linux/drivers/media/platform/verisilicon/hantro_g2_vp9_dec.c

999 lines
33 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Hantro VP9 codec driver
*
* Copyright (C) 2021 Collabora Ltd.
*/
#include "media/videobuf2-core.h"
#include "media/videobuf2-dma-contig.h"
#include "media/videobuf2-v4l2.h"
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <media/v4l2-mem2mem.h>
#include <media/v4l2-vp9.h>
#include "hantro.h"
#include "hantro_vp9.h"
#include "hantro_g2_regs.h"
enum hantro_ref_frames {
INTRA_FRAME = 0,
LAST_FRAME = 1,
GOLDEN_FRAME = 2,
ALTREF_FRAME = 3,
MAX_REF_FRAMES = 4
};
static int start_prepare_run(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame **dec_params)
{
const struct v4l2_ctrl_vp9_compressed_hdr *prob_updates;
struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec;
struct v4l2_ctrl *ctrl;
unsigned int fctx_idx;
/* v4l2-specific stuff */
hantro_start_prepare_run(ctx);
ctrl = v4l2_ctrl_find(&ctx->ctrl_handler, V4L2_CID_STATELESS_VP9_FRAME);
if (WARN_ON(!ctrl))
return -EINVAL;
*dec_params = ctrl->p_cur.p;
ctrl = v4l2_ctrl_find(&ctx->ctrl_handler, V4L2_CID_STATELESS_VP9_COMPRESSED_HDR);
if (WARN_ON(!ctrl))
return -EINVAL;
prob_updates = ctrl->p_cur.p;
vp9_ctx->cur.tx_mode = prob_updates->tx_mode;
/*
* vp9 stuff
*
* by this point the userspace has done all parts of 6.2 uncompressed_header()
* except this fragment:
* if ( FrameIsIntra || error_resilient_mode ) {
* setup_past_independence ( )
* if ( frame_type == KEY_FRAME || error_resilient_mode == 1 ||
* reset_frame_context == 3 ) {
* for ( i = 0; i < 4; i ++ ) {
* save_probs( i )
* }
* } else if ( reset_frame_context == 2 ) {
* save_probs( frame_context_idx )
* }
* frame_context_idx = 0
* }
*/
fctx_idx = v4l2_vp9_reset_frame_ctx(*dec_params, vp9_ctx->frame_context);
vp9_ctx->cur.frame_context_idx = fctx_idx;
/* 6.1 frame(sz): load_probs() and load_probs2() */
vp9_ctx->probability_tables = vp9_ctx->frame_context[fctx_idx];
/*
* The userspace has also performed 6.3 compressed_header(), but handling the
* probs in a special way. All probs which need updating, except MV-related,
* have been read from the bitstream and translated through inv_map_table[],
* but no 6.3.6 inv_recenter_nonneg(v, m) has been performed. The values passed
* by userspace are either translated values (there are no 0 values in
* inv_map_table[]), or zero to indicate no update. All MV-related probs which need
* updating have been read from the bitstream and (mv_prob << 1) | 1 has been
* performed. The values passed by userspace are either new values
* to replace old ones (the above mentioned shift and bitwise or never result in
* a zero) or zero to indicate no update.
* fw_update_probs() performs actual probs updates or leaves probs as-is
* for values for which a zero was passed from userspace.
*/
v4l2_vp9_fw_update_probs(&vp9_ctx->probability_tables, prob_updates, *dec_params);
return 0;
}
static struct hantro_decoded_buffer *
get_ref_buf(struct hantro_ctx *ctx, struct vb2_v4l2_buffer *dst, u64 timestamp)
{
struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
struct vb2_queue *cap_q = &m2m_ctx->cap_q_ctx.q;
struct vb2_buffer *buf;
/*
* If a ref is unused or invalid, address of current destination
* buffer is returned.
*/
buf = vb2_find_buffer(cap_q, timestamp);
if (!buf)
buf = &dst->vb2_buf;
return vb2_to_hantro_decoded_buf(buf);
}
static void update_dec_buf_info(struct hantro_decoded_buffer *buf,
const struct v4l2_ctrl_vp9_frame *dec_params)
{
buf->vp9.width = dec_params->frame_width_minus_1 + 1;
buf->vp9.height = dec_params->frame_height_minus_1 + 1;
buf->vp9.bit_depth = dec_params->bit_depth;
}
static void update_ctx_cur_info(struct hantro_vp9_dec_hw_ctx *vp9_ctx,
struct hantro_decoded_buffer *buf,
const struct v4l2_ctrl_vp9_frame *dec_params)
{
vp9_ctx->cur.valid = true;
vp9_ctx->cur.reference_mode = dec_params->reference_mode;
vp9_ctx->cur.interpolation_filter = dec_params->interpolation_filter;
vp9_ctx->cur.flags = dec_params->flags;
vp9_ctx->cur.timestamp = buf->base.vb.vb2_buf.timestamp;
}
static void config_output(struct hantro_ctx *ctx,
struct hantro_decoded_buffer *dst,
const struct v4l2_ctrl_vp9_frame *dec_params)
{
dma_addr_t luma_addr, chroma_addr, mv_addr;
hantro_reg_write(ctx->dev, &g2_out_dis, 0);
if (!ctx->dev->variant->legacy_regs)
hantro_reg_write(ctx->dev, &g2_output_format, 0);
luma_addr = hantro_get_dec_buf_addr(ctx, &dst->base.vb.vb2_buf);
hantro_write_addr(ctx->dev, G2_OUT_LUMA_ADDR, luma_addr);
chroma_addr = luma_addr + hantro_g2_chroma_offset(ctx);
hantro_write_addr(ctx->dev, G2_OUT_CHROMA_ADDR, chroma_addr);
dst->vp9.chroma_offset = hantro_g2_chroma_offset(ctx);
mv_addr = luma_addr + hantro_g2_motion_vectors_offset(ctx);
hantro_write_addr(ctx->dev, G2_OUT_MV_ADDR, mv_addr);
dst->vp9.mv_offset = hantro_g2_motion_vectors_offset(ctx);
}
struct hantro_vp9_ref_reg {
const struct hantro_reg width;
const struct hantro_reg height;
const struct hantro_reg hor_scale;
const struct hantro_reg ver_scale;
u32 y_base;
u32 c_base;
};
static void config_ref(struct hantro_ctx *ctx,
struct hantro_decoded_buffer *dst,
const struct hantro_vp9_ref_reg *ref_reg,
const struct v4l2_ctrl_vp9_frame *dec_params,
u64 ref_ts)
{
struct hantro_decoded_buffer *buf;
dma_addr_t luma_addr, chroma_addr;
u32 refw, refh;
buf = get_ref_buf(ctx, &dst->base.vb, ref_ts);
refw = buf->vp9.width;
refh = buf->vp9.height;
hantro_reg_write(ctx->dev, &ref_reg->width, refw);
hantro_reg_write(ctx->dev, &ref_reg->height, refh);
hantro_reg_write(ctx->dev, &ref_reg->hor_scale, (refw << 14) / dst->vp9.width);
hantro_reg_write(ctx->dev, &ref_reg->ver_scale, (refh << 14) / dst->vp9.height);
luma_addr = hantro_get_dec_buf_addr(ctx, &buf->base.vb.vb2_buf);
hantro_write_addr(ctx->dev, ref_reg->y_base, luma_addr);
chroma_addr = luma_addr + buf->vp9.chroma_offset;
hantro_write_addr(ctx->dev, ref_reg->c_base, chroma_addr);
}
static void config_ref_registers(struct hantro_ctx *ctx,
const struct v4l2_ctrl_vp9_frame *dec_params,
struct hantro_decoded_buffer *dst,
struct hantro_decoded_buffer *mv_ref)
{
static const struct hantro_vp9_ref_reg ref_regs[] = {
{
/* Last */
.width = vp9_lref_width,
.height = vp9_lref_height,
.hor_scale = vp9_lref_hor_scale,
.ver_scale = vp9_lref_ver_scale,
.y_base = G2_REF_LUMA_ADDR(0),
.c_base = G2_REF_CHROMA_ADDR(0),
}, {
/* Golden */
.width = vp9_gref_width,
.height = vp9_gref_height,
.hor_scale = vp9_gref_hor_scale,
.ver_scale = vp9_gref_ver_scale,
.y_base = G2_REF_LUMA_ADDR(4),
.c_base = G2_REF_CHROMA_ADDR(4),
}, {
/* Altref */
.width = vp9_aref_width,
.height = vp9_aref_height,
.hor_scale = vp9_aref_hor_scale,
.ver_scale = vp9_aref_ver_scale,
.y_base = G2_REF_LUMA_ADDR(5),
.c_base = G2_REF_CHROMA_ADDR(5),
},
};
dma_addr_t mv_addr;
config_ref(ctx, dst, &ref_regs[0], dec_params, dec_params->last_frame_ts);
config_ref(ctx, dst, &ref_regs[1], dec_params, dec_params->golden_frame_ts);
config_ref(ctx, dst, &ref_regs[2], dec_params, dec_params->alt_frame_ts);
mv_addr = hantro_get_dec_buf_addr(ctx, &mv_ref->base.vb.vb2_buf) +
mv_ref->vp9.mv_offset;
hantro_write_addr(ctx->dev, G2_REF_MV_ADDR(0), mv_addr);
hantro_reg_write(ctx->dev, &vp9_last_sign_bias,
dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_LAST ? 1 : 0);
hantro_reg_write(ctx->dev, &vp9_gref_sign_bias,
dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_GOLDEN ? 1 : 0);
hantro_reg_write(ctx->dev, &vp9_aref_sign_bias,
dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_ALT ? 1 : 0);
}
static void recompute_tile_info(unsigned short *tile_info, unsigned int tiles, unsigned int sbs)
{
int i;
unsigned int accumulated = 0;
unsigned int next_accumulated;
for (i = 1; i <= tiles; ++i) {
next_accumulated = i * sbs / tiles;
*tile_info++ = next_accumulated - accumulated;
accumulated = next_accumulated;
}
}
static void
recompute_tile_rc_info(struct hantro_ctx *ctx,
unsigned int tile_r, unsigned int tile_c,
unsigned int sbs_r, unsigned int sbs_c)
{
struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec;
recompute_tile_info(vp9_ctx->tile_r_info, tile_r, sbs_r);
recompute_tile_info(vp9_ctx->tile_c_info, tile_c, sbs_c);
vp9_ctx->last_tile_r = tile_r;
vp9_ctx->last_tile_c = tile_c;
vp9_ctx->last_sbs_r = sbs_r;
vp9_ctx->last_sbs_c = sbs_c;
}
static inline unsigned int first_tile_row(unsigned int tile_r, unsigned int sbs_r)
{
if (tile_r == sbs_r + 1)
return 1;
if (tile_r == sbs_r + 2)
return 2;
return 0;
}
static void
fill_tile_info(struct hantro_ctx *ctx,
unsigned int tile_r, unsigned int tile_c,
unsigned int sbs_r, unsigned int sbs_c,
unsigned short *tile_mem)
{
struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec;
unsigned int i, j;
bool first = true;
for (i = first_tile_row(tile_r, sbs_r); i < tile_r; ++i) {
unsigned short r_info = vp9_ctx->tile_r_info[i];
if (first) {
if (i > 0)
r_info += vp9_ctx->tile_r_info[0];
if (i == 2)
r_info += vp9_ctx->tile_r_info[1];
first = false;
}
for (j = 0; j < tile_c; ++j) {
*tile_mem++ = vp9_ctx->tile_c_info[j];
*tile_mem++ = r_info;
}
}
}
static void
config_tiles(struct hantro_ctx *ctx,
const struct v4l2_ctrl_vp9_frame *dec_params,
struct hantro_decoded_buffer *dst)
{
struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec;
struct hantro_aux_buf *misc = &vp9_ctx->misc;
struct hantro_aux_buf *tile_edge = &vp9_ctx->tile_edge;
dma_addr_t addr;
unsigned short *tile_mem;
unsigned int rows, cols;
addr = misc->dma + vp9_ctx->tile_info_offset;
hantro_write_addr(ctx->dev, G2_TILE_SIZES_ADDR, addr);
tile_mem = misc->cpu + vp9_ctx->tile_info_offset;
if (dec_params->tile_cols_log2 || dec_params->tile_rows_log2) {
unsigned int tile_r = (1 << dec_params->tile_rows_log2);
unsigned int tile_c = (1 << dec_params->tile_cols_log2);
unsigned int sbs_r = hantro_vp9_num_sbs(dst->vp9.height);
unsigned int sbs_c = hantro_vp9_num_sbs(dst->vp9.width);
if (tile_r != vp9_ctx->last_tile_r || tile_c != vp9_ctx->last_tile_c ||
sbs_r != vp9_ctx->last_sbs_r || sbs_c != vp9_ctx->last_sbs_c)
recompute_tile_rc_info(ctx, tile_r, tile_c, sbs_r, sbs_c);
fill_tile_info(ctx, tile_r, tile_c, sbs_r, sbs_c, tile_mem);
cols = tile_c;
rows = tile_r;
hantro_reg_write(ctx->dev, &g2_tile_e, 1);
} else {
tile_mem[0] = hantro_vp9_num_sbs(dst->vp9.width);
tile_mem[1] = hantro_vp9_num_sbs(dst->vp9.height);
cols = 1;
rows = 1;
hantro_reg_write(ctx->dev, &g2_tile_e, 0);
}
if (ctx->dev->variant->legacy_regs) {
hantro_reg_write(ctx->dev, &g2_num_tile_cols_old, cols);
hantro_reg_write(ctx->dev, &g2_num_tile_rows_old, rows);
} else {
hantro_reg_write(ctx->dev, &g2_num_tile_cols, cols);
hantro_reg_write(ctx->dev, &g2_num_tile_rows, rows);
}
/* provide aux buffers even if no tiles are used */
addr = tile_edge->dma;
hantro_write_addr(ctx->dev, G2_TILE_FILTER_ADDR, addr);
addr = tile_edge->dma + vp9_ctx->bsd_ctrl_offset;
hantro_write_addr(ctx->dev, G2_TILE_BSD_ADDR, addr);
}
static void
update_feat_and_flag(struct hantro_vp9_dec_hw_ctx *vp9_ctx,
const struct v4l2_vp9_segmentation *seg,
unsigned int feature,
unsigned int segid)
{
u8 mask = V4L2_VP9_SEGMENT_FEATURE_ENABLED(feature);
vp9_ctx->feature_data[segid][feature] = seg->feature_data[segid][feature];
vp9_ctx->feature_enabled[segid] &= ~mask;
vp9_ctx->feature_enabled[segid] |= (seg->feature_enabled[segid] & mask);
}
static inline s16 clip3(s16 x, s16 y, s16 z)
{
return (z < x) ? x : (z > y) ? y : z;
}
static s16 feat_val_clip3(s16 feat_val, s16 feature_data, bool absolute, u8 clip)
{
if (absolute)
return feature_data;
return clip3(0, 255, feat_val + feature_data);
}
static void config_segment(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params)
{
struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec;
const struct v4l2_vp9_segmentation *seg;
s16 feat_val;
unsigned char feat_id;
unsigned int segid;
bool segment_enabled, absolute, update_data;
static const struct hantro_reg seg_regs[8][V4L2_VP9_SEG_LVL_MAX] = {
{ vp9_quant_seg0, vp9_filt_level_seg0, vp9_refpic_seg0, vp9_skip_seg0 },
{ vp9_quant_seg1, vp9_filt_level_seg1, vp9_refpic_seg1, vp9_skip_seg1 },
{ vp9_quant_seg2, vp9_filt_level_seg2, vp9_refpic_seg2, vp9_skip_seg2 },
{ vp9_quant_seg3, vp9_filt_level_seg3, vp9_refpic_seg3, vp9_skip_seg3 },
{ vp9_quant_seg4, vp9_filt_level_seg4, vp9_refpic_seg4, vp9_skip_seg4 },
{ vp9_quant_seg5, vp9_filt_level_seg5, vp9_refpic_seg5, vp9_skip_seg5 },
{ vp9_quant_seg6, vp9_filt_level_seg6, vp9_refpic_seg6, vp9_skip_seg6 },
{ vp9_quant_seg7, vp9_filt_level_seg7, vp9_refpic_seg7, vp9_skip_seg7 },
};
segment_enabled = !!(dec_params->seg.flags & V4L2_VP9_SEGMENTATION_FLAG_ENABLED);
hantro_reg_write(ctx->dev, &vp9_segment_e, segment_enabled);
hantro_reg_write(ctx->dev, &vp9_segment_upd_e,
!!(dec_params->seg.flags & V4L2_VP9_SEGMENTATION_FLAG_UPDATE_MAP));
hantro_reg_write(ctx->dev, &vp9_segment_temp_upd_e,
!!(dec_params->seg.flags & V4L2_VP9_SEGMENTATION_FLAG_TEMPORAL_UPDATE));
seg = &dec_params->seg;
absolute = !!(seg->flags & V4L2_VP9_SEGMENTATION_FLAG_ABS_OR_DELTA_UPDATE);
update_data = !!(seg->flags & V4L2_VP9_SEGMENTATION_FLAG_UPDATE_DATA);
for (segid = 0; segid < 8; ++segid) {
/* Quantizer segment feature */
feat_id = V4L2_VP9_SEG_LVL_ALT_Q;
feat_val = dec_params->quant.base_q_idx;
if (segment_enabled) {
if (update_data)
update_feat_and_flag(vp9_ctx, seg, feat_id, segid);
if (v4l2_vp9_seg_feat_enabled(vp9_ctx->feature_enabled, feat_id, segid))
feat_val = feat_val_clip3(feat_val,
vp9_ctx->feature_data[segid][feat_id],
absolute, 255);
}
hantro_reg_write(ctx->dev, &seg_regs[segid][feat_id], feat_val);
/* Loop filter segment feature */
feat_id = V4L2_VP9_SEG_LVL_ALT_L;
feat_val = dec_params->lf.level;
if (segment_enabled) {
if (update_data)
update_feat_and_flag(vp9_ctx, seg, feat_id, segid);
if (v4l2_vp9_seg_feat_enabled(vp9_ctx->feature_enabled, feat_id, segid))
feat_val = feat_val_clip3(feat_val,
vp9_ctx->feature_data[segid][feat_id],
absolute, 63);
}
hantro_reg_write(ctx->dev, &seg_regs[segid][feat_id], feat_val);
/* Reference frame segment feature */
feat_id = V4L2_VP9_SEG_LVL_REF_FRAME;
feat_val = 0;
if (segment_enabled) {
if (update_data)
update_feat_and_flag(vp9_ctx, seg, feat_id, segid);
if (!(dec_params->flags & V4L2_VP9_FRAME_FLAG_KEY_FRAME) &&
v4l2_vp9_seg_feat_enabled(vp9_ctx->feature_enabled, feat_id, segid))
feat_val = vp9_ctx->feature_data[segid][feat_id] + 1;
}
hantro_reg_write(ctx->dev, &seg_regs[segid][feat_id], feat_val);
/* Skip segment feature */
feat_id = V4L2_VP9_SEG_LVL_SKIP;
feat_val = 0;
if (segment_enabled) {
if (update_data)
update_feat_and_flag(vp9_ctx, seg, feat_id, segid);
feat_val = v4l2_vp9_seg_feat_enabled(vp9_ctx->feature_enabled,
feat_id, segid) ? 1 : 0;
}
hantro_reg_write(ctx->dev, &seg_regs[segid][feat_id], feat_val);
}
}
static void config_loop_filter(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params)
{
bool d = dec_params->lf.flags & V4L2_VP9_LOOP_FILTER_FLAG_DELTA_ENABLED;
hantro_reg_write(ctx->dev, &vp9_filt_level, dec_params->lf.level);
hantro_reg_write(ctx->dev, &g2_out_filtering_dis, dec_params->lf.level == 0);
hantro_reg_write(ctx->dev, &vp9_filt_sharpness, dec_params->lf.sharpness);
hantro_reg_write(ctx->dev, &vp9_filt_ref_adj_0, d ? dec_params->lf.ref_deltas[0] : 0);
hantro_reg_write(ctx->dev, &vp9_filt_ref_adj_1, d ? dec_params->lf.ref_deltas[1] : 0);
hantro_reg_write(ctx->dev, &vp9_filt_ref_adj_2, d ? dec_params->lf.ref_deltas[2] : 0);
hantro_reg_write(ctx->dev, &vp9_filt_ref_adj_3, d ? dec_params->lf.ref_deltas[3] : 0);
hantro_reg_write(ctx->dev, &vp9_filt_mb_adj_0, d ? dec_params->lf.mode_deltas[0] : 0);
hantro_reg_write(ctx->dev, &vp9_filt_mb_adj_1, d ? dec_params->lf.mode_deltas[1] : 0);
}
static void config_picture_dimensions(struct hantro_ctx *ctx, struct hantro_decoded_buffer *dst)
{
u32 pic_w_4x4, pic_h_4x4;
hantro_reg_write(ctx->dev, &g2_pic_width_in_cbs, (dst->vp9.width + 7) / 8);
hantro_reg_write(ctx->dev, &g2_pic_height_in_cbs, (dst->vp9.height + 7) / 8);
pic_w_4x4 = roundup(dst->vp9.width, 8) >> 2;
pic_h_4x4 = roundup(dst->vp9.height, 8) >> 2;
hantro_reg_write(ctx->dev, &g2_pic_width_4x4, pic_w_4x4);
hantro_reg_write(ctx->dev, &g2_pic_height_4x4, pic_h_4x4);
}
static void
config_bit_depth(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params)
{
if (ctx->dev->variant->legacy_regs) {
hantro_reg_write(ctx->dev, &g2_bit_depth_y, dec_params->bit_depth);
hantro_reg_write(ctx->dev, &g2_bit_depth_c, dec_params->bit_depth);
hantro_reg_write(ctx->dev, &g2_pix_shift, 0);
} else {
hantro_reg_write(ctx->dev, &g2_bit_depth_y_minus8, dec_params->bit_depth - 8);
hantro_reg_write(ctx->dev, &g2_bit_depth_c_minus8, dec_params->bit_depth - 8);
}
}
static inline bool is_lossless(const struct v4l2_vp9_quantization *quant)
{
return quant->base_q_idx == 0 && quant->delta_q_uv_ac == 0 &&
quant->delta_q_uv_dc == 0 && quant->delta_q_y_dc == 0;
}
static void
config_quant(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params)
{
hantro_reg_write(ctx->dev, &vp9_qp_delta_y_dc, dec_params->quant.delta_q_y_dc);
hantro_reg_write(ctx->dev, &vp9_qp_delta_ch_dc, dec_params->quant.delta_q_uv_dc);
hantro_reg_write(ctx->dev, &vp9_qp_delta_ch_ac, dec_params->quant.delta_q_uv_ac);
hantro_reg_write(ctx->dev, &vp9_lossless_e, is_lossless(&dec_params->quant));
}
static u32
hantro_interp_filter_from_v4l2(unsigned int interpolation_filter)
{
switch (interpolation_filter) {
case V4L2_VP9_INTERP_FILTER_EIGHTTAP:
return 0x1;
case V4L2_VP9_INTERP_FILTER_EIGHTTAP_SMOOTH:
return 0;
case V4L2_VP9_INTERP_FILTER_EIGHTTAP_SHARP:
return 0x2;
case V4L2_VP9_INTERP_FILTER_BILINEAR:
return 0x3;
case V4L2_VP9_INTERP_FILTER_SWITCHABLE:
return 0x4;
}
return 0;
}
static void
config_others(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params,
bool intra_only, bool resolution_change)
{
struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec;
hantro_reg_write(ctx->dev, &g2_idr_pic_e, intra_only);
hantro_reg_write(ctx->dev, &vp9_transform_mode, vp9_ctx->cur.tx_mode);
hantro_reg_write(ctx->dev, &vp9_mcomp_filt_type, intra_only ?
0 : hantro_interp_filter_from_v4l2(dec_params->interpolation_filter));
hantro_reg_write(ctx->dev, &vp9_high_prec_mv_e,
!!(dec_params->flags & V4L2_VP9_FRAME_FLAG_ALLOW_HIGH_PREC_MV));
hantro_reg_write(ctx->dev, &vp9_comp_pred_mode, dec_params->reference_mode);
hantro_reg_write(ctx->dev, &g2_tempor_mvp_e,
!(dec_params->flags & V4L2_VP9_FRAME_FLAG_ERROR_RESILIENT) &&
!(dec_params->flags & V4L2_VP9_FRAME_FLAG_KEY_FRAME) &&
!(vp9_ctx->last.flags & V4L2_VP9_FRAME_FLAG_KEY_FRAME) &&
!(dec_params->flags & V4L2_VP9_FRAME_FLAG_INTRA_ONLY) &&
!resolution_change &&
vp9_ctx->last.flags & V4L2_VP9_FRAME_FLAG_SHOW_FRAME
);
hantro_reg_write(ctx->dev, &g2_write_mvs_e,
!(dec_params->flags & V4L2_VP9_FRAME_FLAG_KEY_FRAME));
}
static void
config_compound_reference(struct hantro_ctx *ctx,
const struct v4l2_ctrl_vp9_frame *dec_params)
{
u32 comp_fixed_ref, comp_var_ref[2];
bool last_ref_frame_sign_bias;
bool golden_ref_frame_sign_bias;
bool alt_ref_frame_sign_bias;
bool comp_ref_allowed = 0;
comp_fixed_ref = 0;
comp_var_ref[0] = 0;
comp_var_ref[1] = 0;
last_ref_frame_sign_bias = dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_LAST;
golden_ref_frame_sign_bias = dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_GOLDEN;
alt_ref_frame_sign_bias = dec_params->ref_frame_sign_bias & V4L2_VP9_SIGN_BIAS_ALT;
/* 6.3.12 Frame reference mode syntax */
comp_ref_allowed |= golden_ref_frame_sign_bias != last_ref_frame_sign_bias;
comp_ref_allowed |= alt_ref_frame_sign_bias != last_ref_frame_sign_bias;
if (comp_ref_allowed) {
if (last_ref_frame_sign_bias ==
golden_ref_frame_sign_bias) {
comp_fixed_ref = ALTREF_FRAME;
comp_var_ref[0] = LAST_FRAME;
comp_var_ref[1] = GOLDEN_FRAME;
} else if (last_ref_frame_sign_bias ==
alt_ref_frame_sign_bias) {
comp_fixed_ref = GOLDEN_FRAME;
comp_var_ref[0] = LAST_FRAME;
comp_var_ref[1] = ALTREF_FRAME;
} else {
comp_fixed_ref = LAST_FRAME;
comp_var_ref[0] = GOLDEN_FRAME;
comp_var_ref[1] = ALTREF_FRAME;
}
}
hantro_reg_write(ctx->dev, &vp9_comp_pred_fixed_ref, comp_fixed_ref);
hantro_reg_write(ctx->dev, &vp9_comp_pred_var_ref0, comp_var_ref[0]);
hantro_reg_write(ctx->dev, &vp9_comp_pred_var_ref1, comp_var_ref[1]);
}
#define INNER_LOOP \
do { \
for (m = 0; m < ARRAY_SIZE(adaptive->coef[0][0][0][0]); ++m) { \
memcpy(adaptive->coef[i][j][k][l][m], \
probs->coef[i][j][k][l][m], \
sizeof(probs->coef[i][j][k][l][m])); \
\
adaptive->coef[i][j][k][l][m][3] = 0; \
} \
} while (0)
static void config_probs(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params)
{
struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec;
struct hantro_aux_buf *misc = &vp9_ctx->misc;
struct hantro_g2_all_probs *all_probs = misc->cpu;
struct hantro_g2_probs *adaptive;
struct hantro_g2_mv_probs *mv;
const struct v4l2_vp9_segmentation *seg = &dec_params->seg;
const struct v4l2_vp9_frame_context *probs = &vp9_ctx->probability_tables;
int i, j, k, l, m;
for (i = 0; i < ARRAY_SIZE(all_probs->kf_y_mode_prob); ++i)
for (j = 0; j < ARRAY_SIZE(all_probs->kf_y_mode_prob[0]); ++j) {
memcpy(all_probs->kf_y_mode_prob[i][j],
v4l2_vp9_kf_y_mode_prob[i][j],
ARRAY_SIZE(all_probs->kf_y_mode_prob[i][j]));
all_probs->kf_y_mode_prob_tail[i][j][0] =
v4l2_vp9_kf_y_mode_prob[i][j][8];
}
memcpy(all_probs->mb_segment_tree_probs, seg->tree_probs,
sizeof(all_probs->mb_segment_tree_probs));
memcpy(all_probs->segment_pred_probs, seg->pred_probs,
sizeof(all_probs->segment_pred_probs));
for (i = 0; i < ARRAY_SIZE(all_probs->kf_uv_mode_prob); ++i) {
memcpy(all_probs->kf_uv_mode_prob[i], v4l2_vp9_kf_uv_mode_prob[i],
ARRAY_SIZE(all_probs->kf_uv_mode_prob[i]));
all_probs->kf_uv_mode_prob_tail[i][0] = v4l2_vp9_kf_uv_mode_prob[i][8];
}
adaptive = &all_probs->probs;
for (i = 0; i < ARRAY_SIZE(adaptive->inter_mode); ++i) {
memcpy(adaptive->inter_mode[i], probs->inter_mode[i],
ARRAY_SIZE(probs->inter_mode[i]));
adaptive->inter_mode[i][3] = 0;
}
memcpy(adaptive->is_inter, probs->is_inter, sizeof(adaptive->is_inter));
for (i = 0; i < ARRAY_SIZE(adaptive->uv_mode); ++i) {
memcpy(adaptive->uv_mode[i], probs->uv_mode[i],
sizeof(adaptive->uv_mode[i]));
adaptive->uv_mode_tail[i][0] = probs->uv_mode[i][8];
}
memcpy(adaptive->tx8, probs->tx8, sizeof(adaptive->tx8));
memcpy(adaptive->tx16, probs->tx16, sizeof(adaptive->tx16));
memcpy(adaptive->tx32, probs->tx32, sizeof(adaptive->tx32));
for (i = 0; i < ARRAY_SIZE(adaptive->y_mode); ++i) {
memcpy(adaptive->y_mode[i], probs->y_mode[i],
ARRAY_SIZE(adaptive->y_mode[i]));
adaptive->y_mode_tail[i][0] = probs->y_mode[i][8];
}
for (i = 0; i < ARRAY_SIZE(adaptive->partition[0]); ++i) {
memcpy(adaptive->partition[0][i], v4l2_vp9_kf_partition_probs[i],
sizeof(v4l2_vp9_kf_partition_probs[i]));
adaptive->partition[0][i][3] = 0;
}
for (i = 0; i < ARRAY_SIZE(adaptive->partition[1]); ++i) {
memcpy(adaptive->partition[1][i], probs->partition[i],
sizeof(probs->partition[i]));
adaptive->partition[1][i][3] = 0;
}
memcpy(adaptive->interp_filter, probs->interp_filter,
sizeof(adaptive->interp_filter));
memcpy(adaptive->comp_mode, probs->comp_mode, sizeof(adaptive->comp_mode));
memcpy(adaptive->skip, probs->skip, sizeof(adaptive->skip));
mv = &adaptive->mv;
memcpy(mv->joint, probs->mv.joint, sizeof(mv->joint));
memcpy(mv->sign, probs->mv.sign, sizeof(mv->sign));
memcpy(mv->class0_bit, probs->mv.class0_bit, sizeof(mv->class0_bit));
memcpy(mv->fr, probs->mv.fr, sizeof(mv->fr));
memcpy(mv->class0_hp, probs->mv.class0_hp, sizeof(mv->class0_hp));
memcpy(mv->hp, probs->mv.hp, sizeof(mv->hp));
memcpy(mv->classes, probs->mv.classes, sizeof(mv->classes));
memcpy(mv->class0_fr, probs->mv.class0_fr, sizeof(mv->class0_fr));
memcpy(mv->bits, probs->mv.bits, sizeof(mv->bits));
memcpy(adaptive->single_ref, probs->single_ref, sizeof(adaptive->single_ref));
memcpy(adaptive->comp_ref, probs->comp_ref, sizeof(adaptive->comp_ref));
for (i = 0; i < ARRAY_SIZE(adaptive->coef); ++i)
for (j = 0; j < ARRAY_SIZE(adaptive->coef[0]); ++j)
for (k = 0; k < ARRAY_SIZE(adaptive->coef[0][0]); ++k)
for (l = 0; l < ARRAY_SIZE(adaptive->coef[0][0][0]); ++l)
INNER_LOOP;
hantro_write_addr(ctx->dev, G2_VP9_PROBS_ADDR, misc->dma);
}
static void config_counts(struct hantro_ctx *ctx)
{
struct hantro_vp9_dec_hw_ctx *vp9_dec = &ctx->vp9_dec;
struct hantro_aux_buf *misc = &vp9_dec->misc;
dma_addr_t addr = misc->dma + vp9_dec->ctx_counters_offset;
hantro_write_addr(ctx->dev, G2_VP9_CTX_COUNT_ADDR, addr);
}
static void config_seg_map(struct hantro_ctx *ctx,
const struct v4l2_ctrl_vp9_frame *dec_params,
bool intra_only, bool update_map)
{
struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec;
struct hantro_aux_buf *segment_map = &vp9_ctx->segment_map;
dma_addr_t addr;
if (intra_only ||
(dec_params->flags & V4L2_VP9_FRAME_FLAG_ERROR_RESILIENT)) {
memset(segment_map->cpu, 0, segment_map->size);
memset(vp9_ctx->feature_data, 0, sizeof(vp9_ctx->feature_data));
memset(vp9_ctx->feature_enabled, 0, sizeof(vp9_ctx->feature_enabled));
}
addr = segment_map->dma + vp9_ctx->active_segment * vp9_ctx->segment_map_size;
hantro_write_addr(ctx->dev, G2_VP9_SEGMENT_READ_ADDR, addr);
addr = segment_map->dma + (1 - vp9_ctx->active_segment) * vp9_ctx->segment_map_size;
hantro_write_addr(ctx->dev, G2_VP9_SEGMENT_WRITE_ADDR, addr);
if (update_map)
vp9_ctx->active_segment = 1 - vp9_ctx->active_segment;
}
static void
config_source(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params,
struct vb2_v4l2_buffer *vb2_src)
{
dma_addr_t stream_base, tmp_addr;
unsigned int headres_size;
u32 src_len, start_bit, src_buf_len;
headres_size = dec_params->uncompressed_header_size
+ dec_params->compressed_header_size;
stream_base = vb2_dma_contig_plane_dma_addr(&vb2_src->vb2_buf, 0);
tmp_addr = stream_base + headres_size;
if (ctx->dev->variant->legacy_regs)
hantro_write_addr(ctx->dev, G2_STREAM_ADDR, (tmp_addr & ~0xf));
else
hantro_write_addr(ctx->dev, G2_STREAM_ADDR, stream_base);
start_bit = (tmp_addr & 0xf) * 8;
hantro_reg_write(ctx->dev, &g2_start_bit, start_bit);
src_len = vb2_get_plane_payload(&vb2_src->vb2_buf, 0);
src_len += start_bit / 8 - headres_size;
hantro_reg_write(ctx->dev, &g2_stream_len, src_len);
if (!ctx->dev->variant->legacy_regs) {
tmp_addr &= ~0xf;
hantro_reg_write(ctx->dev, &g2_strm_start_offset, tmp_addr - stream_base);
src_buf_len = vb2_plane_size(&vb2_src->vb2_buf, 0);
hantro_reg_write(ctx->dev, &g2_strm_buffer_len, src_buf_len);
}
}
static void
config_registers(struct hantro_ctx *ctx, const struct v4l2_ctrl_vp9_frame *dec_params,
struct vb2_v4l2_buffer *vb2_src, struct vb2_v4l2_buffer *vb2_dst)
{
struct hantro_decoded_buffer *dst, *last, *mv_ref;
struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec;
const struct v4l2_vp9_segmentation *seg;
bool intra_only, resolution_change;
/* vp9 stuff */
dst = vb2_to_hantro_decoded_buf(&vb2_dst->vb2_buf);
if (vp9_ctx->last.valid)
last = get_ref_buf(ctx, &dst->base.vb, vp9_ctx->last.timestamp);
else
last = dst;
update_dec_buf_info(dst, dec_params);
update_ctx_cur_info(vp9_ctx, dst, dec_params);
seg = &dec_params->seg;
intra_only = !!(dec_params->flags &
(V4L2_VP9_FRAME_FLAG_KEY_FRAME |
V4L2_VP9_FRAME_FLAG_INTRA_ONLY));
if (!intra_only &&
!(dec_params->flags & V4L2_VP9_FRAME_FLAG_ERROR_RESILIENT) &&
vp9_ctx->last.valid)
mv_ref = last;
else
mv_ref = dst;
resolution_change = dst->vp9.width != last->vp9.width ||
dst->vp9.height != last->vp9.height;
/* configure basic registers */
hantro_reg_write(ctx->dev, &g2_mode, VP9_DEC_MODE);
if (!ctx->dev->variant->legacy_regs) {
hantro_reg_write(ctx->dev, &g2_strm_swap, 0xf);
hantro_reg_write(ctx->dev, &g2_dirmv_swap, 0xf);
hantro_reg_write(ctx->dev, &g2_compress_swap, 0xf);
hantro_reg_write(ctx->dev, &g2_ref_compress_bypass, 1);
} else {
hantro_reg_write(ctx->dev, &g2_strm_swap_old, 0x1f);
hantro_reg_write(ctx->dev, &g2_pic_swap, 0x10);
hantro_reg_write(ctx->dev, &g2_dirmv_swap_old, 0x10);
hantro_reg_write(ctx->dev, &g2_tab0_swap_old, 0x10);
hantro_reg_write(ctx->dev, &g2_tab1_swap_old, 0x10);
hantro_reg_write(ctx->dev, &g2_tab2_swap_old, 0x10);
hantro_reg_write(ctx->dev, &g2_tab3_swap_old, 0x10);
hantro_reg_write(ctx->dev, &g2_rscan_swap, 0x10);
}
hantro_reg_write(ctx->dev, &g2_buswidth, BUS_WIDTH_128);
hantro_reg_write(ctx->dev, &g2_max_burst, 16);
hantro_reg_write(ctx->dev, &g2_apf_threshold, 8);
hantro_reg_write(ctx->dev, &g2_clk_gate_e, 1);
hantro_reg_write(ctx->dev, &g2_max_cb_size, 6);
hantro_reg_write(ctx->dev, &g2_min_cb_size, 3);
if (ctx->dev->variant->double_buffer)
hantro_reg_write(ctx->dev, &g2_double_buffer_e, 1);
config_output(ctx, dst, dec_params);
if (!intra_only)
config_ref_registers(ctx, dec_params, dst, mv_ref);
config_tiles(ctx, dec_params, dst);
config_segment(ctx, dec_params);
config_loop_filter(ctx, dec_params);
config_picture_dimensions(ctx, dst);
config_bit_depth(ctx, dec_params);
config_quant(ctx, dec_params);
config_others(ctx, dec_params, intra_only, resolution_change);
config_compound_reference(ctx, dec_params);
config_probs(ctx, dec_params);
config_counts(ctx);
config_seg_map(ctx, dec_params, intra_only,
seg->flags & V4L2_VP9_SEGMENTATION_FLAG_UPDATE_MAP);
config_source(ctx, dec_params, vb2_src);
}
int hantro_g2_vp9_dec_run(struct hantro_ctx *ctx)
{
const struct v4l2_ctrl_vp9_frame *decode_params;
struct vb2_v4l2_buffer *src;
struct vb2_v4l2_buffer *dst;
int ret;
hantro_g2_check_idle(ctx->dev);
ret = start_prepare_run(ctx, &decode_params);
if (ret) {
hantro_end_prepare_run(ctx);
return ret;
}
src = hantro_get_src_buf(ctx);
dst = hantro_get_dst_buf(ctx);
config_registers(ctx, decode_params, src, dst);
hantro_end_prepare_run(ctx);
vdpu_write(ctx->dev, G2_REG_INTERRUPT_DEC_E, G2_REG_INTERRUPT);
return 0;
}
#define copy_tx_and_skip(p1, p2) \
do { \
memcpy((p1)->tx8, (p2)->tx8, sizeof((p1)->tx8)); \
memcpy((p1)->tx16, (p2)->tx16, sizeof((p1)->tx16)); \
memcpy((p1)->tx32, (p2)->tx32, sizeof((p1)->tx32)); \
memcpy((p1)->skip, (p2)->skip, sizeof((p1)->skip)); \
} while (0)
void hantro_g2_vp9_dec_done(struct hantro_ctx *ctx)
{
struct hantro_vp9_dec_hw_ctx *vp9_ctx = &ctx->vp9_dec;
unsigned int fctx_idx;
if (!(vp9_ctx->cur.flags & V4L2_VP9_FRAME_FLAG_REFRESH_FRAME_CTX))
goto out_update_last;
fctx_idx = vp9_ctx->cur.frame_context_idx;
if (!(vp9_ctx->cur.flags & V4L2_VP9_FRAME_FLAG_PARALLEL_DEC_MODE)) {
/* error_resilient_mode == 0 && frame_parallel_decoding_mode == 0 */
struct v4l2_vp9_frame_context *probs = &vp9_ctx->probability_tables;
bool frame_is_intra = vp9_ctx->cur.flags &
(V4L2_VP9_FRAME_FLAG_KEY_FRAME | V4L2_VP9_FRAME_FLAG_INTRA_ONLY);
struct tx_and_skip {
u8 tx8[2][1];
u8 tx16[2][2];
u8 tx32[2][3];
u8 skip[3];
} _tx_skip, *tx_skip = &_tx_skip;
struct v4l2_vp9_frame_symbol_counts *counts;
struct symbol_counts *hantro_cnts;
u32 tx16p[2][4];
int i;
/* buffer the forward-updated TX and skip probs */
if (frame_is_intra)
copy_tx_and_skip(tx_skip, probs);
/* 6.1.2 refresh_probs(): load_probs() and load_probs2() */
*probs = vp9_ctx->frame_context[fctx_idx];
/* if FrameIsIntra then undo the effect of load_probs2() */
if (frame_is_intra)
copy_tx_and_skip(probs, tx_skip);
counts = &vp9_ctx->cnts;
hantro_cnts = vp9_ctx->misc.cpu + vp9_ctx->ctx_counters_offset;
for (i = 0; i < ARRAY_SIZE(tx16p); ++i) {
memcpy(tx16p[i],
hantro_cnts->tx16x16_count[i],
sizeof(hantro_cnts->tx16x16_count[0]));
tx16p[i][3] = 0;
}
counts->tx16p = &tx16p;
v4l2_vp9_adapt_coef_probs(probs, counts,
!vp9_ctx->last.valid ||
vp9_ctx->last.flags & V4L2_VP9_FRAME_FLAG_KEY_FRAME,
frame_is_intra);
if (!frame_is_intra) {
/* load_probs2() already done */
u32 mv_mode[7][4];
for (i = 0; i < ARRAY_SIZE(mv_mode); ++i) {
mv_mode[i][0] = hantro_cnts->inter_mode_counts[i][1][0];
mv_mode[i][1] = hantro_cnts->inter_mode_counts[i][2][0];
mv_mode[i][2] = hantro_cnts->inter_mode_counts[i][0][0];
mv_mode[i][3] = hantro_cnts->inter_mode_counts[i][2][1];
}
counts->mv_mode = &mv_mode;
v4l2_vp9_adapt_noncoef_probs(&vp9_ctx->probability_tables, counts,
vp9_ctx->cur.reference_mode,
vp9_ctx->cur.interpolation_filter,
vp9_ctx->cur.tx_mode, vp9_ctx->cur.flags);
}
}
vp9_ctx->frame_context[fctx_idx] = vp9_ctx->probability_tables;
out_update_last:
vp9_ctx->last = vp9_ctx->cur;
}