutex hold. This hell of lock chain can lead to above problem. [FIX] On the other hand, we don't really need to hold qgroup_ioctl_lock if we're in the context of create_pending_snapshot(). As in that context, we're the only one being able to modify qgroup. All other qgroup functions which needs qgroup_ioctl_lock are either holding a transaction handle, or will start a new transaction: Functions will start a new transaction(): * btrfs_quota_enable() * btrfs_quota_disable() Functions hold a transaction handler: * btrfs_add_qgroup_relation() * btrfs_del_qgroup_relation() * btrfs_create_qgroup() * btrfs_remove_qgroup() * btrfs_limit_qgroup() * btrfs_qgroup_inherit() call inside create_subvol() So we have a higher level protection provided by transaction, thus we don't need to always hold qgroup_ioctl_lock in btrfs_qgroup_inherit(). Only the btrfs_qgroup_inherit() call in create_subvol() needs to hold qgroup_ioctl_lock, while the btrfs_qgroup_inherit() call in create_pending_snapshot() is already protected by transaction. So the fix is to detect the context by checking trans->transaction->state. If we're at TRANS_STATE_COMMIT_DOING, then we're in commit transaction context and no need to get the mutex. Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-06-13 17:31:24 +08:00
if (!committing)
mutex_unlock(&fs_info->qgroup_ioctl_lock);
btrfs: qgroup: mark qgroup inconsistent if we're inherting snapshot to a new qgroup [BUG] For the following operation, qgroup is guaranteed to be screwed up due to snapshot adding to a new qgroup: # mkfs.btrfs -f $dev # mount $dev $mnt # btrfs qgroup en $mnt # btrfs subv create $mnt/src # xfs_io -f -c "pwrite 0 1m" $mnt/src/file # sync # btrfs qgroup create 1/0 $mnt/src # btrfs subv snapshot -i 1/0 $mnt/src $mnt/snapshot # btrfs qgroup show -prce $mnt/src qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16.00KiB 16.00KiB none none --- --- 0/257 1.02MiB 16.00KiB none none --- --- 0/258 1.02MiB 16.00KiB none none 1/0 --- 1/0 0.00B 0.00B none none --- 0/258 ^^^^^^^^^^^^^^^^^^^^ [CAUSE] The problem is in btrfs_qgroup_inherit(), we don't have good enough check to determine if the new relation would break the existing accounting. Unlike btrfs_add_qgroup_relation(), which has proper check to determine if we can do quick update without a rescan, in btrfs_qgroup_inherit() we can even assign a snapshot to multiple qgroups. [FIX] Fix it by manually marking qgroup inconsistent for snapshot inheritance. For subvolume creation, since all its extents are exclusively owned, we don't need to rescan. In theory, we should call relation check like quick_update_accounting() when doing qgroup inheritance and inform user about qgroup accounting inconsistency. But we don't have good mechanism to relay that back to the user in the snapshot creation context, thus we can only silently mark the qgroup inconsistent. Anyway, user shouldn't use qgroup inheritance during snapshot creation, and should add qgroup relationship after snapshot creation by 'btrfs qgroup assign', which has a much better UI to inform user about qgroup inconsistent and kick in rescan automatically. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-04-02 14:37:35 +08:00
if (need_rescan)
qgroup_mark_inconsistent(fs_info);
return ret;
}
static bool qgroup_check_limits(const struct btrfs_qgroup *qg, u64 num_bytes)
{
if ((qg->lim_flags & BTRFS_QGROUP_LIMIT_MAX_RFER) &&
qgroup_rsv_total(qg) + (s64)qg->rfer + num_bytes > qg->max_rfer)
return false;
if ((qg->lim_flags & BTRFS_QGROUP_LIMIT_MAX_EXCL) &&
qgroup_rsv_total(qg) + (s64)qg->excl + num_bytes > qg->max_excl)
return false;
return true;
}
static int qgroup_reserve(struct btrfs_root *root, u64 num_bytes, bool enforce,
enum btrfs_qgroup_rsv_type type)
{
struct btrfs_qgroup *qgroup;
struct btrfs_fs_info *fs_info = root->fs_info;
u64 ref_root = root->root_key.objectid;
int ret = 0;
struct ulist_node *unode;
struct ulist_iterator uiter;
if (!is_fstree(ref_root))
return 0;
if (num_bytes == 0)
return 0;
if (test_bit(BTRFS_FS_QUOTA_OVERRIDE, &fs_info->flags) &&
capable(CAP_SYS_RESOURCE))
enforce = false;
spin_lock(&fs_info->qgroup_lock);
if (!fs_info->quota_root)
goto out;
qgroup = find_qgroup_rb(fs_info, ref_root);
if (!qgroup)
goto out;
/*
* in a first step, we check all affected qgroups if any limits would
* be exceeded
*/
ulist_reinit(fs_info->qgroup_ulist);
ret = ulist_add(fs_info->qgroup_ulist, qgroup->qgroupid,
qgroup_to_aux(qgroup), GFP_ATOMIC);
if (ret < 0)
goto out;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) {
struct btrfs_qgroup *qg;
struct btrfs_qgroup_list *glist;
qg = unode_aux_to_qgroup(unode);
if (enforce && !qgroup_check_limits(qg, num_bytes)) {
ret = -EDQUOT;
goto out;
}
list_for_each_entry(glist, &qg->groups, next_group) {
ret = ulist_add(fs_info->qgroup_ulist,
glist->group->qgroupid,
qgroup_to_aux(glist->group), GFP_ATOMIC);
if (ret < 0)
goto out;
}
}
ret = 0;
/*
* no limits exceeded, now record the reservation into all qgroups
*/
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) {
struct btrfs_qgroup *qg;
qg = unode_aux_to_qgroup(unode);
qgroup_rsv_add(fs_info, qg, num_bytes, type);
}
out:
spin_unlock(&fs_info->qgroup_lock);
return ret;
}
/*
* Free @num_bytes of reserved space with @type for qgroup. (Normally level 0
* qgroup).
*
* Will handle all higher level qgroup too.
*
* NOTE: If @num_bytes is (u64)-1, this means to free all bytes of this qgroup.
* This special case is only used for META_PERTRANS type.
*/
void btrfs_qgroup_free_refroot(struct btrfs_fs_info *fs_info,
u64 ref_root, u64 num_bytes,
enum btrfs_qgroup_rsv_type type)
{
struct btrfs_qgroup *qgroup;
struct ulist_node *unode;
struct ulist_iterator uiter;
int ret = 0;
if (!is_fstree(ref_root))
return;
if (num_bytes == 0)
return;
if (num_bytes == (u64)-1 && type != BTRFS_QGROUP_RSV_META_PERTRANS) {
WARN(1, "%s: Invalid type to free", __func__);
return;
}
spin_lock(&fs_info->qgroup_lock);
if (!fs_info->quota_root)
goto out;
qgroup = find_qgroup_rb(fs_info, ref_root);
if (!qgroup)
goto out;
if (num_bytes == (u64)-1)
/*
* We're freeing all pertrans rsv, get reserved value from
* level 0 qgroup as real num_bytes to free.
*/
num_bytes = qgroup->rsv.values[type];
ulist_reinit(fs_info->qgroup_ulist);
ret = ulist_add(fs_info->qgroup_ulist, qgroup->qgroupid,
qgroup_to_aux(qgroup), GFP_ATOMIC);
if (ret < 0)
goto out;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) {
struct btrfs_qgroup *qg;
struct btrfs_qgroup_list *glist;
qg = unode_aux_to_qgroup(unode);
qgroup_rsv_release(fs_info, qg, num_bytes, type);
list_for_each_entry(glist, &qg->groups, next_group) {
ret = ulist_add(fs_info->qgroup_ulist,
glist->group->qgroupid,
qgroup_to_aux(glist->group), GFP_ATOMIC);
if (ret < 0)
goto out;
}
}
out:
spin_unlock(&fs_info->qgroup_lock);
}
btrfs: qgroup: Finish rescan when hit the last leaf of extent tree Under the following case, qgroup rescan can double account cowed tree blocks: In this case, extent tree only has one tree block. - | transid=5 last committed=4 | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 4). | Scan it, set qgroup_rescan_progress to the last | EXTENT/META_ITEM + 1 | now qgroup_rescan_progress = A + 1. | | fs tree get CoWed, new tree block is at A + 16K | transid 5 get committed - | transid=6 last committed=5 | btrfs_qgroup_rescan_worker() | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 5). | scan it using qgroup_rescan_progress (A + 1). | found new tree block beyong A, and it's fs tree block, | account it to increase qgroup numbers. - In above case, tree block A, and tree block A + 16K get accounted twice, while qgroup rescan should stop when it already reach the last leaf, other than continue using its qgroup_rescan_progress. Such case could happen by just looping btrfs/017 and with some possibility it can hit such double qgroup accounting problem. Fix it by checking the path to determine if we should finish qgroup rescan, other than relying on next loop to exit. Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-14 09:38:13 +08:00
/*
* Check if the leaf is the last leaf. Which means all node pointers
* are at their last position.
*/
static bool is_last_leaf(struct btrfs_path *path)
{
int i;
for (i = 1; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
if (path->slots[i] != btrfs_header_nritems(path->nodes[i]) - 1)
return false;
}
return true;
}
/*
* returns < 0 on error, 0 when more leafs are to be scanned.
* returns 1 when done.
*/
static int qgroup_rescan_leaf(struct btrfs_trans_handle *trans,
struct btrfs_path *path)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *extent_root;
struct btrfs_key found;
struct extent_buffer *scratch_leaf = NULL;
Btrfs: rework qgroup accounting Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-13 17:30:47 -07:00
u64 num_bytes;
btrfs: qgroup: Finish rescan when hit the last leaf of extent tree Under the following case, qgroup rescan can double account cowed tree blocks: In this case, extent tree only has one tree block. - | transid=5 last committed=4 | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 4). | Scan it, set qgroup_rescan_progress to the last | EXTENT/META_ITEM + 1 | now qgroup_rescan_progress = A + 1. | | fs tree get CoWed, new tree block is at A + 16K | transid 5 get committed - | transid=6 last committed=5 | btrfs_qgroup_rescan_worker() | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 5). | scan it using qgroup_rescan_progress (A + 1). | found new tree block beyong A, and it's fs tree block, | account it to increase qgroup numbers. - In above case, tree block A, and tree block A + 16K get accounted twice, while qgroup rescan should stop when it already reach the last leaf, other than continue using its qgroup_rescan_progress. Such case could happen by just looping btrfs/017 and with some possibility it can hit such double qgroup accounting problem. Fix it by checking the path to determine if we should finish qgroup rescan, other than relying on next loop to exit. Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-14 09:38:13 +08:00
bool done;
int slot;
int ret;
mutex_lock(&fs_info->qgroup_rescan_lock);
extent_root = btrfs_extent_root(fs_info,
fs_info->qgroup_rescan_progress.objectid);
ret = btrfs_search_slot_for_read(extent_root,
&fs_info->qgroup_rescan_progress,
path, 1, 0);
btrfs_debug(fs_info,
"current progress key (%llu %u %llu), search_slot ret %d",
fs_info->qgroup_rescan_progress.objectid,
fs_info->qgroup_rescan_progress.type,
fs_info->qgroup_rescan_progress.offset, ret);
if (ret) {
/*
* The rescan is about to end, we will not be scanning any
* further blocks. We cannot unset the RESCAN flag here, because
* we want to commit the transaction if everything went well.
* To make the live accounting work in this phase, we set our
* scan progress pointer such that every real extent objectid
* will be smaller.
*/
fs_info->qgroup_rescan_progress.objectid = (u64)-1;
btrfs_release_path(path);
mutex_unlock(&fs_info->qgroup_rescan_lock);
return ret;
}
btrfs: qgroup: Finish rescan when hit the last leaf of extent tree Under the following case, qgroup rescan can double account cowed tree blocks: In this case, extent tree only has one tree block. - | transid=5 last committed=4 | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 4). | Scan it, set qgroup_rescan_progress to the last | EXTENT/META_ITEM + 1 | now qgroup_rescan_progress = A + 1. | | fs tree get CoWed, new tree block is at A + 16K | transid 5 get committed - | transid=6 last committed=5 | btrfs_qgroup_rescan_worker() | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 5). | scan it using qgroup_rescan_progress (A + 1). | found new tree block beyong A, and it's fs tree block, | account it to increase qgroup numbers. - In above case, tree block A, and tree block A + 16K get accounted twice, while qgroup rescan should stop when it already reach the last leaf, other than continue using its qgroup_rescan_progress. Such case could happen by just looping btrfs/017 and with some possibility it can hit such double qgroup accounting problem. Fix it by checking the path to determine if we should finish qgroup rescan, other than relying on next loop to exit. Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-14 09:38:13 +08:00
done = is_last_leaf(path);
btrfs_item_key_to_cpu(path->nodes[0], &found,
btrfs_header_nritems(path->nodes[0]) - 1);
fs_info->qgroup_rescan_progress.objectid = found.objectid + 1;
scratch_leaf = btrfs_clone_extent_buffer(path->nodes[0]);
if (!scratch_leaf) {
ret = -ENOMEM;
mutex_unlock(&fs_info->qgroup_rescan_lock);
goto out;
}
slot = path->slots[0];
btrfs_release_path(path);
mutex_unlock(&fs_info->qgroup_rescan_lock);
for (; slot < btrfs_header_nritems(scratch_leaf); ++slot) {
struct btrfs_backref_walk_ctx ctx = { 0 };
btrfs_item_key_to_cpu(scratch_leaf, &found, slot);
if (found.type != BTRFS_EXTENT_ITEM_KEY &&
found.type != BTRFS_METADATA_ITEM_KEY)
continue;
if (found.type == BTRFS_METADATA_ITEM_KEY)
num_bytes = fs_info->nodesize;
else
num_bytes = found.offset;
ctx.bytenr = found.objectid;
ctx.fs_info = fs_info;
ret = btrfs_find_all_roots(&ctx, false);
if (ret < 0)
goto out;
/* For rescan, just pass old_roots as NULL */
ret = btrfs_qgroup_account_extent(trans, found.objectid,
num_bytes, NULL, ctx.roots);
if (ret < 0)
Btrfs: rework qgroup accounting Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-13 17:30:47 -07:00
goto out;
}
out:
if (scratch_leaf)
free_extent_buffer(scratch_leaf);
if (done && !ret) {
btrfs: qgroup: Finish rescan when hit the last leaf of extent tree Under the following case, qgroup rescan can double account cowed tree blocks: In this case, extent tree only has one tree block. - | transid=5 last committed=4 | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 4). | Scan it, set qgroup_rescan_progress to the last | EXTENT/META_ITEM + 1 | now qgroup_rescan_progress = A + 1. | | fs tree get CoWed, new tree block is at A + 16K | transid 5 get committed - | transid=6 last committed=5 | btrfs_qgroup_rescan_worker() | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 5). | scan it using qgroup_rescan_progress (A + 1). | found new tree block beyong A, and it's fs tree block, | account it to increase qgroup numbers. - In above case, tree block A, and tree block A + 16K get accounted twice, while qgroup rescan should stop when it already reach the last leaf, other than continue using its qgroup_rescan_progress. Such case could happen by just looping btrfs/017 and with some possibility it can hit such double qgroup accounting problem. Fix it by checking the path to determine if we should finish qgroup rescan, other than relying on next loop to exit. Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-14 09:38:13 +08:00
ret = 1;
fs_info->qgroup_rescan_progress.objectid = (u64)-1;
}
return ret;
}
btrfs: fix transaction leak and crash after RO remount caused by qgroup rescan If we remount a filesystem in RO mode while the qgroup rescan worker is running, we can end up having it still running after the remount is done, and at unmount time we may end up with an open transaction that ends up never getting committed. If that happens we end up with several memory leaks and can crash when hardware acceleration is unavailable for crc32c. Possibly it can lead to other nasty surprises too, due to use-after-free issues. The following steps explain how the problem happens. 1) We have a filesystem mounted in RW mode and the qgroup rescan worker is running; 2) We remount the filesystem in RO mode, and never stop/pause the rescan worker, so after the remount the rescan worker is still running. The important detail here is that the rescan task is still running after the remount operation committed any ongoing transaction through its call to btrfs_commit_super(); 3) The rescan is still running, and after the remount completed, the rescan worker started a transaction, after it finished iterating all leaves of the extent tree, to update the qgroup status item in the quotas tree. It does not commit the transaction, it only releases its handle on the transaction; 4) A filesystem unmount operation starts shortly after; 5) The unmount task, at close_ctree(), stops the transaction kthread, which had not had a chance to commit the open transaction since it was sleeping and the commit interval (default of 30 seconds) has not yet elapsed since the last time it committed a transaction; 6) So after stopping the transaction kthread we still have the transaction used to update the qgroup status item open. At close_ctree(), when the filesystem is in RO mode and no transaction abort happened (or the filesystem is in error mode), we do not expect to have any transaction open, so we do not call btrfs_commit_super(); 7) We then proceed to destroy the work queues, free the roots and block groups, etc. After that we drop the last reference on the btree inode by calling iput() on it. Since there are dirty pages for the btree inode, corresponding to the COWed extent buffer for the quotas btree, btree_write_cache_pages() is invoked to flush those dirty pages. This results in creating a bio and submitting it, which makes us end up at btrfs_submit_metadata_bio(); 8) At btrfs_submit_metadata_bio() we end up at the if-then-else branch that calls btrfs_wq_submit_bio(), because check_async_write() returned a value of 1. This value of 1 is because we did not have hardware acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not set in fs_info->flags; 9) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the workqueue at fs_info->workers, which was already freed before by the call to btrfs_stop_all_workers() at close_ctree(). This results in an invalid memory access due to a use-after-free, leading to a crash. When this happens, before the crash there are several warnings triggered, since we have reserved metadata space in a block group, the delayed refs reservation, etc: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs] Code: f0 01 00 00 48 39 c2 75 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8 RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800 RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x17f/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 48 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c6 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Code: 48 83 bb b0 03 00 00 00 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x24c/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c7 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Code: ad de 49 be 22 01 00 (...) RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206 RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246 RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c8 ]--- BTRFS info (device sdc): space_info 4 has 268238848 free, is not full BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536 BTRFS info (device sdc): global_block_rsv: size 0 reserved 0 BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0 BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0 And the crash, which only happens when we do not have crc32c hardware acceleration, produces the following trace immediately after those warnings: stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs] Code: 54 55 53 48 89 f3 (...) RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282 RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0 RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8 R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000 FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_wq_submit_bio+0xb3/0xd0 [btrfs] btrfs_submit_metadata_bio+0x44/0xc0 [btrfs] submit_one_bio+0x61/0x70 [btrfs] btree_write_cache_pages+0x414/0x450 [btrfs] ? kobject_put+0x9a/0x1d0 ? trace_hardirqs_on+0x1b/0xf0 ? _raw_spin_unlock_irqrestore+0x3c/0x60 ? free_debug_processing+0x1e1/0x2b0 do_writepages+0x43/0xe0 ? lock_acquired+0x199/0x490 __writeback_single_inode+0x59/0x650 writeback_single_inode+0xaf/0x120 write_inode_now+0x94/0xd0 iput+0x187/0x2b0 close_ctree+0x2c6/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f3cfebabee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000 RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0 R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000 R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60 Modules linked in: btrfs dm_snapshot dm_thin_pool (...) ---[ end trace dd74718fef1ed5cc ]--- Finally when we remove the btrfs module (rmmod btrfs), there are several warnings about objects that were allocated from our slabs but were never freed, consequence of the transaction that was never committed and got leaked: ============================================================================= BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x0000000050cbdd61 @offset=12104 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x0000000086e9b0ff @offset=12776 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs] commit_cowonly_roots+0x248/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 0b (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200 CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000001a340018 @offset=4408 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_commit_transaction+0x60/0xc40 [btrfs] create_subvol+0x56a/0x990 [btrfs] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] btrfs_ioctl+0x1a92/0x36f0 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x000000002b46292a @offset=13648 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? __mutex_unlock_slowpath+0x45/0x2a0 kmem_cache_destroy+0x55/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000004cf95ea8 @offset=6264 INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1 Fix this issue by having the remount path stop the qgroup rescan worker when we are remounting RO and teach the rescan worker to stop when a remount is in progress. If later a remount in RW mode happens, we are already resuming the qgroup rescan worker through the call to btrfs_qgroup_rescan_resume(), so we do not need to worry about that. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-14 10:10:45 +00:00
static bool rescan_should_stop(struct btrfs_fs_info *fs_info)
{
return btrfs_fs_closing(fs_info) ||
test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state) ||
!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) ||
fs_info->qgroup_flags & BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN;
btrfs: fix transaction leak and crash after RO remount caused by qgroup rescan If we remount a filesystem in RO mode while the qgroup rescan worker is running, we can end up having it still running after the remount is done, and at unmount time we may end up with an open transaction that ends up never getting committed. If that happens we end up with several memory leaks and can crash when hardware acceleration is unavailable for crc32c. Possibly it can lead to other nasty surprises too, due to use-after-free issues. The following steps explain how the problem happens. 1) We have a filesystem mounted in RW mode and the qgroup rescan worker is running; 2) We remount the filesystem in RO mode, and never stop/pause the rescan worker, so after the remount the rescan worker is still running. The important detail here is that the rescan task is still running after the remount operation committed any ongoing transaction through its call to btrfs_commit_super(); 3) The rescan is still running, and after the remount completed, the rescan worker started a transaction, after it finished iterating all leaves of the extent tree, to update the qgroup status item in the quotas tree. It does not commit the transaction, it only releases its handle on the transaction; 4) A filesystem unmount operation starts shortly after; 5) The unmount task, at close_ctree(), stops the transaction kthread, which had not had a chance to commit the open transaction since it was sleeping and the commit interval (default of 30 seconds) has not yet elapsed since the last time it committed a transaction; 6) So after stopping the transaction kthread we still have the transaction used to update the qgroup status item open. At close_ctree(), when the filesystem is in RO mode and no transaction abort happened (or the filesystem is in error mode), we do not expect to have any transaction open, so we do not call btrfs_commit_super(); 7) We then proceed to destroy the work queues, free the roots and block groups, etc. After that we drop the last reference on the btree inode by calling iput() on it. Since there are dirty pages for the btree inode, corresponding to the COWed extent buffer for the quotas btree, btree_write_cache_pages() is invoked to flush those dirty pages. This results in creating a bio and submitting it, which makes us end up at btrfs_submit_metadata_bio(); 8) At btrfs_submit_metadata_bio() we end up at the if-then-else branch that calls btrfs_wq_submit_bio(), because check_async_write() returned a value of 1. This value of 1 is because we did not have hardware acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not set in fs_info->flags; 9) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the workqueue at fs_info->workers, which was already freed before by the call to btrfs_stop_all_workers() at close_ctree(). This results in an invalid memory access due to a use-after-free, leading to a crash. When this happens, before the crash there are several warnings triggered, since we have reserved metadata space in a block group, the delayed refs reservation, etc: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs] Code: f0 01 00 00 48 39 c2 75 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8 RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800 RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x17f/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 48 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c6 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Code: 48 83 bb b0 03 00 00 00 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x24c/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c7 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Code: ad de 49 be 22 01 00 (...) RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206 RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246 RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c8 ]--- BTRFS info (device sdc): space_info 4 has 268238848 free, is not full BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536 BTRFS info (device sdc): global_block_rsv: size 0 reserved 0 BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0 BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0 And the crash, which only happens when we do not have crc32c hardware acceleration, produces the following trace immediately after those warnings: stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs] Code: 54 55 53 48 89 f3 (...) RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282 RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0 RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8 R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000 FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_wq_submit_bio+0xb3/0xd0 [btrfs] btrfs_submit_metadata_bio+0x44/0xc0 [btrfs] submit_one_bio+0x61/0x70 [btrfs] btree_write_cache_pages+0x414/0x450 [btrfs] ? kobject_put+0x9a/0x1d0 ? trace_hardirqs_on+0x1b/0xf0 ? _raw_spin_unlock_irqrestore+0x3c/0x60 ? free_debug_processing+0x1e1/0x2b0 do_writepages+0x43/0xe0 ? lock_acquired+0x199/0x490 __writeback_single_inode+0x59/0x650 writeback_single_inode+0xaf/0x120 write_inode_now+0x94/0xd0 iput+0x187/0x2b0 close_ctree+0x2c6/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f3cfebabee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000 RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0 R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000 R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60 Modules linked in: btrfs dm_snapshot dm_thin_pool (...) ---[ end trace dd74718fef1ed5cc ]--- Finally when we remove the btrfs module (rmmod btrfs), there are several warnings about objects that were allocated from our slabs but were never freed, consequence of the transaction that was never committed and got leaked: ============================================================================= BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x0000000050cbdd61 @offset=12104 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x0000000086e9b0ff @offset=12776 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs] commit_cowonly_roots+0x248/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 0b (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200 CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000001a340018 @offset=4408 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_commit_transaction+0x60/0xc40 [btrfs] create_subvol+0x56a/0x990 [btrfs] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] btrfs_ioctl+0x1a92/0x36f0 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x000000002b46292a @offset=13648 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? __mutex_unlock_slowpath+0x45/0x2a0 kmem_cache_destroy+0x55/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000004cf95ea8 @offset=6264 INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1 Fix this issue by having the remount path stop the qgroup rescan worker when we are remounting RO and teach the rescan worker to stop when a remount is in progress. If later a remount in RW mode happens, we are already resuming the qgroup rescan worker through the call to btrfs_qgroup_rescan_resume(), so we do not need to worry about that. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-14 10:10:45 +00:00
}
static void btrfs_qgroup_rescan_worker(struct btrfs_work *work)
{
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
struct btrfs_fs_info *fs_info = container_of(work, struct btrfs_fs_info,
qgroup_rescan_work);
struct btrfs_path *path;
struct btrfs_trans_handle *trans = NULL;
int err = -ENOMEM;
int ret = 0;
btrfs: fix transaction leak and crash after RO remount caused by qgroup rescan If we remount a filesystem in RO mode while the qgroup rescan worker is running, we can end up having it still running after the remount is done, and at unmount time we may end up with an open transaction that ends up never getting committed. If that happens we end up with several memory leaks and can crash when hardware acceleration is unavailable for crc32c. Possibly it can lead to other nasty surprises too, due to use-after-free issues. The following steps explain how the problem happens. 1) We have a filesystem mounted in RW mode and the qgroup rescan worker is running; 2) We remount the filesystem in RO mode, and never stop/pause the rescan worker, so after the remount the rescan worker is still running. The important detail here is that the rescan task is still running after the remount operation committed any ongoing transaction through its call to btrfs_commit_super(); 3) The rescan is still running, and after the remount completed, the rescan worker started a transaction, after it finished iterating all leaves of the extent tree, to update the qgroup status item in the quotas tree. It does not commit the transaction, it only releases its handle on the transaction; 4) A filesystem unmount operation starts shortly after; 5) The unmount task, at close_ctree(), stops the transaction kthread, which had not had a chance to commit the open transaction since it was sleeping and the commit interval (default of 30 seconds) has not yet elapsed since the last time it committed a transaction; 6) So after stopping the transaction kthread we still have the transaction used to update the qgroup status item open. At close_ctree(), when the filesystem is in RO mode and no transaction abort happened (or the filesystem is in error mode), we do not expect to have any transaction open, so we do not call btrfs_commit_super(); 7) We then proceed to destroy the work queues, free the roots and block groups, etc. After that we drop the last reference on the btree inode by calling iput() on it. Since there are dirty pages for the btree inode, corresponding to the COWed extent buffer for the quotas btree, btree_write_cache_pages() is invoked to flush those dirty pages. This results in creating a bio and submitting it, which makes us end up at btrfs_submit_metadata_bio(); 8) At btrfs_submit_metadata_bio() we end up at the if-then-else branch that calls btrfs_wq_submit_bio(), because check_async_write() returned a value of 1. This value of 1 is because we did not have hardware acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not set in fs_info->flags; 9) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the workqueue at fs_info->workers, which was already freed before by the call to btrfs_stop_all_workers() at close_ctree(). This results in an invalid memory access due to a use-after-free, leading to a crash. When this happens, before the crash there are several warnings triggered, since we have reserved metadata space in a block group, the delayed refs reservation, etc: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs] Code: f0 01 00 00 48 39 c2 75 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8 RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800 RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x17f/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 48 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c6 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Code: 48 83 bb b0 03 00 00 00 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x24c/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c7 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Code: ad de 49 be 22 01 00 (...) RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206 RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246 RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c8 ]--- BTRFS info (device sdc): space_info 4 has 268238848 free, is not full BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536 BTRFS info (device sdc): global_block_rsv: size 0 reserved 0 BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0 BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0 And the crash, which only happens when we do not have crc32c hardware acceleration, produces the following trace immediately after those warnings: stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs] Code: 54 55 53 48 89 f3 (...) RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282 RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0 RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8 R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000 FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_wq_submit_bio+0xb3/0xd0 [btrfs] btrfs_submit_metadata_bio+0x44/0xc0 [btrfs] submit_one_bio+0x61/0x70 [btrfs] btree_write_cache_pages+0x414/0x450 [btrfs] ? kobject_put+0x9a/0x1d0 ? trace_hardirqs_on+0x1b/0xf0 ? _raw_spin_unlock_irqrestore+0x3c/0x60 ? free_debug_processing+0x1e1/0x2b0 do_writepages+0x43/0xe0 ? lock_acquired+0x199/0x490 __writeback_single_inode+0x59/0x650 writeback_single_inode+0xaf/0x120 write_inode_now+0x94/0xd0 iput+0x187/0x2b0 close_ctree+0x2c6/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f3cfebabee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000 RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0 R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000 R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60 Modules linked in: btrfs dm_snapshot dm_thin_pool (...) ---[ end trace dd74718fef1ed5cc ]--- Finally when we remove the btrfs module (rmmod btrfs), there are several warnings about objects that were allocated from our slabs but were never freed, consequence of the transaction that was never committed and got leaked: ============================================================================= BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x0000000050cbdd61 @offset=12104 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x0000000086e9b0ff @offset=12776 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs] commit_cowonly_roots+0x248/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 0b (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200 CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000001a340018 @offset=4408 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_commit_transaction+0x60/0xc40 [btrfs] create_subvol+0x56a/0x990 [btrfs] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] btrfs_ioctl+0x1a92/0x36f0 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x000000002b46292a @offset=13648 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? __mutex_unlock_slowpath+0x45/0x2a0 kmem_cache_destroy+0x55/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000004cf95ea8 @offset=6264 INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1 Fix this issue by having the remount path stop the qgroup rescan worker when we are remounting RO and teach the rescan worker to stop when a remount is in progress. If later a remount in RW mode happens, we are already resuming the qgroup rescan worker through the call to btrfs_qgroup_rescan_resume(), so we do not need to worry about that. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-14 10:10:45 +00:00
bool stopped = false;
btrfs: fix race between quota rescan and disable leading to NULL pointer deref If we have one task trying to start the quota rescan worker while another one is trying to disable quotas, we can end up hitting a race that results in the quota rescan worker doing a NULL pointer dereference. The steps for this are the following: 1) Quotas are enabled; 2) Task A calls the quota rescan ioctl and enters btrfs_qgroup_rescan(). It calls qgroup_rescan_init() which returns 0 (success) and then joins a transaction and commits it; 3) Task B calls the quota disable ioctl and enters btrfs_quota_disable(). It clears the bit BTRFS_FS_QUOTA_ENABLED from fs_info->flags and calls btrfs_qgroup_wait_for_completion(), which returns immediately since the rescan worker is not yet running. Then it starts a transaction and locks fs_info->qgroup_ioctl_lock; 4) Task A queues the rescan worker, by calling btrfs_queue_work(); 5) The rescan worker starts, and calls rescan_should_stop() at the start of its while loop, which results in 0 iterations of the loop, since the flag BTRFS_FS_QUOTA_ENABLED was cleared from fs_info->flags by task B at step 3); 6) Task B sets fs_info->quota_root to NULL; 7) The rescan worker tries to start a transaction and uses fs_info->quota_root as the root argument for btrfs_start_transaction(). This results in a NULL pointer dereference down the call chain of btrfs_start_transaction(). The stack trace is something like the one reported in Link tag below: general protection fault, probably for non-canonical address 0xdffffc0000000041: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000208-0x000000000000020f] CPU: 1 PID: 34 Comm: kworker/u4:2 Not tainted 6.1.0-syzkaller-13872-gb6bb9676f216 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: btrfs-qgroup-rescan btrfs_work_helper RIP: 0010:start_transaction+0x48/0x10f0 fs/btrfs/transaction.c:564 Code: 48 89 fb 48 (...) RSP: 0018:ffffc90000ab7ab0 EFLAGS: 00010206 RAX: 0000000000000041 RBX: 0000000000000208 RCX: ffff88801779ba80 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000 RBP: dffffc0000000000 R08: 0000000000000001 R09: fffff52000156f5d R10: fffff52000156f5d R11: 1ffff92000156f5c R12: 0000000000000000 R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2bea75b718 CR3: 000000001d0cc000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_qgroup_rescan_worker+0x3bb/0x6a0 fs/btrfs/qgroup.c:3402 btrfs_work_helper+0x312/0x850 fs/btrfs/async-thread.c:280 process_one_work+0x877/0xdb0 kernel/workqueue.c:2289 worker_thread+0xb14/0x1330 kernel/workqueue.c:2436 kthread+0x266/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: So fix this by having the rescan worker function not attempt to start a transaction if it didn't do any rescan work. Reported-by: syzbot+96977faa68092ad382c4@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/000000000000e5454b05f065a803@google.com/ Fixes: e804861bd4e6 ("btrfs: fix deadlock between quota disable and qgroup rescan worker") CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-12 16:31:08 +00:00
bool did_leaf_rescans = false;
path = btrfs_alloc_path();
if (!path)
goto out;
btrfs: qgroup: Search commit root for rescan to avoid missing extent When doing qgroup rescan using the following script (modified from btrfs/017 test case), we can sometimes hit qgroup corruption. ------ umount $dev &> /dev/null umount $mnt &> /dev/null mkfs.btrfs -f -n 64k $dev mount $dev $mnt extent_size=8192 xfs_io -f -d -c "pwrite 0 $extent_size" $mnt/foo > /dev/null btrfs subvolume snapshot $mnt $mnt/snap xfs_io -f -c "reflink $mnt/foo" $mnt/foo-reflink > /dev/null xfs_io -f -c "reflink $mnt/foo" $mnt/snap/foo-reflink > /dev/null xfs_io -f -c "reflink $mnt/foo" $mnt/snap/foo-reflink2 > /dev/unll btrfs quota enable $mnt # -W is the new option to only wait rescan while not starting new one btrfs quota rescan -W $mnt btrfs qgroup show -prce $mnt umount $mnt # Need to patch btrfs-progs to report qgroup mismatch as error btrfs check $dev || _fail ------ For fast machine, we can hit some corruption which missed accounting tree blocks: ------ qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 8.00KiB 0.00B none none --- --- 0/257 8.00KiB 0.00B none none --- --- ------ This is due to the fact that we're always searching commit root for btrfs_find_all_roots() at qgroup_rescan_leaf(), but the leaf we get is from current transaction, not commit root. And if our tree blocks get modified in current transaction, we won't find any owner in commit root, thus causing the corruption. Fix it by searching commit root for extent tree for qgroup_rescan_leaf(). Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-14 09:38:12 +08:00
/*
* Rescan should only search for commit root, and any later difference
* should be recorded by qgroup
*/
path->search_commit_root = 1;
path->skip_locking = 1;
err = 0;
btrfs: fix transaction leak and crash after RO remount caused by qgroup rescan If we remount a filesystem in RO mode while the qgroup rescan worker is running, we can end up having it still running after the remount is done, and at unmount time we may end up with an open transaction that ends up never getting committed. If that happens we end up with several memory leaks and can crash when hardware acceleration is unavailable for crc32c. Possibly it can lead to other nasty surprises too, due to use-after-free issues. The following steps explain how the problem happens. 1) We have a filesystem mounted in RW mode and the qgroup rescan worker is running; 2) We remount the filesystem in RO mode, and never stop/pause the rescan worker, so after the remount the rescan worker is still running. The important detail here is that the rescan task is still running after the remount operation committed any ongoing transaction through its call to btrfs_commit_super(); 3) The rescan is still running, and after the remount completed, the rescan worker started a transaction, after it finished iterating all leaves of the extent tree, to update the qgroup status item in the quotas tree. It does not commit the transaction, it only releases its handle on the transaction; 4) A filesystem unmount operation starts shortly after; 5) The unmount task, at close_ctree(), stops the transaction kthread, which had not had a chance to commit the open transaction since it was sleeping and the commit interval (default of 30 seconds) has not yet elapsed since the last time it committed a transaction; 6) So after stopping the transaction kthread we still have the transaction used to update the qgroup status item open. At close_ctree(), when the filesystem is in RO mode and no transaction abort happened (or the filesystem is in error mode), we do not expect to have any transaction open, so we do not call btrfs_commit_super(); 7) We then proceed to destroy the work queues, free the roots and block groups, etc. After that we drop the last reference on the btree inode by calling iput() on it. Since there are dirty pages for the btree inode, corresponding to the COWed extent buffer for the quotas btree, btree_write_cache_pages() is invoked to flush those dirty pages. This results in creating a bio and submitting it, which makes us end up at btrfs_submit_metadata_bio(); 8) At btrfs_submit_metadata_bio() we end up at the if-then-else branch that calls btrfs_wq_submit_bio(), because check_async_write() returned a value of 1. This value of 1 is because we did not have hardware acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not set in fs_info->flags; 9) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the workqueue at fs_info->workers, which was already freed before by the call to btrfs_stop_all_workers() at close_ctree(). This results in an invalid memory access due to a use-after-free, leading to a crash. When this happens, before the crash there are several warnings triggered, since we have reserved metadata space in a block group, the delayed refs reservation, etc: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs] Code: f0 01 00 00 48 39 c2 75 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8 RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800 RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x17f/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 48 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c6 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Code: 48 83 bb b0 03 00 00 00 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x24c/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c7 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Code: ad de 49 be 22 01 00 (...) RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206 RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246 RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c8 ]--- BTRFS info (device sdc): space_info 4 has 268238848 free, is not full BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536 BTRFS info (device sdc): global_block_rsv: size 0 reserved 0 BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0 BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0 And the crash, which only happens when we do not have crc32c hardware acceleration, produces the following trace immediately after those warnings: stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs] Code: 54 55 53 48 89 f3 (...) RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282 RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0 RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8 R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000 FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_wq_submit_bio+0xb3/0xd0 [btrfs] btrfs_submit_metadata_bio+0x44/0xc0 [btrfs] submit_one_bio+0x61/0x70 [btrfs] btree_write_cache_pages+0x414/0x450 [btrfs] ? kobject_put+0x9a/0x1d0 ? trace_hardirqs_on+0x1b/0xf0 ? _raw_spin_unlock_irqrestore+0x3c/0x60 ? free_debug_processing+0x1e1/0x2b0 do_writepages+0x43/0xe0 ? lock_acquired+0x199/0x490 __writeback_single_inode+0x59/0x650 writeback_single_inode+0xaf/0x120 write_inode_now+0x94/0xd0 iput+0x187/0x2b0 close_ctree+0x2c6/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f3cfebabee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000 RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0 R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000 R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60 Modules linked in: btrfs dm_snapshot dm_thin_pool (...) ---[ end trace dd74718fef1ed5cc ]--- Finally when we remove the btrfs module (rmmod btrfs), there are several warnings about objects that were allocated from our slabs but were never freed, consequence of the transaction that was never committed and got leaked: ============================================================================= BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x0000000050cbdd61 @offset=12104 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x0000000086e9b0ff @offset=12776 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs] commit_cowonly_roots+0x248/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 0b (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200 CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000001a340018 @offset=4408 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_commit_transaction+0x60/0xc40 [btrfs] create_subvol+0x56a/0x990 [btrfs] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] btrfs_ioctl+0x1a92/0x36f0 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x000000002b46292a @offset=13648 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? __mutex_unlock_slowpath+0x45/0x2a0 kmem_cache_destroy+0x55/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000004cf95ea8 @offset=6264 INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1 Fix this issue by having the remount path stop the qgroup rescan worker when we are remounting RO and teach the rescan worker to stop when a remount is in progress. If later a remount in RW mode happens, we are already resuming the qgroup rescan worker through the call to btrfs_qgroup_rescan_resume(), so we do not need to worry about that. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-14 10:10:45 +00:00
while (!err && !(stopped = rescan_should_stop(fs_info))) {
trans = btrfs_start_transaction(fs_info->fs_root, 0);
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
break;
}
err = qgroup_rescan_leaf(trans, path);
btrfs: fix race between quota rescan and disable leading to NULL pointer deref If we have one task trying to start the quota rescan worker while another one is trying to disable quotas, we can end up hitting a race that results in the quota rescan worker doing a NULL pointer dereference. The steps for this are the following: 1) Quotas are enabled; 2) Task A calls the quota rescan ioctl and enters btrfs_qgroup_rescan(). It calls qgroup_rescan_init() which returns 0 (success) and then joins a transaction and commits it; 3) Task B calls the quota disable ioctl and enters btrfs_quota_disable(). It clears the bit BTRFS_FS_QUOTA_ENABLED from fs_info->flags and calls btrfs_qgroup_wait_for_completion(), which returns immediately since the rescan worker is not yet running. Then it starts a transaction and locks fs_info->qgroup_ioctl_lock; 4) Task A queues the rescan worker, by calling btrfs_queue_work(); 5) The rescan worker starts, and calls rescan_should_stop() at the start of its while loop, which results in 0 iterations of the loop, since the flag BTRFS_FS_QUOTA_ENABLED was cleared from fs_info->flags by task B at step 3); 6) Task B sets fs_info->quota_root to NULL; 7) The rescan worker tries to start a transaction and uses fs_info->quota_root as the root argument for btrfs_start_transaction(). This results in a NULL pointer dereference down the call chain of btrfs_start_transaction(). The stack trace is something like the one reported in Link tag below: general protection fault, probably for non-canonical address 0xdffffc0000000041: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000208-0x000000000000020f] CPU: 1 PID: 34 Comm: kworker/u4:2 Not tainted 6.1.0-syzkaller-13872-gb6bb9676f216 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: btrfs-qgroup-rescan btrfs_work_helper RIP: 0010:start_transaction+0x48/0x10f0 fs/btrfs/transaction.c:564 Code: 48 89 fb 48 (...) RSP: 0018:ffffc90000ab7ab0 EFLAGS: 00010206 RAX: 0000000000000041 RBX: 0000000000000208 RCX: ffff88801779ba80 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000 RBP: dffffc0000000000 R08: 0000000000000001 R09: fffff52000156f5d R10: fffff52000156f5d R11: 1ffff92000156f5c R12: 0000000000000000 R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2bea75b718 CR3: 000000001d0cc000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_qgroup_rescan_worker+0x3bb/0x6a0 fs/btrfs/qgroup.c:3402 btrfs_work_helper+0x312/0x850 fs/btrfs/async-thread.c:280 process_one_work+0x877/0xdb0 kernel/workqueue.c:2289 worker_thread+0xb14/0x1330 kernel/workqueue.c:2436 kthread+0x266/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: So fix this by having the rescan worker function not attempt to start a transaction if it didn't do any rescan work. Reported-by: syzbot+96977faa68092ad382c4@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/000000000000e5454b05f065a803@google.com/ Fixes: e804861bd4e6 ("btrfs: fix deadlock between quota disable and qgroup rescan worker") CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-12 16:31:08 +00:00
did_leaf_rescans = true;
if (err > 0)
btrfs_commit_transaction(trans);
else
btrfs_end_transaction(trans);
}
out:
btrfs_free_path(path);
mutex_lock(&fs_info->qgroup_rescan_lock);
if (err > 0 &&
fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT) {
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT;
} else if (err < 0 || stopped) {
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT;
}
mutex_unlock(&fs_info->qgroup_rescan_lock);
/*
btrfs: fix race between quota rescan and disable leading to NULL pointer deref If we have one task trying to start the quota rescan worker while another one is trying to disable quotas, we can end up hitting a race that results in the quota rescan worker doing a NULL pointer dereference. The steps for this are the following: 1) Quotas are enabled; 2) Task A calls the quota rescan ioctl and enters btrfs_qgroup_rescan(). It calls qgroup_rescan_init() which returns 0 (success) and then joins a transaction and commits it; 3) Task B calls the quota disable ioctl and enters btrfs_quota_disable(). It clears the bit BTRFS_FS_QUOTA_ENABLED from fs_info->flags and calls btrfs_qgroup_wait_for_completion(), which returns immediately since the rescan worker is not yet running. Then it starts a transaction and locks fs_info->qgroup_ioctl_lock; 4) Task A queues the rescan worker, by calling btrfs_queue_work(); 5) The rescan worker starts, and calls rescan_should_stop() at the start of its while loop, which results in 0 iterations of the loop, since the flag BTRFS_FS_QUOTA_ENABLED was cleared from fs_info->flags by task B at step 3); 6) Task B sets fs_info->quota_root to NULL; 7) The rescan worker tries to start a transaction and uses fs_info->quota_root as the root argument for btrfs_start_transaction(). This results in a NULL pointer dereference down the call chain of btrfs_start_transaction(). The stack trace is something like the one reported in Link tag below: general protection fault, probably for non-canonical address 0xdffffc0000000041: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000208-0x000000000000020f] CPU: 1 PID: 34 Comm: kworker/u4:2 Not tainted 6.1.0-syzkaller-13872-gb6bb9676f216 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: btrfs-qgroup-rescan btrfs_work_helper RIP: 0010:start_transaction+0x48/0x10f0 fs/btrfs/transaction.c:564 Code: 48 89 fb 48 (...) RSP: 0018:ffffc90000ab7ab0 EFLAGS: 00010206 RAX: 0000000000000041 RBX: 0000000000000208 RCX: ffff88801779ba80 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000 RBP: dffffc0000000000 R08: 0000000000000001 R09: fffff52000156f5d R10: fffff52000156f5d R11: 1ffff92000156f5c R12: 0000000000000000 R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2bea75b718 CR3: 000000001d0cc000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_qgroup_rescan_worker+0x3bb/0x6a0 fs/btrfs/qgroup.c:3402 btrfs_work_helper+0x312/0x850 fs/btrfs/async-thread.c:280 process_one_work+0x877/0xdb0 kernel/workqueue.c:2289 worker_thread+0xb14/0x1330 kernel/workqueue.c:2436 kthread+0x266/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: So fix this by having the rescan worker function not attempt to start a transaction if it didn't do any rescan work. Reported-by: syzbot+96977faa68092ad382c4@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/000000000000e5454b05f065a803@google.com/ Fixes: e804861bd4e6 ("btrfs: fix deadlock between quota disable and qgroup rescan worker") CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-12 16:31:08 +00:00
* Only update status, since the previous part has already updated the
* qgroup info, and only if we did any actual work. This also prevents
* race with a concurrent quota disable, which has already set
* fs_info->quota_root to NULL and cleared BTRFS_FS_QUOTA_ENABLED at
* btrfs_quota_disable().
*/
btrfs: fix race between quota rescan and disable leading to NULL pointer deref If we have one task trying to start the quota rescan worker while another one is trying to disable quotas, we can end up hitting a race that results in the quota rescan worker doing a NULL pointer dereference. The steps for this are the following: 1) Quotas are enabled; 2) Task A calls the quota rescan ioctl and enters btrfs_qgroup_rescan(). It calls qgroup_rescan_init() which returns 0 (success) and then joins a transaction and commits it; 3) Task B calls the quota disable ioctl and enters btrfs_quota_disable(). It clears the bit BTRFS_FS_QUOTA_ENABLED from fs_info->flags and calls btrfs_qgroup_wait_for_completion(), which returns immediately since the rescan worker is not yet running. Then it starts a transaction and locks fs_info->qgroup_ioctl_lock; 4) Task A queues the rescan worker, by calling btrfs_queue_work(); 5) The rescan worker starts, and calls rescan_should_stop() at the start of its while loop, which results in 0 iterations of the loop, since the flag BTRFS_FS_QUOTA_ENABLED was cleared from fs_info->flags by task B at step 3); 6) Task B sets fs_info->quota_root to NULL; 7) The rescan worker tries to start a transaction and uses fs_info->quota_root as the root argument for btrfs_start_transaction(). This results in a NULL pointer dereference down the call chain of btrfs_start_transaction(). The stack trace is something like the one reported in Link tag below: general protection fault, probably for non-canonical address 0xdffffc0000000041: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000208-0x000000000000020f] CPU: 1 PID: 34 Comm: kworker/u4:2 Not tainted 6.1.0-syzkaller-13872-gb6bb9676f216 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: btrfs-qgroup-rescan btrfs_work_helper RIP: 0010:start_transaction+0x48/0x10f0 fs/btrfs/transaction.c:564 Code: 48 89 fb 48 (...) RSP: 0018:ffffc90000ab7ab0 EFLAGS: 00010206 RAX: 0000000000000041 RBX: 0000000000000208 RCX: ffff88801779ba80 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000 RBP: dffffc0000000000 R08: 0000000000000001 R09: fffff52000156f5d R10: fffff52000156f5d R11: 1ffff92000156f5c R12: 0000000000000000 R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2bea75b718 CR3: 000000001d0cc000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_qgroup_rescan_worker+0x3bb/0x6a0 fs/btrfs/qgroup.c:3402 btrfs_work_helper+0x312/0x850 fs/btrfs/async-thread.c:280 process_one_work+0x877/0xdb0 kernel/workqueue.c:2289 worker_thread+0xb14/0x1330 kernel/workqueue.c:2436 kthread+0x266/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: So fix this by having the rescan worker function not attempt to start a transaction if it didn't do any rescan work. Reported-by: syzbot+96977faa68092ad382c4@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/000000000000e5454b05f065a803@google.com/ Fixes: e804861bd4e6 ("btrfs: fix deadlock between quota disable and qgroup rescan worker") CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-12 16:31:08 +00:00
if (did_leaf_rescans) {
trans = btrfs_start_transaction(fs_info->quota_root, 1);
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
trans = NULL;
btrfs_err(fs_info,
"fail to start transaction for status update: %d",
err);
}
} else {
Btrfs: fix race setting up and completing qgroup rescan workers There is a race between setting up a qgroup rescan worker and completing a qgroup rescan worker that can lead to callers of the qgroup rescan wait ioctl to either not wait for the rescan worker to complete or to hang forever due to missing wake ups. The following diagram shows a sequence of steps that illustrates the race. CPU 1 CPU 2 CPU 3 btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts the worker btrfs_qgroup_rescan_worker() mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN mutex_unlock(&fs_info->qgroup_rescan_lock) starts transaction, updates qgroup status item, etc btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts another worker mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_rescan_running = false mutex_unlock(&fs_info->qgroup_rescan_lock) complete_all(&fs_info->qgroup_rescan_completion) Before the rescan worker started by the task at CPU 3 completes, if another task calls btrfs_ioctl_quota_rescan(), it will get -EINPROGRESS because the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN is set at fs_info->qgroup_flags, which is expected and correct behaviour. However if other task calls btrfs_ioctl_quota_rescan_wait() before the rescan worker started by the task at CPU 3 completes, it will return immediately without waiting for the new rescan worker to complete, because fs_info->qgroup_rescan_running is set to false by CPU 2. This race is making test case btrfs/171 (from fstests) to fail often: btrfs/171 9s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad) --- tests/btrfs/171.out 2018-09-16 21:30:48.505104287 +0100 +++ /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad 2019-09-19 02:01:36.938486039 +0100 @@ -1,2 +1,3 @@ QA output created by 171 +ERROR: quota rescan failed: Operation now in progress Silence is golden ... (Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/171.out /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad' to see the entire diff) That is because the test calls the btrfs-progs commands "qgroup quota rescan -w", "qgroup assign" and "qgroup remove" in a sequence that makes calls to the rescan start ioctl fail with -EINPROGRESS (note the "btrfs" commands 'qgroup assign' and 'qgroup remove' often call the rescan start ioctl after calling the qgroup assign ioctl, btrfs_ioctl_qgroup_assign()), since previous waits didn't actually wait for a rescan worker to complete. Another problem the race can cause is missing wake ups for waiters, since the call to complete_all() happens outside a critical section and after clearing the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN. In the sequence diagram above, if we have a waiter for the first rescan task (executed by CPU 2), then fs_info->qgroup_rescan_completion.wait is not empty, and if after the rescan worker clears BTRFS_QGROUP_STATUS_FLAG_RESCAN and before it calls complete_all() against fs_info->qgroup_rescan_completion, the task at CPU 3 calls init_completion() against fs_info->qgroup_rescan_completion which re-initilizes its wait queue to an empty queue, therefore causing the rescan worker at CPU 2 to call complete_all() against an empty queue, never waking up the task waiting for that rescan worker. Fix this by clearing BTRFS_QGROUP_STATUS_FLAG_RESCAN and setting fs_info->qgroup_rescan_running to false in the same critical section, delimited by the mutex fs_info->qgroup_rescan_lock, as well as doing the call to complete_all() in that same critical section. This gives the protection needed to avoid rescan wait ioctl callers not waiting for a running rescan worker and the lost wake ups problem, since setting that rescan flag and boolean as well as initializing the wait queue is done already in a critical section delimited by that mutex (at qgroup_rescan_init()). Fixes: 57254b6ebce4ce ("Btrfs: add ioctl to wait for qgroup rescan completion") Fixes: d2c609b834d62f ("btrfs: properly track when rescan worker is running") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-24 10:49:54 +01:00
trans = NULL;
}
Btrfs: fix race setting up and completing qgroup rescan workers There is a race between setting up a qgroup rescan worker and completing a qgroup rescan worker that can lead to callers of the qgroup rescan wait ioctl to either not wait for the rescan worker to complete or to hang forever due to missing wake ups. The following diagram shows a sequence of steps that illustrates the race. CPU 1 CPU 2 CPU 3 btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts the worker btrfs_qgroup_rescan_worker() mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN mutex_unlock(&fs_info->qgroup_rescan_lock) starts transaction, updates qgroup status item, etc btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts another worker mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_rescan_running = false mutex_unlock(&fs_info->qgroup_rescan_lock) complete_all(&fs_info->qgroup_rescan_completion) Before the rescan worker started by the task at CPU 3 completes, if another task calls btrfs_ioctl_quota_rescan(), it will get -EINPROGRESS because the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN is set at fs_info->qgroup_flags, which is expected and correct behaviour. However if other task calls btrfs_ioctl_quota_rescan_wait() before the rescan worker started by the task at CPU 3 completes, it will return immediately without waiting for the new rescan worker to complete, because fs_info->qgroup_rescan_running is set to false by CPU 2. This race is making test case btrfs/171 (from fstests) to fail often: btrfs/171 9s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad) --- tests/btrfs/171.out 2018-09-16 21:30:48.505104287 +0100 +++ /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad 2019-09-19 02:01:36.938486039 +0100 @@ -1,2 +1,3 @@ QA output created by 171 +ERROR: quota rescan failed: Operation now in progress Silence is golden ... (Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/171.out /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad' to see the entire diff) That is because the test calls the btrfs-progs commands "qgroup quota rescan -w", "qgroup assign" and "qgroup remove" in a sequence that makes calls to the rescan start ioctl fail with -EINPROGRESS (note the "btrfs" commands 'qgroup assign' and 'qgroup remove' often call the rescan start ioctl after calling the qgroup assign ioctl, btrfs_ioctl_qgroup_assign()), since previous waits didn't actually wait for a rescan worker to complete. Another problem the race can cause is missing wake ups for waiters, since the call to complete_all() happens outside a critical section and after clearing the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN. In the sequence diagram above, if we have a waiter for the first rescan task (executed by CPU 2), then fs_info->qgroup_rescan_completion.wait is not empty, and if after the rescan worker clears BTRFS_QGROUP_STATUS_FLAG_RESCAN and before it calls complete_all() against fs_info->qgroup_rescan_completion, the task at CPU 3 calls init_completion() against fs_info->qgroup_rescan_completion which re-initilizes its wait queue to an empty queue, therefore causing the rescan worker at CPU 2 to call complete_all() against an empty queue, never waking up the task waiting for that rescan worker. Fix this by clearing BTRFS_QGROUP_STATUS_FLAG_RESCAN and setting fs_info->qgroup_rescan_running to false in the same critical section, delimited by the mutex fs_info->qgroup_rescan_lock, as well as doing the call to complete_all() in that same critical section. This gives the protection needed to avoid rescan wait ioctl callers not waiting for a running rescan worker and the lost wake ups problem, since setting that rescan flag and boolean as well as initializing the wait queue is done already in a critical section delimited by that mutex (at qgroup_rescan_init()). Fixes: 57254b6ebce4ce ("Btrfs: add ioctl to wait for qgroup rescan completion") Fixes: d2c609b834d62f ("btrfs: properly track when rescan worker is running") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-24 10:49:54 +01:00
mutex_lock(&fs_info->qgroup_rescan_lock);
if (!stopped ||
fs_info->qgroup_flags & BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN)
Btrfs: fix race setting up and completing qgroup rescan workers There is a race between setting up a qgroup rescan worker and completing a qgroup rescan worker that can lead to callers of the qgroup rescan wait ioctl to either not wait for the rescan worker to complete or to hang forever due to missing wake ups. The following diagram shows a sequence of steps that illustrates the race. CPU 1 CPU 2 CPU 3 btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts the worker btrfs_qgroup_rescan_worker() mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN mutex_unlock(&fs_info->qgroup_rescan_lock) starts transaction, updates qgroup status item, etc btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts another worker mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_rescan_running = false mutex_unlock(&fs_info->qgroup_rescan_lock) complete_all(&fs_info->qgroup_rescan_completion) Before the rescan worker started by the task at CPU 3 completes, if another task calls btrfs_ioctl_quota_rescan(), it will get -EINPROGRESS because the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN is set at fs_info->qgroup_flags, which is expected and correct behaviour. However if other task calls btrfs_ioctl_quota_rescan_wait() before the rescan worker started by the task at CPU 3 completes, it will return immediately without waiting for the new rescan worker to complete, because fs_info->qgroup_rescan_running is set to false by CPU 2. This race is making test case btrfs/171 (from fstests) to fail often: btrfs/171 9s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad) --- tests/btrfs/171.out 2018-09-16 21:30:48.505104287 +0100 +++ /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad 2019-09-19 02:01:36.938486039 +0100 @@ -1,2 +1,3 @@ QA output created by 171 +ERROR: quota rescan failed: Operation now in progress Silence is golden ... (Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/171.out /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad' to see the entire diff) That is because the test calls the btrfs-progs commands "qgroup quota rescan -w", "qgroup assign" and "qgroup remove" in a sequence that makes calls to the rescan start ioctl fail with -EINPROGRESS (note the "btrfs" commands 'qgroup assign' and 'qgroup remove' often call the rescan start ioctl after calling the qgroup assign ioctl, btrfs_ioctl_qgroup_assign()), since previous waits didn't actually wait for a rescan worker to complete. Another problem the race can cause is missing wake ups for waiters, since the call to complete_all() happens outside a critical section and after clearing the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN. In the sequence diagram above, if we have a waiter for the first rescan task (executed by CPU 2), then fs_info->qgroup_rescan_completion.wait is not empty, and if after the rescan worker clears BTRFS_QGROUP_STATUS_FLAG_RESCAN and before it calls complete_all() against fs_info->qgroup_rescan_completion, the task at CPU 3 calls init_completion() against fs_info->qgroup_rescan_completion which re-initilizes its wait queue to an empty queue, therefore causing the rescan worker at CPU 2 to call complete_all() against an empty queue, never waking up the task waiting for that rescan worker. Fix this by clearing BTRFS_QGROUP_STATUS_FLAG_RESCAN and setting fs_info->qgroup_rescan_running to false in the same critical section, delimited by the mutex fs_info->qgroup_rescan_lock, as well as doing the call to complete_all() in that same critical section. This gives the protection needed to avoid rescan wait ioctl callers not waiting for a running rescan worker and the lost wake ups problem, since setting that rescan flag and boolean as well as initializing the wait queue is done already in a critical section delimited by that mutex (at qgroup_rescan_init()). Fixes: 57254b6ebce4ce ("Btrfs: add ioctl to wait for qgroup rescan completion") Fixes: d2c609b834d62f ("btrfs: properly track when rescan worker is running") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-24 10:49:54 +01:00
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN;
if (trans) {
ret = update_qgroup_status_item(trans);
if (ret < 0) {
err = ret;
btrfs_err(fs_info, "fail to update qgroup status: %d",
err);
}
}
Btrfs: fix race setting up and completing qgroup rescan workers There is a race between setting up a qgroup rescan worker and completing a qgroup rescan worker that can lead to callers of the qgroup rescan wait ioctl to either not wait for the rescan worker to complete or to hang forever due to missing wake ups. The following diagram shows a sequence of steps that illustrates the race. CPU 1 CPU 2 CPU 3 btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts the worker btrfs_qgroup_rescan_worker() mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN mutex_unlock(&fs_info->qgroup_rescan_lock) starts transaction, updates qgroup status item, etc btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts another worker mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_rescan_running = false mutex_unlock(&fs_info->qgroup_rescan_lock) complete_all(&fs_info->qgroup_rescan_completion) Before the rescan worker started by the task at CPU 3 completes, if another task calls btrfs_ioctl_quota_rescan(), it will get -EINPROGRESS because the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN is set at fs_info->qgroup_flags, which is expected and correct behaviour. However if other task calls btrfs_ioctl_quota_rescan_wait() before the rescan worker started by the task at CPU 3 completes, it will return immediately without waiting for the new rescan worker to complete, because fs_info->qgroup_rescan_running is set to false by CPU 2. This race is making test case btrfs/171 (from fstests) to fail often: btrfs/171 9s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad) --- tests/btrfs/171.out 2018-09-16 21:30:48.505104287 +0100 +++ /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad 2019-09-19 02:01:36.938486039 +0100 @@ -1,2 +1,3 @@ QA output created by 171 +ERROR: quota rescan failed: Operation now in progress Silence is golden ... (Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/171.out /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad' to see the entire diff) That is because the test calls the btrfs-progs commands "qgroup quota rescan -w", "qgroup assign" and "qgroup remove" in a sequence that makes calls to the rescan start ioctl fail with -EINPROGRESS (note the "btrfs" commands 'qgroup assign' and 'qgroup remove' often call the rescan start ioctl after calling the qgroup assign ioctl, btrfs_ioctl_qgroup_assign()), since previous waits didn't actually wait for a rescan worker to complete. Another problem the race can cause is missing wake ups for waiters, since the call to complete_all() happens outside a critical section and after clearing the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN. In the sequence diagram above, if we have a waiter for the first rescan task (executed by CPU 2), then fs_info->qgroup_rescan_completion.wait is not empty, and if after the rescan worker clears BTRFS_QGROUP_STATUS_FLAG_RESCAN and before it calls complete_all() against fs_info->qgroup_rescan_completion, the task at CPU 3 calls init_completion() against fs_info->qgroup_rescan_completion which re-initilizes its wait queue to an empty queue, therefore causing the rescan worker at CPU 2 to call complete_all() against an empty queue, never waking up the task waiting for that rescan worker. Fix this by clearing BTRFS_QGROUP_STATUS_FLAG_RESCAN and setting fs_info->qgroup_rescan_running to false in the same critical section, delimited by the mutex fs_info->qgroup_rescan_lock, as well as doing the call to complete_all() in that same critical section. This gives the protection needed to avoid rescan wait ioctl callers not waiting for a running rescan worker and the lost wake ups problem, since setting that rescan flag and boolean as well as initializing the wait queue is done already in a critical section delimited by that mutex (at qgroup_rescan_init()). Fixes: 57254b6ebce4ce ("Btrfs: add ioctl to wait for qgroup rescan completion") Fixes: d2c609b834d62f ("btrfs: properly track when rescan worker is running") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-24 10:49:54 +01:00
fs_info->qgroup_rescan_running = false;
fs_info->qgroup_flags &= ~BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN;
Btrfs: fix race setting up and completing qgroup rescan workers There is a race between setting up a qgroup rescan worker and completing a qgroup rescan worker that can lead to callers of the qgroup rescan wait ioctl to either not wait for the rescan worker to complete or to hang forever due to missing wake ups. The following diagram shows a sequence of steps that illustrates the race. CPU 1 CPU 2 CPU 3 btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts the worker btrfs_qgroup_rescan_worker() mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN mutex_unlock(&fs_info->qgroup_rescan_lock) starts transaction, updates qgroup status item, etc btrfs_ioctl_quota_rescan() btrfs_qgroup_rescan() qgroup_rescan_init() mutex_lock(&fs_info->qgroup_rescan_lock) spin_lock(&fs_info->qgroup_lock) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN init_completion( &fs_info->qgroup_rescan_completion) fs_info->qgroup_rescan_running = true mutex_unlock(&fs_info->qgroup_rescan_lock) spin_unlock(&fs_info->qgroup_lock) btrfs_init_work() --> starts another worker mutex_lock(&fs_info->qgroup_rescan_lock) fs_info->qgroup_rescan_running = false mutex_unlock(&fs_info->qgroup_rescan_lock) complete_all(&fs_info->qgroup_rescan_completion) Before the rescan worker started by the task at CPU 3 completes, if another task calls btrfs_ioctl_quota_rescan(), it will get -EINPROGRESS because the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN is set at fs_info->qgroup_flags, which is expected and correct behaviour. However if other task calls btrfs_ioctl_quota_rescan_wait() before the rescan worker started by the task at CPU 3 completes, it will return immediately without waiting for the new rescan worker to complete, because fs_info->qgroup_rescan_running is set to false by CPU 2. This race is making test case btrfs/171 (from fstests) to fail often: btrfs/171 9s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad) --- tests/btrfs/171.out 2018-09-16 21:30:48.505104287 +0100 +++ /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad 2019-09-19 02:01:36.938486039 +0100 @@ -1,2 +1,3 @@ QA output created by 171 +ERROR: quota rescan failed: Operation now in progress Silence is golden ... (Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/171.out /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad' to see the entire diff) That is because the test calls the btrfs-progs commands "qgroup quota rescan -w", "qgroup assign" and "qgroup remove" in a sequence that makes calls to the rescan start ioctl fail with -EINPROGRESS (note the "btrfs" commands 'qgroup assign' and 'qgroup remove' often call the rescan start ioctl after calling the qgroup assign ioctl, btrfs_ioctl_qgroup_assign()), since previous waits didn't actually wait for a rescan worker to complete. Another problem the race can cause is missing wake ups for waiters, since the call to complete_all() happens outside a critical section and after clearing the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN. In the sequence diagram above, if we have a waiter for the first rescan task (executed by CPU 2), then fs_info->qgroup_rescan_completion.wait is not empty, and if after the rescan worker clears BTRFS_QGROUP_STATUS_FLAG_RESCAN and before it calls complete_all() against fs_info->qgroup_rescan_completion, the task at CPU 3 calls init_completion() against fs_info->qgroup_rescan_completion which re-initilizes its wait queue to an empty queue, therefore causing the rescan worker at CPU 2 to call complete_all() against an empty queue, never waking up the task waiting for that rescan worker. Fix this by clearing BTRFS_QGROUP_STATUS_FLAG_RESCAN and setting fs_info->qgroup_rescan_running to false in the same critical section, delimited by the mutex fs_info->qgroup_rescan_lock, as well as doing the call to complete_all() in that same critical section. This gives the protection needed to avoid rescan wait ioctl callers not waiting for a running rescan worker and the lost wake ups problem, since setting that rescan flag and boolean as well as initializing the wait queue is done already in a critical section delimited by that mutex (at qgroup_rescan_init()). Fixes: 57254b6ebce4ce ("Btrfs: add ioctl to wait for qgroup rescan completion") Fixes: d2c609b834d62f ("btrfs: properly track when rescan worker is running") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-24 10:49:54 +01:00
complete_all(&fs_info->qgroup_rescan_completion);
mutex_unlock(&fs_info->qgroup_rescan_lock);
if (!trans)
return;
btrfs_end_transaction(trans);
btrfs: fix transaction leak and crash after RO remount caused by qgroup rescan If we remount a filesystem in RO mode while the qgroup rescan worker is running, we can end up having it still running after the remount is done, and at unmount time we may end up with an open transaction that ends up never getting committed. If that happens we end up with several memory leaks and can crash when hardware acceleration is unavailable for crc32c. Possibly it can lead to other nasty surprises too, due to use-after-free issues. The following steps explain how the problem happens. 1) We have a filesystem mounted in RW mode and the qgroup rescan worker is running; 2) We remount the filesystem in RO mode, and never stop/pause the rescan worker, so after the remount the rescan worker is still running. The important detail here is that the rescan task is still running after the remount operation committed any ongoing transaction through its call to btrfs_commit_super(); 3) The rescan is still running, and after the remount completed, the rescan worker started a transaction, after it finished iterating all leaves of the extent tree, to update the qgroup status item in the quotas tree. It does not commit the transaction, it only releases its handle on the transaction; 4) A filesystem unmount operation starts shortly after; 5) The unmount task, at close_ctree(), stops the transaction kthread, which had not had a chance to commit the open transaction since it was sleeping and the commit interval (default of 30 seconds) has not yet elapsed since the last time it committed a transaction; 6) So after stopping the transaction kthread we still have the transaction used to update the qgroup status item open. At close_ctree(), when the filesystem is in RO mode and no transaction abort happened (or the filesystem is in error mode), we do not expect to have any transaction open, so we do not call btrfs_commit_super(); 7) We then proceed to destroy the work queues, free the roots and block groups, etc. After that we drop the last reference on the btree inode by calling iput() on it. Since there are dirty pages for the btree inode, corresponding to the COWed extent buffer for the quotas btree, btree_write_cache_pages() is invoked to flush those dirty pages. This results in creating a bio and submitting it, which makes us end up at btrfs_submit_metadata_bio(); 8) At btrfs_submit_metadata_bio() we end up at the if-then-else branch that calls btrfs_wq_submit_bio(), because check_async_write() returned a value of 1. This value of 1 is because we did not have hardware acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not set in fs_info->flags; 9) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the workqueue at fs_info->workers, which was already freed before by the call to btrfs_stop_all_workers() at close_ctree(). This results in an invalid memory access due to a use-after-free, leading to a crash. When this happens, before the crash there are several warnings triggered, since we have reserved metadata space in a block group, the delayed refs reservation, etc: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs] Code: f0 01 00 00 48 39 c2 75 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8 RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800 RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x17f/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 48 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c6 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Code: 48 83 bb b0 03 00 00 00 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x24c/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c7 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Code: ad de 49 be 22 01 00 (...) RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206 RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246 RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c8 ]--- BTRFS info (device sdc): space_info 4 has 268238848 free, is not full BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536 BTRFS info (device sdc): global_block_rsv: size 0 reserved 0 BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0 BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0 And the crash, which only happens when we do not have crc32c hardware acceleration, produces the following trace immediately after those warnings: stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs] Code: 54 55 53 48 89 f3 (...) RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282 RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0 RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8 R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000 FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_wq_submit_bio+0xb3/0xd0 [btrfs] btrfs_submit_metadata_bio+0x44/0xc0 [btrfs] submit_one_bio+0x61/0x70 [btrfs] btree_write_cache_pages+0x414/0x450 [btrfs] ? kobject_put+0x9a/0x1d0 ? trace_hardirqs_on+0x1b/0xf0 ? _raw_spin_unlock_irqrestore+0x3c/0x60 ? free_debug_processing+0x1e1/0x2b0 do_writepages+0x43/0xe0 ? lock_acquired+0x199/0x490 __writeback_single_inode+0x59/0x650 writeback_single_inode+0xaf/0x120 write_inode_now+0x94/0xd0 iput+0x187/0x2b0 close_ctree+0x2c6/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f3cfebabee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000 RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0 R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000 R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60 Modules linked in: btrfs dm_snapshot dm_thin_pool (...) ---[ end trace dd74718fef1ed5cc ]--- Finally when we remove the btrfs module (rmmod btrfs), there are several warnings about objects that were allocated from our slabs but were never freed, consequence of the transaction that was never committed and got leaked: ============================================================================= BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x0000000050cbdd61 @offset=12104 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x0000000086e9b0ff @offset=12776 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs] commit_cowonly_roots+0x248/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 0b (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200 CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000001a340018 @offset=4408 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_commit_transaction+0x60/0xc40 [btrfs] create_subvol+0x56a/0x990 [btrfs] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] btrfs_ioctl+0x1a92/0x36f0 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x000000002b46292a @offset=13648 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? __mutex_unlock_slowpath+0x45/0x2a0 kmem_cache_destroy+0x55/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000004cf95ea8 @offset=6264 INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1 Fix this issue by having the remount path stop the qgroup rescan worker when we are remounting RO and teach the rescan worker to stop when a remount is in progress. If later a remount in RW mode happens, we are already resuming the qgroup rescan worker through the call to btrfs_qgroup_rescan_resume(), so we do not need to worry about that. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-14 10:10:45 +00:00
if (stopped) {
btrfs_info(fs_info, "qgroup scan paused");
} else if (fs_info->qgroup_flags & BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN) {
btrfs_info(fs_info, "qgroup scan cancelled");
} else if (err >= 0) {
btrfs_info(fs_info, "qgroup scan completed%s",
err > 0 ? " (inconsistency flag cleared)" : "");
} else {
btrfs_err(fs_info, "qgroup scan failed with %d", err);
}
}
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
/*
* Checks that (a) no rescan is running and (b) quota is enabled. Allocates all
* memory required for the rescan context.
*/
static int
qgroup_rescan_init(struct btrfs_fs_info *fs_info, u64 progress_objectid,
int init_flags)
{
int ret = 0;
if (!init_flags) {
/* we're resuming qgroup rescan at mount time */
if (!(fs_info->qgroup_flags &
BTRFS_QGROUP_STATUS_FLAG_RESCAN)) {
btrfs_warn(fs_info,
"qgroup rescan init failed, qgroup rescan is not queued");
ret = -EINVAL;
} else if (!(fs_info->qgroup_flags &
BTRFS_QGROUP_STATUS_FLAG_ON)) {
btrfs_warn(fs_info,
"qgroup rescan init failed, qgroup is not enabled");
ret = -EINVAL;
}
if (ret)
return ret;
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
}
mutex_lock(&fs_info->qgroup_rescan_lock);
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
if (init_flags) {
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
btrfs_warn(fs_info,
"qgroup rescan is already in progress");
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
ret = -EINPROGRESS;
} else if (!(fs_info->qgroup_flags &
BTRFS_QGROUP_STATUS_FLAG_ON)) {
btrfs_warn(fs_info,
"qgroup rescan init failed, qgroup is not enabled");
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
ret = -EINVAL;
btrfs: fix deadlock between quota disable and qgroup rescan worker Quota disable ioctl starts a transaction before waiting for the qgroup rescan worker completes. However, this wait can be infinite and results in deadlock because of circular dependency among the quota disable ioctl, the qgroup rescan worker and the other task with transaction such as block group relocation task. The deadlock happens with the steps following: 1) Task A calls ioctl to disable quota. It starts a transaction and waits for qgroup rescan worker completes. 2) Task B such as block group relocation task starts a transaction and joins to the transaction that task A started. Then task B commits to the transaction. In this commit, task B waits for a commit by task A. 3) Task C as the qgroup rescan worker starts its job and starts a transaction. In this transaction start, task C waits for completion of the transaction that task A started and task B committed. This deadlock was found with fstests test case btrfs/115 and a zoned null_blk device. The test case enables and disables quota, and the block group reclaim was triggered during the quota disable by chance. The deadlock was also observed by running quota enable and disable in parallel with 'btrfs balance' command on regular null_blk devices. An example report of the deadlock: [372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds. [372.479944] Not tainted 5.16.0-rc8 #7 [372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.493898] task:kworker/u16:6 state:D stack: 0 pid: 103 ppid: 2 flags:0x00004000 [372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs] [372.510782] Call Trace: [372.514092] <TASK> [372.521684] __schedule+0xb56/0x4850 [372.530104] ? io_schedule_timeout+0x190/0x190 [372.538842] ? lockdep_hardirqs_on+0x7e/0x100 [372.547092] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.555591] schedule+0xe0/0x270 [372.561894] btrfs_commit_transaction+0x18bb/0x2610 [btrfs] [372.570506] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [372.578875] ? free_unref_page+0x3f2/0x650 [372.585484] ? finish_wait+0x270/0x270 [372.591594] ? release_extent_buffer+0x224/0x420 [btrfs] [372.599264] btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs] [372.607157] ? lock_release+0x3a9/0x6d0 [372.613054] ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs] [372.620960] ? do_raw_spin_lock+0x11e/0x250 [372.627137] ? rwlock_bug.part.0+0x90/0x90 [372.633215] ? lock_is_held_type+0xe4/0x140 [372.639404] btrfs_work_helper+0x1ae/0xa90 [btrfs] [372.646268] process_one_work+0x7e9/0x1320 [372.652321] ? lock_release+0x6d0/0x6d0 [372.658081] ? pwq_dec_nr_in_flight+0x230/0x230 [372.664513] ? rwlock_bug.part.0+0x90/0x90 [372.670529] worker_thread+0x59e/0xf90 [372.676172] ? process_one_work+0x1320/0x1320 [372.682440] kthread+0x3b9/0x490 [372.687550] ? _raw_spin_unlock_irq+0x24/0x50 [372.693811] ? set_kthread_struct+0x100/0x100 [372.700052] ret_from_fork+0x22/0x30 [372.705517] </TASK> [372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds. [372.729827] Not tainted 5.16.0-rc8 #7 [372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [372.767106] task:btrfs-transacti state:D stack: 0 pid: 2347 ppid: 2 flags:0x00004000 [372.787776] Call Trace: [372.801652] <TASK> [372.812961] __schedule+0xb56/0x4850 [372.830011] ? io_schedule_timeout+0x190/0x190 [372.852547] ? lockdep_hardirqs_on+0x7e/0x100 [372.871761] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [372.886792] schedule+0xe0/0x270 [372.901685] wait_current_trans+0x22c/0x310 [btrfs] [372.919743] ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs] [372.938923] ? finish_wait+0x270/0x270 [372.959085] ? join_transaction+0xc75/0xe30 [btrfs] [372.977706] start_transaction+0x938/0x10a0 [btrfs] [372.997168] transaction_kthread+0x19d/0x3c0 [btrfs] [373.013021] ? btrfs_cleanup_transaction.isra.0+0xfc0/0xfc0 [btrfs] [373.031678] kthread+0x3b9/0x490 [373.047420] ? _raw_spin_unlock_irq+0x24/0x50 [373.064645] ? set_kthread_struct+0x100/0x100 [373.078571] ret_from_fork+0x22/0x30 [373.091197] </TASK> [373.105611] INFO: task btrfs:3145 blocked for more than 123 seconds. [373.114147] Not tainted 5.16.0-rc8 #7 [373.120401] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.130393] task:btrfs state:D stack: 0 pid: 3145 ppid: 3141 flags:0x00004000 [373.140998] Call Trace: [373.145501] <TASK> [373.149654] __schedule+0xb56/0x4850 [373.155306] ? io_schedule_timeout+0x190/0x190 [373.161965] ? lockdep_hardirqs_on+0x7e/0x100 [373.168469] ? _raw_spin_unlock_irqrestore+0x3e/0x60 [373.175468] schedule+0xe0/0x270 [373.180814] wait_for_commit+0x104/0x150 [btrfs] [373.187643] ? test_and_set_bit+0x20/0x20 [btrfs] [373.194772] ? kmem_cache_free+0x124/0x550 [373.201191] ? btrfs_put_transaction+0x69/0x3d0 [btrfs] [373.208738] ? finish_wait+0x270/0x270 [373.214704] ? __btrfs_end_transaction+0x347/0x7b0 [btrfs] [373.222342] btrfs_commit_transaction+0x44d/0x2610 [btrfs] [373.230233] ? join_transaction+0x255/0xe30 [btrfs] [373.237334] ? btrfs_record_root_in_trans+0x4d/0x170 [btrfs] [373.245251] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs] [373.253296] relocate_block_group+0x105/0xc20 [btrfs] [373.260533] ? mutex_lock_io_nested+0x1270/0x1270 [373.267516] ? btrfs_wait_nocow_writers+0x85/0x180 [btrfs] [373.275155] ? merge_reloc_roots+0x710/0x710 [btrfs] [373.283602] ? btrfs_wait_ordered_extents+0xd30/0xd30 [btrfs] [373.291934] ? kmem_cache_free+0x124/0x550 [373.298180] btrfs_relocate_block_group+0x35c/0x930 [btrfs] [373.306047] btrfs_relocate_chunk+0x85/0x210 [btrfs] [373.313229] btrfs_balance+0x12f4/0x2d20 [btrfs] [373.320227] ? lock_release+0x3a9/0x6d0 [373.326206] ? btrfs_relocate_chunk+0x210/0x210 [btrfs] [373.333591] ? lock_is_held_type+0xe4/0x140 [373.340031] ? rcu_read_lock_sched_held+0x3f/0x70 [373.346910] btrfs_ioctl_balance+0x548/0x700 [btrfs] [373.354207] btrfs_ioctl+0x7f2/0x71b0 [btrfs] [373.360774] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.367957] ? lockdep_hardirqs_on_prepare+0x410/0x410 [373.375327] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.383841] ? find_held_lock+0x2c/0x110 [373.389993] ? lock_release+0x3a9/0x6d0 [373.395828] ? mntput_no_expire+0xf7/0xad0 [373.402083] ? lock_is_held_type+0xe4/0x140 [373.408249] ? vfs_fileattr_set+0x9f0/0x9f0 [373.414486] ? selinux_file_ioctl+0x349/0x4e0 [373.420938] ? trace_raw_output_lock+0xb4/0xe0 [373.427442] ? selinux_inode_getsecctx+0x80/0x80 [373.434224] ? lockdep_hardirqs_on+0x7e/0x100 [373.440660] ? force_qs_rnp+0x2a0/0x6b0 [373.446534] ? lock_is_held_type+0x9b/0x140 [373.452763] ? __blkcg_punt_bio_submit+0x1b0/0x1b0 [373.459732] ? security_file_ioctl+0x50/0x90 [373.466089] __x64_sys_ioctl+0x127/0x190 [373.472022] do_syscall_64+0x3b/0x90 [373.477513] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.484823] RIP: 0033:0x7f8f4af7e2bb [373.490493] RSP: 002b:00007ffcbf936178 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [373.500197] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f8f4af7e2bb [373.509451] RDX: 00007ffcbf936220 RSI: 00000000c4009420 RDI: 0000000000000003 [373.518659] RBP: 00007ffcbf93774a R08: 0000000000000013 R09: 00007f8f4b02d4e0 [373.527872] R10: 00007f8f4ae87740 R11: 0000000000000246 R12: 0000000000000001 [373.537222] R13: 00007ffcbf936220 R14: 0000000000000000 R15: 0000000000000002 [373.546506] </TASK> [373.550878] INFO: task btrfs:3146 blocked for more than 123 seconds. [373.559383] Not tainted 5.16.0-rc8 #7 [373.565748] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [373.575748] task:btrfs state:D stack: 0 pid: 3146 ppid: 2168 flags:0x00000000 [373.586314] Call Trace: [373.590846] <TASK> [373.595121] __schedule+0xb56/0x4850 [373.600901] ? __lock_acquire+0x23db/0x5030 [373.607176] ? io_schedule_timeout+0x190/0x190 [373.613954] schedule+0xe0/0x270 [373.619157] schedule_timeout+0x168/0x220 [373.625170] ? usleep_range_state+0x150/0x150 [373.631653] ? mark_held_locks+0x9e/0xe0 [373.637767] ? do_raw_spin_lock+0x11e/0x250 [373.643993] ? lockdep_hardirqs_on_prepare+0x17b/0x410 [373.651267] ? _raw_spin_unlock_irq+0x24/0x50 [373.657677] ? lockdep_hardirqs_on+0x7e/0x100 [373.664103] wait_for_completion+0x163/0x250 [373.670437] ? bit_wait_timeout+0x160/0x160 [373.676585] btrfs_quota_disable+0x176/0x9a0 [btrfs] [373.683979] ? btrfs_quota_enable+0x12f0/0x12f0 [btrfs] [373.691340] ? down_write+0xd0/0x130 [373.696880] ? down_write_killable+0x150/0x150 [373.703352] btrfs_ioctl+0x3945/0x71b0 [btrfs] [373.710061] ? find_held_lock+0x2c/0x110 [373.716192] ? lock_release+0x3a9/0x6d0 [373.722047] ? __handle_mm_fault+0x23cd/0x3050 [373.728486] ? btrfs_ioctl_get_supported_features+0x20/0x20 [btrfs] [373.737032] ? set_pte+0x6a/0x90 [373.742271] ? do_raw_spin_unlock+0x55/0x1f0 [373.748506] ? lock_is_held_type+0xe4/0x140 [373.754792] ? vfs_fileattr_set+0x9f0/0x9f0 [373.761083] ? selinux_file_ioctl+0x349/0x4e0 [373.767521] ? selinux_inode_getsecctx+0x80/0x80 [373.774247] ? __up_read+0x182/0x6e0 [373.780026] ? count_memcg_events.constprop.0+0x46/0x60 [373.787281] ? up_write+0x460/0x460 [373.792932] ? security_file_ioctl+0x50/0x90 [373.799232] __x64_sys_ioctl+0x127/0x190 [373.805237] do_syscall_64+0x3b/0x90 [373.810947] entry_SYSCALL_64_after_hwframe+0x44/0xae [373.818102] RIP: 0033:0x7f1383ea02bb [373.823847] RSP: 002b:00007fffeb4d71f8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [373.833641] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1383ea02bb [373.842961] RDX: 00007fffeb4d7210 RSI: 00000000c0109428 RDI: 0000000000000003 [373.852179] RBP: 0000000000000003 R08: 0000000000000003 R09: 0000000000000078 [373.861408] R10: 00007f1383daec78 R11: 0000000000000202 R12: 00007fffeb4d874a [373.870647] R13: 0000000000493099 R14: 0000000000000001 R15: 0000000000000000 [373.879838] </TASK> [373.884018] Showing all locks held in the system: [373.894250] 3 locks held by kworker/4:1/58: [373.900356] 1 lock held by khungtaskd/63: [373.906333] #0: ffffffff8945ff60 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260 [373.917307] 3 locks held by kworker/u16:6/103: [373.923938] #0: ffff888127b4f138 ((wq_completion)btrfs-qgroup-rescan){+.+.}-{0:0}, at: process_one_work+0x712/0x1320 [373.936555] #1: ffff88810b817dd8 ((work_completion)(&work->normal_work)){+.+.}-{0:0}, at: process_one_work+0x73f/0x1320 [373.951109] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_qgroup_rescan_worker+0x1f6/0x10c0 [btrfs] [373.964027] 2 locks held by less/1803: [373.969982] #0: ffff88813ed56098 (&tty->ldisc_sem){++++}-{0:0}, at: tty_ldisc_ref_wait+0x24/0x80 [373.981295] #1: ffffc90000b3b2e8 (&ldata->atomic_read_lock){+.+.}-{3:3}, at: n_tty_read+0x9e2/0x1060 [373.992969] 1 lock held by btrfs-transacti/2347: [373.999893] #0: ffff88813d4887a8 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0xe3/0x3c0 [btrfs] [374.015872] 3 locks held by btrfs/3145: [374.022298] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl_balance+0xc3/0x700 [btrfs] [374.034456] #1: ffff88813d48a0a0 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0xfe5/0x2d20 [btrfs] [374.047646] #2: ffff88813d488838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x354/0x930 [btrfs] [374.063295] 4 locks held by btrfs/3146: [374.069647] #0: ffff888102dd4460 (sb_writers#18){.+.+}-{0:0}, at: btrfs_ioctl+0x38b1/0x71b0 [btrfs] [374.081601] #1: ffff88813d488bb8 (&fs_info->subvol_sem){+.+.}-{3:3}, at: btrfs_ioctl+0x38fd/0x71b0 [btrfs] [374.094283] #2: ffff888102dd4650 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_disable+0xc8/0x9a0 [btrfs] [374.106885] #3: ffff88813d489800 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_disable+0xd5/0x9a0 [btrfs] [374.126780] ============================================= To avoid the deadlock, wait for the qgroup rescan worker to complete before starting the transaction for the quota disable ioctl. Clear BTRFS_FS_QUOTA_ENABLE flag before the wait and the transaction to request the worker to complete. On transaction start failure, set the BTRFS_FS_QUOTA_ENABLE flag again. These BTRFS_FS_QUOTA_ENABLE flag changes can be done safely since the function btrfs_quota_disable is not called concurrently because of fs_info->subvol_sem. Also check the BTRFS_FS_QUOTA_ENABLE flag in qgroup_rescan_init to avoid another qgroup rescan worker to start after the previous qgroup worker completed. CC: stable@vger.kernel.org # 5.4+ Suggested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-20 20:09:16 +09:00
} else if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
/* Quota disable is in progress */
ret = -EBUSY;
}
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
if (ret) {
mutex_unlock(&fs_info->qgroup_rescan_lock);
return ret;
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
}
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN;
}
memset(&fs_info->qgroup_rescan_progress, 0,
sizeof(fs_info->qgroup_rescan_progress));
fs_info->qgroup_flags &= ~(BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN |
BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING);
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
fs_info->qgroup_rescan_progress.objectid = progress_objectid;
init_completion(&fs_info->qgroup_rescan_completion);
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
mutex_unlock(&fs_info->qgroup_rescan_lock);
btrfs_init_work(&fs_info->qgroup_rescan_work,
btrfs_qgroup_rescan_worker, NULL, NULL);
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
return 0;
}
static void
qgroup_rescan_zero_tracking(struct btrfs_fs_info *fs_info)
{
struct rb_node *n;
struct btrfs_qgroup *qgroup;
spin_lock(&fs_info->qgroup_lock);
/* clear all current qgroup tracking information */
for (n = rb_first(&fs_info->qgroup_tree); n; n = rb_next(n)) {
qgroup = rb_entry(n, struct btrfs_qgroup, node);
qgroup->rfer = 0;
qgroup->rfer_cmpr = 0;
qgroup->excl = 0;
qgroup->excl_cmpr = 0;
btrfs: qgroup: Dirty all qgroups before rescan [BUG] In the following case, rescan won't zero out the number of qgroup 1/0: $ mkfs.btrfs -fq $DEV $ mount $DEV /mnt $ btrfs quota enable /mnt $ btrfs qgroup create 1/0 /mnt $ btrfs sub create /mnt/sub $ btrfs qgroup assign 0/257 1/0 /mnt $ dd if=/dev/urandom of=/mnt/sub/file bs=1k count=1000 $ btrfs sub snap /mnt/sub /mnt/snap $ btrfs quota rescan -w /mnt $ btrfs qgroup show -pcre /mnt qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16.00KiB 16.00KiB none none --- --- 0/257 1016.00KiB 16.00KiB none none 1/0 --- 0/258 1016.00KiB 16.00KiB none none --- --- 1/0 1016.00KiB 16.00KiB none none --- 0/257 So far so good, but: $ btrfs qgroup remove 0/257 1/0 /mnt WARNING: quotas may be inconsistent, rescan needed $ btrfs quota rescan -w /mnt $ btrfs qgroup show -pcre /mnt qgoupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16.00KiB 16.00KiB none none --- --- 0/257 1016.00KiB 16.00KiB none none --- --- 0/258 1016.00KiB 16.00KiB none none --- --- 1/0 1016.00KiB 16.00KiB none none --- --- ^^^^^^^^^^ ^^^^^^^^ not cleared [CAUSE] Before rescan we call qgroup_rescan_zero_tracking() to zero out all qgroups' accounting numbers. However we don't mark all qgroups dirty, but rely on rescan to do so. If we have any high level qgroup without children, it won't be marked dirty during rescan, since we cannot reach that qgroup. This will cause QGROUP_INFO items of childless qgroups never get updated in the quota tree, thus their numbers will stay the same in "btrfs qgroup show" output. [FIX] Just mark all qgroups dirty in qgroup_rescan_zero_tracking(), so even if we have childless qgroups, their QGROUP_INFO items will still get updated during rescan. Reported-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Tested-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-10 10:20:26 +08:00
qgroup_dirty(fs_info, qgroup);
}
spin_unlock(&fs_info->qgroup_lock);
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
}
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
int
btrfs_qgroup_rescan(struct btrfs_fs_info *fs_info)
{
int ret = 0;
struct btrfs_trans_handle *trans;
ret = qgroup_rescan_init(fs_info, 0, 1);
if (ret)
return ret;
/*
* We have set the rescan_progress to 0, which means no more
* delayed refs will be accounted by btrfs_qgroup_account_ref.
* However, btrfs_qgroup_account_ref may be right after its call
* to btrfs_find_all_roots, in which case it would still do the
* accounting.
* To solve this, we're committing the transaction, which will
* ensure we run all delayed refs and only after that, we are
* going to clear all tracking information for a clean start.
*/
trans = btrfs_attach_transaction_barrier(fs_info->fs_root);
if (IS_ERR(trans) && trans != ERR_PTR(-ENOENT)) {
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN;
return PTR_ERR(trans);
} else if (trans != ERR_PTR(-ENOENT)) {
ret = btrfs_commit_transaction(trans);
if (ret) {
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN;
return ret;
}
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
}
qgroup_rescan_zero_tracking(fs_info);
btrfs: qgroup: ensure qgroup_rescan_running is only set when the worker is at least queued [BUG] There are some reports about btrfs wait forever to unmount itself, with the following call trace: INFO: task umount:4631 blocked for more than 491 seconds. Tainted: G X 5.3.8-2-default #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. umount D 0 4631 3337 0x00000000 Call Trace: ([<00000000174adf7a>] __schedule+0x342/0x748) [<00000000174ae3ca>] schedule+0x4a/0xd8 [<00000000174b1f08>] schedule_timeout+0x218/0x420 [<00000000174af10c>] wait_for_common+0x104/0x1d8 [<000003ff804d6994>] btrfs_qgroup_wait_for_completion+0x84/0xb0 [btrfs] [<000003ff8044a616>] close_ctree+0x4e/0x380 [btrfs] [<0000000016fa3136>] generic_shutdown_super+0x8e/0x158 [<0000000016fa34d6>] kill_anon_super+0x26/0x40 [<000003ff8041ba88>] btrfs_kill_super+0x28/0xc8 [btrfs] [<0000000016fa39f8>] deactivate_locked_super+0x68/0x98 [<0000000016fcb198>] cleanup_mnt+0xc0/0x140 [<0000000016d6a846>] task_work_run+0xc6/0x110 [<0000000016d04f76>] do_notify_resume+0xae/0xb8 [<00000000174b30ae>] system_call+0xe2/0x2c8 [CAUSE] The problem happens when we have called qgroup_rescan_init(), but not queued the worker. It can be caused mostly by error handling. Qgroup ioctl thread | Unmount thread ----------------------------------------+----------------------------------- | btrfs_qgroup_rescan() | |- qgroup_rescan_init() | | |- qgroup_rescan_running = true; | | | |- trans = btrfs_join_transaction() | | Some error happened | | | |- btrfs_qgroup_rescan() returns error | But qgroup_rescan_running == true; | | close_ctree() | |- btrfs_qgroup_wait_for_completion() | |- running == true; | |- wait_for_completion(); btrfs_qgroup_rescan_worker is never queued, thus no one is going to wake up close_ctree() and we get a deadlock. All involved qgroup_rescan_init() callers are: - btrfs_qgroup_rescan() The example above. It's possible to trigger the deadlock when error happened. - btrfs_quota_enable() Not possible. Just after qgroup_rescan_init() we queue the work. - btrfs_read_qgroup_config() It's possible to trigger the deadlock. It only init the work, the work queueing happens in btrfs_qgroup_rescan_resume(). Thus if error happened in between, deadlock is possible. We shouldn't set fs_info->qgroup_rescan_running just in qgroup_rescan_init(), as at that stage we haven't yet queued qgroup rescan worker to run. [FIX] Set qgroup_rescan_running before queueing the work, so that we ensure the rescan work is queued when we wait for it. Fixes: 8d9eddad1946 ("Btrfs: fix qgroup rescan worker initialization") Signed-off-by: Jeff Mahoney <jeffm@suse.com> [ Change subject and cause analyse, use a smaller fix ] Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-02-07 13:38:20 +08:00
mutex_lock(&fs_info->qgroup_rescan_lock);
fs_info->qgroup_rescan_running = true;
btrfs_queue_work(fs_info->qgroup_rescan_workers,
&fs_info->qgroup_rescan_work);
btrfs: qgroup: ensure qgroup_rescan_running is only set when the worker is at least queued [BUG] There are some reports about btrfs wait forever to unmount itself, with the following call trace: INFO: task umount:4631 blocked for more than 491 seconds. Tainted: G X 5.3.8-2-default #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. umount D 0 4631 3337 0x00000000 Call Trace: ([<00000000174adf7a>] __schedule+0x342/0x748) [<00000000174ae3ca>] schedule+0x4a/0xd8 [<00000000174b1f08>] schedule_timeout+0x218/0x420 [<00000000174af10c>] wait_for_common+0x104/0x1d8 [<000003ff804d6994>] btrfs_qgroup_wait_for_completion+0x84/0xb0 [btrfs] [<000003ff8044a616>] close_ctree+0x4e/0x380 [btrfs] [<0000000016fa3136>] generic_shutdown_super+0x8e/0x158 [<0000000016fa34d6>] kill_anon_super+0x26/0x40 [<000003ff8041ba88>] btrfs_kill_super+0x28/0xc8 [btrfs] [<0000000016fa39f8>] deactivate_locked_super+0x68/0x98 [<0000000016fcb198>] cleanup_mnt+0xc0/0x140 [<0000000016d6a846>] task_work_run+0xc6/0x110 [<0000000016d04f76>] do_notify_resume+0xae/0xb8 [<00000000174b30ae>] system_call+0xe2/0x2c8 [CAUSE] The problem happens when we have called qgroup_rescan_init(), but not queued the worker. It can be caused mostly by error handling. Qgroup ioctl thread | Unmount thread ----------------------------------------+----------------------------------- | btrfs_qgroup_rescan() | |- qgroup_rescan_init() | | |- qgroup_rescan_running = true; | | | |- trans = btrfs_join_transaction() | | Some error happened | | | |- btrfs_qgroup_rescan() returns error | But qgroup_rescan_running == true; | | close_ctree() | |- btrfs_qgroup_wait_for_completion() | |- running == true; | |- wait_for_completion(); btrfs_qgroup_rescan_worker is never queued, thus no one is going to wake up close_ctree() and we get a deadlock. All involved qgroup_rescan_init() callers are: - btrfs_qgroup_rescan() The example above. It's possible to trigger the deadlock when error happened. - btrfs_quota_enable() Not possible. Just after qgroup_rescan_init() we queue the work. - btrfs_read_qgroup_config() It's possible to trigger the deadlock. It only init the work, the work queueing happens in btrfs_qgroup_rescan_resume(). Thus if error happened in between, deadlock is possible. We shouldn't set fs_info->qgroup_rescan_running just in qgroup_rescan_init(), as at that stage we haven't yet queued qgroup rescan worker to run. [FIX] Set qgroup_rescan_running before queueing the work, so that we ensure the rescan work is queued when we wait for it. Fixes: 8d9eddad1946 ("Btrfs: fix qgroup rescan worker initialization") Signed-off-by: Jeff Mahoney <jeffm@suse.com> [ Change subject and cause analyse, use a smaller fix ] Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-02-07 13:38:20 +08:00
mutex_unlock(&fs_info->qgroup_rescan_lock);
return 0;
}
int btrfs_qgroup_wait_for_completion(struct btrfs_fs_info *fs_info,
bool interruptible)
{
int running;
int ret = 0;
mutex_lock(&fs_info->qgroup_rescan_lock);
running = fs_info->qgroup_rescan_running;
mutex_unlock(&fs_info->qgroup_rescan_lock);
if (!running)
return 0;
if (interruptible)
ret = wait_for_completion_interruptible(
&fs_info->qgroup_rescan_completion);
else
wait_for_completion(&fs_info->qgroup_rescan_completion);
return ret;
}
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
/*
* this is only called from open_ctree where we're still single threaded, thus
* locking is omitted here.
*/
void
btrfs_qgroup_rescan_resume(struct btrfs_fs_info *fs_info)
{
btrfs: qgroup: ensure qgroup_rescan_running is only set when the worker is at least queued [BUG] There are some reports about btrfs wait forever to unmount itself, with the following call trace: INFO: task umount:4631 blocked for more than 491 seconds. Tainted: G X 5.3.8-2-default #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. umount D 0 4631 3337 0x00000000 Call Trace: ([<00000000174adf7a>] __schedule+0x342/0x748) [<00000000174ae3ca>] schedule+0x4a/0xd8 [<00000000174b1f08>] schedule_timeout+0x218/0x420 [<00000000174af10c>] wait_for_common+0x104/0x1d8 [<000003ff804d6994>] btrfs_qgroup_wait_for_completion+0x84/0xb0 [btrfs] [<000003ff8044a616>] close_ctree+0x4e/0x380 [btrfs] [<0000000016fa3136>] generic_shutdown_super+0x8e/0x158 [<0000000016fa34d6>] kill_anon_super+0x26/0x40 [<000003ff8041ba88>] btrfs_kill_super+0x28/0xc8 [btrfs] [<0000000016fa39f8>] deactivate_locked_super+0x68/0x98 [<0000000016fcb198>] cleanup_mnt+0xc0/0x140 [<0000000016d6a846>] task_work_run+0xc6/0x110 [<0000000016d04f76>] do_notify_resume+0xae/0xb8 [<00000000174b30ae>] system_call+0xe2/0x2c8 [CAUSE] The problem happens when we have called qgroup_rescan_init(), but not queued the worker. It can be caused mostly by error handling. Qgroup ioctl thread | Unmount thread ----------------------------------------+----------------------------------- | btrfs_qgroup_rescan() | |- qgroup_rescan_init() | | |- qgroup_rescan_running = true; | | | |- trans = btrfs_join_transaction() | | Some error happened | | | |- btrfs_qgroup_rescan() returns error | But qgroup_rescan_running == true; | | close_ctree() | |- btrfs_qgroup_wait_for_completion() | |- running == true; | |- wait_for_completion(); btrfs_qgroup_rescan_worker is never queued, thus no one is going to wake up close_ctree() and we get a deadlock. All involved qgroup_rescan_init() callers are: - btrfs_qgroup_rescan() The example above. It's possible to trigger the deadlock when error happened. - btrfs_quota_enable() Not possible. Just after qgroup_rescan_init() we queue the work. - btrfs_read_qgroup_config() It's possible to trigger the deadlock. It only init the work, the work queueing happens in btrfs_qgroup_rescan_resume(). Thus if error happened in between, deadlock is possible. We shouldn't set fs_info->qgroup_rescan_running just in qgroup_rescan_init(), as at that stage we haven't yet queued qgroup rescan worker to run. [FIX] Set qgroup_rescan_running before queueing the work, so that we ensure the rescan work is queued when we wait for it. Fixes: 8d9eddad1946 ("Btrfs: fix qgroup rescan worker initialization") Signed-off-by: Jeff Mahoney <jeffm@suse.com> [ Change subject and cause analyse, use a smaller fix ] Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-02-07 13:38:20 +08:00
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
mutex_lock(&fs_info->qgroup_rescan_lock);
fs_info->qgroup_rescan_running = true;
btrfs_queue_work(fs_info->qgroup_rescan_workers,
&fs_info->qgroup_rescan_work);
btrfs: qgroup: ensure qgroup_rescan_running is only set when the worker is at least queued [BUG] There are some reports about btrfs wait forever to unmount itself, with the following call trace: INFO: task umount:4631 blocked for more than 491 seconds. Tainted: G X 5.3.8-2-default #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. umount D 0 4631 3337 0x00000000 Call Trace: ([<00000000174adf7a>] __schedule+0x342/0x748) [<00000000174ae3ca>] schedule+0x4a/0xd8 [<00000000174b1f08>] schedule_timeout+0x218/0x420 [<00000000174af10c>] wait_for_common+0x104/0x1d8 [<000003ff804d6994>] btrfs_qgroup_wait_for_completion+0x84/0xb0 [btrfs] [<000003ff8044a616>] close_ctree+0x4e/0x380 [btrfs] [<0000000016fa3136>] generic_shutdown_super+0x8e/0x158 [<0000000016fa34d6>] kill_anon_super+0x26/0x40 [<000003ff8041ba88>] btrfs_kill_super+0x28/0xc8 [btrfs] [<0000000016fa39f8>] deactivate_locked_super+0x68/0x98 [<0000000016fcb198>] cleanup_mnt+0xc0/0x140 [<0000000016d6a846>] task_work_run+0xc6/0x110 [<0000000016d04f76>] do_notify_resume+0xae/0xb8 [<00000000174b30ae>] system_call+0xe2/0x2c8 [CAUSE] The problem happens when we have called qgroup_rescan_init(), but not queued the worker. It can be caused mostly by error handling. Qgroup ioctl thread | Unmount thread ----------------------------------------+----------------------------------- | btrfs_qgroup_rescan() | |- qgroup_rescan_init() | | |- qgroup_rescan_running = true; | | | |- trans = btrfs_join_transaction() | | Some error happened | | | |- btrfs_qgroup_rescan() returns error | But qgroup_rescan_running == true; | | close_ctree() | |- btrfs_qgroup_wait_for_completion() | |- running == true; | |- wait_for_completion(); btrfs_qgroup_rescan_worker is never queued, thus no one is going to wake up close_ctree() and we get a deadlock. All involved qgroup_rescan_init() callers are: - btrfs_qgroup_rescan() The example above. It's possible to trigger the deadlock when error happened. - btrfs_quota_enable() Not possible. Just after qgroup_rescan_init() we queue the work. - btrfs_read_qgroup_config() It's possible to trigger the deadlock. It only init the work, the work queueing happens in btrfs_qgroup_rescan_resume(). Thus if error happened in between, deadlock is possible. We shouldn't set fs_info->qgroup_rescan_running just in qgroup_rescan_init(), as at that stage we haven't yet queued qgroup rescan worker to run. [FIX] Set qgroup_rescan_running before queueing the work, so that we ensure the rescan work is queued when we wait for it. Fixes: 8d9eddad1946 ("Btrfs: fix qgroup rescan worker initialization") Signed-off-by: Jeff Mahoney <jeffm@suse.com> [ Change subject and cause analyse, use a smaller fix ] Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-02-07 13:38:20 +08:00
mutex_unlock(&fs_info->qgroup_rescan_lock);
}
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
}
btrfs: qgroup: allow to unreserve range without releasing other ranges [PROBLEM] Before this patch, when btrfs_qgroup_reserve_data() fails, we free all reserved space of the changeset. For example: ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M); If the last btrfs_qgroup_reserve_data() failed, it will release the entire [0, 3M) range. This behavior is kind of OK for now, as when we hit -EDQUOT, we normally go error handling and need to release all reserved ranges anyway. But this also means the following call is not possible: ret = btrfs_qgroup_reserve_data(); if (ret == -EDQUOT) { /* Do something to free some qgroup space */ ret = btrfs_qgroup_reserve_data(); } As if the first btrfs_qgroup_reserve_data() fails, it will free all reserved qgroup space. [CAUSE] This is because we release all reserved ranges when btrfs_qgroup_reserve_data() fails. [FIX] This patch will implement a new function, qgroup_unreserve_range(), to iterate through the ulist nodes, to find any nodes in the failure range, and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and decrease the extent_changeset::bytes_changed, so that we can revert to previous state. This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT happens. Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-08 14:24:45 +08:00
#define rbtree_iterate_from_safe(node, next, start) \
for (node = start; node && ({ next = rb_next(node); 1;}); node = next)
static int qgroup_unreserve_range(struct btrfs_inode *inode,
struct extent_changeset *reserved, u64 start,
u64 len)
{
struct rb_node *node;
struct rb_node *next;
struct ulist_node *entry;
btrfs: qgroup: allow to unreserve range without releasing other ranges [PROBLEM] Before this patch, when btrfs_qgroup_reserve_data() fails, we free all reserved space of the changeset. For example: ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M); If the last btrfs_qgroup_reserve_data() failed, it will release the entire [0, 3M) range. This behavior is kind of OK for now, as when we hit -EDQUOT, we normally go error handling and need to release all reserved ranges anyway. But this also means the following call is not possible: ret = btrfs_qgroup_reserve_data(); if (ret == -EDQUOT) { /* Do something to free some qgroup space */ ret = btrfs_qgroup_reserve_data(); } As if the first btrfs_qgroup_reserve_data() fails, it will free all reserved qgroup space. [CAUSE] This is because we release all reserved ranges when btrfs_qgroup_reserve_data() fails. [FIX] This patch will implement a new function, qgroup_unreserve_range(), to iterate through the ulist nodes, to find any nodes in the failure range, and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and decrease the extent_changeset::bytes_changed, so that we can revert to previous state. This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT happens. Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-08 14:24:45 +08:00
int ret = 0;
node = reserved->range_changed.root.rb_node;
if (!node)
return 0;
btrfs: qgroup: allow to unreserve range without releasing other ranges [PROBLEM] Before this patch, when btrfs_qgroup_reserve_data() fails, we free all reserved space of the changeset. For example: ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M); If the last btrfs_qgroup_reserve_data() failed, it will release the entire [0, 3M) range. This behavior is kind of OK for now, as when we hit -EDQUOT, we normally go error handling and need to release all reserved ranges anyway. But this also means the following call is not possible: ret = btrfs_qgroup_reserve_data(); if (ret == -EDQUOT) { /* Do something to free some qgroup space */ ret = btrfs_qgroup_reserve_data(); } As if the first btrfs_qgroup_reserve_data() fails, it will free all reserved qgroup space. [CAUSE] This is because we release all reserved ranges when btrfs_qgroup_reserve_data() fails. [FIX] This patch will implement a new function, qgroup_unreserve_range(), to iterate through the ulist nodes, to find any nodes in the failure range, and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and decrease the extent_changeset::bytes_changed, so that we can revert to previous state. This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT happens. Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-08 14:24:45 +08:00
while (node) {
entry = rb_entry(node, struct ulist_node, rb_node);
if (entry->val < start)
node = node->rb_right;
else
node = node->rb_left;
btrfs: qgroup: allow to unreserve range without releasing other ranges [PROBLEM] Before this patch, when btrfs_qgroup_reserve_data() fails, we free all reserved space of the changeset. For example: ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M); If the last btrfs_qgroup_reserve_data() failed, it will release the entire [0, 3M) range. This behavior is kind of OK for now, as when we hit -EDQUOT, we normally go error handling and need to release all reserved ranges anyway. But this also means the following call is not possible: ret = btrfs_qgroup_reserve_data(); if (ret == -EDQUOT) { /* Do something to free some qgroup space */ ret = btrfs_qgroup_reserve_data(); } As if the first btrfs_qgroup_reserve_data() fails, it will free all reserved qgroup space. [CAUSE] This is because we release all reserved ranges when btrfs_qgroup_reserve_data() fails. [FIX] This patch will implement a new function, qgroup_unreserve_range(), to iterate through the ulist nodes, to find any nodes in the failure range, and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and decrease the extent_changeset::bytes_changed, so that we can revert to previous state. This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT happens. Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-08 14:24:45 +08:00
}
if (entry->val > start && rb_prev(&entry->rb_node))
entry = rb_entry(rb_prev(&entry->rb_node), struct ulist_node,
rb_node);
rbtree_iterate_from_safe(node, next, &entry->rb_node) {
u64 entry_start;
u64 entry_end;
u64 entry_len;
int clear_ret;
entry = rb_entry(node, struct ulist_node, rb_node);
entry_start = entry->val;
entry_end = entry->aux;
entry_len = entry_end - entry_start + 1;
if (entry_start >= start + len)
break;
if (entry_start + entry_len <= start)
continue;
/*
* Now the entry is in [start, start + len), revert the
* EXTENT_QGROUP_RESERVED bit.
*/
clear_ret = clear_extent_bits(&inode->io_tree, entry_start,
entry_end, EXTENT_QGROUP_RESERVED);
if (!ret && clear_ret < 0)
ret = clear_ret;
ulist_del(&reserved->range_changed, entry->val, entry->aux);
if (likely(reserved->bytes_changed >= entry_len)) {
reserved->bytes_changed -= entry_len;
} else {
WARN_ON(1);
reserved->bytes_changed = 0;
}
}
return ret;
}
/*
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
* Try to free some space for qgroup.
*
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
* For qgroup, there are only 3 ways to free qgroup space:
* - Flush nodatacow write
* Any nodatacow write will free its reserved data space at run_delalloc_range().
* In theory, we should only flush nodatacow inodes, but it's not yet
* possible, so we need to flush the whole root.
*
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
* - Wait for ordered extents
* When ordered extents are finished, their reserved metadata is finally
* converted to per_trans status, which can be freed by later commit
* transaction.
*
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
* - Commit transaction
* This would free the meta_per_trans space.
* In theory this shouldn't provide much space, but any more qgroup space
* is needed.
*/
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
static int try_flush_qgroup(struct btrfs_root *root)
{
struct btrfs_trans_handle *trans;
int ret;
btrfs: send: fix crash when memory allocations trigger reclaim When doing a send we don't expect the task to ever start a transaction after the initial check that verifies if commit roots match the regular roots. This is because after that we set current->journal_info with a stub (special value) that signals we are in send context, so that we take a read lock on an extent buffer when reading it from disk and verifying it is valid (its generation matches the generation stored in the parent). This stub was introduced in 2014 by commit a26e8c9f75b0bf ("Btrfs: don't clear uptodate if the eb is under IO") in order to fix a concurrency issue between send and balance. However there is one particular exception where we end up needing to start a transaction and when this happens it results in a crash with a stack trace like the following: [60015.902283] kernel: WARNING: CPU: 3 PID: 58159 at arch/x86/include/asm/kfence.h:44 kfence_protect_page+0x21/0x80 [60015.902292] kernel: Modules linked in: uinput rfcomm snd_seq_dummy (...) [60015.902384] kernel: CPU: 3 PID: 58159 Comm: btrfs Not tainted 5.12.9-300.fc34.x86_64 #1 [60015.902387] kernel: Hardware name: Gigabyte Technology Co., Ltd. To be filled by O.E.M./F2A88XN-WIFI, BIOS F6 12/24/2015 [60015.902389] kernel: RIP: 0010:kfence_protect_page+0x21/0x80 [60015.902393] kernel: Code: ff 0f 1f 84 00 00 00 00 00 55 48 89 fd (...) [60015.902396] kernel: RSP: 0018:ffff9fb583453220 EFLAGS: 00010246 [60015.902399] kernel: RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff9fb583453224 [60015.902401] kernel: RDX: ffff9fb583453224 RSI: 0000000000000000 RDI: 0000000000000000 [60015.902402] kernel: RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 [60015.902404] kernel: R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002 [60015.902406] kernel: R13: ffff9fb583453348 R14: 0000000000000000 R15: 0000000000000001 [60015.902408] kernel: FS: 00007f158e62d8c0(0000) GS:ffff93bd37580000(0000) knlGS:0000000000000000 [60015.902410] kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [60015.902412] kernel: CR2: 0000000000000039 CR3: 00000001256d2000 CR4: 00000000000506e0 [60015.902414] kernel: Call Trace: [60015.902419] kernel: kfence_unprotect+0x13/0x30 [60015.902423] kernel: page_fault_oops+0x89/0x270 [60015.902427] kernel: ? search_module_extables+0xf/0x40 [60015.902431] kernel: ? search_bpf_extables+0x57/0x70 [60015.902435] kernel: kernelmode_fixup_or_oops+0xd6/0xf0 [60015.902437] kernel: __bad_area_nosemaphore+0x142/0x180 [60015.902440] kernel: exc_page_fault+0x67/0x150 [60015.902445] kernel: asm_exc_page_fault+0x1e/0x30 [60015.902450] kernel: RIP: 0010:start_transaction+0x71/0x580 [60015.902454] kernel: Code: d3 0f 84 92 00 00 00 80 e7 06 0f 85 63 (...) [60015.902456] kernel: RSP: 0018:ffff9fb5834533f8 EFLAGS: 00010246 [60015.902458] kernel: RAX: 0000000000000001 RBX: 0000000000000001 RCX: 0000000000000000 [60015.902460] kernel: RDX: 0000000000000801 RSI: 0000000000000000 RDI: 0000000000000039 [60015.902462] kernel: RBP: ffff93bc0a7eb800 R08: 0000000000000001 R09: 0000000000000000 [60015.902463] kernel: R10: 0000000000098a00 R11: 0000000000000001 R12: 0000000000000001 [60015.902464] kernel: R13: 0000000000000000 R14: ffff93bc0c92b000 R15: ffff93bc0c92b000 [60015.902468] kernel: btrfs_commit_inode_delayed_inode+0x5d/0x120 [60015.902473] kernel: btrfs_evict_inode+0x2c5/0x3f0 [60015.902476] kernel: evict+0xd1/0x180 [60015.902480] kernel: inode_lru_isolate+0xe7/0x180 [60015.902483] kernel: __list_lru_walk_one+0x77/0x150 [60015.902487] kernel: ? iput+0x1a0/0x1a0 [60015.902489] kernel: ? iput+0x1a0/0x1a0 [60015.902491] kernel: list_lru_walk_one+0x47/0x70 [60015.902495] kernel: prune_icache_sb+0x39/0x50 [60015.902497] kernel: super_cache_scan+0x161/0x1f0 [60015.902501] kernel: do_shrink_slab+0x142/0x240 [60015.902505] kernel: shrink_slab+0x164/0x280 [60015.902509] kernel: shrink_node+0x2c8/0x6e0 [60015.902512] kernel: do_try_to_free_pages+0xcb/0x4b0 [60015.902514] kernel: try_to_free_pages+0xda/0x190 [60015.902516] kernel: __alloc_pages_slowpath.constprop.0+0x373/0xcc0 [60015.902521] kernel: ? __memcg_kmem_charge_page+0xc2/0x1e0 [60015.902525] kernel: __alloc_pages_nodemask+0x30a/0x340 [60015.902528] kernel: pipe_write+0x30b/0x5c0 [60015.902531] kernel: ? set_next_entity+0xad/0x1e0 [60015.902534] kernel: ? switch_mm_irqs_off+0x58/0x440 [60015.902538] kernel: __kernel_write+0x13a/0x2b0 [60015.902541] kernel: kernel_write+0x73/0x150 [60015.902543] kernel: send_cmd+0x7b/0xd0 [60015.902545] kernel: send_extent_data+0x5a3/0x6b0 [60015.902549] kernel: process_extent+0x19b/0xed0 [60015.902551] kernel: btrfs_ioctl_send+0x1434/0x17e0 [60015.902554] kernel: ? _btrfs_ioctl_send+0xe1/0x100 [60015.902557] kernel: _btrfs_ioctl_send+0xbf/0x100 [60015.902559] kernel: ? enqueue_entity+0x18c/0x7b0 [60015.902562] kernel: btrfs_ioctl+0x185f/0x2f80 [60015.902564] kernel: ? psi_task_change+0x84/0xc0 [60015.902569] kernel: ? _flat_send_IPI_mask+0x21/0x40 [60015.902572] kernel: ? check_preempt_curr+0x2f/0x70 [60015.902576] kernel: ? selinux_file_ioctl+0x137/0x1e0 [60015.902579] kernel: ? expand_files+0x1cb/0x1d0 [60015.902582] kernel: ? __x64_sys_ioctl+0x82/0xb0 [60015.902585] kernel: __x64_sys_ioctl+0x82/0xb0 [60015.902588] kernel: do_syscall_64+0x33/0x40 [60015.902591] kernel: entry_SYSCALL_64_after_hwframe+0x44/0xae [60015.902595] kernel: RIP: 0033:0x7f158e38f0ab [60015.902599] kernel: Code: ff ff ff 85 c0 79 9b (...) [60015.902602] kernel: RSP: 002b:00007ffcb2519bf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [60015.902605] kernel: RAX: ffffffffffffffda RBX: 00007ffcb251ae00 RCX: 00007f158e38f0ab [60015.902607] kernel: RDX: 00007ffcb2519cf0 RSI: 0000000040489426 RDI: 0000000000000004 [60015.902608] kernel: RBP: 0000000000000004 R08: 00007f158e297640 R09: 00007f158e297640 [60015.902610] kernel: R10: 0000000000000008 R11: 0000000000000246 R12: 0000000000000000 [60015.902612] kernel: R13: 0000000000000002 R14: 00007ffcb251aee0 R15: 0000558c1a83e2a0 [60015.902615] kernel: ---[ end trace 7bbc33e23bb887ae ]--- This happens because when writing to the pipe, by calling kernel_write(), we end up doing page allocations using GFP_HIGHUSER | __GFP_ACCOUNT as the gfp flags, which allow reclaim to happen if there is memory pressure. This allocation happens at fs/pipe.c:pipe_write(). If the reclaim is triggered, inode eviction can be triggered and that in turn can result in starting a transaction if the inode has a link count of 0. The transaction start happens early on during eviction, when we call btrfs_commit_inode_delayed_inode() at btrfs_evict_inode(). This happens if there is currently an open file descriptor for an inode with a link count of 0 and the reclaim task gets a reference on the inode before that descriptor is closed, in which case the reclaim task ends up doing the final iput that triggers the inode eviction. When we have assertions enabled (CONFIG_BTRFS_ASSERT=y), this triggers the following assertion at transaction.c:start_transaction(): /* Send isn't supposed to start transactions. */ ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); And when assertions are not enabled, it triggers a crash since after that assertion we cast current->journal_info into a transaction handle pointer and then dereference it: if (current->journal_info) { WARN_ON(type & TRANS_EXTWRITERS); h = current->journal_info; refcount_inc(&h->use_count); (...) Which obviously results in a crash due to an invalid memory access. The same type of issue can happen during other memory allocations we do directly in the send code with kmalloc (and friends) as they use GFP_KERNEL and therefore may trigger reclaim too, which started to happen since 2016 after commit e780b0d1c1523e ("btrfs: send: use GFP_KERNEL everywhere"). The issue could be solved by setting up a NOFS context for the entire send operation so that reclaim could not be triggered when allocating memory or pages through kernel_write(). However that is not very friendly and we can in fact get rid of the send stub because: 1) The stub was introduced way back in 2014 by commit a26e8c9f75b0bf ("Btrfs: don't clear uptodate if the eb is under IO") to solve an issue exclusive to when send and balance are running in parallel, however there were other problems between balance and send and we do not allow anymore to have balance and send run concurrently since commit 9e967495e0e0ae ("Btrfs: prevent send failures and crashes due to concurrent relocation"). More generically the issues are between send and relocation, and that last commit eliminated only the possibility of having send and balance run concurrently, but shrinking a device also can trigger relocation, and on zoned filesystems we have relocation of partially used block groups triggered automatically as well. The previous patch that has a subject of: "btrfs: ensure relocation never runs while we have send operations running" Addresses all the remaining cases that can trigger relocation. 2) We can actually allow starting and even committing transactions while in a send context if needed because send is not holding any locks that would block the start or the commit of a transaction. So get rid of all the logic added by commit a26e8c9f75b0bf ("Btrfs: don't clear uptodate if the eb is under IO"). We can now always call clear_extent_buffer_uptodate() at verify_parent_transid() since send is the only case that uses commit roots without having a transaction open or without holding the commit_root_sem. Reported-by: Chris Murphy <lists@colorremedies.com> Link: https://lore.kernel.org/linux-btrfs/CAJCQCtRQ57=qXo3kygwpwEBOU_CA_eKvdmjP52sU=eFvuVOEGw@mail.gmail.com/ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 11:10:39 +01:00
/* Can't hold an open transaction or we run the risk of deadlocking. */
ASSERT(current->journal_info == NULL);
if (WARN_ON(current->journal_info))
return 0;
btrfs: qgroup: don't commit transaction when we already hold the handle [BUG] When running the following script, btrfs will trigger an ASSERT(): #/bin/bash mkfs.btrfs -f $dev mount $dev $mnt xfs_io -f -c "pwrite 0 1G" $mnt/file sync btrfs quota enable $mnt btrfs quota rescan -w $mnt # Manually set the limit below current usage btrfs qgroup limit 512M $mnt $mnt # Crash happens touch $mnt/file The dmesg looks like this: assertion failed: refcount_read(&trans->use_count) == 1, in fs/btrfs/transaction.c:2022 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.h:3230! invalid opcode: 0000 [#1] SMP PTI RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs] btrfs_commit_transaction.cold+0x11/0x5d [btrfs] try_flush_qgroup+0x67/0x100 [btrfs] __btrfs_qgroup_reserve_meta+0x3a/0x60 [btrfs] btrfs_delayed_update_inode+0xaa/0x350 [btrfs] btrfs_update_inode+0x9d/0x110 [btrfs] btrfs_dirty_inode+0x5d/0xd0 [btrfs] touch_atime+0xb5/0x100 iterate_dir+0xf1/0x1b0 __x64_sys_getdents64+0x78/0x110 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7fb5afe588db [CAUSE] In try_flush_qgroup(), we assume we don't hold a transaction handle at all. This is true for data reservation and mostly true for metadata. Since data space reservation always happens before we start a transaction, and for most metadata operation we reserve space in start_transaction(). But there is an exception, btrfs_delayed_inode_reserve_metadata(). It holds a transaction handle, while still trying to reserve extra metadata space. When we hit EDQUOT inside btrfs_delayed_inode_reserve_metadata(), we will join current transaction and commit, while we still have transaction handle from qgroup code. [FIX] Let's check current->journal before we join the transaction. If current->journal is unset or BTRFS_SEND_TRANS_STUB, it means we are not holding a transaction, thus are able to join and then commit transaction. If current->journal is a valid transaction handle, we avoid committing transaction and just end it This is less effective than committing current transaction, as it won't free metadata reserved space, but we may still free some data space before new data writes. Bugzilla: https://bugzilla.suse.com/show_bug.cgi?id=1178634 Fixes: c53e9653605d ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-11 19:38:18 +08:00
/*
* We don't want to run flush again and again, so if there is a running
* one, we won't try to start a new flush, but exit directly.
*/
if (test_and_set_bit(BTRFS_ROOT_QGROUP_FLUSHING, &root->state)) {
wait_event(root->qgroup_flush_wait,
!test_bit(BTRFS_ROOT_QGROUP_FLUSHING, &root->state));
return 0;
}
btrfs: fix deadlock when cloning inline extents and using qgroups There are a few exceptional cases where cloning an inline extent needs to copy the inline extent data into a page of the destination inode. When this happens, we end up starting a transaction while having a dirty page for the destination inode and while having the range locked in the destination's inode iotree too. Because when reserving metadata space for a transaction we may need to flush existing delalloc in case there is not enough free space, we have a mechanism in place to prevent a deadlock, which was introduced in commit 3d45f221ce627d ("btrfs: fix deadlock when cloning inline extent and low on free metadata space"). However when using qgroups, a transaction also reserves metadata qgroup space, which can also result in flushing delalloc in case there is not enough available space at the moment. When this happens we deadlock, since flushing delalloc requires locking the file range in the inode's iotree and the range was already locked at the very beginning of the clone operation, before attempting to start the transaction. When this issue happens, stack traces like the following are reported: [72747.556262] task:kworker/u81:9 state:D stack: 0 pid: 225 ppid: 2 flags:0x00004000 [72747.556268] Workqueue: writeback wb_workfn (flush-btrfs-1142) [72747.556271] Call Trace: [72747.556273] __schedule+0x296/0x760 [72747.556277] schedule+0x3c/0xa0 [72747.556279] io_schedule+0x12/0x40 [72747.556284] __lock_page+0x13c/0x280 [72747.556287] ? generic_file_readonly_mmap+0x70/0x70 [72747.556325] extent_write_cache_pages+0x22a/0x440 [btrfs] [72747.556331] ? __set_page_dirty_nobuffers+0xe7/0x160 [72747.556358] ? set_extent_buffer_dirty+0x5e/0x80 [btrfs] [72747.556362] ? update_group_capacity+0x25/0x210 [72747.556366] ? cpumask_next_and+0x1a/0x20 [72747.556391] extent_writepages+0x44/0xa0 [btrfs] [72747.556394] do_writepages+0x41/0xd0 [72747.556398] __writeback_single_inode+0x39/0x2a0 [72747.556403] writeback_sb_inodes+0x1ea/0x440 [72747.556407] __writeback_inodes_wb+0x5f/0xc0 [72747.556410] wb_writeback+0x235/0x2b0 [72747.556414] ? get_nr_inodes+0x35/0x50 [72747.556417] wb_workfn+0x354/0x490 [72747.556420] ? newidle_balance+0x2c5/0x3e0 [72747.556424] process_one_work+0x1aa/0x340 [72747.556426] worker_thread+0x30/0x390 [72747.556429] ? create_worker+0x1a0/0x1a0 [72747.556432] kthread+0x116/0x130 [72747.556435] ? kthread_park+0x80/0x80 [72747.556438] ret_from_fork+0x1f/0x30 [72747.566958] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs] [72747.566961] Call Trace: [72747.566964] __schedule+0x296/0x760 [72747.566968] ? finish_wait+0x80/0x80 [72747.566970] schedule+0x3c/0xa0 [72747.566995] wait_extent_bit.constprop.68+0x13b/0x1c0 [btrfs] [72747.566999] ? finish_wait+0x80/0x80 [72747.567024] lock_extent_bits+0x37/0x90 [btrfs] [72747.567047] btrfs_invalidatepage+0x299/0x2c0 [btrfs] [72747.567051] ? find_get_pages_range_tag+0x2cd/0x380 [72747.567076] __extent_writepage+0x203/0x320 [btrfs] [72747.567102] extent_write_cache_pages+0x2bb/0x440 [btrfs] [72747.567106] ? update_load_avg+0x7e/0x5f0 [72747.567109] ? enqueue_entity+0xf4/0x6f0 [72747.567134] extent_writepages+0x44/0xa0 [btrfs] [72747.567137] ? enqueue_task_fair+0x93/0x6f0 [72747.567140] do_writepages+0x41/0xd0 [72747.567144] __filemap_fdatawrite_range+0xc7/0x100 [72747.567167] btrfs_run_delalloc_work+0x17/0x40 [btrfs] [72747.567195] btrfs_work_helper+0xc2/0x300 [btrfs] [72747.567200] process_one_work+0x1aa/0x340 [72747.567202] worker_thread+0x30/0x390 [72747.567205] ? create_worker+0x1a0/0x1a0 [72747.567208] kthread+0x116/0x130 [72747.567211] ? kthread_park+0x80/0x80 [72747.567214] ret_from_fork+0x1f/0x30 [72747.569686] task:fsstress state:D stack: 0 pid:841421 ppid:841417 flags:0x00000000 [72747.569689] Call Trace: [72747.569691] __schedule+0x296/0x760 [72747.569694] schedule+0x3c/0xa0 [72747.569721] try_flush_qgroup+0x95/0x140 [btrfs] [72747.569725] ? finish_wait+0x80/0x80 [72747.569753] btrfs_qgroup_reserve_data+0x34/0x50 [btrfs] [72747.569781] btrfs_check_data_free_space+0x5f/0xa0 [btrfs] [72747.569804] btrfs_buffered_write+0x1f7/0x7f0 [btrfs] [72747.569810] ? path_lookupat.isra.48+0x97/0x140 [72747.569833] btrfs_file_write_iter+0x81/0x410 [btrfs] [72747.569836] ? __kmalloc+0x16a/0x2c0 [72747.569839] do_iter_readv_writev+0x160/0x1c0 [72747.569843] do_iter_write+0x80/0x1b0 [72747.569847] vfs_writev+0x84/0x140 [72747.569869] ? btrfs_file_llseek+0x38/0x270 [btrfs] [72747.569873] do_writev+0x65/0x100 [72747.569876] do_syscall_64+0x33/0x40 [72747.569879] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [72747.569899] task:fsstress state:D stack: 0 pid:841424 ppid:841417 flags:0x00004000 [72747.569903] Call Trace: [72747.569906] __schedule+0x296/0x760 [72747.569909] schedule+0x3c/0xa0 [72747.569936] try_flush_qgroup+0x95/0x140 [btrfs] [72747.569940] ? finish_wait+0x80/0x80 [72747.569967] __btrfs_qgroup_reserve_meta+0x36/0x50 [btrfs] [72747.569989] start_transaction+0x279/0x580 [btrfs] [72747.570014] clone_copy_inline_extent+0x332/0x490 [btrfs] [72747.570041] btrfs_clone+0x5b7/0x7a0 [btrfs] [72747.570068] ? lock_extent_bits+0x64/0x90 [btrfs] [72747.570095] btrfs_clone_files+0xfc/0x150 [btrfs] [72747.570122] btrfs_remap_file_range+0x3d8/0x4a0 [btrfs] [72747.570126] do_clone_file_range+0xed/0x200 [72747.570131] vfs_clone_file_range+0x37/0x110 [72747.570134] ioctl_file_clone+0x7d/0xb0 [72747.570137] do_vfs_ioctl+0x138/0x630 [72747.570140] __x64_sys_ioctl+0x62/0xc0 [72747.570143] do_syscall_64+0x33/0x40 [72747.570146] entry_SYSCALL_64_after_hwframe+0x44/0xa9 So fix this by skipping the flush of delalloc for an inode that is flagged with BTRFS_INODE_NO_DELALLOC_FLUSH, meaning it is currently under such a special case of cloning an inline extent, when flushing delalloc during qgroup metadata reservation. The special cases for cloning inline extents were added in kernel 5.7 by by commit 05a5a7621ce66c ("Btrfs: implement full reflink support for inline extents"), while having qgroup metadata space reservation flushing delalloc when low on space was added in kernel 5.9 by commit c53e9653605dbf ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT"). So use a "Fixes:" tag for the later commit to ease stable kernel backports. Reported-by: Wang Yugui <wangyugui@e16-tech.com> Link: https://lore.kernel.org/linux-btrfs/20210421083137.31E3.409509F4@e16-tech.com/ Fixes: c53e9653605dbf ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT") CC: stable@vger.kernel.org # 5.9+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-22 12:08:05 +01:00
ret = btrfs_start_delalloc_snapshot(root, true);
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
if (ret < 0)
goto out;
btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
trans = btrfs_attach_transaction_barrier(root);
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
if (ret == -ENOENT)
ret = 0;
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
goto out;
}
ret = btrfs_commit_transaction(trans);
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
out:
clear_bit(BTRFS_ROOT_QGROUP_FLUSHING, &root->state);
wake_up(&root->qgroup_flush_wait);
return ret;
}
static int qgroup_reserve_data(struct btrfs_inode *inode,
struct extent_changeset **reserved_ret, u64 start,
u64 len)
{
struct btrfs_root *root = inode->root;
struct extent_changeset *reserved;
btrfs: qgroup: allow to unreserve range without releasing other ranges [PROBLEM] Before this patch, when btrfs_qgroup_reserve_data() fails, we free all reserved space of the changeset. For example: ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M); If the last btrfs_qgroup_reserve_data() failed, it will release the entire [0, 3M) range. This behavior is kind of OK for now, as when we hit -EDQUOT, we normally go error handling and need to release all reserved ranges anyway. But this also means the following call is not possible: ret = btrfs_qgroup_reserve_data(); if (ret == -EDQUOT) { /* Do something to free some qgroup space */ ret = btrfs_qgroup_reserve_data(); } As if the first btrfs_qgroup_reserve_data() fails, it will free all reserved qgroup space. [CAUSE] This is because we release all reserved ranges when btrfs_qgroup_reserve_data() fails. [FIX] This patch will implement a new function, qgroup_unreserve_range(), to iterate through the ulist nodes, to find any nodes in the failure range, and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and decrease the extent_changeset::bytes_changed, so that we can revert to previous state. This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT happens. Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-08 14:24:45 +08:00
bool new_reserved = false;
u64 orig_reserved;
u64 to_reserve;
int ret;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags) ||
!is_fstree(root->root_key.objectid) || len == 0)
return 0;
/* @reserved parameter is mandatory for qgroup */
if (WARN_ON(!reserved_ret))
return -EINVAL;
if (!*reserved_ret) {
btrfs: qgroup: allow to unreserve range without releasing other ranges [PROBLEM] Before this patch, when btrfs_qgroup_reserve_data() fails, we free all reserved space of the changeset. For example: ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M); If the last btrfs_qgroup_reserve_data() failed, it will release the entire [0, 3M) range. This behavior is kind of OK for now, as when we hit -EDQUOT, we normally go error handling and need to release all reserved ranges anyway. But this also means the following call is not possible: ret = btrfs_qgroup_reserve_data(); if (ret == -EDQUOT) { /* Do something to free some qgroup space */ ret = btrfs_qgroup_reserve_data(); } As if the first btrfs_qgroup_reserve_data() fails, it will free all reserved qgroup space. [CAUSE] This is because we release all reserved ranges when btrfs_qgroup_reserve_data() fails. [FIX] This patch will implement a new function, qgroup_unreserve_range(), to iterate through the ulist nodes, to find any nodes in the failure range, and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and decrease the extent_changeset::bytes_changed, so that we can revert to previous state. This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT happens. Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-08 14:24:45 +08:00
new_reserved = true;
*reserved_ret = extent_changeset_alloc();
if (!*reserved_ret)
return -ENOMEM;
}
reserved = *reserved_ret;
/* Record already reserved space */
orig_reserved = reserved->bytes_changed;
ret = set_record_extent_bits(&inode->io_tree, start,
start + len -1, EXTENT_QGROUP_RESERVED, reserved);
/* Newly reserved space */
to_reserve = reserved->bytes_changed - orig_reserved;
trace_btrfs_qgroup_reserve_data(&inode->vfs_inode, start, len,
to_reserve, QGROUP_RESERVE);
if (ret < 0)
btrfs: qgroup: allow to unreserve range without releasing other ranges [PROBLEM] Before this patch, when btrfs_qgroup_reserve_data() fails, we free all reserved space of the changeset. For example: ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M); If the last btrfs_qgroup_reserve_data() failed, it will release the entire [0, 3M) range. This behavior is kind of OK for now, as when we hit -EDQUOT, we normally go error handling and need to release all reserved ranges anyway. But this also means the following call is not possible: ret = btrfs_qgroup_reserve_data(); if (ret == -EDQUOT) { /* Do something to free some qgroup space */ ret = btrfs_qgroup_reserve_data(); } As if the first btrfs_qgroup_reserve_data() fails, it will free all reserved qgroup space. [CAUSE] This is because we release all reserved ranges when btrfs_qgroup_reserve_data() fails. [FIX] This patch will implement a new function, qgroup_unreserve_range(), to iterate through the ulist nodes, to find any nodes in the failure range, and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and decrease the extent_changeset::bytes_changed, so that we can revert to previous state. This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT happens. Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-08 14:24:45 +08:00
goto out;
ret = qgroup_reserve(root, to_reserve, true, BTRFS_QGROUP_RSV_DATA);
if (ret < 0)
goto cleanup;
return ret;
cleanup:
btrfs: qgroup: allow to unreserve range without releasing other ranges [PROBLEM] Before this patch, when btrfs_qgroup_reserve_data() fails, we free all reserved space of the changeset. For example: ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M); If the last btrfs_qgroup_reserve_data() failed, it will release the entire [0, 3M) range. This behavior is kind of OK for now, as when we hit -EDQUOT, we normally go error handling and need to release all reserved ranges anyway. But this also means the following call is not possible: ret = btrfs_qgroup_reserve_data(); if (ret == -EDQUOT) { /* Do something to free some qgroup space */ ret = btrfs_qgroup_reserve_data(); } As if the first btrfs_qgroup_reserve_data() fails, it will free all reserved qgroup space. [CAUSE] This is because we release all reserved ranges when btrfs_qgroup_reserve_data() fails. [FIX] This patch will implement a new function, qgroup_unreserve_range(), to iterate through the ulist nodes, to find any nodes in the failure range, and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and decrease the extent_changeset::bytes_changed, so that we can revert to previous state. This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT happens. Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-08 14:24:45 +08:00
qgroup_unreserve_range(inode, reserved, start, len);
out:
if (new_reserved) {
extent_changeset_free(reserved);
btrfs: qgroup: allow to unreserve range without releasing other ranges [PROBLEM] Before this patch, when btrfs_qgroup_reserve_data() fails, we free all reserved space of the changeset. For example: ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M); ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M); If the last btrfs_qgroup_reserve_data() failed, it will release the entire [0, 3M) range. This behavior is kind of OK for now, as when we hit -EDQUOT, we normally go error handling and need to release all reserved ranges anyway. But this also means the following call is not possible: ret = btrfs_qgroup_reserve_data(); if (ret == -EDQUOT) { /* Do something to free some qgroup space */ ret = btrfs_qgroup_reserve_data(); } As if the first btrfs_qgroup_reserve_data() fails, it will free all reserved qgroup space. [CAUSE] This is because we release all reserved ranges when btrfs_qgroup_reserve_data() fails. [FIX] This patch will implement a new function, qgroup_unreserve_range(), to iterate through the ulist nodes, to find any nodes in the failure range, and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and decrease the extent_changeset::bytes_changed, so that we can revert to previous state. This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT happens. Suggested-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-08 14:24:45 +08:00
*reserved_ret = NULL;
}
return ret;
}
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
/*
* Reserve qgroup space for range [start, start + len).
*
* This function will either reserve space from related qgroups or do nothing
* if the range is already reserved.
*
* Return 0 for successful reservation
* Return <0 for error (including -EQUOT)
*
* NOTE: This function may sleep for memory allocation, dirty page flushing and
* commit transaction. So caller should not hold any dirty page locked.
*/
int btrfs_qgroup_reserve_data(struct btrfs_inode *inode,
struct extent_changeset **reserved_ret, u64 start,
u64 len)
{
int ret;
ret = qgroup_reserve_data(inode, reserved_ret, start, len);
if (ret <= 0 && ret != -EDQUOT)
return ret;
ret = try_flush_qgroup(inode->root);
if (ret < 0)
return ret;
return qgroup_reserve_data(inode, reserved_ret, start, len);
}
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges [BUG] For the following case, btrfs can underflow qgroup reserved space at an error path: (Page size 4K, function name without "btrfs_" prefix) Task A | Task B ---------------------------------------------------------------------- Buffered_write [0, 2K) | |- check_data_free_space() | | |- qgroup_reserve_data() | | Range aligned to page | | range [0, 4K) <<< | | 4K bytes reserved <<< | |- copy pages to page cache | | Buffered_write [2K, 4K) | |- check_data_free_space() | | |- qgroup_reserved_data() | | Range alinged to page | | range [0, 4K) | | Already reserved by A <<< | | 0 bytes reserved <<< | |- delalloc_reserve_metadata() | | And it *FAILED* (Maybe EQUOTA) | |- free_reserved_data_space() |- qgroup_free_data() Range aligned to page range [0, 4K) Freeing 4K (Special thanks to Chandan for the detailed report and analyse) [CAUSE] Above Task B is freeing reserved data range [0, 4K) which is actually reserved by Task A. And at writeback time, page dirty by Task A will go through writeback routine, which will free 4K reserved data space at file extent insert time, causing the qgroup underflow. [FIX] For btrfs_qgroup_free_data(), add @reserved parameter to only free data ranges reserved by previous btrfs_qgroup_reserve_data(). So in above case, Task B will try to free 0 byte, so no underflow. Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:39 +08:00
/* Free ranges specified by @reserved, normally in error path */
static int qgroup_free_reserved_data(struct btrfs_inode *inode,
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges [BUG] For the following case, btrfs can underflow qgroup reserved space at an error path: (Page size 4K, function name without "btrfs_" prefix) Task A | Task B ---------------------------------------------------------------------- Buffered_write [0, 2K) | |- check_data_free_space() | | |- qgroup_reserve_data() | | Range aligned to page | | range [0, 4K) <<< | | 4K bytes reserved <<< | |- copy pages to page cache | | Buffered_write [2K, 4K) | |- check_data_free_space() | | |- qgroup_reserved_data() | | Range alinged to page | | range [0, 4K) | | Already reserved by A <<< | | 0 bytes reserved <<< | |- delalloc_reserve_metadata() | | And it *FAILED* (Maybe EQUOTA) | |- free_reserved_data_space() |- qgroup_free_data() Range aligned to page range [0, 4K) Freeing 4K (Special thanks to Chandan for the detailed report and analyse) [CAUSE] Above Task B is freeing reserved data range [0, 4K) which is actually reserved by Task A. And at writeback time, page dirty by Task A will go through writeback routine, which will free 4K reserved data space at file extent insert time, causing the qgroup underflow. [FIX] For btrfs_qgroup_free_data(), add @reserved parameter to only free data ranges reserved by previous btrfs_qgroup_reserve_data(). So in above case, Task B will try to free 0 byte, so no underflow. Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:39 +08:00
struct extent_changeset *reserved, u64 start, u64 len)
{
struct btrfs_root *root = inode->root;
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges [BUG] For the following case, btrfs can underflow qgroup reserved space at an error path: (Page size 4K, function name without "btrfs_" prefix) Task A | Task B ---------------------------------------------------------------------- Buffered_write [0, 2K) | |- check_data_free_space() | | |- qgroup_reserve_data() | | Range aligned to page | | range [0, 4K) <<< | | 4K bytes reserved <<< | |- copy pages to page cache | | Buffered_write [2K, 4K) | |- check_data_free_space() | | |- qgroup_reserved_data() | | Range alinged to page | | range [0, 4K) | | Already reserved by A <<< | | 0 bytes reserved <<< | |- delalloc_reserve_metadata() | | And it *FAILED* (Maybe EQUOTA) | |- free_reserved_data_space() |- qgroup_free_data() Range aligned to page range [0, 4K) Freeing 4K (Special thanks to Chandan for the detailed report and analyse) [CAUSE] Above Task B is freeing reserved data range [0, 4K) which is actually reserved by Task A. And at writeback time, page dirty by Task A will go through writeback routine, which will free 4K reserved data space at file extent insert time, causing the qgroup underflow. [FIX] For btrfs_qgroup_free_data(), add @reserved parameter to only free data ranges reserved by previous btrfs_qgroup_reserve_data(). So in above case, Task B will try to free 0 byte, so no underflow. Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:39 +08:00
struct ulist_node *unode;
struct ulist_iterator uiter;
struct extent_changeset changeset;
int freed = 0;
int ret;
extent_changeset_init(&changeset);
len = round_up(start + len, root->fs_info->sectorsize);
start = round_down(start, root->fs_info->sectorsize);
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(&reserved->range_changed, &uiter))) {
u64 range_start = unode->val;
/* unode->aux is the inclusive end */
u64 range_len = unode->aux - range_start + 1;
u64 free_start;
u64 free_len;
extent_changeset_release(&changeset);
/* Only free range in range [start, start + len) */
if (range_start >= start + len ||
range_start + range_len <= start)
continue;
free_start = max(range_start, start);
free_len = min(start + len, range_start + range_len) -
free_start;
/*
* TODO: To also modify reserved->ranges_reserved to reflect
* the modification.
*
* However as long as we free qgroup reserved according to
* EXTENT_QGROUP_RESERVED, we won't double free.
* So not need to rush.
*/
ret = clear_record_extent_bits(&inode->io_tree, free_start,
free_start + free_len - 1,
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges [BUG] For the following case, btrfs can underflow qgroup reserved space at an error path: (Page size 4K, function name without "btrfs_" prefix) Task A | Task B ---------------------------------------------------------------------- Buffered_write [0, 2K) | |- check_data_free_space() | | |- qgroup_reserve_data() | | Range aligned to page | | range [0, 4K) <<< | | 4K bytes reserved <<< | |- copy pages to page cache | | Buffered_write [2K, 4K) | |- check_data_free_space() | | |- qgroup_reserved_data() | | Range alinged to page | | range [0, 4K) | | Already reserved by A <<< | | 0 bytes reserved <<< | |- delalloc_reserve_metadata() | | And it *FAILED* (Maybe EQUOTA) | |- free_reserved_data_space() |- qgroup_free_data() Range aligned to page range [0, 4K) Freeing 4K (Special thanks to Chandan for the detailed report and analyse) [CAUSE] Above Task B is freeing reserved data range [0, 4K) which is actually reserved by Task A. And at writeback time, page dirty by Task A will go through writeback routine, which will free 4K reserved data space at file extent insert time, causing the qgroup underflow. [FIX] For btrfs_qgroup_free_data(), add @reserved parameter to only free data ranges reserved by previous btrfs_qgroup_reserve_data(). So in above case, Task B will try to free 0 byte, so no underflow. Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:39 +08:00
EXTENT_QGROUP_RESERVED, &changeset);
if (ret < 0)
goto out;
freed += changeset.bytes_changed;
}
btrfs_qgroup_free_refroot(root->fs_info, root->root_key.objectid, freed,
BTRFS_QGROUP_RSV_DATA);
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges [BUG] For the following case, btrfs can underflow qgroup reserved space at an error path: (Page size 4K, function name without "btrfs_" prefix) Task A | Task B ---------------------------------------------------------------------- Buffered_write [0, 2K) | |- check_data_free_space() | | |- qgroup_reserve_data() | | Range aligned to page | | range [0, 4K) <<< | | 4K bytes reserved <<< | |- copy pages to page cache | | Buffered_write [2K, 4K) | |- check_data_free_space() | | |- qgroup_reserved_data() | | Range alinged to page | | range [0, 4K) | | Already reserved by A <<< | | 0 bytes reserved <<< | |- delalloc_reserve_metadata() | | And it *FAILED* (Maybe EQUOTA) | |- free_reserved_data_space() |- qgroup_free_data() Range aligned to page range [0, 4K) Freeing 4K (Special thanks to Chandan for the detailed report and analyse) [CAUSE] Above Task B is freeing reserved data range [0, 4K) which is actually reserved by Task A. And at writeback time, page dirty by Task A will go through writeback routine, which will free 4K reserved data space at file extent insert time, causing the qgroup underflow. [FIX] For btrfs_qgroup_free_data(), add @reserved parameter to only free data ranges reserved by previous btrfs_qgroup_reserve_data(). So in above case, Task B will try to free 0 byte, so no underflow. Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:39 +08:00
ret = freed;
out:
extent_changeset_release(&changeset);
return ret;
}
static int __btrfs_qgroup_release_data(struct btrfs_inode *inode,
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges [BUG] For the following case, btrfs can underflow qgroup reserved space at an error path: (Page size 4K, function name without "btrfs_" prefix) Task A | Task B ---------------------------------------------------------------------- Buffered_write [0, 2K) | |- check_data_free_space() | | |- qgroup_reserve_data() | | Range aligned to page | | range [0, 4K) <<< | | 4K bytes reserved <<< | |- copy pages to page cache | | Buffered_write [2K, 4K) | |- check_data_free_space() | | |- qgroup_reserved_data() | | Range alinged to page | | range [0, 4K) | | Already reserved by A <<< | | 0 bytes reserved <<< | |- delalloc_reserve_metadata() | | And it *FAILED* (Maybe EQUOTA) | |- free_reserved_data_space() |- qgroup_free_data() Range aligned to page range [0, 4K) Freeing 4K (Special thanks to Chandan for the detailed report and analyse) [CAUSE] Above Task B is freeing reserved data range [0, 4K) which is actually reserved by Task A. And at writeback time, page dirty by Task A will go through writeback routine, which will free 4K reserved data space at file extent insert time, causing the qgroup underflow. [FIX] For btrfs_qgroup_free_data(), add @reserved parameter to only free data ranges reserved by previous btrfs_qgroup_reserve_data(). So in above case, Task B will try to free 0 byte, so no underflow. Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:39 +08:00
struct extent_changeset *reserved, u64 start, u64 len,
int free)
{
struct extent_changeset changeset;
int trace_op = QGROUP_RELEASE;
int ret;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &inode->root->fs_info->flags))
return 0;
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges [BUG] For the following case, btrfs can underflow qgroup reserved space at an error path: (Page size 4K, function name without "btrfs_" prefix) Task A | Task B ---------------------------------------------------------------------- Buffered_write [0, 2K) | |- check_data_free_space() | | |- qgroup_reserve_data() | | Range aligned to page | | range [0, 4K) <<< | | 4K bytes reserved <<< | |- copy pages to page cache | | Buffered_write [2K, 4K) | |- check_data_free_space() | | |- qgroup_reserved_data() | | Range alinged to page | | range [0, 4K) | | Already reserved by A <<< | | 0 bytes reserved <<< | |- delalloc_reserve_metadata() | | And it *FAILED* (Maybe EQUOTA) | |- free_reserved_data_space() |- qgroup_free_data() Range aligned to page range [0, 4K) Freeing 4K (Special thanks to Chandan for the detailed report and analyse) [CAUSE] Above Task B is freeing reserved data range [0, 4K) which is actually reserved by Task A. And at writeback time, page dirty by Task A will go through writeback routine, which will free 4K reserved data space at file extent insert time, causing the qgroup underflow. [FIX] For btrfs_qgroup_free_data(), add @reserved parameter to only free data ranges reserved by previous btrfs_qgroup_reserve_data(). So in above case, Task B will try to free 0 byte, so no underflow. Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:39 +08:00
/* In release case, we shouldn't have @reserved */
WARN_ON(!free && reserved);
if (free && reserved)
return qgroup_free_reserved_data(inode, reserved, start, len);
extent_changeset_init(&changeset);
ret = clear_record_extent_bits(&inode->io_tree, start, start + len -1,
EXTENT_QGROUP_RESERVED, &changeset);
if (ret < 0)
goto out;
if (free)
trace_op = QGROUP_FREE;
trace_btrfs_qgroup_release_data(&inode->vfs_inode, start, len,
changeset.bytes_changed, trace_op);
if (free)
btrfs_qgroup_free_refroot(inode->root->fs_info,
inode->root->root_key.objectid,
changeset.bytes_changed, BTRFS_QGROUP_RSV_DATA);
ret = changeset.bytes_changed;
out:
extent_changeset_release(&changeset);
return ret;
}
/*
* Free a reserved space range from io_tree and related qgroups
*
* Should be called when a range of pages get invalidated before reaching disk.
* Or for error cleanup case.
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges [BUG] For the following case, btrfs can underflow qgroup reserved space at an error path: (Page size 4K, function name without "btrfs_" prefix) Task A | Task B ---------------------------------------------------------------------- Buffered_write [0, 2K) | |- check_data_free_space() | | |- qgroup_reserve_data() | | Range aligned to page | | range [0, 4K) <<< | | 4K bytes reserved <<< | |- copy pages to page cache | | Buffered_write [2K, 4K) | |- check_data_free_space() | | |- qgroup_reserved_data() | | Range alinged to page | | range [0, 4K) | | Already reserved by A <<< | | 0 bytes reserved <<< | |- delalloc_reserve_metadata() | | And it *FAILED* (Maybe EQUOTA) | |- free_reserved_data_space() |- qgroup_free_data() Range aligned to page range [0, 4K) Freeing 4K (Special thanks to Chandan for the detailed report and analyse) [CAUSE] Above Task B is freeing reserved data range [0, 4K) which is actually reserved by Task A. And at writeback time, page dirty by Task A will go through writeback routine, which will free 4K reserved data space at file extent insert time, causing the qgroup underflow. [FIX] For btrfs_qgroup_free_data(), add @reserved parameter to only free data ranges reserved by previous btrfs_qgroup_reserve_data(). So in above case, Task B will try to free 0 byte, so no underflow. Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:39 +08:00
* if @reserved is given, only reserved range in [@start, @start + @len) will
* be freed.
*
* For data written to disk, use btrfs_qgroup_release_data().
*
* NOTE: This function may sleep for memory allocation.
*/
int btrfs_qgroup_free_data(struct btrfs_inode *inode,
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges [BUG] For the following case, btrfs can underflow qgroup reserved space at an error path: (Page size 4K, function name without "btrfs_" prefix) Task A | Task B ---------------------------------------------------------------------- Buffered_write [0, 2K) | |- check_data_free_space() | | |- qgroup_reserve_data() | | Range aligned to page | | range [0, 4K) <<< | | 4K bytes reserved <<< | |- copy pages to page cache | | Buffered_write [2K, 4K) | |- check_data_free_space() | | |- qgroup_reserved_data() | | Range alinged to page | | range [0, 4K) | | Already reserved by A <<< | | 0 bytes reserved <<< | |- delalloc_reserve_metadata() | | And it *FAILED* (Maybe EQUOTA) | |- free_reserved_data_space() |- qgroup_free_data() Range aligned to page range [0, 4K) Freeing 4K (Special thanks to Chandan for the detailed report and analyse) [CAUSE] Above Task B is freeing reserved data range [0, 4K) which is actually reserved by Task A. And at writeback time, page dirty by Task A will go through writeback routine, which will free 4K reserved data space at file extent insert time, causing the qgroup underflow. [FIX] For btrfs_qgroup_free_data(), add @reserved parameter to only free data ranges reserved by previous btrfs_qgroup_reserve_data(). So in above case, Task B will try to free 0 byte, so no underflow. Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-27 15:10:39 +08:00
struct extent_changeset *reserved, u64 start, u64 len)
{
return __btrfs_qgroup_release_data(inode, reserved, start, len, 1);
}
/*
* Release a reserved space range from io_tree only.
*
* Should be called when a range of pages get written to disk and corresponding
* FILE_EXTENT is inserted into corresponding root.
*
* Since new qgroup accounting framework will only update qgroup numbers at
* commit_transaction() time, its reserved space shouldn't be freed from
* related qgroups.
*
* But we should release the range from io_tree, to allow further write to be
* COWed.
*
* NOTE: This function may sleep for memory allocation.
*/
int btrfs_qgroup_release_data(struct btrfs_inode *inode, u64 start, u64 len)
{
return __btrfs_qgroup_release_data(inode, NULL, start, len, 0);
}
static void add_root_meta_rsv(struct btrfs_root *root, int num_bytes,
enum btrfs_qgroup_rsv_type type)
{
if (type != BTRFS_QGROUP_RSV_META_PREALLOC &&
type != BTRFS_QGROUP_RSV_META_PERTRANS)
return;
if (num_bytes == 0)
return;
spin_lock(&root->qgroup_meta_rsv_lock);
if (type == BTRFS_QGROUP_RSV_META_PREALLOC)
root->qgroup_meta_rsv_prealloc += num_bytes;
else
root->qgroup_meta_rsv_pertrans += num_bytes;
spin_unlock(&root->qgroup_meta_rsv_lock);
}
static int sub_root_meta_rsv(struct btrfs_root *root, int num_bytes,
enum btrfs_qgroup_rsv_type type)
{
if (type != BTRFS_QGROUP_RSV_META_PREALLOC &&
type != BTRFS_QGROUP_RSV_META_PERTRANS)
return 0;
if (num_bytes == 0)
return 0;
spin_lock(&root->qgroup_meta_rsv_lock);
if (type == BTRFS_QGROUP_RSV_META_PREALLOC) {
num_bytes = min_t(u64, root->qgroup_meta_rsv_prealloc,
num_bytes);
root->qgroup_meta_rsv_prealloc -= num_bytes;
} else {
num_bytes = min_t(u64, root->qgroup_meta_rsv_pertrans,
num_bytes);
root->qgroup_meta_rsv_pertrans -= num_bytes;
}
spin_unlock(&root->qgroup_meta_rsv_lock);
return num_bytes;
}
int btrfs_qgroup_reserve_meta(struct btrfs_root *root, int num_bytes,
enum btrfs_qgroup_rsv_type type, bool enforce)
{
struct btrfs_fs_info *fs_info = root->fs_info;
int ret;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) ||
!is_fstree(root->root_key.objectid) || num_bytes == 0)
return 0;
BUG_ON(num_bytes != round_down(num_bytes, fs_info->nodesize));
trace_qgroup_meta_reserve(root, (s64)num_bytes, type);
ret = qgroup_reserve(root, num_bytes, enforce, type);
if (ret < 0)
return ret;
/*
* Record what we have reserved into root.
*
* To avoid quota disabled->enabled underflow.
* In that case, we may try to free space we haven't reserved
* (since quota was disabled), so record what we reserved into root.
* And ensure later release won't underflow this number.
*/
add_root_meta_rsv(root, num_bytes, type);
return ret;
}
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
int __btrfs_qgroup_reserve_meta(struct btrfs_root *root, int num_bytes,
btrfs: avoid blocking on space revervation when doing nowait dio writes When doing a NOWAIT direct IO write, if we can NOCOW then it means we can proceed with the non-blocking, NOWAIT path. However reserving the metadata space and qgroup meta space can often result in blocking - flushing delalloc, wait for ordered extents to complete, trigger transaction commits, etc, going against the semantics of a NOWAIT write. So make the NOWAIT write path to try to reserve all the metadata it needs without resulting in a blocking behaviour - if we get -ENOSPC or -EDQUOT then return -EAGAIN to make the caller fallback to a blocking direct IO write. This is part of a patchset comprised of the following patches: btrfs: avoid blocking on page locks with nowait dio on compressed range btrfs: avoid blocking nowait dio when locking file range btrfs: avoid double nocow check when doing nowait dio writes btrfs: stop allocating a path when checking if cross reference exists btrfs: free path at can_nocow_extent() before checking for checksum items btrfs: release path earlier at can_nocow_extent() btrfs: avoid blocking when allocating context for nowait dio read/write btrfs: avoid blocking on space revervation when doing nowait dio writes The following test was run before and after applying this patchset: $ cat io-uring-nodatacow-test.sh #!/bin/bash DEV=/dev/sdc MNT=/mnt/sdc MOUNT_OPTIONS="-o ssd -o nodatacow" MKFS_OPTIONS="-R free-space-tree -O no-holes" NUM_JOBS=4 FILE_SIZE=8G RUN_TIME=300 cat <<EOF > /tmp/fio-job.ini [io_uring_rw] rw=randrw fsync=0 fallocate=posix group_reporting=1 direct=1 ioengine=io_uring iodepth=64 bssplit=4k/20:8k/20:16k/20:32k/10:64k/10:128k/5:256k/5:512k/5:1m/5 filesize=$FILE_SIZE runtime=$RUN_TIME time_based filename=foobar directory=$MNT numjobs=$NUM_JOBS thread EOF echo performance | \ tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor umount $MNT &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null mount $MOUNT_OPTIONS $DEV $MNT fio /tmp/fio-job.ini umount $MNT The test was run a 12 cores box with 64G of ram, using a non-debug kernel config (Debian's default config) and a spinning disk. Result before the patchset: READ: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec WRITE: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec Result after the patchset: READ: bw=436MiB/s (457MB/s), 436MiB/s-436MiB/s (457MB/s-457MB/s), io=128GiB (137GB), run=300044-300044msec WRITE: bw=435MiB/s (456MB/s), 435MiB/s-435MiB/s (456MB/s-456MB/s), io=128GiB (137GB), run=300044-300044msec That's about +7.2% throughput for reads and +6.9% for writes. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-23 16:19:30 +00:00
enum btrfs_qgroup_rsv_type type, bool enforce,
bool noflush)
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
{
int ret;
ret = btrfs_qgroup_reserve_meta(root, num_bytes, type, enforce);
btrfs: avoid blocking on space revervation when doing nowait dio writes When doing a NOWAIT direct IO write, if we can NOCOW then it means we can proceed with the non-blocking, NOWAIT path. However reserving the metadata space and qgroup meta space can often result in blocking - flushing delalloc, wait for ordered extents to complete, trigger transaction commits, etc, going against the semantics of a NOWAIT write. So make the NOWAIT write path to try to reserve all the metadata it needs without resulting in a blocking behaviour - if we get -ENOSPC or -EDQUOT then return -EAGAIN to make the caller fallback to a blocking direct IO write. This is part of a patchset comprised of the following patches: btrfs: avoid blocking on page locks with nowait dio on compressed range btrfs: avoid blocking nowait dio when locking file range btrfs: avoid double nocow check when doing nowait dio writes btrfs: stop allocating a path when checking if cross reference exists btrfs: free path at can_nocow_extent() before checking for checksum items btrfs: release path earlier at can_nocow_extent() btrfs: avoid blocking when allocating context for nowait dio read/write btrfs: avoid blocking on space revervation when doing nowait dio writes The following test was run before and after applying this patchset: $ cat io-uring-nodatacow-test.sh #!/bin/bash DEV=/dev/sdc MNT=/mnt/sdc MOUNT_OPTIONS="-o ssd -o nodatacow" MKFS_OPTIONS="-R free-space-tree -O no-holes" NUM_JOBS=4 FILE_SIZE=8G RUN_TIME=300 cat <<EOF > /tmp/fio-job.ini [io_uring_rw] rw=randrw fsync=0 fallocate=posix group_reporting=1 direct=1 ioengine=io_uring iodepth=64 bssplit=4k/20:8k/20:16k/20:32k/10:64k/10:128k/5:256k/5:512k/5:1m/5 filesize=$FILE_SIZE runtime=$RUN_TIME time_based filename=foobar directory=$MNT numjobs=$NUM_JOBS thread EOF echo performance | \ tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor umount $MNT &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null mount $MOUNT_OPTIONS $DEV $MNT fio /tmp/fio-job.ini umount $MNT The test was run a 12 cores box with 64G of ram, using a non-debug kernel config (Debian's default config) and a spinning disk. Result before the patchset: READ: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec WRITE: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec Result after the patchset: READ: bw=436MiB/s (457MB/s), 436MiB/s-436MiB/s (457MB/s-457MB/s), io=128GiB (137GB), run=300044-300044msec WRITE: bw=435MiB/s (456MB/s), 435MiB/s-435MiB/s (456MB/s-456MB/s), io=128GiB (137GB), run=300044-300044msec That's about +7.2% throughput for reads and +6.9% for writes. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-23 16:19:30 +00:00
if ((ret <= 0 && ret != -EDQUOT) || noflush)
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
return ret;
ret = try_flush_qgroup(root);
if (ret < 0)
return ret;
return btrfs_qgroup_reserve_meta(root, num_bytes, type, enforce);
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 18:50:48 +08:00
}
void btrfs_qgroup_free_meta_all_pertrans(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) ||
!is_fstree(root->root_key.objectid))
return;
/* TODO: Update trace point to handle such free */
trace_qgroup_meta_free_all_pertrans(root);
/* Special value -1 means to free all reserved space */
btrfs_qgroup_free_refroot(fs_info, root->root_key.objectid, (u64)-1,
BTRFS_QGROUP_RSV_META_PERTRANS);
}
void __btrfs_qgroup_free_meta(struct btrfs_root *root, int num_bytes,
enum btrfs_qgroup_rsv_type type)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) ||
!is_fstree(root->root_key.objectid))
return;
/*
* reservation for META_PREALLOC can happen before quota is enabled,
* which can lead to underflow.
* Here ensure we will only free what we really have reserved.
*/
num_bytes = sub_root_meta_rsv(root, num_bytes, type);
BUG_ON(num_bytes != round_down(num_bytes, fs_info->nodesize));
trace_qgroup_meta_reserve(root, -(s64)num_bytes, type);
btrfs_qgroup_free_refroot(fs_info, root->root_key.objectid,
num_bytes, type);
}
static void qgroup_convert_meta(struct btrfs_fs_info *fs_info, u64 ref_root,
int num_bytes)
{
struct btrfs_qgroup *qgroup;
struct ulist_node *unode;
struct ulist_iterator uiter;
int ret = 0;
if (num_bytes == 0)
return;
if (!fs_info->quota_root)
return;
spin_lock(&fs_info->qgroup_lock);
qgroup = find_qgroup_rb(fs_info, ref_root);
if (!qgroup)
goto out;
ulist_reinit(fs_info->qgroup_ulist);
ret = ulist_add(fs_info->qgroup_ulist, qgroup->qgroupid,
qgroup_to_aux(qgroup), GFP_ATOMIC);
if (ret < 0)
goto out;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) {
struct btrfs_qgroup *qg;
struct btrfs_qgroup_list *glist;
qg = unode_aux_to_qgroup(unode);
qgroup_rsv_release(fs_info, qg, num_bytes,
BTRFS_QGROUP_RSV_META_PREALLOC);
qgroup_rsv_add(fs_info, qg, num_bytes,
BTRFS_QGROUP_RSV_META_PERTRANS);
list_for_each_entry(glist, &qg->groups, next_group) {
ret = ulist_add(fs_info->qgroup_ulist,
glist->group->qgroupid,
qgroup_to_aux(glist->group), GFP_ATOMIC);
if (ret < 0)
goto out;
}
}
out:
spin_unlock(&fs_info->qgroup_lock);
}
void btrfs_qgroup_convert_reserved_meta(struct btrfs_root *root, int num_bytes)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) ||
!is_fstree(root->root_key.objectid))
return;
/* Same as btrfs_qgroup_free_meta_prealloc() */
num_bytes = sub_root_meta_rsv(root, num_bytes,
BTRFS_QGROUP_RSV_META_PREALLOC);
trace_qgroup_meta_convert(root, num_bytes);
qgroup_convert_meta(fs_info, root->root_key.objectid, num_bytes);
}
/*
* Check qgroup reserved space leaking, normally at destroy inode
* time
*/
void btrfs_qgroup_check_reserved_leak(struct btrfs_inode *inode)
{
struct extent_changeset changeset;
struct ulist_node *unode;
struct ulist_iterator iter;
int ret;
extent_changeset_init(&changeset);
ret = clear_record_extent_bits(&inode->io_tree, 0, (u64)-1,
EXTENT_QGROUP_RESERVED, &changeset);
WARN_ON(ret < 0);
if (WARN_ON(changeset.bytes_changed)) {
ULIST_ITER_INIT(&iter);
while ((unode = ulist_next(&changeset.range_changed, &iter))) {
btrfs_warn(inode->root->fs_info,
"leaking qgroup reserved space, ino: %llu, start: %llu, end: %llu",
btrfs_ino(inode), unode->val, unode->aux);
}
btrfs_qgroup_free_refroot(inode->root->fs_info,
inode->root->root_key.objectid,
changeset.bytes_changed, BTRFS_QGROUP_RSV_DATA);
}
extent_changeset_release(&changeset);
}
btrfs: qgroup: Introduce per-root swapped blocks infrastructure To allow delayed subtree swap rescan, btrfs needs to record per-root information about which tree blocks get swapped. This patch introduces the required infrastructure. The designed workflow will be: 1) Record the subtree root block that gets swapped. During subtree swap: O = Old tree blocks N = New tree blocks reloc tree subvolume tree X Root Root / \ / \ NA OB OA OB / | | \ / | | \ NC ND OE OF OC OD OE OF In this case, NA and OA are going to be swapped, record (NA, OA) into subvolume tree X. 2) After subtree swap. reloc tree subvolume tree X Root Root / \ / \ OA OB NA OB / | | \ / | | \ OC OD OE OF NC ND OE OF 3a) COW happens for OB If we are going to COW tree block OB, we check OB's bytenr against tree X's swapped_blocks structure. If it doesn't fit any, nothing will happen. 3b) COW happens for NA Check NA's bytenr against tree X's swapped_blocks, and get a hit. Then we do subtree scan on both subtrees OA and NA. Resulting 6 tree blocks to be scanned (OA, OC, OD, NA, NC, ND). Then no matter what we do to subvolume tree X, qgroup numbers will still be correct. Then NA's record gets removed from X's swapped_blocks. 4) Transaction commit Any record in X's swapped_blocks gets removed, since there is no modification to swapped subtrees, no need to trigger heavy qgroup subtree rescan for them. This will introduce 128 bytes overhead for each btrfs_root even qgroup is not enabled. This is to reduce memory allocations and potential failures. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:16 +08:00
void btrfs_qgroup_init_swapped_blocks(
struct btrfs_qgroup_swapped_blocks *swapped_blocks)
{
int i;
spin_lock_init(&swapped_blocks->lock);
for (i = 0; i < BTRFS_MAX_LEVEL; i++)
swapped_blocks->blocks[i] = RB_ROOT;
swapped_blocks->swapped = false;
}
/*
* Delete all swapped blocks record of @root.
* Every record here means we skipped a full subtree scan for qgroup.
*
* Gets called when committing one transaction.
*/
void btrfs_qgroup_clean_swapped_blocks(struct btrfs_root *root)
{
struct btrfs_qgroup_swapped_blocks *swapped_blocks;
int i;
swapped_blocks = &root->swapped_blocks;
spin_lock(&swapped_blocks->lock);
if (!swapped_blocks->swapped)
goto out;
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
struct rb_root *cur_root = &swapped_blocks->blocks[i];
struct btrfs_qgroup_swapped_block *entry;
struct btrfs_qgroup_swapped_block *next;
rbtree_postorder_for_each_entry_safe(entry, next, cur_root,
node)
kfree(entry);
swapped_blocks->blocks[i] = RB_ROOT;
}
swapped_blocks->swapped = false;
out:
spin_unlock(&swapped_blocks->lock);
}
/*
* Add subtree roots record into @subvol_root.
*
* @subvol_root: tree root of the subvolume tree get swapped
* @bg: block group under balance
* @subvol_parent/slot: pointer to the subtree root in subvolume tree
* @reloc_parent/slot: pointer to the subtree root in reloc tree
* BOTH POINTERS ARE BEFORE TREE SWAP
* @last_snapshot: last snapshot generation of the subvolume tree
*/
int btrfs_qgroup_add_swapped_blocks(struct btrfs_trans_handle *trans,
struct btrfs_root *subvol_root,
struct btrfs_block_group *bg,
btrfs: qgroup: Introduce per-root swapped blocks infrastructure To allow delayed subtree swap rescan, btrfs needs to record per-root information about which tree blocks get swapped. This patch introduces the required infrastructure. The designed workflow will be: 1) Record the subtree root block that gets swapped. During subtree swap: O = Old tree blocks N = New tree blocks reloc tree subvolume tree X Root Root / \ / \ NA OB OA OB / | | \ / | | \ NC ND OE OF OC OD OE OF In this case, NA and OA are going to be swapped, record (NA, OA) into subvolume tree X. 2) After subtree swap. reloc tree subvolume tree X Root Root / \ / \ OA OB NA OB / | | \ / | | \ OC OD OE OF NC ND OE OF 3a) COW happens for OB If we are going to COW tree block OB, we check OB's bytenr against tree X's swapped_blocks structure. If it doesn't fit any, nothing will happen. 3b) COW happens for NA Check NA's bytenr against tree X's swapped_blocks, and get a hit. Then we do subtree scan on both subtrees OA and NA. Resulting 6 tree blocks to be scanned (OA, OC, OD, NA, NC, ND). Then no matter what we do to subvolume tree X, qgroup numbers will still be correct. Then NA's record gets removed from X's swapped_blocks. 4) Transaction commit Any record in X's swapped_blocks gets removed, since there is no modification to swapped subtrees, no need to trigger heavy qgroup subtree rescan for them. This will introduce 128 bytes overhead for each btrfs_root even qgroup is not enabled. This is to reduce memory allocations and potential failures. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:16 +08:00
struct extent_buffer *subvol_parent, int subvol_slot,
struct extent_buffer *reloc_parent, int reloc_slot,
u64 last_snapshot)
{
struct btrfs_fs_info *fs_info = subvol_root->fs_info;
struct btrfs_qgroup_swapped_blocks *blocks = &subvol_root->swapped_blocks;
struct btrfs_qgroup_swapped_block *block;
struct rb_node **cur;
struct rb_node *parent = NULL;
int level = btrfs_header_level(subvol_parent) - 1;
int ret = 0;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
return 0;
if (btrfs_node_ptr_generation(subvol_parent, subvol_slot) >
btrfs_node_ptr_generation(reloc_parent, reloc_slot)) {
btrfs_err_rl(fs_info,
"%s: bad parameter order, subvol_gen=%llu reloc_gen=%llu",
__func__,
btrfs_node_ptr_generation(subvol_parent, subvol_slot),
btrfs_node_ptr_generation(reloc_parent, reloc_slot));
return -EUCLEAN;
}
block = kmalloc(sizeof(*block), GFP_NOFS);
if (!block) {
ret = -ENOMEM;
goto out;
}
/*
* @reloc_parent/slot is still before swap, while @block is going to
* record the bytenr after swap, so we do the swap here.
*/
block->subvol_bytenr = btrfs_node_blockptr(reloc_parent, reloc_slot);
block->subvol_generation = btrfs_node_ptr_generation(reloc_parent,
reloc_slot);
block->reloc_bytenr = btrfs_node_blockptr(subvol_parent, subvol_slot);
block->reloc_generation = btrfs_node_ptr_generation(subvol_parent,
subvol_slot);
block->last_snapshot = last_snapshot;
block->level = level;
btrfs: qgroup: Check bg while resuming relocation to avoid NULL pointer dereference [BUG] When mounting a fs with reloc tree and has qgroup enabled, it can cause NULL pointer dereference at mount time: BUG: kernel NULL pointer dereference, address: 00000000000000a8 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:btrfs_qgroup_add_swapped_blocks+0x186/0x300 [btrfs] Call Trace: replace_path.isra.23+0x685/0x900 [btrfs] merge_reloc_root+0x26e/0x5f0 [btrfs] merge_reloc_roots+0x10a/0x1a0 [btrfs] btrfs_recover_relocation+0x3cd/0x420 [btrfs] open_ctree+0x1bc8/0x1ed0 [btrfs] btrfs_mount_root+0x544/0x680 [btrfs] legacy_get_tree+0x34/0x60 vfs_get_tree+0x2d/0xf0 fc_mount+0x12/0x40 vfs_kern_mount.part.12+0x61/0xa0 vfs_kern_mount+0x13/0x20 btrfs_mount+0x16f/0x860 [btrfs] legacy_get_tree+0x34/0x60 vfs_get_tree+0x2d/0xf0 do_mount+0x81f/0xac0 ksys_mount+0xbf/0xe0 __x64_sys_mount+0x25/0x30 do_syscall_64+0x65/0x240 entry_SYSCALL_64_after_hwframe+0x49/0xbe [CAUSE] In btrfs_recover_relocation(), we don't have enough info to determine which block group we're relocating, but only to merge existing reloc trees. Thus in btrfs_recover_relocation(), rc->block_group is NULL. btrfs_qgroup_add_swapped_blocks() hasn't taken this into consideration, and causes a NULL pointer dereference. The bug is introduced by commit 3d0174f78e72 ("btrfs: qgroup: Only trace data extents in leaves if we're relocating data block group"), and later qgroup refactoring still keeps this optimization. [FIX] Thankfully in the context of btrfs_recover_relocation(), there is no other progress can modify tree blocks, thus those swapped tree blocks pair will never affect qgroup numbers, no matter whatever we set for block->trace_leaf. So we only need to check if @bg is NULL before accessing @bg->flags. Reported-by: Juan Erbes <jerbes@gmail.com> Link: https://bugzilla.opensuse.org/show_bug.cgi?id=1134806 Fixes: 3d0174f78e72 ("btrfs: qgroup: Only trace data extents in leaves if we're relocating data block group") CC: stable@vger.kernel.org # 4.20+ Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-05-21 19:28:08 +08:00
/*
* If we have bg == NULL, we're called from btrfs_recover_relocation(),
* no one else can modify tree blocks thus we qgroup will not change
* no matter the value of trace_leaf.
*/
if (bg && bg->flags & BTRFS_BLOCK_GROUP_DATA)
btrfs: qgroup: Introduce per-root swapped blocks infrastructure To allow delayed subtree swap rescan, btrfs needs to record per-root information about which tree blocks get swapped. This patch introduces the required infrastructure. The designed workflow will be: 1) Record the subtree root block that gets swapped. During subtree swap: O = Old tree blocks N = New tree blocks reloc tree subvolume tree X Root Root / \ / \ NA OB OA OB / | | \ / | | \ NC ND OE OF OC OD OE OF In this case, NA and OA are going to be swapped, record (NA, OA) into subvolume tree X. 2) After subtree swap. reloc tree subvolume tree X Root Root / \ / \ OA OB NA OB / | | \ / | | \ OC OD OE OF NC ND OE OF 3a) COW happens for OB If we are going to COW tree block OB, we check OB's bytenr against tree X's swapped_blocks structure. If it doesn't fit any, nothing will happen. 3b) COW happens for NA Check NA's bytenr against tree X's swapped_blocks, and get a hit. Then we do subtree scan on both subtrees OA and NA. Resulting 6 tree blocks to be scanned (OA, OC, OD, NA, NC, ND). Then no matter what we do to subvolume tree X, qgroup numbers will still be correct. Then NA's record gets removed from X's swapped_blocks. 4) Transaction commit Any record in X's swapped_blocks gets removed, since there is no modification to swapped subtrees, no need to trigger heavy qgroup subtree rescan for them. This will introduce 128 bytes overhead for each btrfs_root even qgroup is not enabled. This is to reduce memory allocations and potential failures. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:16 +08:00
block->trace_leaf = true;
else
block->trace_leaf = false;
btrfs_node_key_to_cpu(reloc_parent, &block->first_key, reloc_slot);
/* Insert @block into @blocks */
spin_lock(&blocks->lock);
cur = &blocks->blocks[level].rb_node;
while (*cur) {
struct btrfs_qgroup_swapped_block *entry;
parent = *cur;
entry = rb_entry(parent, struct btrfs_qgroup_swapped_block,
node);
if (entry->subvol_bytenr < block->subvol_bytenr) {
cur = &(*cur)->rb_left;
} else if (entry->subvol_bytenr > block->subvol_bytenr) {
cur = &(*cur)->rb_right;
} else {
if (entry->subvol_generation !=
block->subvol_generation ||
entry->reloc_bytenr != block->reloc_bytenr ||
entry->reloc_generation !=
block->reloc_generation) {
/*
* Duplicated but mismatch entry found.
* Shouldn't happen.
*
* Marking qgroup inconsistent should be enough
* for end users.
*/
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
ret = -EEXIST;
}
kfree(block);
goto out_unlock;
}
}
rb_link_node(&block->node, parent, cur);
rb_insert_color(&block->node, &blocks->blocks[level]);
blocks->swapped = true;
out_unlock:
spin_unlock(&blocks->lock);
out:
if (ret < 0)
qgroup_mark_inconsistent(fs_info);
btrfs: qgroup: Introduce per-root swapped blocks infrastructure To allow delayed subtree swap rescan, btrfs needs to record per-root information about which tree blocks get swapped. This patch introduces the required infrastructure. The designed workflow will be: 1) Record the subtree root block that gets swapped. During subtree swap: O = Old tree blocks N = New tree blocks reloc tree subvolume tree X Root Root / \ / \ NA OB OA OB / | | \ / | | \ NC ND OE OF OC OD OE OF In this case, NA and OA are going to be swapped, record (NA, OA) into subvolume tree X. 2) After subtree swap. reloc tree subvolume tree X Root Root / \ / \ OA OB NA OB / | | \ / | | \ OC OD OE OF NC ND OE OF 3a) COW happens for OB If we are going to COW tree block OB, we check OB's bytenr against tree X's swapped_blocks structure. If it doesn't fit any, nothing will happen. 3b) COW happens for NA Check NA's bytenr against tree X's swapped_blocks, and get a hit. Then we do subtree scan on both subtrees OA and NA. Resulting 6 tree blocks to be scanned (OA, OC, OD, NA, NC, ND). Then no matter what we do to subvolume tree X, qgroup numbers will still be correct. Then NA's record gets removed from X's swapped_blocks. 4) Transaction commit Any record in X's swapped_blocks gets removed, since there is no modification to swapped subtrees, no need to trigger heavy qgroup subtree rescan for them. This will introduce 128 bytes overhead for each btrfs_root even qgroup is not enabled. This is to reduce memory allocations and potential failures. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:16 +08:00
return ret;
}
btrfs: qgroup: Use delayed subtree rescan for balance Before this patch, qgroup code traces the whole subtree of subvolume and reloc trees unconditionally. This makes qgroup numbers consistent, but it could cause tons of unnecessary extent tracing, which causes a lot of overhead. However for subtree swap of balance, just swap both subtrees because they contain the same contents and tree structure, so qgroup numbers won't change. It's the race window between subtree swap and transaction commit could cause qgroup number change. This patch will delay the qgroup subtree scan until COW happens for the subtree root. So if there is no other operations for the fs, balance won't cause extra qgroup overhead. (best case scenario) Depending on the workload, most of the subtree scan can still be avoided. Only for worst case scenario, it will fall back to old subtree swap overhead. (scan all swapped subtrees) [[Benchmark]] Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. And after file system population, there is no other activity, so it should be the best case scenario. | v4.20-rc1 | w/ patchset | diff ----------------------------------------------------------------------- relocated extents | 22615 | 22457 | -0.1% qgroup dirty extents | 163457 | 121606 | -25.6% time (sys) | 22.884s | 18.842s | -17.6% time (real) | 27.724s | 22.884s | -17.5% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:17 +08:00
/*
* Check if the tree block is a subtree root, and if so do the needed
* delayed subtree trace for qgroup.
*
* This is called during btrfs_cow_block().
*/
int btrfs_qgroup_trace_subtree_after_cow(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *subvol_eb)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_tree_parent_check check = { 0 };
btrfs: qgroup: Use delayed subtree rescan for balance Before this patch, qgroup code traces the whole subtree of subvolume and reloc trees unconditionally. This makes qgroup numbers consistent, but it could cause tons of unnecessary extent tracing, which causes a lot of overhead. However for subtree swap of balance, just swap both subtrees because they contain the same contents and tree structure, so qgroup numbers won't change. It's the race window between subtree swap and transaction commit could cause qgroup number change. This patch will delay the qgroup subtree scan until COW happens for the subtree root. So if there is no other operations for the fs, balance won't cause extra qgroup overhead. (best case scenario) Depending on the workload, most of the subtree scan can still be avoided. Only for worst case scenario, it will fall back to old subtree swap overhead. (scan all swapped subtrees) [[Benchmark]] Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. And after file system population, there is no other activity, so it should be the best case scenario. | v4.20-rc1 | w/ patchset | diff ----------------------------------------------------------------------- relocated extents | 22615 | 22457 | -0.1% qgroup dirty extents | 163457 | 121606 | -25.6% time (sys) | 22.884s | 18.842s | -17.6% time (real) | 27.724s | 22.884s | -17.5% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:17 +08:00
struct btrfs_qgroup_swapped_blocks *blocks = &root->swapped_blocks;
struct btrfs_qgroup_swapped_block *block;
struct extent_buffer *reloc_eb = NULL;
struct rb_node *node;
bool found = false;
bool swapped = false;
int level = btrfs_header_level(subvol_eb);
int ret = 0;
int i;
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
return 0;
if (!is_fstree(root->root_key.objectid) || !root->reloc_root)
return 0;
spin_lock(&blocks->lock);
if (!blocks->swapped) {
spin_unlock(&blocks->lock);
return 0;
}
node = blocks->blocks[level].rb_node;
while (node) {
block = rb_entry(node, struct btrfs_qgroup_swapped_block, node);
if (block->subvol_bytenr < subvol_eb->start) {
node = node->rb_left;
} else if (block->subvol_bytenr > subvol_eb->start) {
node = node->rb_right;
} else {
found = true;
break;
}
}
if (!found) {
spin_unlock(&blocks->lock);
goto out;
}
/* Found one, remove it from @blocks first and update blocks->swapped */
rb_erase(&block->node, &blocks->blocks[level]);
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
if (RB_EMPTY_ROOT(&blocks->blocks[i])) {
swapped = true;
break;
}
}
blocks->swapped = swapped;
spin_unlock(&blocks->lock);
check.level = block->level;
check.transid = block->reloc_generation;
check.has_first_key = true;
memcpy(&check.first_key, &block->first_key, sizeof(check.first_key));
btrfs: qgroup: Use delayed subtree rescan for balance Before this patch, qgroup code traces the whole subtree of subvolume and reloc trees unconditionally. This makes qgroup numbers consistent, but it could cause tons of unnecessary extent tracing, which causes a lot of overhead. However for subtree swap of balance, just swap both subtrees because they contain the same contents and tree structure, so qgroup numbers won't change. It's the race window between subtree swap and transaction commit could cause qgroup number change. This patch will delay the qgroup subtree scan until COW happens for the subtree root. So if there is no other operations for the fs, balance won't cause extra qgroup overhead. (best case scenario) Depending on the workload, most of the subtree scan can still be avoided. Only for worst case scenario, it will fall back to old subtree swap overhead. (scan all swapped subtrees) [[Benchmark]] Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. And after file system population, there is no other activity, so it should be the best case scenario. | v4.20-rc1 | w/ patchset | diff ----------------------------------------------------------------------- relocated extents | 22615 | 22457 | -0.1% qgroup dirty extents | 163457 | 121606 | -25.6% time (sys) | 22.884s | 18.842s | -17.6% time (real) | 27.724s | 22.884s | -17.5% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:17 +08:00
/* Read out reloc subtree root */
reloc_eb = read_tree_block(fs_info, block->reloc_bytenr, &check);
btrfs: qgroup: Use delayed subtree rescan for balance Before this patch, qgroup code traces the whole subtree of subvolume and reloc trees unconditionally. This makes qgroup numbers consistent, but it could cause tons of unnecessary extent tracing, which causes a lot of overhead. However for subtree swap of balance, just swap both subtrees because they contain the same contents and tree structure, so qgroup numbers won't change. It's the race window between subtree swap and transaction commit could cause qgroup number change. This patch will delay the qgroup subtree scan until COW happens for the subtree root. So if there is no other operations for the fs, balance won't cause extra qgroup overhead. (best case scenario) Depending on the workload, most of the subtree scan can still be avoided. Only for worst case scenario, it will fall back to old subtree swap overhead. (scan all swapped subtrees) [[Benchmark]] Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. And after file system population, there is no other activity, so it should be the best case scenario. | v4.20-rc1 | w/ patchset | diff ----------------------------------------------------------------------- relocated extents | 22615 | 22457 | -0.1% qgroup dirty extents | 163457 | 121606 | -25.6% time (sys) | 22.884s | 18.842s | -17.6% time (real) | 27.724s | 22.884s | -17.5% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:17 +08:00
if (IS_ERR(reloc_eb)) {
ret = PTR_ERR(reloc_eb);
reloc_eb = NULL;
goto free_out;
}
if (!extent_buffer_uptodate(reloc_eb)) {
ret = -EIO;
goto free_out;
}
ret = qgroup_trace_subtree_swap(trans, reloc_eb, subvol_eb,
block->last_snapshot, block->trace_leaf);
free_out:
kfree(block);
free_extent_buffer(reloc_eb);
out:
if (ret < 0) {
btrfs_err_rl(fs_info,
"failed to account subtree at bytenr %llu: %d",
subvol_eb->start, ret);
qgroup_mark_inconsistent(fs_info);
btrfs: qgroup: Use delayed subtree rescan for balance Before this patch, qgroup code traces the whole subtree of subvolume and reloc trees unconditionally. This makes qgroup numbers consistent, but it could cause tons of unnecessary extent tracing, which causes a lot of overhead. However for subtree swap of balance, just swap both subtrees because they contain the same contents and tree structure, so qgroup numbers won't change. It's the race window between subtree swap and transaction commit could cause qgroup number change. This patch will delay the qgroup subtree scan until COW happens for the subtree root. So if there is no other operations for the fs, balance won't cause extra qgroup overhead. (best case scenario) Depending on the workload, most of the subtree scan can still be avoided. Only for worst case scenario, it will fall back to old subtree swap overhead. (scan all swapped subtrees) [[Benchmark]] Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. And after file system population, there is no other activity, so it should be the best case scenario. | v4.20-rc1 | w/ patchset | diff ----------------------------------------------------------------------- relocated extents | 22615 | 22457 | -0.1% qgroup dirty extents | 163457 | 121606 | -25.6% time (sys) | 22.884s | 18.842s | -17.6% time (real) | 27.724s | 22.884s | -17.5% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 15:15:17 +08:00
}
return ret;
}
void btrfs_qgroup_destroy_extent_records(struct btrfs_transaction *trans)
{
struct btrfs_qgroup_extent_record *entry;
struct btrfs_qgroup_extent_record *next;
struct rb_root *root;
root = &trans->delayed_refs.dirty_extent_root;
rbtree_postorder_for_each_entry_safe(entry, next, root, node) {
ulist_free(entry->old_roots);
kfree(entry);
}
btrfs: fix warning when putting transaction with qgroups enabled after abort If we have a transaction abort with qgroups enabled we get a warning triggered when doing the final put on the transaction, like this: [552.6789] ------------[ cut here ]------------ [552.6815] WARNING: CPU: 4 PID: 81745 at fs/btrfs/transaction.c:144 btrfs_put_transaction+0x123/0x130 [btrfs] [552.6817] Modules linked in: btrfs blake2b_generic xor (...) [552.6819] CPU: 4 PID: 81745 Comm: btrfs-transacti Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1 [552.6819] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [552.6819] RIP: 0010:btrfs_put_transaction+0x123/0x130 [btrfs] [552.6821] Code: bd a0 01 00 (...) [552.6821] RSP: 0018:ffffa168c0527e28 EFLAGS: 00010286 [552.6821] RAX: ffff936042caed00 RBX: ffff93604a3eb448 RCX: 0000000000000000 [552.6821] RDX: ffff93606421b028 RSI: ffffffff92ff0878 RDI: ffff93606421b010 [552.6821] RBP: ffff93606421b000 R08: 0000000000000000 R09: ffffa168c0d07c20 [552.6821] R10: 0000000000000000 R11: ffff93608dc52950 R12: ffffa168c0527e70 [552.6821] R13: ffff93606421b000 R14: ffff93604a3eb420 R15: ffff93606421b028 [552.6821] FS: 0000000000000000(0000) GS:ffff93675fb00000(0000) knlGS:0000000000000000 [552.6821] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [552.6821] CR2: 0000558ad262b000 CR3: 000000014feda005 CR4: 0000000000370ee0 [552.6822] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [552.6822] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [552.6822] Call Trace: [552.6822] <TASK> [552.6822] ? __warn+0x80/0x130 [552.6822] ? btrfs_put_transaction+0x123/0x130 [btrfs] [552.6824] ? report_bug+0x1f4/0x200 [552.6824] ? handle_bug+0x42/0x70 [552.6824] ? exc_invalid_op+0x14/0x70 [552.6824] ? asm_exc_invalid_op+0x16/0x20 [552.6824] ? btrfs_put_transaction+0x123/0x130 [btrfs] [552.6826] btrfs_cleanup_transaction+0xe7/0x5e0 [btrfs] [552.6828] ? _raw_spin_unlock_irqrestore+0x23/0x40 [552.6828] ? try_to_wake_up+0x94/0x5e0 [552.6828] ? __pfx_process_timeout+0x10/0x10 [552.6828] transaction_kthread+0x103/0x1d0 [btrfs] [552.6830] ? __pfx_transaction_kthread+0x10/0x10 [btrfs] [552.6832] kthread+0xee/0x120 [552.6832] ? __pfx_kthread+0x10/0x10 [552.6832] ret_from_fork+0x29/0x50 [552.6832] </TASK> [552.6832] ---[ end trace 0000000000000000 ]--- This corresponds to this line of code: void btrfs_put_transaction(struct btrfs_transaction *transaction) { (...) WARN_ON(!RB_EMPTY_ROOT( &transaction->delayed_refs.dirty_extent_root)); (...) } The warning happens because btrfs_qgroup_destroy_extent_records(), called in the transaction abort path, we free all entries from the rbtree "dirty_extent_root" with rbtree_postorder_for_each_entry_safe(), but we don't actually empty the rbtree - it's still pointing to nodes that were freed. So set the rbtree's root node to NULL to avoid this warning (assign RB_ROOT). Fixes: 81f7eb00ff5b ("btrfs: destroy qgroup extent records on transaction abort") CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-07-14 13:42:06 +01:00
*root = RB_ROOT;
}