linux/drivers/usb/atm/usbatm.c

1325 lines
35 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/******************************************************************************
* usbatm.c - Generic USB xDSL driver core
*
* Copyright (C) 2001, Alcatel
* Copyright (C) 2003, Duncan Sands, SolNegro, Josep Comas
* Copyright (C) 2004, David Woodhouse, Roman Kagan
******************************************************************************/
/*
* Written by Johan Verrept, Duncan Sands (duncan.sands@free.fr) and David Woodhouse
*
* 1.7+: - See the check-in logs
*
* 1.6: - No longer opens a connection if the firmware is not loaded
* - Added support for the speedtouch 330
* - Removed the limit on the number of devices
* - Module now autoloads on device plugin
* - Merged relevant parts of sarlib
* - Replaced the kernel thread with a tasklet
* - New packet transmission code
* - Changed proc file contents
* - Fixed all known SMP races
* - Many fixes and cleanups
* - Various fixes by Oliver Neukum (oliver@neukum.name)
*
* 1.5A: - Version for inclusion in 2.5 series kernel
* - Modifications by Richard Purdie (rpurdie@rpsys.net)
* - made compatible with kernel 2.5.6 onwards by changing
* usbatm_usb_send_data_context->urb to a pointer and adding code
* to alloc and free it
* - remove_wait_queue() added to usbatm_atm_processqueue_thread()
*
* 1.5: - fixed memory leak when atmsar_decode_aal5 returned NULL.
* (reported by stephen.robinson@zen.co.uk)
*
* 1.4: - changed the spin_lock() under interrupt to spin_lock_irqsave()
* - unlink all active send urbs of a vcc that is being closed.
*
* 1.3.1: - added the version number
*
* 1.3: - Added multiple send urb support
* - fixed memory leak and vcc->tx_inuse starvation bug
* when not enough memory left in vcc.
*
* 1.2: - Fixed race condition in usbatm_usb_send_data()
* 1.1: - Turned off packet debugging
*
*/
#include "usbatm.h"
#include <linux/uaccess.h>
#include <linux/crc32.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/proc_fs.h>
#include <linux/sched/signal.h>
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/timer.h>
#include <linux/wait.h>
#include <linux/kthread.h>
#include <linux/ratelimit.h>
#ifdef VERBOSE_DEBUG
static int usbatm_print_packet(struct usbatm_data *instance, const unsigned char *data, int len);
#define PACKETDEBUG(arg...) usbatm_print_packet(arg)
#define vdbg(arg...) dev_dbg(arg)
#else
#define PACKETDEBUG(arg...)
#define vdbg(arg...)
#endif
#define DRIVER_AUTHOR "Johan Verrept, Duncan Sands <duncan.sands@free.fr>"
#define DRIVER_DESC "Generic USB ATM/DSL I/O"
static const char usbatm_driver_name[] = "usbatm";
#define UDSL_MAX_RCV_URBS 16
#define UDSL_MAX_SND_URBS 16
#define UDSL_MAX_BUF_SIZE 65536
#define UDSL_DEFAULT_RCV_URBS 4
#define UDSL_DEFAULT_SND_URBS 4
#define UDSL_DEFAULT_RCV_BUF_SIZE 3392 /* 64 * ATM_CELL_SIZE */
#define UDSL_DEFAULT_SND_BUF_SIZE 3392 /* 64 * ATM_CELL_SIZE */
#define ATM_CELL_HEADER (ATM_CELL_SIZE - ATM_CELL_PAYLOAD)
#define THROTTLE_MSECS 100 /* delay to recover processing after urb submission fails */
static unsigned int num_rcv_urbs = UDSL_DEFAULT_RCV_URBS;
static unsigned int num_snd_urbs = UDSL_DEFAULT_SND_URBS;
static unsigned int rcv_buf_bytes = UDSL_DEFAULT_RCV_BUF_SIZE;
static unsigned int snd_buf_bytes = UDSL_DEFAULT_SND_BUF_SIZE;
module_param(num_rcv_urbs, uint, S_IRUGO);
MODULE_PARM_DESC(num_rcv_urbs,
"Number of urbs used for reception (range: 0-"
__MODULE_STRING(UDSL_MAX_RCV_URBS) ", default: "
__MODULE_STRING(UDSL_DEFAULT_RCV_URBS) ")");
module_param(num_snd_urbs, uint, S_IRUGO);
MODULE_PARM_DESC(num_snd_urbs,
"Number of urbs used for transmission (range: 0-"
__MODULE_STRING(UDSL_MAX_SND_URBS) ", default: "
__MODULE_STRING(UDSL_DEFAULT_SND_URBS) ")");
module_param(rcv_buf_bytes, uint, S_IRUGO);
MODULE_PARM_DESC(rcv_buf_bytes,
"Size of the buffers used for reception, in bytes (range: 1-"
__MODULE_STRING(UDSL_MAX_BUF_SIZE) ", default: "
__MODULE_STRING(UDSL_DEFAULT_RCV_BUF_SIZE) ")");
module_param(snd_buf_bytes, uint, S_IRUGO);
MODULE_PARM_DESC(snd_buf_bytes,
"Size of the buffers used for transmission, in bytes (range: 1-"
__MODULE_STRING(UDSL_MAX_BUF_SIZE) ", default: "
__MODULE_STRING(UDSL_DEFAULT_SND_BUF_SIZE) ")");
/* receive */
struct usbatm_vcc_data {
/* vpi/vci lookup */
struct list_head list;
short vpi;
int vci;
struct atm_vcc *vcc;
/* raw cell reassembly */
struct sk_buff *sarb;
};
/* send */
struct usbatm_control {
struct atm_skb_data atm;
u32 len;
u32 crc;
};
#define UDSL_SKB(x) ((struct usbatm_control *)(x)->cb)
/* ATM */
static void usbatm_atm_dev_close(struct atm_dev *atm_dev);
static int usbatm_atm_open(struct atm_vcc *vcc);
static void usbatm_atm_close(struct atm_vcc *vcc);
static int usbatm_atm_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg);
static int usbatm_atm_send(struct atm_vcc *vcc, struct sk_buff *skb);
static int usbatm_atm_proc_read(struct atm_dev *atm_dev, loff_t *pos, char *page);
static const struct atmdev_ops usbatm_atm_devops = {
.dev_close = usbatm_atm_dev_close,
.open = usbatm_atm_open,
.close = usbatm_atm_close,
.ioctl = usbatm_atm_ioctl,
.send = usbatm_atm_send,
.proc_read = usbatm_atm_proc_read,
.owner = THIS_MODULE,
};
/***********
** misc **
***********/
static inline unsigned int usbatm_pdu_length(unsigned int length)
{
length += ATM_CELL_PAYLOAD - 1 + ATM_AAL5_TRAILER;
return length - length % ATM_CELL_PAYLOAD;
}
static inline void usbatm_pop(struct atm_vcc *vcc, struct sk_buff *skb)
{
if (vcc->pop)
vcc->pop(vcc, skb);
else
dev_kfree_skb_any(skb);
}
/***********
** urbs **
************/
static struct urb *usbatm_pop_urb(struct usbatm_channel *channel)
{
struct urb *urb;
spin_lock_irq(&channel->lock);
if (list_empty(&channel->list)) {
spin_unlock_irq(&channel->lock);
return NULL;
}
urb = list_entry(channel->list.next, struct urb, urb_list);
list_del(&urb->urb_list);
spin_unlock_irq(&channel->lock);
return urb;
}
static int usbatm_submit_urb(struct urb *urb)
{
struct usbatm_channel *channel = urb->context;
int ret;
/* vdbg("%s: submitting urb 0x%p, size %u",
__func__, urb, urb->transfer_buffer_length); */
ret = usb_submit_urb(urb, GFP_ATOMIC);
if (ret) {
if (printk_ratelimit())
atm_warn(channel->usbatm, "%s: urb 0x%p submission failed (%d)!\n",
__func__, urb, ret);
/* consider all errors transient and return the buffer back to the queue */
urb->status = -EAGAIN;
spin_lock_irq(&channel->lock);
/* must add to the front when sending; doesn't matter when receiving */
list_add(&urb->urb_list, &channel->list);
spin_unlock_irq(&channel->lock);
/* make sure the channel doesn't stall */
mod_timer(&channel->delay, jiffies + msecs_to_jiffies(THROTTLE_MSECS));
}
return ret;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 14:55:46 +01:00
static void usbatm_complete(struct urb *urb)
{
struct usbatm_channel *channel = urb->context;
unsigned long flags;
int status = urb->status;
/* vdbg("%s: urb 0x%p, status %d, actual_length %d",
__func__, urb, status, urb->actual_length); */
/* usually in_interrupt(), but not always */
spin_lock_irqsave(&channel->lock, flags);
/* must add to the back when receiving; doesn't matter when sending */
list_add_tail(&urb->urb_list, &channel->list);
spin_unlock_irqrestore(&channel->lock, flags);
if (unlikely(status) &&
(!(channel->usbatm->flags & UDSL_IGNORE_EILSEQ) ||
status != -EILSEQ)) {
if (status == -ESHUTDOWN)
return;
if (printk_ratelimit())
atm_warn(channel->usbatm, "%s: urb 0x%p failed (%d)!\n",
__func__, urb, status);
/* throttle processing in case of an error */
mod_timer(&channel->delay, jiffies + msecs_to_jiffies(THROTTLE_MSECS));
} else
tasklet_schedule(&channel->tasklet);
}
/*************
** decode **
*************/
static inline struct usbatm_vcc_data *usbatm_find_vcc(struct usbatm_data *instance,
short vpi, int vci)
{
struct usbatm_vcc_data *vcc_data;
list_for_each_entry(vcc_data, &instance->vcc_list, list)
if ((vcc_data->vci == vci) && (vcc_data->vpi == vpi))
return vcc_data;
return NULL;
}
static void usbatm_extract_one_cell(struct usbatm_data *instance, unsigned char *source)
{
struct atm_vcc *vcc;
struct sk_buff *sarb;
short vpi = ((source[0] & 0x0f) << 4) | (source[1] >> 4);
int vci = ((source[1] & 0x0f) << 12) | (source[2] << 4) | (source[3] >> 4);
u8 pti = ((source[3] & 0xe) >> 1);
if ((vci != instance->cached_vci) || (vpi != instance->cached_vpi)) {
instance->cached_vpi = vpi;
instance->cached_vci = vci;
instance->cached_vcc = usbatm_find_vcc(instance, vpi, vci);
if (!instance->cached_vcc)
atm_rldbg(instance, "%s: unknown vpi/vci (%hd/%d)!\n", __func__, vpi, vci);
}
if (!instance->cached_vcc)
return;
vcc = instance->cached_vcc->vcc;
/* OAM F5 end-to-end */
if (pti == ATM_PTI_E2EF5) {
if (printk_ratelimit())
atm_warn(instance, "%s: OAM not supported (vpi %d, vci %d)!\n",
__func__, vpi, vci);
atomic_inc(&vcc->stats->rx_err);
return;
}
sarb = instance->cached_vcc->sarb;
if (sarb->tail + ATM_CELL_PAYLOAD > sarb->end) {
atm_rldbg(instance, "%s: buffer overrun (sarb->len %u, vcc: 0x%p)!\n",
__func__, sarb->len, vcc);
/* discard cells already received */
skb_trim(sarb, 0);
}
memcpy(skb_tail_pointer(sarb), source + ATM_CELL_HEADER, ATM_CELL_PAYLOAD);
__skb_put(sarb, ATM_CELL_PAYLOAD);
if (pti & 1) {
struct sk_buff *skb;
unsigned int length;
unsigned int pdu_length;
length = (source[ATM_CELL_SIZE - 6] << 8) + source[ATM_CELL_SIZE - 5];
/* guard against overflow */
if (length > ATM_MAX_AAL5_PDU) {
atm_rldbg(instance, "%s: bogus length %u (vcc: 0x%p)!\n",
__func__, length, vcc);
atomic_inc(&vcc->stats->rx_err);
goto out;
}
pdu_length = usbatm_pdu_length(length);
if (sarb->len < pdu_length) {
atm_rldbg(instance, "%s: bogus pdu_length %u (sarb->len: %u, vcc: 0x%p)!\n",
__func__, pdu_length, sarb->len, vcc);
atomic_inc(&vcc->stats->rx_err);
goto out;
}
if (crc32_be(~0, skb_tail_pointer(sarb) - pdu_length, pdu_length) != 0xc704dd7b) {
atm_rldbg(instance, "%s: packet failed crc check (vcc: 0x%p)!\n",
__func__, vcc);
atomic_inc(&vcc->stats->rx_err);
goto out;
}
vdbg(&instance->usb_intf->dev,
"%s: got packet (length: %u, pdu_length: %u, vcc: 0x%p)",
__func__, length, pdu_length, vcc);
skb = dev_alloc_skb(length);
if (!skb) {
if (printk_ratelimit())
atm_err(instance, "%s: no memory for skb (length: %u)!\n",
__func__, length);
atomic_inc(&vcc->stats->rx_drop);
goto out;
}
vdbg(&instance->usb_intf->dev,
"%s: allocated new sk_buff (skb: 0x%p, skb->truesize: %u)",
__func__, skb, skb->truesize);
if (!atm_charge(vcc, skb->truesize)) {
atm_rldbg(instance, "%s: failed atm_charge (skb->truesize: %u)!\n",
__func__, skb->truesize);
dev_kfree_skb_any(skb);
goto out; /* atm_charge increments rx_drop */
}
skb_copy_to_linear_data(skb,
skb_tail_pointer(sarb) - pdu_length,
length);
__skb_put(skb, length);
vdbg(&instance->usb_intf->dev,
"%s: sending skb 0x%p, skb->len %u, skb->truesize %u",
__func__, skb, skb->len, skb->truesize);
PACKETDEBUG(instance, skb->data, skb->len);
vcc->push(vcc, skb);
atomic_inc(&vcc->stats->rx);
out:
skb_trim(sarb, 0);
}
}
static void usbatm_extract_cells(struct usbatm_data *instance,
unsigned char *source, unsigned int avail_data)
{
unsigned int stride = instance->rx_channel.stride;
unsigned int buf_usage = instance->buf_usage;
/* extract cells from incoming data, taking into account that
* the length of avail data may not be a multiple of stride */
if (buf_usage > 0) {
/* we have a partially received atm cell */
unsigned char *cell_buf = instance->cell_buf;
unsigned int space_left = stride - buf_usage;
if (avail_data >= space_left) {
/* add new data and process cell */
memcpy(cell_buf + buf_usage, source, space_left);
source += space_left;
avail_data -= space_left;
usbatm_extract_one_cell(instance, cell_buf);
instance->buf_usage = 0;
} else {
/* not enough data to fill the cell */
memcpy(cell_buf + buf_usage, source, avail_data);
instance->buf_usage = buf_usage + avail_data;
return;
}
}
for (; avail_data >= stride; avail_data -= stride, source += stride)
usbatm_extract_one_cell(instance, source);
if (avail_data > 0) {
/* length was not a multiple of stride -
* save remaining data for next call */
memcpy(instance->cell_buf, source, avail_data);
instance->buf_usage = avail_data;
}
}
/*************
** encode **
*************/
static unsigned int usbatm_write_cells(struct usbatm_data *instance,
struct sk_buff *skb,
u8 *target, unsigned int avail_space)
{
struct usbatm_control *ctrl = UDSL_SKB(skb);
struct atm_vcc *vcc = ctrl->atm.vcc;
unsigned int bytes_written;
unsigned int stride = instance->tx_channel.stride;
for (bytes_written = 0; bytes_written < avail_space && ctrl->len;
bytes_written += stride, target += stride) {
unsigned int data_len = min_t(unsigned int, skb->len, ATM_CELL_PAYLOAD);
unsigned int left = ATM_CELL_PAYLOAD - data_len;
u8 *ptr = target;
ptr[0] = vcc->vpi >> 4;
ptr[1] = (vcc->vpi << 4) | (vcc->vci >> 12);
ptr[2] = vcc->vci >> 4;
ptr[3] = vcc->vci << 4;
ptr[4] = 0xec;
ptr += ATM_CELL_HEADER;
skb_copy_from_linear_data(skb, ptr, data_len);
ptr += data_len;
__skb_pull(skb, data_len);
if (!left)
continue;
memset(ptr, 0, left);
if (left >= ATM_AAL5_TRAILER) { /* trailer will go in this cell */
u8 *trailer = target + ATM_CELL_SIZE - ATM_AAL5_TRAILER;
/* trailer[0] = 0; UU = 0 */
/* trailer[1] = 0; CPI = 0 */
trailer[2] = ctrl->len >> 8;
trailer[3] = ctrl->len;
ctrl->crc = ~crc32_be(ctrl->crc, ptr, left - 4);
trailer[4] = ctrl->crc >> 24;
trailer[5] = ctrl->crc >> 16;
trailer[6] = ctrl->crc >> 8;
trailer[7] = ctrl->crc;
target[3] |= 0x2; /* adjust PTI */
ctrl->len = 0; /* tag this skb finished */
} else
ctrl->crc = crc32_be(ctrl->crc, ptr, left);
}
return bytes_written;
}
/**************
** receive **
**************/
static void usbatm_rx_process(unsigned long data)
{
struct usbatm_data *instance = (struct usbatm_data *)data;
struct urb *urb;
while ((urb = usbatm_pop_urb(&instance->rx_channel))) {
vdbg(&instance->usb_intf->dev,
"%s: processing urb 0x%p", __func__, urb);
if (usb_pipeisoc(urb->pipe)) {
unsigned char *merge_start = NULL;
unsigned int merge_length = 0;
const unsigned int packet_size = instance->rx_channel.packet_size;
int i;
for (i = 0; i < urb->number_of_packets; i++) {
if (!urb->iso_frame_desc[i].status) {
unsigned int actual_length = urb->iso_frame_desc[i].actual_length;
if (!merge_length)
merge_start = (unsigned char *)urb->transfer_buffer + urb->iso_frame_desc[i].offset;
merge_length += actual_length;
if (merge_length && (actual_length < packet_size)) {
usbatm_extract_cells(instance, merge_start, merge_length);
merge_length = 0;
}
} else {
atm_rldbg(instance, "%s: status %d in frame %d!\n", __func__, urb->status, i);
if (merge_length)
usbatm_extract_cells(instance, merge_start, merge_length);
merge_length = 0;
instance->buf_usage = 0;
}
}
if (merge_length)
usbatm_extract_cells(instance, merge_start, merge_length);
} else
if (!urb->status)
usbatm_extract_cells(instance, urb->transfer_buffer, urb->actual_length);
else
instance->buf_usage = 0;
if (usbatm_submit_urb(urb))
return;
}
}
/***********
** send **
***********/
static void usbatm_tx_process(unsigned long data)
{
struct usbatm_data *instance = (struct usbatm_data *)data;
struct sk_buff *skb = instance->current_skb;
struct urb *urb = NULL;
const unsigned int buf_size = instance->tx_channel.buf_size;
unsigned int bytes_written = 0;
u8 *buffer = NULL;
if (!skb)
skb = skb_dequeue(&instance->sndqueue);
while (skb) {
if (!urb) {
urb = usbatm_pop_urb(&instance->tx_channel);
if (!urb)
break; /* no more senders */
buffer = urb->transfer_buffer;
bytes_written = (urb->status == -EAGAIN) ?
urb->transfer_buffer_length : 0;
}
bytes_written += usbatm_write_cells(instance, skb,
buffer + bytes_written,
buf_size - bytes_written);
vdbg(&instance->usb_intf->dev,
"%s: wrote %u bytes from skb 0x%p to urb 0x%p",
__func__, bytes_written, skb, urb);
if (!UDSL_SKB(skb)->len) {
struct atm_vcc *vcc = UDSL_SKB(skb)->atm.vcc;
usbatm_pop(vcc, skb);
atomic_inc(&vcc->stats->tx);
skb = skb_dequeue(&instance->sndqueue);
}
if (bytes_written == buf_size || (!skb && bytes_written)) {
urb->transfer_buffer_length = bytes_written;
if (usbatm_submit_urb(urb))
break;
urb = NULL;
}
}
instance->current_skb = skb;
}
static void usbatm_cancel_send(struct usbatm_data *instance,
struct atm_vcc *vcc)
{
struct sk_buff *skb, *n;
spin_lock_irq(&instance->sndqueue.lock);
skb_queue_walk_safe(&instance->sndqueue, skb, n) {
if (UDSL_SKB(skb)->atm.vcc == vcc) {
atm_dbg(instance, "%s: popping skb 0x%p\n", __func__, skb);
__skb_unlink(skb, &instance->sndqueue);
usbatm_pop(vcc, skb);
}
}
spin_unlock_irq(&instance->sndqueue.lock);
tasklet_disable(&instance->tx_channel.tasklet);
if ((skb = instance->current_skb) && (UDSL_SKB(skb)->atm.vcc == vcc)) {
atm_dbg(instance, "%s: popping current skb (0x%p)\n", __func__, skb);
instance->current_skb = NULL;
usbatm_pop(vcc, skb);
}
tasklet_enable(&instance->tx_channel.tasklet);
}
static int usbatm_atm_send(struct atm_vcc *vcc, struct sk_buff *skb)
{
struct usbatm_data *instance = vcc->dev->dev_data;
struct usbatm_control *ctrl = UDSL_SKB(skb);
int err;
/* racy disconnection check - fine */
if (!instance || instance->disconnected) {
#ifdef VERBOSE_DEBUG
printk_ratelimited(KERN_DEBUG "%s: %s!\n", __func__, instance ? "disconnected" : "NULL instance");
#endif
err = -ENODEV;
goto fail;
}
if (vcc->qos.aal != ATM_AAL5) {
atm_rldbg(instance, "%s: unsupported ATM type %d!\n", __func__, vcc->qos.aal);
err = -EINVAL;
goto fail;
}
if (skb->len > ATM_MAX_AAL5_PDU) {
atm_rldbg(instance, "%s: packet too long (%d vs %d)!\n",
__func__, skb->len, ATM_MAX_AAL5_PDU);
err = -EINVAL;
goto fail;
}
PACKETDEBUG(instance, skb->data, skb->len);
/* initialize the control block */
ctrl->atm.vcc = vcc;
ctrl->len = skb->len;
ctrl->crc = crc32_be(~0, skb->data, skb->len);
skb_queue_tail(&instance->sndqueue, skb);
tasklet_schedule(&instance->tx_channel.tasklet);
return 0;
fail:
usbatm_pop(vcc, skb);
return err;
}
/********************
** bean counting **
********************/
static void usbatm_destroy_instance(struct kref *kref)
{
struct usbatm_data *instance = container_of(kref, struct usbatm_data, refcount);
tasklet_kill(&instance->rx_channel.tasklet);
tasklet_kill(&instance->tx_channel.tasklet);
usb_put_dev(instance->usb_dev);
kfree(instance);
}
static void usbatm_get_instance(struct usbatm_data *instance)
{
kref_get(&instance->refcount);
}
static void usbatm_put_instance(struct usbatm_data *instance)
{
kref_put(&instance->refcount, usbatm_destroy_instance);
}
/**********
** ATM **
**********/
static void usbatm_atm_dev_close(struct atm_dev *atm_dev)
{
struct usbatm_data *instance = atm_dev->dev_data;
if (!instance)
return;
atm_dev->dev_data = NULL; /* catch bugs */
usbatm_put_instance(instance); /* taken in usbatm_atm_init */
}
static int usbatm_atm_proc_read(struct atm_dev *atm_dev, loff_t *pos, char *page)
{
struct usbatm_data *instance = atm_dev->dev_data;
int left = *pos;
if (!instance)
return -ENODEV;
if (!left--)
return sprintf(page, "%s\n", instance->description);
if (!left--)
return sprintf(page, "MAC: %pM\n", atm_dev->esi);
if (!left--)
return sprintf(page,
"AAL5: tx %d ( %d err ), rx %d ( %d err, %d drop )\n",
atomic_read(&atm_dev->stats.aal5.tx),
atomic_read(&atm_dev->stats.aal5.tx_err),
atomic_read(&atm_dev->stats.aal5.rx),
atomic_read(&atm_dev->stats.aal5.rx_err),
atomic_read(&atm_dev->stats.aal5.rx_drop));
if (!left--) {
if (instance->disconnected)
return sprintf(page, "Disconnected\n");
else
switch (atm_dev->signal) {
case ATM_PHY_SIG_FOUND:
return sprintf(page, "Line up\n");
case ATM_PHY_SIG_LOST:
return sprintf(page, "Line down\n");
default:
return sprintf(page, "Line state unknown\n");
}
}
return 0;
}
static int usbatm_atm_open(struct atm_vcc *vcc)
{
struct usbatm_data *instance = vcc->dev->dev_data;
struct usbatm_vcc_data *new = NULL;
int ret;
int vci = vcc->vci;
short vpi = vcc->vpi;
if (!instance)
return -ENODEV;
/* only support AAL5 */
if ((vcc->qos.aal != ATM_AAL5)) {
atm_warn(instance, "%s: unsupported ATM type %d!\n", __func__, vcc->qos.aal);
return -EINVAL;
}
/* sanity checks */
if ((vcc->qos.rxtp.max_sdu < 0) || (vcc->qos.rxtp.max_sdu > ATM_MAX_AAL5_PDU)) {
atm_dbg(instance, "%s: max_sdu %d out of range!\n", __func__, vcc->qos.rxtp.max_sdu);
return -EINVAL;
}
mutex_lock(&instance->serialize); /* vs self, usbatm_atm_close, usbatm_usb_disconnect */
if (instance->disconnected) {
atm_dbg(instance, "%s: disconnected!\n", __func__);
ret = -ENODEV;
goto fail;
}
if (usbatm_find_vcc(instance, vpi, vci)) {
atm_dbg(instance, "%s: %hd/%d already in use!\n", __func__, vpi, vci);
ret = -EADDRINUSE;
goto fail;
}
new = kzalloc(sizeof(struct usbatm_vcc_data), GFP_KERNEL);
if (!new) {
ret = -ENOMEM;
goto fail;
}
new->vcc = vcc;
new->vpi = vpi;
new->vci = vci;
new->sarb = alloc_skb(usbatm_pdu_length(vcc->qos.rxtp.max_sdu), GFP_KERNEL);
if (!new->sarb) {
atm_err(instance, "%s: no memory for SAR buffer!\n", __func__);
ret = -ENOMEM;
goto fail;
}
vcc->dev_data = new;
tasklet_disable(&instance->rx_channel.tasklet);
instance->cached_vcc = new;
instance->cached_vpi = vpi;
instance->cached_vci = vci;
list_add(&new->list, &instance->vcc_list);
tasklet_enable(&instance->rx_channel.tasklet);
set_bit(ATM_VF_ADDR, &vcc->flags);
set_bit(ATM_VF_PARTIAL, &vcc->flags);
set_bit(ATM_VF_READY, &vcc->flags);
mutex_unlock(&instance->serialize);
atm_dbg(instance, "%s: allocated vcc data 0x%p\n", __func__, new);
return 0;
fail:
kfree(new);
mutex_unlock(&instance->serialize);
return ret;
}
static void usbatm_atm_close(struct atm_vcc *vcc)
{
struct usbatm_data *instance = vcc->dev->dev_data;
struct usbatm_vcc_data *vcc_data = vcc->dev_data;
if (!instance || !vcc_data)
return;
usbatm_cancel_send(instance, vcc);
mutex_lock(&instance->serialize); /* vs self, usbatm_atm_open, usbatm_usb_disconnect */
tasklet_disable(&instance->rx_channel.tasklet);
if (instance->cached_vcc == vcc_data) {
instance->cached_vcc = NULL;
instance->cached_vpi = ATM_VPI_UNSPEC;
instance->cached_vci = ATM_VCI_UNSPEC;
}
list_del(&vcc_data->list);
tasklet_enable(&instance->rx_channel.tasklet);
kfree_skb(vcc_data->sarb);
vcc_data->sarb = NULL;
kfree(vcc_data);
vcc->dev_data = NULL;
vcc->vpi = ATM_VPI_UNSPEC;
vcc->vci = ATM_VCI_UNSPEC;
clear_bit(ATM_VF_READY, &vcc->flags);
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
clear_bit(ATM_VF_ADDR, &vcc->flags);
mutex_unlock(&instance->serialize);
}
static int usbatm_atm_ioctl(struct atm_dev *atm_dev, unsigned int cmd,
void __user *arg)
{
struct usbatm_data *instance = atm_dev->dev_data;
if (!instance || instance->disconnected)
return -ENODEV;
switch (cmd) {
case ATM_QUERYLOOP:
return put_user(ATM_LM_NONE, (int __user *)arg) ? -EFAULT : 0;
default:
return -ENOIOCTLCMD;
}
}
static int usbatm_atm_init(struct usbatm_data *instance)
{
struct atm_dev *atm_dev;
int ret, i;
/* ATM init. The ATM initialization scheme suffers from an intrinsic race
* condition: callbacks we register can be executed at once, before we have
* initialized the struct atm_dev. To protect against this, all callbacks
* abort if atm_dev->dev_data is NULL. */
atm_dev = atm_dev_register(instance->driver_name,
&instance->usb_intf->dev, &usbatm_atm_devops,
-1, NULL);
if (!atm_dev) {
usb_err(instance, "%s: failed to register ATM device!\n", __func__);
return -1;
}
instance->atm_dev = atm_dev;
atm_dev->ci_range.vpi_bits = ATM_CI_MAX;
atm_dev->ci_range.vci_bits = ATM_CI_MAX;
atm_dev->signal = ATM_PHY_SIG_UNKNOWN;
/* temp init ATM device, set to 128kbit */
atm_dev->link_rate = 128 * 1000 / 424;
if (instance->driver->atm_start && ((ret = instance->driver->atm_start(instance, atm_dev)) < 0)) {
atm_err(instance, "%s: atm_start failed: %d!\n", __func__, ret);
goto fail;
}
usbatm_get_instance(instance); /* dropped in usbatm_atm_dev_close */
/* ready for ATM callbacks */
mb();
atm_dev->dev_data = instance;
/* submit all rx URBs */
for (i = 0; i < num_rcv_urbs; i++)
usbatm_submit_urb(instance->urbs[i]);
return 0;
fail:
instance->atm_dev = NULL;
atm_dev_deregister(atm_dev); /* usbatm_atm_dev_close will eventually be called */
return ret;
}
/**********
** USB **
**********/
static int usbatm_do_heavy_init(void *arg)
{
struct usbatm_data *instance = arg;
int ret;
allow_signal(SIGTERM);
complete(&instance->thread_started);
ret = instance->driver->heavy_init(instance, instance->usb_intf);
if (!ret)
ret = usbatm_atm_init(instance);
mutex_lock(&instance->serialize);
instance->thread = NULL;
mutex_unlock(&instance->serialize);
complete_and_exit(&instance->thread_exited, ret);
}
static int usbatm_heavy_init(struct usbatm_data *instance)
{
struct task_struct *t;
t = kthread_create(usbatm_do_heavy_init, instance, "%s",
instance->driver->driver_name);
if (IS_ERR(t)) {
usb_err(instance, "%s: failed to create kernel_thread (%ld)!\n",
__func__, PTR_ERR(t));
return PTR_ERR(t);
}
instance->thread = t;
wake_up_process(t);
wait_for_completion(&instance->thread_started);
return 0;
}
static void usbatm_tasklet_schedule(struct timer_list *t)
{
struct usbatm_channel *channel = from_timer(channel, t, delay);
tasklet_schedule(&channel->tasklet);
}
static void usbatm_init_channel(struct usbatm_channel *channel)
{
spin_lock_init(&channel->lock);
INIT_LIST_HEAD(&channel->list);
timer_setup(&channel->delay, usbatm_tasklet_schedule, 0);
}
int usbatm_usb_probe(struct usb_interface *intf, const struct usb_device_id *id,
struct usbatm_driver *driver)
{
struct device *dev = &intf->dev;
struct usb_device *usb_dev = interface_to_usbdev(intf);
struct usbatm_data *instance;
char *buf;
int error = -ENOMEM;
int i, length;
unsigned int maxpacket, num_packets;
/* instance init */
instance = kzalloc(sizeof(*instance) + sizeof(struct urb *) * (num_rcv_urbs + num_snd_urbs), GFP_KERNEL);
if (!instance)
return -ENOMEM;
/* public fields */
instance->driver = driver;
strlcpy(instance->driver_name, driver->driver_name,
sizeof(instance->driver_name));
instance->usb_dev = usb_dev;
instance->usb_intf = intf;
buf = instance->description;
length = sizeof(instance->description);
if ((i = usb_string(usb_dev, usb_dev->descriptor.iProduct, buf, length)) < 0)
goto bind;
buf += i;
length -= i;
i = scnprintf(buf, length, " (");
buf += i;
length -= i;
if (length <= 0 || (i = usb_make_path(usb_dev, buf, length)) < 0)
goto bind;
buf += i;
length -= i;
snprintf(buf, length, ")");
bind:
if (driver->bind && (error = driver->bind(instance, intf, id)) < 0) {
dev_err(dev, "%s: bind failed: %d!\n", __func__, error);
goto fail_free;
}
/* private fields */
kref_init(&instance->refcount); /* dropped in usbatm_usb_disconnect */
mutex_init(&instance->serialize);
instance->thread = NULL;
init_completion(&instance->thread_started);
init_completion(&instance->thread_exited);
INIT_LIST_HEAD(&instance->vcc_list);
skb_queue_head_init(&instance->sndqueue);
usbatm_init_channel(&instance->rx_channel);
usbatm_init_channel(&instance->tx_channel);
tasklet_init(&instance->rx_channel.tasklet, usbatm_rx_process, (unsigned long)instance);
tasklet_init(&instance->tx_channel.tasklet, usbatm_tx_process, (unsigned long)instance);
instance->rx_channel.stride = ATM_CELL_SIZE + driver->rx_padding;
instance->tx_channel.stride = ATM_CELL_SIZE + driver->tx_padding;
instance->rx_channel.usbatm = instance->tx_channel.usbatm = instance;
if ((instance->flags & UDSL_USE_ISOC) && driver->isoc_in)
instance->rx_channel.endpoint = usb_rcvisocpipe(usb_dev, driver->isoc_in);
else
instance->rx_channel.endpoint = usb_rcvbulkpipe(usb_dev, driver->bulk_in);
instance->tx_channel.endpoint = usb_sndbulkpipe(usb_dev, driver->bulk_out);
/* tx buffer size must be a positive multiple of the stride */
instance->tx_channel.buf_size = max(instance->tx_channel.stride,
snd_buf_bytes - (snd_buf_bytes % instance->tx_channel.stride));
/* rx buffer size must be a positive multiple of the endpoint maxpacket */
maxpacket = usb_maxpacket(usb_dev, instance->rx_channel.endpoint, 0);
if ((maxpacket < 1) || (maxpacket > UDSL_MAX_BUF_SIZE)) {
dev_err(dev, "%s: invalid endpoint %02x!\n", __func__,
usb_pipeendpoint(instance->rx_channel.endpoint));
error = -EINVAL;
goto fail_unbind;
}
num_packets = max(1U, (rcv_buf_bytes + maxpacket / 2) / maxpacket); /* round */
if (num_packets * maxpacket > UDSL_MAX_BUF_SIZE)
num_packets--;
instance->rx_channel.buf_size = num_packets * maxpacket;
instance->rx_channel.packet_size = maxpacket;
for (i = 0; i < 2; i++) {
struct usbatm_channel *channel = i ?
&instance->tx_channel : &instance->rx_channel;
dev_dbg(dev, "%s: using %d byte buffer for %s channel 0x%p\n",
__func__, channel->buf_size, i ? "tx" : "rx", channel);
}
/* initialize urbs */
for (i = 0; i < num_rcv_urbs + num_snd_urbs; i++) {
u8 *buffer;
struct usbatm_channel *channel = i < num_rcv_urbs ?
&instance->rx_channel : &instance->tx_channel;
struct urb *urb;
unsigned int iso_packets = usb_pipeisoc(channel->endpoint) ? channel->buf_size / channel->packet_size : 0;
urb = usb_alloc_urb(iso_packets, GFP_KERNEL);
if (!urb) {
error = -ENOMEM;
goto fail_unbind;
}
instance->urbs[i] = urb;
/* zero the tx padding to avoid leaking information */
buffer = kzalloc(channel->buf_size, GFP_KERNEL);
if (!buffer) {
error = -ENOMEM;
goto fail_unbind;
}
usb_fill_bulk_urb(urb, instance->usb_dev, channel->endpoint,
buffer, channel->buf_size, usbatm_complete, channel);
if (iso_packets) {
int j;
urb->interval = 1;
urb->transfer_flags = URB_ISO_ASAP;
urb->number_of_packets = iso_packets;
for (j = 0; j < iso_packets; j++) {
urb->iso_frame_desc[j].offset = channel->packet_size * j;
urb->iso_frame_desc[j].length = channel->packet_size;
}
}
/* put all tx URBs on the list of spares */
if (i >= num_rcv_urbs)
list_add_tail(&urb->urb_list, &channel->list);
vdbg(&intf->dev, "%s: alloced buffer 0x%p buf size %u urb 0x%p",
__func__, urb->transfer_buffer, urb->transfer_buffer_length, urb);
}
instance->cached_vpi = ATM_VPI_UNSPEC;
instance->cached_vci = ATM_VCI_UNSPEC;
instance->cell_buf = kmalloc(instance->rx_channel.stride, GFP_KERNEL);
if (!instance->cell_buf) {
error = -ENOMEM;
goto fail_unbind;
}
if (!(instance->flags & UDSL_SKIP_HEAVY_INIT) && driver->heavy_init) {
error = usbatm_heavy_init(instance);
} else {
complete(&instance->thread_exited); /* pretend that heavy_init was run */
error = usbatm_atm_init(instance);
}
if (error < 0)
goto fail_unbind;
usb_get_dev(usb_dev);
usb_set_intfdata(intf, instance);
return 0;
fail_unbind:
if (instance->driver->unbind)
instance->driver->unbind(instance, intf);
fail_free:
kfree(instance->cell_buf);
for (i = 0; i < num_rcv_urbs + num_snd_urbs; i++) {
if (instance->urbs[i])
kfree(instance->urbs[i]->transfer_buffer);
usb_free_urb(instance->urbs[i]);
}
kfree(instance);
return error;
}
EXPORT_SYMBOL_GPL(usbatm_usb_probe);
void usbatm_usb_disconnect(struct usb_interface *intf)
{
struct device *dev = &intf->dev;
struct usbatm_data *instance = usb_get_intfdata(intf);
struct usbatm_vcc_data *vcc_data;
int i;
if (!instance) {
dev_dbg(dev, "%s: NULL instance!\n", __func__);
return;
}
usb_set_intfdata(intf, NULL);
mutex_lock(&instance->serialize);
instance->disconnected = 1;
if (instance->thread != NULL)
send_sig(SIGTERM, instance->thread, 1);
mutex_unlock(&instance->serialize);
wait_for_completion(&instance->thread_exited);
mutex_lock(&instance->serialize);
list_for_each_entry(vcc_data, &instance->vcc_list, list)
vcc_release_async(vcc_data->vcc, -EPIPE);
mutex_unlock(&instance->serialize);
tasklet_disable(&instance->rx_channel.tasklet);
tasklet_disable(&instance->tx_channel.tasklet);
for (i = 0; i < num_rcv_urbs + num_snd_urbs; i++)
usb_kill_urb(instance->urbs[i]);
del_timer_sync(&instance->rx_channel.delay);
del_timer_sync(&instance->tx_channel.delay);
/* turn usbatm_[rt]x_process into something close to a no-op */
/* no need to take the spinlock */
INIT_LIST_HEAD(&instance->rx_channel.list);
INIT_LIST_HEAD(&instance->tx_channel.list);
tasklet_enable(&instance->rx_channel.tasklet);
tasklet_enable(&instance->tx_channel.tasklet);
if (instance->atm_dev && instance->driver->atm_stop)
instance->driver->atm_stop(instance, instance->atm_dev);
if (instance->driver->unbind)
instance->driver->unbind(instance, intf);
instance->driver_data = NULL;
for (i = 0; i < num_rcv_urbs + num_snd_urbs; i++) {
kfree(instance->urbs[i]->transfer_buffer);
usb_free_urb(instance->urbs[i]);
}
kfree(instance->cell_buf);
/* ATM finalize */
if (instance->atm_dev) {
atm_dev_deregister(instance->atm_dev);
instance->atm_dev = NULL;
}
usbatm_put_instance(instance); /* taken in usbatm_usb_probe */
}
EXPORT_SYMBOL_GPL(usbatm_usb_disconnect);
/***********
** init **
***********/
static int __init usbatm_usb_init(void)
{
if (sizeof(struct usbatm_control) > FIELD_SIZEOF(struct sk_buff, cb)) {
printk(KERN_ERR "%s unusable with this kernel!\n", usbatm_driver_name);
return -EIO;
}
if ((num_rcv_urbs > UDSL_MAX_RCV_URBS)
|| (num_snd_urbs > UDSL_MAX_SND_URBS)
|| (rcv_buf_bytes < 1)
|| (rcv_buf_bytes > UDSL_MAX_BUF_SIZE)
|| (snd_buf_bytes < 1)
|| (snd_buf_bytes > UDSL_MAX_BUF_SIZE))
return -EINVAL;
return 0;
}
module_init(usbatm_usb_init);
static void __exit usbatm_usb_exit(void)
{
}
module_exit(usbatm_usb_exit);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
/************
** debug **
************/
#ifdef VERBOSE_DEBUG
static int usbatm_print_packet(struct usbatm_data *instance,
const unsigned char *data, int len)
{
unsigned char buffer[256];
int i = 0, j = 0;
for (i = 0; i < len;) {
buffer[0] = '\0';
sprintf(buffer, "%.3d :", i);
for (j = 0; (j < 16) && (i < len); j++, i++)
sprintf(buffer, "%s %2.2x", buffer, data[i]);
dev_dbg(&instance->usb_intf->dev, "%s", buffer);
}
return i;
}
#endif