2006-06-22 14:47:34 -07:00
/* inflate.c -- zlib decompression
* Copyright ( C ) 1995 - 2005 Mark Adler
* For conditions of distribution and use , see copyright notice in zlib . h
*
* Based on zlib 1.2 .3 but modified for the Linux Kernel by
* Richard Purdie < richard @ openedhand . com >
*
* Changes mainly for static instead of dynamic memory allocation
*
2005-04-16 15:20:36 -07:00
*/
# include <linux/zutil.h>
2006-06-22 14:47:34 -07:00
# include "inftrees.h"
# include "inflate.h"
# include "inffast.h"
2005-04-16 15:20:36 -07:00
# include "infutil.h"
int zlib_inflate_workspacesize ( void )
{
2006-06-22 14:47:34 -07:00
return sizeof ( struct inflate_workspace ) ;
2005-04-16 15:20:36 -07:00
}
2006-06-22 14:47:34 -07:00
int zlib_inflateReset ( z_streamp strm )
{
struct inflate_state * state ;
if ( strm = = NULL | | strm - > state = = NULL ) return Z_STREAM_ERROR ;
state = ( struct inflate_state * ) strm - > state ;
strm - > total_in = strm - > total_out = state - > total = 0 ;
strm - > msg = NULL ;
strm - > adler = 1 ; /* to support ill-conceived Java test suite */
state - > mode = HEAD ;
state - > last = 0 ;
state - > havedict = 0 ;
state - > dmax = 32768U ;
state - > hold = 0 ;
state - > bits = 0 ;
state - > lencode = state - > distcode = state - > next = state - > codes ;
2005-04-16 15:20:36 -07:00
2006-06-22 14:47:34 -07:00
/* Initialise Window */
state - > wsize = 1U < < state - > wbits ;
state - > write = 0 ;
state - > whave = 0 ;
return Z_OK ;
}
#if 0
int zlib_inflatePrime ( z_streamp strm , int bits , int value )
2005-04-16 15:20:36 -07:00
{
2006-06-22 14:47:34 -07:00
struct inflate_state * state ;
if ( strm = = NULL | | strm - > state = = NULL ) return Z_STREAM_ERROR ;
state = ( struct inflate_state * ) strm - > state ;
if ( bits > 16 | | state - > bits + bits > 32 ) return Z_STREAM_ERROR ;
value & = ( 1L < < bits ) - 1 ;
state - > hold + = value < < state - > bits ;
state - > bits + = bits ;
return Z_OK ;
2005-04-16 15:20:36 -07:00
}
2006-06-22 14:47:34 -07:00
# endif
int zlib_inflateInit2 ( z_streamp strm , int windowBits )
{
struct inflate_state * state ;
if ( strm = = NULL ) return Z_STREAM_ERROR ;
strm - > msg = NULL ; /* in case we return an error */
state = & WS ( strm ) - > inflate_state ;
strm - > state = ( struct internal_state * ) state ;
if ( windowBits < 0 ) {
state - > wrap = 0 ;
windowBits = - windowBits ;
}
else {
state - > wrap = ( windowBits > > 4 ) + 1 ;
}
if ( windowBits < 8 | | windowBits > 15 ) {
return Z_STREAM_ERROR ;
}
state - > wbits = ( unsigned ) windowBits ;
state - > window = & WS ( strm ) - > working_window [ 0 ] ;
2005-04-16 15:20:36 -07:00
2006-06-22 14:47:34 -07:00
return zlib_inflateReset ( strm ) ;
}
2005-04-16 15:20:36 -07:00
2006-06-22 14:47:34 -07:00
/*
Return state with length and distance decoding tables and index sizes set to
fixed code decoding . This returns fixed tables from inffixed . h .
*/
static void zlib_fixedtables ( struct inflate_state * state )
2005-04-16 15:20:36 -07:00
{
2006-06-22 14:47:34 -07:00
# include "inffixed.h"
state - > lencode = lenfix ;
state - > lenbits = 9 ;
state - > distcode = distfix ;
state - > distbits = 5 ;
2005-04-16 15:20:36 -07:00
}
2006-06-22 14:47:34 -07:00
/*
Update the window with the last wsize ( normally 32 K ) bytes written before
returning . This is only called when a window is already in use , or when
output has been written during this inflate call , but the end of the deflate
stream has not been reached yet . It is also called to window dictionary data
when a dictionary is loaded .
Providing output buffers larger than 32 K to inflate ( ) should provide a speed
advantage , since only the last 32 K of output is copied to the sliding window
upon return from inflate ( ) , and since all distances after the first 32 K of
output will fall in the output data , making match copies simpler and faster .
The advantage may be dependent on the size of the processor ' s data caches .
*/
static void zlib_updatewindow ( z_streamp strm , unsigned out )
2005-04-16 15:20:36 -07:00
{
2006-06-22 14:47:34 -07:00
struct inflate_state * state ;
unsigned copy , dist ;
state = ( struct inflate_state * ) strm - > state ;
/* copy state->wsize or less output bytes into the circular window */
copy = out - strm - > avail_out ;
if ( copy > = state - > wsize ) {
memcpy ( state - > window , strm - > next_out - state - > wsize , state - > wsize ) ;
state - > write = 0 ;
state - > whave = state - > wsize ;
}
else {
dist = state - > wsize - state - > write ;
if ( dist > copy ) dist = copy ;
memcpy ( state - > window + state - > write , strm - > next_out - copy , dist ) ;
copy - = dist ;
if ( copy ) {
memcpy ( state - > window , strm - > next_out - copy , copy ) ;
state - > write = copy ;
state - > whave = state - > wsize ;
}
else {
state - > write + = dist ;
if ( state - > write = = state - > wsize ) state - > write = 0 ;
if ( state - > whave < state - > wsize ) state - > whave + = dist ;
}
}
2005-04-16 15:20:36 -07:00
}
/*
* At the end of a Deflate - compressed PPP packet , we expect to have seen
* a ` stored ' block type value but not the ( zero ) length bytes .
*/
2006-06-22 14:47:34 -07:00
/*
Returns true if inflate is currently at the end of a block generated by
Z_SYNC_FLUSH or Z_FULL_FLUSH . This function is used by one PPP
implementation to provide an additional safety check . PPP uses
Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored
block . When decompressing , PPP checks that at the end of input packet ,
inflate is waiting for these length bytes .
*/
static int zlib_inflateSyncPacket ( z_streamp strm )
2005-04-16 15:20:36 -07:00
{
2006-06-22 14:47:34 -07:00
struct inflate_state * state ;
if ( strm = = NULL | | strm - > state = = NULL ) return Z_STREAM_ERROR ;
state = ( struct inflate_state * ) strm - > state ;
if ( state - > mode = = STORED & & state - > bits = = 0 ) {
state - > mode = TYPE ;
return Z_OK ;
}
return Z_DATA_ERROR ;
}
/* Macros for inflate(): */
/* check function to use adler32() for zlib or crc32() for gzip */
# define UPDATE(check, buf, len) zlib_adler32(check, buf, len)
/* Load registers with state in inflate() for speed */
# define LOAD() \
do { \
put = strm - > next_out ; \
left = strm - > avail_out ; \
next = strm - > next_in ; \
have = strm - > avail_in ; \
hold = state - > hold ; \
bits = state - > bits ; \
} while ( 0 )
/* Restore state from registers in inflate() */
# define RESTORE() \
do { \
strm - > next_out = put ; \
strm - > avail_out = left ; \
strm - > next_in = next ; \
strm - > avail_in = have ; \
state - > hold = hold ; \
state - > bits = bits ; \
} while ( 0 )
/* Clear the input bit accumulator */
# define INITBITS() \
do { \
hold = 0 ; \
bits = 0 ; \
} while ( 0 )
/* Get a byte of input into the bit accumulator, or return from inflate()
if there is no input available . */
# define PULLBYTE() \
do { \
if ( have = = 0 ) goto inf_leave ; \
have - - ; \
hold + = ( unsigned long ) ( * next + + ) < < bits ; \
bits + = 8 ; \
} while ( 0 )
/* Assure that there are at least n bits in the bit accumulator. If there is
not enough available input to do that , then return from inflate ( ) . */
# define NEEDBITS(n) \
do { \
while ( bits < ( unsigned ) ( n ) ) \
PULLBYTE ( ) ; \
} while ( 0 )
/* Return the low n bits of the bit accumulator (n < 16) */
# define BITS(n) \
( ( unsigned ) hold & ( ( 1U < < ( n ) ) - 1 ) )
/* Remove n bits from the bit accumulator */
# define DROPBITS(n) \
do { \
hold > > = ( n ) ; \
bits - = ( unsigned ) ( n ) ; \
} while ( 0 )
/* Remove zero to seven bits as needed to go to a byte boundary */
# define BYTEBITS() \
do { \
hold > > = bits & 7 ; \
bits - = bits & 7 ; \
} while ( 0 )
/* Reverse the bytes in a 32-bit value */
# define REVERSE(q) \
( ( ( ( q ) > > 24 ) & 0xff ) + ( ( ( q ) > > 8 ) & 0xff00 ) + \
( ( ( q ) & 0xff00 ) < < 8 ) + ( ( ( q ) & 0xff ) < < 24 ) )
/*
inflate ( ) uses a state machine to process as much input data and generate as
much output data as possible before returning . The state machine is
structured roughly as follows :
for ( ; ; ) switch ( state ) {
. . .
case STATEn :
if ( not enough input data or output space to make progress )
return ;
. . . make progress . . .
state = STATEm ;
break ;
. . .
}
so when inflate ( ) is called again , the same case is attempted again , and
if the appropriate resources are provided , the machine proceeds to the
next state . The NEEDBITS ( ) macro is usually the way the state evaluates
whether it can proceed or should return . NEEDBITS ( ) does the return if
the requested bits are not available . The typical use of the BITS macros
is :
NEEDBITS ( n ) ;
. . . do something with BITS ( n ) . . .
DROPBITS ( n ) ;
where NEEDBITS ( n ) either returns from inflate ( ) if there isn ' t enough
input left to load n bits into the accumulator , or it continues . BITS ( n )
gives the low n bits in the accumulator . When done , DROPBITS ( n ) drops
the low n bits off the accumulator . INITBITS ( ) clears the accumulator
and sets the number of available bits to zero . BYTEBITS ( ) discards just
enough bits to put the accumulator on a byte boundary . After BYTEBITS ( )
and a NEEDBITS ( 8 ) , then BITS ( 8 ) would return the next byte in the stream .
NEEDBITS ( n ) uses PULLBYTE ( ) to get an available byte of input , or to return
if there is no input available . The decoding of variable length codes uses
PULLBYTE ( ) directly in order to pull just enough bytes to decode the next
code , and no more .
Some states loop until they get enough input , making sure that enough
state information is maintained to continue the loop where it left off
if NEEDBITS ( ) returns in the loop . For example , want , need , and keep
would all have to actually be part of the saved state in case NEEDBITS ( )
returns :
case STATEw :
while ( want < need ) {
NEEDBITS ( n ) ;
keep [ want + + ] = BITS ( n ) ;
DROPBITS ( n ) ;
}
state = STATEx ;
case STATEx :
As shown above , if the next state is also the next case , then the break
is omitted .
A state may also return if there is not enough output space available to
complete that state . Those states are copying stored data , writing a
literal byte , and copying a matching string .
When returning , a " goto inf_leave " is used to update the total counters ,
update the check value , and determine whether any progress has been made
during that inflate ( ) call in order to return the proper return code .
Progress is defined as a change in either strm - > avail_in or strm - > avail_out .
When there is a window , goto inf_leave will update the window with the last
output written . If a goto inf_leave occurs in the middle of decompression
and there is no window currently , goto inf_leave will create one and copy
output to the window for the next call of inflate ( ) .
In this implementation , the flush parameter of inflate ( ) only affects the
return code ( per zlib . h ) . inflate ( ) always writes as much as possible to
strm - > next_out , given the space available and the provided input - - the effect
documented in zlib . h of Z_SYNC_FLUSH . Furthermore , inflate ( ) always defers
the allocation of and copying into a sliding window until necessary , which
provides the effect documented in zlib . h for Z_FINISH when the entire input
stream available . So the only thing the flush parameter actually does is :
when flush is set to Z_FINISH , inflate ( ) cannot return Z_OK . Instead it
will return Z_BUF_ERROR if it has not reached the end of the stream .
*/
int zlib_inflate ( z_streamp strm , int flush )
{
struct inflate_state * state ;
2007-09-30 17:56:49 -07:00
const unsigned char * next ; /* next input */
unsigned char * put ; /* next output */
2006-06-22 14:47:34 -07:00
unsigned have , left ; /* available input and output */
unsigned long hold ; /* bit buffer */
unsigned bits ; /* bits in bit buffer */
unsigned in , out ; /* save starting available input and output */
unsigned copy ; /* number of stored or match bytes to copy */
2007-09-30 17:56:49 -07:00
unsigned char * from ; /* where to copy match bytes from */
2006-06-22 14:47:34 -07:00
code this ; /* current decoding table entry */
code last ; /* parent table entry */
unsigned len ; /* length to copy for repeats, bits to drop */
int ret ; /* return code */
static const unsigned short order [ 19 ] = /* permutation of code lengths */
{ 16 , 17 , 18 , 0 , 8 , 7 , 9 , 6 , 10 , 5 , 11 , 4 , 12 , 3 , 13 , 2 , 14 , 1 , 15 } ;
2006-07-30 03:03:12 -07:00
/* Do not check for strm->next_out == NULL here as ppc zImage
inflates to strm - > next_out = 0 */
if ( strm = = NULL | | strm - > state = = NULL | |
2006-06-22 14:47:34 -07:00
( strm - > next_in = = NULL & & strm - > avail_in ! = 0 ) )
return Z_STREAM_ERROR ;
state = ( struct inflate_state * ) strm - > state ;
if ( state - > mode = = TYPE ) state - > mode = TYPEDO ; /* skip check */
LOAD ( ) ;
in = have ;
out = left ;
ret = Z_OK ;
for ( ; ; )
switch ( state - > mode ) {
case HEAD :
if ( state - > wrap = = 0 ) {
state - > mode = TYPEDO ;
break ;
}
NEEDBITS ( 16 ) ;
if (
( ( BITS ( 8 ) < < 8 ) + ( hold > > 8 ) ) % 31 ) {
strm - > msg = ( char * ) " incorrect header check " ;
state - > mode = BAD ;
break ;
}
if ( BITS ( 4 ) ! = Z_DEFLATED ) {
strm - > msg = ( char * ) " unknown compression method " ;
state - > mode = BAD ;
break ;
}
DROPBITS ( 4 ) ;
len = BITS ( 4 ) + 8 ;
if ( len > state - > wbits ) {
strm - > msg = ( char * ) " invalid window size " ;
state - > mode = BAD ;
break ;
}
state - > dmax = 1U < < len ;
strm - > adler = state - > check = zlib_adler32 ( 0L , NULL , 0 ) ;
state - > mode = hold & 0x200 ? DICTID : TYPE ;
INITBITS ( ) ;
break ;
case DICTID :
NEEDBITS ( 32 ) ;
strm - > adler = state - > check = REVERSE ( hold ) ;
INITBITS ( ) ;
state - > mode = DICT ;
case DICT :
if ( state - > havedict = = 0 ) {
RESTORE ( ) ;
return Z_NEED_DICT ;
}
strm - > adler = state - > check = zlib_adler32 ( 0L , NULL , 0 ) ;
state - > mode = TYPE ;
case TYPE :
if ( flush = = Z_BLOCK ) goto inf_leave ;
case TYPEDO :
if ( state - > last ) {
BYTEBITS ( ) ;
state - > mode = CHECK ;
break ;
}
NEEDBITS ( 3 ) ;
state - > last = BITS ( 1 ) ;
DROPBITS ( 1 ) ;
switch ( BITS ( 2 ) ) {
case 0 : /* stored block */
state - > mode = STORED ;
break ;
case 1 : /* fixed block */
zlib_fixedtables ( state ) ;
state - > mode = LEN ; /* decode codes */
break ;
case 2 : /* dynamic block */
state - > mode = TABLE ;
break ;
case 3 :
strm - > msg = ( char * ) " invalid block type " ;
state - > mode = BAD ;
}
DROPBITS ( 2 ) ;
break ;
case STORED :
BYTEBITS ( ) ; /* go to byte boundary */
NEEDBITS ( 32 ) ;
if ( ( hold & 0xffff ) ! = ( ( hold > > 16 ) ^ 0xffff ) ) {
strm - > msg = ( char * ) " invalid stored block lengths " ;
state - > mode = BAD ;
break ;
}
state - > length = ( unsigned ) hold & 0xffff ;
INITBITS ( ) ;
state - > mode = COPY ;
case COPY :
copy = state - > length ;
if ( copy ) {
if ( copy > have ) copy = have ;
if ( copy > left ) copy = left ;
if ( copy = = 0 ) goto inf_leave ;
memcpy ( put , next , copy ) ;
have - = copy ;
next + = copy ;
left - = copy ;
put + = copy ;
state - > length - = copy ;
break ;
}
state - > mode = TYPE ;
break ;
case TABLE :
NEEDBITS ( 14 ) ;
state - > nlen = BITS ( 5 ) + 257 ;
DROPBITS ( 5 ) ;
state - > ndist = BITS ( 5 ) + 1 ;
DROPBITS ( 5 ) ;
state - > ncode = BITS ( 4 ) + 4 ;
DROPBITS ( 4 ) ;
# ifndef PKZIP_BUG_WORKAROUND
if ( state - > nlen > 286 | | state - > ndist > 30 ) {
strm - > msg = ( char * ) " too many length or distance symbols " ;
state - > mode = BAD ;
break ;
}
# endif
state - > have = 0 ;
state - > mode = LENLENS ;
case LENLENS :
while ( state - > have < state - > ncode ) {
NEEDBITS ( 3 ) ;
state - > lens [ order [ state - > have + + ] ] = ( unsigned short ) BITS ( 3 ) ;
DROPBITS ( 3 ) ;
}
while ( state - > have < 19 )
state - > lens [ order [ state - > have + + ] ] = 0 ;
state - > next = state - > codes ;
state - > lencode = ( code const * ) ( state - > next ) ;
state - > lenbits = 7 ;
ret = zlib_inflate_table ( CODES , state - > lens , 19 , & ( state - > next ) ,
& ( state - > lenbits ) , state - > work ) ;
if ( ret ) {
strm - > msg = ( char * ) " invalid code lengths set " ;
state - > mode = BAD ;
break ;
}
state - > have = 0 ;
state - > mode = CODELENS ;
case CODELENS :
while ( state - > have < state - > nlen + state - > ndist ) {
for ( ; ; ) {
this = state - > lencode [ BITS ( state - > lenbits ) ] ;
if ( ( unsigned ) ( this . bits ) < = bits ) break ;
PULLBYTE ( ) ;
}
if ( this . val < 16 ) {
NEEDBITS ( this . bits ) ;
DROPBITS ( this . bits ) ;
state - > lens [ state - > have + + ] = this . val ;
}
else {
if ( this . val = = 16 ) {
NEEDBITS ( this . bits + 2 ) ;
DROPBITS ( this . bits ) ;
if ( state - > have = = 0 ) {
strm - > msg = ( char * ) " invalid bit length repeat " ;
state - > mode = BAD ;
break ;
}
len = state - > lens [ state - > have - 1 ] ;
copy = 3 + BITS ( 2 ) ;
DROPBITS ( 2 ) ;
}
else if ( this . val = = 17 ) {
NEEDBITS ( this . bits + 3 ) ;
DROPBITS ( this . bits ) ;
len = 0 ;
copy = 3 + BITS ( 3 ) ;
DROPBITS ( 3 ) ;
}
else {
NEEDBITS ( this . bits + 7 ) ;
DROPBITS ( this . bits ) ;
len = 0 ;
copy = 11 + BITS ( 7 ) ;
DROPBITS ( 7 ) ;
}
if ( state - > have + copy > state - > nlen + state - > ndist ) {
strm - > msg = ( char * ) " invalid bit length repeat " ;
state - > mode = BAD ;
break ;
}
while ( copy - - )
state - > lens [ state - > have + + ] = ( unsigned short ) len ;
}
}
/* handle error breaks in while */
if ( state - > mode = = BAD ) break ;
/* build code tables */
state - > next = state - > codes ;
state - > lencode = ( code const * ) ( state - > next ) ;
state - > lenbits = 9 ;
ret = zlib_inflate_table ( LENS , state - > lens , state - > nlen , & ( state - > next ) ,
& ( state - > lenbits ) , state - > work ) ;
if ( ret ) {
strm - > msg = ( char * ) " invalid literal/lengths set " ;
state - > mode = BAD ;
break ;
}
state - > distcode = ( code const * ) ( state - > next ) ;
state - > distbits = 6 ;
ret = zlib_inflate_table ( DISTS , state - > lens + state - > nlen , state - > ndist ,
& ( state - > next ) , & ( state - > distbits ) , state - > work ) ;
if ( ret ) {
strm - > msg = ( char * ) " invalid distances set " ;
state - > mode = BAD ;
break ;
}
state - > mode = LEN ;
case LEN :
if ( have > = 6 & & left > = 258 ) {
RESTORE ( ) ;
inflate_fast ( strm , out ) ;
LOAD ( ) ;
break ;
}
for ( ; ; ) {
this = state - > lencode [ BITS ( state - > lenbits ) ] ;
if ( ( unsigned ) ( this . bits ) < = bits ) break ;
PULLBYTE ( ) ;
}
if ( this . op & & ( this . op & 0xf0 ) = = 0 ) {
last = this ;
for ( ; ; ) {
this = state - > lencode [ last . val +
( BITS ( last . bits + last . op ) > > last . bits ) ] ;
if ( ( unsigned ) ( last . bits + this . bits ) < = bits ) break ;
PULLBYTE ( ) ;
}
DROPBITS ( last . bits ) ;
}
DROPBITS ( this . bits ) ;
state - > length = ( unsigned ) this . val ;
if ( ( int ) ( this . op ) = = 0 ) {
state - > mode = LIT ;
break ;
}
if ( this . op & 32 ) {
state - > mode = TYPE ;
break ;
}
if ( this . op & 64 ) {
strm - > msg = ( char * ) " invalid literal/length code " ;
state - > mode = BAD ;
break ;
}
state - > extra = ( unsigned ) ( this . op ) & 15 ;
state - > mode = LENEXT ;
case LENEXT :
if ( state - > extra ) {
NEEDBITS ( state - > extra ) ;
state - > length + = BITS ( state - > extra ) ;
DROPBITS ( state - > extra ) ;
}
state - > mode = DIST ;
case DIST :
for ( ; ; ) {
this = state - > distcode [ BITS ( state - > distbits ) ] ;
if ( ( unsigned ) ( this . bits ) < = bits ) break ;
PULLBYTE ( ) ;
}
if ( ( this . op & 0xf0 ) = = 0 ) {
last = this ;
for ( ; ; ) {
this = state - > distcode [ last . val +
( BITS ( last . bits + last . op ) > > last . bits ) ] ;
if ( ( unsigned ) ( last . bits + this . bits ) < = bits ) break ;
PULLBYTE ( ) ;
}
DROPBITS ( last . bits ) ;
}
DROPBITS ( this . bits ) ;
if ( this . op & 64 ) {
strm - > msg = ( char * ) " invalid distance code " ;
state - > mode = BAD ;
break ;
}
state - > offset = ( unsigned ) this . val ;
state - > extra = ( unsigned ) ( this . op ) & 15 ;
state - > mode = DISTEXT ;
case DISTEXT :
if ( state - > extra ) {
NEEDBITS ( state - > extra ) ;
state - > offset + = BITS ( state - > extra ) ;
DROPBITS ( state - > extra ) ;
}
# ifdef INFLATE_STRICT
if ( state - > offset > state - > dmax ) {
strm - > msg = ( char * ) " invalid distance too far back " ;
state - > mode = BAD ;
break ;
}
# endif
if ( state - > offset > state - > whave + out - left ) {
strm - > msg = ( char * ) " invalid distance too far back " ;
state - > mode = BAD ;
break ;
}
state - > mode = MATCH ;
case MATCH :
if ( left = = 0 ) goto inf_leave ;
copy = out - left ;
if ( state - > offset > copy ) { /* copy from window */
copy = state - > offset - copy ;
if ( copy > state - > write ) {
copy - = state - > write ;
from = state - > window + ( state - > wsize - copy ) ;
}
else
from = state - > window + ( state - > write - copy ) ;
if ( copy > state - > length ) copy = state - > length ;
}
else { /* copy from output */
from = put - state - > offset ;
copy = state - > length ;
}
if ( copy > left ) copy = left ;
left - = copy ;
state - > length - = copy ;
do {
* put + + = * from + + ;
} while ( - - copy ) ;
if ( state - > length = = 0 ) state - > mode = LEN ;
break ;
case LIT :
if ( left = = 0 ) goto inf_leave ;
* put + + = ( unsigned char ) ( state - > length ) ;
left - - ;
state - > mode = LEN ;
break ;
case CHECK :
if ( state - > wrap ) {
NEEDBITS ( 32 ) ;
out - = left ;
strm - > total_out + = out ;
state - > total + = out ;
if ( out )
strm - > adler = state - > check =
UPDATE ( state - > check , put - out , out ) ;
out = left ;
if ( (
REVERSE ( hold ) ) ! = state - > check ) {
strm - > msg = ( char * ) " incorrect data check " ;
state - > mode = BAD ;
break ;
}
INITBITS ( ) ;
}
state - > mode = DONE ;
case DONE :
ret = Z_STREAM_END ;
goto inf_leave ;
case BAD :
ret = Z_DATA_ERROR ;
goto inf_leave ;
case MEM :
return Z_MEM_ERROR ;
case SYNC :
default :
return Z_STREAM_ERROR ;
}
/*
Return from inflate ( ) , updating the total counts and the check value .
If there was no progress during the inflate ( ) call , return a buffer
error . Call zlib_updatewindow ( ) to create and / or update the window state .
*/
inf_leave :
RESTORE ( ) ;
if ( state - > wsize | | ( state - > mode < CHECK & & out ! = strm - > avail_out ) )
zlib_updatewindow ( strm , out ) ;
in - = strm - > avail_in ;
out - = strm - > avail_out ;
strm - > total_in + = in ;
strm - > total_out + = out ;
state - > total + = out ;
if ( state - > wrap & & out )
strm - > adler = state - > check =
UPDATE ( state - > check , strm - > next_out - out , out ) ;
strm - > data_type = state - > bits + ( state - > last ? 64 : 0 ) +
( state - > mode = = TYPE ? 128 : 0 ) ;
if ( flush = = Z_PACKET_FLUSH & & ret = = Z_OK & &
2007-05-06 14:51:56 -07:00
strm - > avail_out ! = 0 & & strm - > avail_in = = 0 )
2006-06-22 14:47:34 -07:00
return zlib_inflateSyncPacket ( strm ) ;
2007-05-06 14:51:56 -07:00
if ( ( ( in = = 0 & & out = = 0 ) | | flush = = Z_FINISH ) & & ret = = Z_OK )
ret = Z_BUF_ERROR ;
2006-06-22 14:47:34 -07:00
return ret ;
}
int zlib_inflateEnd ( z_streamp strm )
{
if ( strm = = NULL | | strm - > state = = NULL )
return Z_STREAM_ERROR ;
2005-04-16 15:20:36 -07:00
return Z_OK ;
}
2006-06-22 14:47:34 -07:00
#if 0
int zlib_inflateSetDictionary ( z_streamp strm , const Byte * dictionary ,
uInt dictLength )
{
struct inflate_state * state ;
unsigned long id ;
/* check state */
if ( strm = = NULL | | strm - > state = = NULL ) return Z_STREAM_ERROR ;
state = ( struct inflate_state * ) strm - > state ;
if ( state - > wrap ! = 0 & & state - > mode ! = DICT )
return Z_STREAM_ERROR ;
/* check for correct dictionary id */
if ( state - > mode = = DICT ) {
id = zlib_adler32 ( 0L , NULL , 0 ) ;
id = zlib_adler32 ( id , dictionary , dictLength ) ;
if ( id ! = state - > check )
return Z_DATA_ERROR ;
}
/* copy dictionary to window */
zlib_updatewindow ( strm , strm - > avail_out ) ;
2005-04-16 15:20:36 -07:00
2006-06-22 14:47:34 -07:00
if ( dictLength > state - > wsize ) {
memcpy ( state - > window , dictionary + dictLength - state - > wsize ,
state - > wsize ) ;
state - > whave = state - > wsize ;
}
else {
memcpy ( state - > window + state - > wsize - dictLength , dictionary ,
dictLength ) ;
state - > whave = dictLength ;
}
state - > havedict = 1 ;
return Z_OK ;
}
# endif
#if 0
/*
Search buf [ 0. . len - 1 ] for the pattern : 0 , 0 , 0xff , 0xff . Return when found
or when out of input . When called , * have is the number of pattern bytes
found in order so far , in 0. .3 . On return * have is updated to the new
state . If on return * have equals four , then the pattern was found and the
return value is how many bytes were read including the last byte of the
pattern . If * have is less than four , then the pattern has not been found
yet and the return value is len . In the latter case , zlib_syncsearch ( ) can be
called again with more data and the * have state . * have is initialized to
zero for the first call .
*/
static unsigned zlib_syncsearch ( unsigned * have , unsigned char * buf ,
unsigned len )
2005-04-16 15:20:36 -07:00
{
2006-06-22 14:47:34 -07:00
unsigned got ;
unsigned next ;
got = * have ;
next = 0 ;
while ( next < len & & got < 4 ) {
if ( ( int ) ( buf [ next ] ) = = ( got < 2 ? 0 : 0xff ) )
got + + ;
else if ( buf [ next ] )
got = 0 ;
else
got = 4 - got ;
next + + ;
}
* have = got ;
return next ;
2005-04-16 15:20:36 -07:00
}
2006-06-22 14:47:34 -07:00
# endif
2005-04-16 15:20:36 -07:00
2006-06-22 14:47:34 -07:00
#if 0
int zlib_inflateSync ( z_streamp strm )
{
unsigned len ; /* number of bytes to look at or looked at */
unsigned long in , out ; /* temporary to save total_in and total_out */
unsigned char buf [ 4 ] ; /* to restore bit buffer to byte string */
struct inflate_state * state ;
/* check parameters */
if ( strm = = NULL | | strm - > state = = NULL ) return Z_STREAM_ERROR ;
state = ( struct inflate_state * ) strm - > state ;
if ( strm - > avail_in = = 0 & & state - > bits < 8 ) return Z_BUF_ERROR ;
/* if first time, start search in bit buffer */
if ( state - > mode ! = SYNC ) {
state - > mode = SYNC ;
state - > hold < < = state - > bits & 7 ;
state - > bits - = state - > bits & 7 ;
len = 0 ;
while ( state - > bits > = 8 ) {
buf [ len + + ] = ( unsigned char ) ( state - > hold ) ;
state - > hold > > = 8 ;
state - > bits - = 8 ;
}
state - > have = 0 ;
zlib_syncsearch ( & ( state - > have ) , buf , len ) ;
}
/* search available input */
len = zlib_syncsearch ( & ( state - > have ) , strm - > next_in , strm - > avail_in ) ;
strm - > avail_in - = len ;
strm - > next_in + = len ;
strm - > total_in + = len ;
/* return no joy or set up to restart inflate() on a new block */
if ( state - > have ! = 4 ) return Z_DATA_ERROR ;
in = strm - > total_in ; out = strm - > total_out ;
zlib_inflateReset ( strm ) ;
strm - > total_in = in ; strm - > total_out = out ;
state - > mode = TYPE ;
return Z_OK ;
}
# endif
2005-04-16 15:20:36 -07:00
2006-06-22 14:47:34 -07:00
/*
* This subroutine adds the data at next_in / avail_in to the output history
* without performing any output . The output buffer must be " caught up " ;
* i . e . no pending output but this should always be the case . The state must
* be waiting on the start of a block ( i . e . mode = = TYPE or HEAD ) . On exit ,
* the output will also be caught up , and the checksum will have been updated
* if need be .
*/
int zlib_inflateIncomp ( z_stream * z )
2005-04-16 15:20:36 -07:00
{
2006-06-22 14:47:34 -07:00
struct inflate_state * state = ( struct inflate_state * ) z - > state ;
Byte * saved_no = z - > next_out ;
uInt saved_ao = z - > avail_out ;
if ( state - > mode ! = TYPE & & state - > mode ! = HEAD )
return Z_DATA_ERROR ;
/* Setup some variables to allow misuse of updateWindow */
z - > avail_out = 0 ;
2007-09-30 17:56:49 -07:00
z - > next_out = ( unsigned char * ) z - > next_in + z - > avail_in ;
2006-06-22 14:47:34 -07:00
zlib_updatewindow ( z , z - > avail_in ) ;
/* Restore saved variables */
z - > avail_out = saved_ao ;
z - > next_out = saved_no ;
z - > adler = state - > check =
UPDATE ( state - > check , z - > next_in , z - > avail_in ) ;
z - > total_out + = z - > avail_in ;
z - > total_in + = z - > avail_in ;
z - > next_in + = z - > avail_in ;
state - > total + = z - > avail_in ;
z - > avail_in = 0 ;
return Z_OK ;
2005-04-16 15:20:36 -07:00
}