2005-04-17 02:20:36 +04:00
#
# IPv6 configuration
2005-07-12 08:13:56 +04:00
#
# IPv6 as module will cause a CRASH if you try to unload it
2008-04-14 10:30:47 +04:00
menuconfig IPV6
2005-07-12 08:13:56 +04:00
tristate "The IPv6 protocol"
default m
---help---
This is complemental support for the IP version 6.
You will still be able to do traditional IPv4 networking as well.
For general information about IPv6, see
2013-02-22 04:43:05 +04:00
<https://en.wikipedia.org/wiki/IPv6>.
2005-07-12 08:13:56 +04:00
For Linux IPv6 development information, see <http://www.linux-ipv6.org>.
For specific information about IPv6 under Linux, read the HOWTO at
<http://www.bieringer.de/linux/IPv6/>.
To compile this protocol support as a module, choose M here: the
module will be called ipv6.
2008-04-14 10:30:47 +04:00
if IPV6
2006-03-21 04:04:53 +03:00
config IPV6_ROUTER_PREF
bool "IPv6: Router Preference (RFC 4191) support"
---help---
Router Preference is an optional extension to the Router
2009-01-26 13:12:25 +03:00
Advertisement message which improves the ability of hosts
to pick an appropriate router, especially when the hosts
are placed in a multi-homed network.
2006-03-21 04:04:53 +03:00
If unsure, say N.
2006-03-21 04:06:24 +03:00
config IPV6_ROUTE_INFO
2012-10-02 22:19:49 +04:00
bool "IPv6: Route Information (RFC 4191) support"
depends on IPV6_ROUTER_PREF
2006-03-21 04:06:24 +03:00
---help---
This is experimental support of Route Information.
If unsure, say N.
2007-04-26 04:08:10 +04:00
config IPV6_OPTIMISTIC_DAD
2012-10-02 22:19:49 +04:00
bool "IPv6: Enable RFC 4429 Optimistic DAD"
2007-04-26 04:08:10 +04:00
---help---
This is experimental support for optimistic Duplicate
Address Detection. It allows for autoconfigured addresses
to be used more quickly.
If unsure, say N.
2005-04-17 02:20:36 +04:00
config INET6_AH
tristate "IPv6: AH transformation"
2012-05-15 05:57:44 +04:00
select XFRM_ALGO
2005-04-17 02:20:36 +04:00
select CRYPTO
select CRYPTO_HMAC
select CRYPTO_MD5
select CRYPTO_SHA1
---help---
Support for IPsec AH.
If unsure, say Y.
config INET6_ESP
tristate "IPv6: ESP transformation"
2012-05-15 05:57:44 +04:00
select XFRM_ALGO
2005-04-17 02:20:36 +04:00
select CRYPTO
2008-03-05 01:29:21 +03:00
select CRYPTO_AUTHENC
2005-04-17 02:20:36 +04:00
select CRYPTO_HMAC
select CRYPTO_MD5
2006-07-30 09:41:01 +04:00
select CRYPTO_CBC
2005-04-17 02:20:36 +04:00
select CRYPTO_SHA1
select CRYPTO_DES
---help---
Support for IPsec ESP.
If unsure, say Y.
config INET6_IPCOMP
tristate "IPv6: IPComp transformation"
2006-03-28 13:12:13 +04:00
select INET6_XFRM_TUNNEL
2008-07-25 13:54:40 +04:00
select XFRM_IPCOMP
2005-04-17 02:20:36 +04:00
---help---
Support for IP Payload Compression Protocol (IPComp) (RFC3173),
typically needed for IPsec.
If unsure, say Y.
2006-08-24 06:13:46 +04:00
config IPV6_MIP6
2012-10-02 22:19:49 +04:00
tristate "IPv6: Mobility"
2006-08-24 06:13:46 +04:00
select XFRM
---help---
Support for IPv6 Mobility described in RFC 3775.
If unsure, say N.
2006-03-28 13:12:13 +04:00
config INET6_XFRM_TUNNEL
tristate
select INET6_TUNNEL
default n
2005-04-17 02:20:36 +04:00
config INET6_TUNNEL
2006-03-28 13:12:13 +04:00
tristate
default n
2005-04-17 02:20:36 +04:00
2006-05-28 10:05:54 +04:00
config INET6_XFRM_MODE_TRANSPORT
tristate "IPv6: IPsec transport mode"
default IPV6
select XFRM
---help---
Support for IPsec transport mode.
If unsure, say Y.
config INET6_XFRM_MODE_TUNNEL
tristate "IPv6: IPsec tunnel mode"
default IPV6
select XFRM
---help---
Support for IPsec tunnel mode.
If unsure, say Y.
2006-10-04 10:47:05 +04:00
config INET6_XFRM_MODE_BEET
tristate "IPv6: IPsec BEET mode"
default IPV6
select XFRM
---help---
Support for IPsec BEET mode.
If unsure, say Y.
2006-08-24 04:59:44 +04:00
config INET6_XFRM_MODE_ROUTEOPTIMIZATION
2012-10-02 22:19:49 +04:00
tristate "IPv6: MIPv6 route optimization mode"
2006-08-24 04:59:44 +04:00
select XFRM
---help---
Support for MIPv6 route optimization mode.
2013-08-19 10:07:34 +04:00
config IPV6_VTI
tristate "Virtual (secure) IPv6: tunneling"
select IPV6_TUNNEL
2014-02-19 16:33:23 +04:00
select NET_IP_TUNNEL
2013-08-19 10:07:34 +04:00
depends on INET6_XFRM_MODE_TUNNEL
---help---
Tunneling means encapsulating data of one protocol type within
another protocol and sending it over a channel that understands the
encapsulating protocol. This can be used with xfrm mode tunnel to give
the notion of a secure tunnel for IPSEC and then use routing protocol
on top.
2006-10-11 01:47:44 +04:00
config IPV6_SIT
tristate "IPv6: IPv6-in-IPv4 tunnel (SIT driver)"
2007-02-13 23:55:25 +03:00
select INET_TUNNEL
2013-03-25 18:50:00 +04:00
select NET_IP_TUNNEL
2008-03-16 06:59:18 +03:00
select IPV6_NDISC_NODETYPE
2006-10-11 01:47:44 +04:00
default y
---help---
Tunneling means encapsulating data of one protocol type within
another protocol and sending it over a channel that understands the
encapsulating protocol. This driver implements encapsulation of IPv6
2008-04-27 09:50:57 +04:00
into IPv4 packets. This is useful if you want to connect two IPv6
2006-10-11 01:47:44 +04:00
networks over an IPv4-only path.
2009-06-05 02:44:53 +04:00
Saying M here will produce a module called sit. If unsure, say Y.
2006-10-11 01:47:44 +04:00
2009-09-23 03:43:14 +04:00
config IPV6_SIT_6RD
2012-10-02 22:19:49 +04:00
bool "IPv6: IPv6 Rapid Deployment (6RD)"
depends on IPV6_SIT
2009-09-23 03:43:14 +04:00
default n
---help---
IPv6 Rapid Deployment (6rd; draft-ietf-softwire-ipv6-6rd) builds upon
mechanisms of 6to4 (RFC3056) to enable a service provider to rapidly
deploy IPv6 unicast service to IPv4 sites to which it provides
customer premise equipment. Like 6to4, it utilizes stateless IPv6 in
IPv4 encapsulation in order to transit IPv4-only network
infrastructure. Unlike 6to4, a 6rd service provider uses an IPv6
prefix of its own in place of the fixed 6to4 prefix.
With this option enabled, the SIT driver offers 6rd functionality by
providing additional ioctl API to configure the IPv6 Prefix for in
stead of static 2002::/16 for 6to4.
If unsure, say N.
2008-03-16 06:59:18 +03:00
config IPV6_NDISC_NODETYPE
bool
2005-04-17 02:20:36 +04:00
config IPV6_TUNNEL
2008-03-21 02:13:58 +03:00
tristate "IPv6: IP-in-IPv6 tunnel (RFC2473)"
2006-03-28 13:12:13 +04:00
select INET6_TUNNEL
2005-04-17 02:20:36 +04:00
---help---
2008-03-21 02:13:58 +03:00
Support for IPv6-in-IPv6 and IPv4-in-IPv6 tunnels described in
RFC 2473.
2005-04-17 02:20:36 +04:00
If unsure, say N.
2012-08-10 04:51:50 +04:00
config IPV6_GRE
tristate "IPv6: GRE tunnel"
select IPV6_TUNNEL
2013-03-25 18:50:00 +04:00
select NET_IP_TUNNEL
2012-08-10 04:51:50 +04:00
---help---
Tunneling means encapsulating data of one protocol type within
another protocol and sending it over a channel that understands the
encapsulating protocol. This particular tunneling driver implements
GRE (Generic Routing Encapsulation) and at this time allows
encapsulating of IPv4 or IPv6 over existing IPv6 infrastructure.
This driver is useful if the other endpoint is a Cisco router: Cisco
likes GRE much better than the other Linux tunneling driver ("IP
tunneling" above). In addition, GRE allows multicast redistribution
through the tunnel.
Saying M here will produce a module called ip6_gre. If unsure, say N.
2006-10-17 09:12:21 +04:00
config IPV6_MULTIPLE_TABLES
bool "IPv6: Multiple Routing Tables"
select FIB_RULES
---help---
Support multiple routing tables.
2006-08-24 04:23:39 +04:00
config IPV6_SUBTREES
bool "IPv6: source address based routing"
2006-10-17 09:12:21 +04:00
depends on IPV6_MULTIPLE_TABLES
2006-08-24 04:23:39 +04:00
---help---
Enable routing by source address or prefix.
The destination address is still the primary routing key, so mixing
normal and source prefix specific routes in the same routing table
may sometimes lead to unintended routing behavior. This can be
avoided by defining different routing tables for the normal and
source prefix specific routes.
If unsure, say N.
2008-04-03 04:22:53 +04:00
config IPV6_MROUTE
2012-10-02 22:19:49 +04:00
bool "IPv6: multicast routing"
depends on IPV6
2008-04-03 04:22:53 +04:00
---help---
Experimental support for IPv6 multicast forwarding.
If unsure, say N.
ipv6: ip6mr: support multiple tables
This patch adds support for multiple independant multicast routing instances,
named "tables".
Userspace multicast routing daemons can bind to a specific table instance by
issuing a setsockopt call using a new option MRT6_TABLE. The table number is
stored in the raw socket data and affects all following ip6mr setsockopt(),
getsockopt() and ioctl() calls. By default, a single table (RT6_TABLE_DFLT)
is created with a default routing rule pointing to it. Newly created pim6reg
devices have the table number appended ("pim6regX"), with the exception of
devices created in the default table, which are named just "pim6reg" for
compatibility reasons.
Packets are directed to a specific table instance using routing rules,
similar to how regular routing rules work. Currently iif, oif and mark
are supported as keys, source and destination addresses could be supported
additionally.
Example usage:
- bind pimd/xorp/... to a specific table:
uint32_t table = 123;
setsockopt(fd, SOL_IPV6, MRT6_TABLE, &table, sizeof(table));
- create routing rules directing packets to the new table:
# ip -6 mrule add iif eth0 lookup 123
# ip -6 mrule add oif eth0 lookup 123
Signed-off-by: Patrick McHardy <kaber@trash.net>
2010-05-11 16:40:55 +04:00
config IPV6_MROUTE_MULTIPLE_TABLES
bool "IPv6: multicast policy routing"
depends on IPV6_MROUTE
select FIB_RULES
help
Normally, a multicast router runs a userspace daemon and decides
what to do with a multicast packet based on the source and
destination addresses. If you say Y here, the multicast router
will also be able to take interfaces and packet marks into
account and run multiple instances of userspace daemons
simultaneously, each one handling a single table.
If unsure, say N.
2008-04-03 04:22:54 +04:00
config IPV6_PIMSM_V2
2012-10-02 22:19:49 +04:00
bool "IPv6: PIM-SM version 2 support"
2008-04-03 04:22:54 +04:00
depends on IPV6_MROUTE
---help---
Support for IPv6 PIM multicast routing protocol PIM-SMv2.
If unsure, say N.
2008-04-14 10:30:47 +04:00
endif # IPV6