linux/drivers/md/dm-vdo-target.c

2953 lines
87 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2023 Red Hat
*/
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device-mapper.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include "dm-vdo/admin-state.h"
#include "dm-vdo/block-map.h"
#include "dm-vdo/completion.h"
#include "dm-vdo/constants.h"
#include "dm-vdo/data-vio.h"
#include "dm-vdo/dedupe.h"
#include "dm-vdo/dump.h"
#include "dm-vdo/encodings.h"
#include "dm-vdo/errors.h"
#include "dm-vdo/flush.h"
#include "dm-vdo/io-submitter.h"
#include "dm-vdo/logger.h"
#include "dm-vdo/memory-alloc.h"
#include "dm-vdo/message-stats.h"
#include "dm-vdo/pool-sysfs.h"
#include "dm-vdo/recovery-journal.h"
#include "dm-vdo/repair.h"
#include "dm-vdo/slab-depot.h"
#include "dm-vdo/status-codes.h"
#include "dm-vdo/string-utils.h"
#include "dm-vdo/thread-device.h"
#include "dm-vdo/thread-registry.h"
#include "dm-vdo/types.h"
#include "dm-vdo/uds-sysfs.h"
#include "dm-vdo/vdo.h"
#include "dm-vdo/vio.h"
#define CURRENT_VERSION "8.3.0.65"
enum {
GROW_LOGICAL_PHASE_START,
GROW_LOGICAL_PHASE_GROW_BLOCK_MAP,
GROW_LOGICAL_PHASE_END,
GROW_LOGICAL_PHASE_ERROR,
GROW_PHYSICAL_PHASE_START,
GROW_PHYSICAL_PHASE_COPY_SUMMARY,
GROW_PHYSICAL_PHASE_UPDATE_COMPONENTS,
GROW_PHYSICAL_PHASE_USE_NEW_SLABS,
GROW_PHYSICAL_PHASE_END,
GROW_PHYSICAL_PHASE_ERROR,
LOAD_PHASE_START,
LOAD_PHASE_STATS,
LOAD_PHASE_LOAD_DEPOT,
LOAD_PHASE_MAKE_DIRTY,
LOAD_PHASE_PREPARE_TO_ALLOCATE,
LOAD_PHASE_SCRUB_SLABS,
LOAD_PHASE_DATA_REDUCTION,
LOAD_PHASE_FINISHED,
LOAD_PHASE_DRAIN_JOURNAL,
LOAD_PHASE_WAIT_FOR_READ_ONLY,
PRE_LOAD_PHASE_START,
PRE_LOAD_PHASE_LOAD_COMPONENTS,
PRE_LOAD_PHASE_END,
PREPARE_GROW_PHYSICAL_PHASE_START,
RESUME_PHASE_START,
RESUME_PHASE_ALLOW_READ_ONLY_MODE,
RESUME_PHASE_DEDUPE,
RESUME_PHASE_DEPOT,
RESUME_PHASE_JOURNAL,
RESUME_PHASE_BLOCK_MAP,
RESUME_PHASE_LOGICAL_ZONES,
RESUME_PHASE_PACKER,
RESUME_PHASE_FLUSHER,
RESUME_PHASE_DATA_VIOS,
RESUME_PHASE_END,
SUSPEND_PHASE_START,
SUSPEND_PHASE_PACKER,
SUSPEND_PHASE_DATA_VIOS,
SUSPEND_PHASE_DEDUPE,
SUSPEND_PHASE_FLUSHES,
SUSPEND_PHASE_LOGICAL_ZONES,
SUSPEND_PHASE_BLOCK_MAP,
SUSPEND_PHASE_JOURNAL,
SUSPEND_PHASE_DEPOT,
SUSPEND_PHASE_READ_ONLY_WAIT,
SUSPEND_PHASE_WRITE_SUPER_BLOCK,
SUSPEND_PHASE_END,
};
static const char * const ADMIN_PHASE_NAMES[] = {
"GROW_LOGICAL_PHASE_START",
"GROW_LOGICAL_PHASE_GROW_BLOCK_MAP",
"GROW_LOGICAL_PHASE_END",
"GROW_LOGICAL_PHASE_ERROR",
"GROW_PHYSICAL_PHASE_START",
"GROW_PHYSICAL_PHASE_COPY_SUMMARY",
"GROW_PHYSICAL_PHASE_UPDATE_COMPONENTS",
"GROW_PHYSICAL_PHASE_USE_NEW_SLABS",
"GROW_PHYSICAL_PHASE_END",
"GROW_PHYSICAL_PHASE_ERROR",
"LOAD_PHASE_START",
"LOAD_PHASE_STATS",
"LOAD_PHASE_LOAD_DEPOT",
"LOAD_PHASE_MAKE_DIRTY",
"LOAD_PHASE_PREPARE_TO_ALLOCATE",
"LOAD_PHASE_SCRUB_SLABS",
"LOAD_PHASE_DATA_REDUCTION",
"LOAD_PHASE_FINISHED",
"LOAD_PHASE_DRAIN_JOURNAL",
"LOAD_PHASE_WAIT_FOR_READ_ONLY",
"PRE_LOAD_PHASE_START",
"PRE_LOAD_PHASE_LOAD_COMPONENTS",
"PRE_LOAD_PHASE_END",
"PREPARE_GROW_PHYSICAL_PHASE_START",
"RESUME_PHASE_START",
"RESUME_PHASE_ALLOW_READ_ONLY_MODE",
"RESUME_PHASE_DEDUPE",
"RESUME_PHASE_DEPOT",
"RESUME_PHASE_JOURNAL",
"RESUME_PHASE_BLOCK_MAP",
"RESUME_PHASE_LOGICAL_ZONES",
"RESUME_PHASE_PACKER",
"RESUME_PHASE_FLUSHER",
"RESUME_PHASE_DATA_VIOS",
"RESUME_PHASE_END",
"SUSPEND_PHASE_START",
"SUSPEND_PHASE_PACKER",
"SUSPEND_PHASE_DATA_VIOS",
"SUSPEND_PHASE_DEDUPE",
"SUSPEND_PHASE_FLUSHES",
"SUSPEND_PHASE_LOGICAL_ZONES",
"SUSPEND_PHASE_BLOCK_MAP",
"SUSPEND_PHASE_JOURNAL",
"SUSPEND_PHASE_DEPOT",
"SUSPEND_PHASE_READ_ONLY_WAIT",
"SUSPEND_PHASE_WRITE_SUPER_BLOCK",
"SUSPEND_PHASE_END",
};
enum {
/* If we bump this, update the arrays below */
TABLE_VERSION = 4,
};
/* arrays for handling different table versions */
static const u8 REQUIRED_ARGC[] = { 10, 12, 9, 7, 6 };
/* pool name no longer used. only here for verification of older versions */
static const u8 POOL_NAME_ARG_INDEX[] = { 8, 10, 8 };
/*
* Track in-use instance numbers using a flat bit array.
*
* O(n) run time isn't ideal, but if we have 1000 VDO devices in use simultaneously we still only
* need to scan 16 words, so it's not likely to be a big deal compared to other resource usage.
*/
enum {
/*
* This minimum size for the bit array creates a numbering space of 0-999, which allows
* successive starts of the same volume to have different instance numbers in any
* reasonably-sized test. Changing instances on restart allows vdoMonReport to detect that
* the ephemeral stats have reset to zero.
*/
BIT_COUNT_MINIMUM = 1000,
/** Grow the bit array by this many bits when needed */
BIT_COUNT_INCREMENT = 100,
};
struct instance_tracker {
unsigned int bit_count;
unsigned long *words;
unsigned int count;
unsigned int next;
};
static DEFINE_MUTEX(instances_lock);
static struct instance_tracker instances;
/**
* free_device_config() - Free a device config created by parse_device_config().
* @config: The config to free.
*/
static void free_device_config(struct device_config *config)
{
if (config == NULL)
return;
if (config->owned_device != NULL)
dm_put_device(config->owning_target, config->owned_device);
uds_free(config->parent_device_name);
uds_free(config->original_string);
/* Reduce the chance a use-after-free (as in BZ 1669960) happens to work. */
memset(config, 0, sizeof(*config));
uds_free(config);
}
/**
* get_version_number() - Decide the version number from argv.
*
* @argc: The number of table values.
* @argv: The array of table values.
* @error_ptr: A pointer to return a error string in.
* @version_ptr: A pointer to return the version.
*
* Return: VDO_SUCCESS or an error code.
*/
static int get_version_number(int argc, char **argv, char **error_ptr,
unsigned int *version_ptr)
{
/* version, if it exists, is in a form of V<n> */
if (sscanf(argv[0], "V%u", version_ptr) == 1) {
if (*version_ptr < 1 || *version_ptr > TABLE_VERSION) {
*error_ptr = "Unknown version number detected";
return VDO_BAD_CONFIGURATION;
}
} else {
/* V0 actually has no version number in the table string */
*version_ptr = 0;
}
/*
* V0 and V1 have no optional parameters. There will always be a parameter for thread
* config, even if it's a "." to show it's an empty list.
*/
if (*version_ptr <= 1) {
if (argc != REQUIRED_ARGC[*version_ptr]) {
*error_ptr = "Incorrect number of arguments for version";
return VDO_BAD_CONFIGURATION;
}
} else if (argc < REQUIRED_ARGC[*version_ptr]) {
*error_ptr = "Incorrect number of arguments for version";
return VDO_BAD_CONFIGURATION;
}
if (*version_ptr != TABLE_VERSION) {
uds_log_warning("Detected version mismatch between kernel module and tools kernel: %d, tool: %d",
TABLE_VERSION, *version_ptr);
uds_log_warning("Please consider upgrading management tools to match kernel.");
}
return VDO_SUCCESS;
}
/* Free a list of non-NULL string pointers, and then the list itself. */
static void free_string_array(char **string_array)
{
unsigned int offset;
for (offset = 0; string_array[offset] != NULL; offset++)
uds_free(string_array[offset]);
uds_free(string_array);
}
/*
* Split the input string into substrings, separated at occurrences of the indicated character,
* returning a null-terminated list of string pointers.
*
* The string pointers and the pointer array itself should both be freed with uds_free() when no
* longer needed. This can be done with vdo_free_string_array (below) if the pointers in the array
* are not changed. Since the array and copied strings are allocated by this function, it may only
* be used in contexts where allocation is permitted.
*
* Empty substrings are not ignored; that is, returned substrings may be empty strings if the
* separator occurs twice in a row.
*/
static int split_string(const char *string, char separator, char ***substring_array_ptr)
{
unsigned int current_substring = 0, substring_count = 1;
const char *s;
char **substrings;
int result;
ptrdiff_t length;
for (s = string; *s != 0; s++) {
if (*s == separator)
substring_count++;
}
result = uds_allocate(substring_count + 1, char *, "string-splitting array",
&substrings);
if (result != UDS_SUCCESS)
return result;
for (s = string; *s != 0; s++) {
if (*s == separator) {
ptrdiff_t length = s - string;
result = uds_allocate(length + 1, char, "split string",
&substrings[current_substring]);
if (result != UDS_SUCCESS) {
free_string_array(substrings);
return result;
}
/*
* Trailing NUL is already in place after allocation; deal with the zero or
* more non-NUL bytes in the string.
*/
if (length > 0)
memcpy(substrings[current_substring], string, length);
string = s + 1;
current_substring++;
BUG_ON(current_substring >= substring_count);
}
}
/* Process final string, with no trailing separator. */
BUG_ON(current_substring != (substring_count - 1));
length = strlen(string);
result = uds_allocate(length + 1, char, "split string",
&substrings[current_substring]);
if (result != UDS_SUCCESS) {
free_string_array(substrings);
return result;
}
memcpy(substrings[current_substring], string, length);
current_substring++;
/* substrings[current_substring] is NULL already */
*substring_array_ptr = substrings;
return UDS_SUCCESS;
}
/*
* Join the input substrings into one string, joined with the indicated character, returning a
* string. array_length is a bound on the number of valid elements in substring_array, in case it
* is not NULL-terminated.
*/
static int join_strings(char **substring_array, size_t array_length, char separator,
char **string_ptr)
{
size_t string_length = 0;
size_t i;
int result;
char *output, *current_position;
for (i = 0; (i < array_length) && (substring_array[i] != NULL); i++)
string_length += strlen(substring_array[i]) + 1;
result = uds_allocate(string_length, char, __func__, &output);
if (result != VDO_SUCCESS)
return result;
current_position = &output[0];
for (i = 0; (i < array_length) && (substring_array[i] != NULL); i++) {
current_position = uds_append_to_buffer(current_position,
output + string_length, "%s",
substring_array[i]);
*current_position = separator;
current_position++;
}
/* We output one too many separators; replace the last with a zero byte. */
if (current_position != output)
*(current_position - 1) = '\0';
*string_ptr = output;
return UDS_SUCCESS;
}
/**
* parse_bool() - Parse a two-valued option into a bool.
* @bool_str: The string value to convert to a bool.
* @true_str: The string value which should be converted to true.
* @false_str: The string value which should be converted to false.
* @bool_ptr: A pointer to return the bool value in.
*
* Return: VDO_SUCCESS or an error if bool_str is neither true_str nor false_str.
*/
static inline int __must_check parse_bool(const char *bool_str, const char *true_str,
const char *false_str, bool *bool_ptr)
{
bool value = false;
if (strcmp(bool_str, true_str) == 0)
value = true;
else if (strcmp(bool_str, false_str) == 0)
value = false;
else
return VDO_BAD_CONFIGURATION;
*bool_ptr = value;
return VDO_SUCCESS;
}
/**
* process_one_thread_config_spec() - Process one component of a thread parameter configuration
* string and update the configuration data structure.
* @thread_param_type: The type of thread specified.
* @count: The thread count requested.
* @config: The configuration data structure to update.
*
* If the thread count requested is invalid, a message is logged and -EINVAL returned. If the
* thread name is unknown, a message is logged but no error is returned.
*
* Return: VDO_SUCCESS or -EINVAL
*/
static int process_one_thread_config_spec(const char *thread_param_type,
unsigned int count,
struct thread_count_config *config)
{
/* Handle limited thread parameters */
if (strcmp(thread_param_type, "bioRotationInterval") == 0) {
if (count == 0) {
uds_log_error("thread config string error: 'bioRotationInterval' of at least 1 is required");
return -EINVAL;
} else if (count > VDO_BIO_ROTATION_INTERVAL_LIMIT) {
uds_log_error("thread config string error: 'bioRotationInterval' cannot be higher than %d",
VDO_BIO_ROTATION_INTERVAL_LIMIT);
return -EINVAL;
}
config->bio_rotation_interval = count;
return VDO_SUCCESS;
}
if (strcmp(thread_param_type, "logical") == 0) {
if (count > MAX_VDO_LOGICAL_ZONES) {
uds_log_error("thread config string error: at most %d 'logical' threads are allowed",
MAX_VDO_LOGICAL_ZONES);
return -EINVAL;
}
config->logical_zones = count;
return VDO_SUCCESS;
}
if (strcmp(thread_param_type, "physical") == 0) {
if (count > MAX_VDO_PHYSICAL_ZONES) {
uds_log_error("thread config string error: at most %d 'physical' threads are allowed",
MAX_VDO_PHYSICAL_ZONES);
return -EINVAL;
}
config->physical_zones = count;
return VDO_SUCCESS;
}
/* Handle other thread count parameters */
if (count > MAXIMUM_VDO_THREADS) {
uds_log_error("thread config string error: at most %d '%s' threads are allowed",
MAXIMUM_VDO_THREADS, thread_param_type);
return -EINVAL;
}
if (strcmp(thread_param_type, "hash") == 0) {
config->hash_zones = count;
return VDO_SUCCESS;
}
if (strcmp(thread_param_type, "cpu") == 0) {
if (count == 0) {
uds_log_error("thread config string error: at least one 'cpu' thread required");
return -EINVAL;
}
config->cpu_threads = count;
return VDO_SUCCESS;
}
if (strcmp(thread_param_type, "ack") == 0) {
config->bio_ack_threads = count;
return VDO_SUCCESS;
}
if (strcmp(thread_param_type, "bio") == 0) {
if (count == 0) {
uds_log_error("thread config string error: at least one 'bio' thread required");
return -EINVAL;
}
config->bio_threads = count;
return VDO_SUCCESS;
}
/*
* Don't fail, just log. This will handle version mismatches between user mode tools and
* kernel.
*/
uds_log_info("unknown thread parameter type \"%s\"", thread_param_type);
return VDO_SUCCESS;
}
/**
* parse_one_thread_config_spec() - Parse one component of a thread parameter configuration string
* and update the configuration data structure.
* @spec: The thread parameter specification string.
* @config: The configuration data to be updated.
*/
static int parse_one_thread_config_spec(const char *spec,
struct thread_count_config *config)
{
unsigned int count;
char **fields;
int result;
result = split_string(spec, '=', &fields);
if (result != UDS_SUCCESS)
return result;
if ((fields[0] == NULL) || (fields[1] == NULL) || (fields[2] != NULL)) {
uds_log_error("thread config string error: expected thread parameter assignment, saw \"%s\"",
spec);
free_string_array(fields);
return -EINVAL;
}
result = kstrtouint(fields[1], 10, &count);
if (result != UDS_SUCCESS) {
uds_log_error("thread config string error: integer value needed, found \"%s\"",
fields[1]);
free_string_array(fields);
return result;
}
result = process_one_thread_config_spec(fields[0], count, config);
free_string_array(fields);
return result;
}
/**
* parse_thread_config_string() - Parse the configuration string passed and update the specified
* counts and other parameters of various types of threads to be
* created.
* @string: Thread parameter configuration string.
* @config: The thread configuration data to update.
*
* The configuration string should contain one or more comma-separated specs of the form
* "typename=number"; the supported type names are "cpu", "ack", "bio", "bioRotationInterval",
* "logical", "physical", and "hash".
*
* If an error occurs during parsing of a single key/value pair, we deem it serious enough to stop
* further parsing.
*
* This function can't set the "reason" value the caller wants to pass back, because we'd want to
* format it to say which field was invalid, and we can't allocate the "reason" strings
* dynamically. So if an error occurs, we'll log the details and pass back an error.
*
* Return: VDO_SUCCESS or -EINVAL or -ENOMEM
*/
static int parse_thread_config_string(const char *string,
struct thread_count_config *config)
{
int result = VDO_SUCCESS;
char **specs;
if (strcmp(".", string) != 0) {
unsigned int i;
result = split_string(string, ',', &specs);
if (result != UDS_SUCCESS)
return result;
for (i = 0; specs[i] != NULL; i++) {
result = parse_one_thread_config_spec(specs[i], config);
if (result != VDO_SUCCESS)
break;
}
free_string_array(specs);
}
return result;
}
/**
* process_one_key_value_pair() - Process one component of an optional parameter string and update
* the configuration data structure.
* @key: The optional parameter key name.
* @value: The optional parameter value.
* @config: The configuration data structure to update.
*
* If the value requested is invalid, a message is logged and -EINVAL returned. If the key is
* unknown, a message is logged but no error is returned.
*
* Return: VDO_SUCCESS or -EINVAL
*/
static int process_one_key_value_pair(const char *key, unsigned int value,
struct device_config *config)
{
/* Non thread optional parameters */
if (strcmp(key, "maxDiscard") == 0) {
if (value == 0) {
uds_log_error("optional parameter error: at least one max discard block required");
return -EINVAL;
}
/* Max discard sectors in blkdev_issue_discard is UINT_MAX >> 9 */
if (value > (UINT_MAX / VDO_BLOCK_SIZE)) {
uds_log_error("optional parameter error: at most %d max discard blocks are allowed",
UINT_MAX / VDO_BLOCK_SIZE);
return -EINVAL;
}
config->max_discard_blocks = value;
return VDO_SUCCESS;
}
/* Handles unknown key names */
return process_one_thread_config_spec(key, value, &config->thread_counts);
}
/**
* parse_one_key_value_pair() - Parse one key/value pair and update the configuration data
* structure.
* @key: The optional key name.
* @value: The optional value.
* @config: The configuration data to be updated.
*
* Return: VDO_SUCCESS or error.
*/
static int parse_one_key_value_pair(const char *key, const char *value,
struct device_config *config)
{
unsigned int count;
int result;
if (strcmp(key, "deduplication") == 0)
return parse_bool(value, "on", "off", &config->deduplication);
if (strcmp(key, "compression") == 0)
return parse_bool(value, "on", "off", &config->compression);
/* The remaining arguments must have integral values. */
result = kstrtouint(value, 10, &count);
if (result != UDS_SUCCESS) {
uds_log_error("optional config string error: integer value needed, found \"%s\"",
value);
return result;
}
return process_one_key_value_pair(key, count, config);
}
/**
* parse_key_value_pairs() - Parse all key/value pairs from a list of arguments.
* @argc: The total number of arguments in list.
* @argv: The list of key/value pairs.
* @config: The device configuration data to update.
*
* If an error occurs during parsing of a single key/value pair, we deem it serious enough to stop
* further parsing.
*
* This function can't set the "reason" value the caller wants to pass back, because we'd want to
* format it to say which field was invalid, and we can't allocate the "reason" strings
* dynamically. So if an error occurs, we'll log the details and return the error.
*
* Return: VDO_SUCCESS or error
*/
static int parse_key_value_pairs(int argc, char **argv, struct device_config *config)
{
int result = VDO_SUCCESS;
while (argc) {
result = parse_one_key_value_pair(argv[0], argv[1], config);
if (result != VDO_SUCCESS)
break;
argc -= 2;
argv += 2;
}
return result;
}
/**
* parse_optional_arguments() - Parse the configuration string passed in for optional arguments.
* @arg_set: The structure holding the arguments to parse.
* @error_ptr: Pointer to a buffer to hold the error string.
* @config: Pointer to device configuration data to update.
*
* For V0/V1 configurations, there will only be one optional parameter; the thread configuration.
* The configuration string should contain one or more comma-separated specs of the form
* "typename=number"; the supported type names are "cpu", "ack", "bio", "bioRotationInterval",
* "logical", "physical", and "hash".
*
* For V2 configurations and beyond, there could be any number of arguments. They should contain
* one or more key/value pairs separated by a space.
*
* Return: VDO_SUCCESS or error
*/
static int parse_optional_arguments(struct dm_arg_set *arg_set, char **error_ptr,
struct device_config *config)
{
int result = VDO_SUCCESS;
if (config->version == 0 || config->version == 1) {
result = parse_thread_config_string(arg_set->argv[0],
&config->thread_counts);
if (result != VDO_SUCCESS) {
*error_ptr = "Invalid thread-count configuration";
return VDO_BAD_CONFIGURATION;
}
} else {
if ((arg_set->argc % 2) != 0) {
*error_ptr = "Odd number of optional arguments given but they should be <key> <value> pairs";
return VDO_BAD_CONFIGURATION;
}
result = parse_key_value_pairs(arg_set->argc, arg_set->argv, config);
if (result != VDO_SUCCESS) {
*error_ptr = "Invalid optional argument configuration";
return VDO_BAD_CONFIGURATION;
}
}
return result;
}
/**
* handle_parse_error() - Handle a parsing error.
* @config: The config to free.
* @error_ptr: A place to store a constant string about the error.
* @error_str: A constant string to store in error_ptr.
*/
static void handle_parse_error(struct device_config *config, char **error_ptr,
char *error_str)
{
free_device_config(config);
*error_ptr = error_str;
}
/**
* parse_device_config() - Convert the dmsetup table into a struct device_config.
* @argc: The number of table values.
* @argv: The array of table values.
* @ti: The target structure for this table.
* @config_ptr: A pointer to return the allocated config.
*
* Return: VDO_SUCCESS or an error code.
*/
static int parse_device_config(int argc, char **argv, struct dm_target *ti,
struct device_config **config_ptr)
{
bool enable_512e;
size_t logical_bytes = to_bytes(ti->len);
struct dm_arg_set arg_set;
char **error_ptr = &ti->error;
struct device_config *config = NULL;
int result;
if ((logical_bytes % VDO_BLOCK_SIZE) != 0) {
handle_parse_error(config, error_ptr,
"Logical size must be a multiple of 4096");
return VDO_BAD_CONFIGURATION;
}
if (argc == 0) {
handle_parse_error(config, error_ptr, "Incorrect number of arguments");
return VDO_BAD_CONFIGURATION;
}
result = uds_allocate(1, struct device_config, "device_config", &config);
if (result != VDO_SUCCESS) {
handle_parse_error(config, error_ptr,
"Could not allocate config structure");
return VDO_BAD_CONFIGURATION;
}
config->owning_target = ti;
config->logical_blocks = logical_bytes / VDO_BLOCK_SIZE;
INIT_LIST_HEAD(&config->config_list);
/* Save the original string. */
result = join_strings(argv, argc, ' ', &config->original_string);
if (result != VDO_SUCCESS) {
handle_parse_error(config, error_ptr, "Could not populate string");
return VDO_BAD_CONFIGURATION;
}
uds_log_info("table line: %s", config->original_string);
config->thread_counts = (struct thread_count_config) {
.bio_ack_threads = 1,
.bio_threads = DEFAULT_VDO_BIO_SUBMIT_QUEUE_COUNT,
.bio_rotation_interval = DEFAULT_VDO_BIO_SUBMIT_QUEUE_ROTATE_INTERVAL,
.cpu_threads = 1,
.logical_zones = 0,
.physical_zones = 0,
.hash_zones = 0,
};
config->max_discard_blocks = 1;
config->deduplication = true;
config->compression = false;
arg_set.argc = argc;
arg_set.argv = argv;
result = get_version_number(argc, argv, error_ptr, &config->version);
if (result != VDO_SUCCESS) {
/* get_version_number sets error_ptr itself. */
handle_parse_error(config, error_ptr, *error_ptr);
return result;
}
/* Move the arg pointer forward only if the argument was there. */
if (config->version >= 1)
dm_shift_arg(&arg_set);
result = uds_duplicate_string(dm_shift_arg(&arg_set), "parent device name",
&config->parent_device_name);
if (result != VDO_SUCCESS) {
handle_parse_error(config, error_ptr,
"Could not copy parent device name");
return VDO_BAD_CONFIGURATION;
}
/* Get the physical blocks, if known. */
if (config->version >= 1) {
result = kstrtoull(dm_shift_arg(&arg_set), 10, &config->physical_blocks);
if (result != VDO_SUCCESS) {
handle_parse_error(config, error_ptr,
"Invalid physical block count");
return VDO_BAD_CONFIGURATION;
}
}
/* Get the logical block size and validate */
result = parse_bool(dm_shift_arg(&arg_set), "512", "4096", &enable_512e);
if (result != VDO_SUCCESS) {
handle_parse_error(config, error_ptr, "Invalid logical block size");
return VDO_BAD_CONFIGURATION;
}
config->logical_block_size = (enable_512e ? 512 : 4096);
/* Skip past the two no longer used read cache options. */
if (config->version <= 1)
dm_consume_args(&arg_set, 2);
/* Get the page cache size. */
result = kstrtouint(dm_shift_arg(&arg_set), 10, &config->cache_size);
if (result != VDO_SUCCESS) {
handle_parse_error(config, error_ptr,
"Invalid block map page cache size");
return VDO_BAD_CONFIGURATION;
}
/* Get the block map era length. */
result = kstrtouint(dm_shift_arg(&arg_set), 10, &config->block_map_maximum_age);
if (result != VDO_SUCCESS) {
handle_parse_error(config, error_ptr, "Invalid block map maximum age");
return VDO_BAD_CONFIGURATION;
}
/* Skip past the no longer used MD RAID5 optimization mode */
if (config->version <= 2)
dm_consume_args(&arg_set, 1);
/* Skip past the no longer used write policy setting */
if (config->version <= 3)
dm_consume_args(&arg_set, 1);
/* Skip past the no longer used pool name for older table lines */
if (config->version <= 2) {
/*
* Make sure the enum to get the pool name from argv directly is still in sync with
* the parsing of the table line.
*/
if (&arg_set.argv[0] != &argv[POOL_NAME_ARG_INDEX[config->version]]) {
handle_parse_error(config, error_ptr,
"Pool name not in expected location");
return VDO_BAD_CONFIGURATION;
}
dm_shift_arg(&arg_set);
}
/* Get the optional arguments and validate. */
result = parse_optional_arguments(&arg_set, error_ptr, config);
if (result != VDO_SUCCESS) {
/* parse_optional_arguments sets error_ptr itself. */
handle_parse_error(config, error_ptr, *error_ptr);
return result;
}
/*
* Logical, physical, and hash zone counts can all be zero; then we get one thread doing
* everything, our older configuration. If any zone count is non-zero, the others must be
* as well.
*/
if (((config->thread_counts.logical_zones == 0) !=
(config->thread_counts.physical_zones == 0)) ||
((config->thread_counts.physical_zones == 0) !=
(config->thread_counts.hash_zones == 0))) {
handle_parse_error(config, error_ptr,
"Logical, physical, and hash zones counts must all be zero or all non-zero");
return VDO_BAD_CONFIGURATION;
}
if (config->cache_size <
(2 * MAXIMUM_VDO_USER_VIOS * config->thread_counts.logical_zones)) {
handle_parse_error(config, error_ptr,
"Insufficient block map cache for logical zones");
return VDO_BAD_CONFIGURATION;
}
result = dm_get_device(ti, config->parent_device_name,
dm_table_get_mode(ti->table), &config->owned_device);
if (result != 0) {
uds_log_error("couldn't open device \"%s\": error %d",
config->parent_device_name, result);
handle_parse_error(config, error_ptr, "Unable to open storage device");
return VDO_BAD_CONFIGURATION;
}
if (config->version == 0) {
u64 device_size = i_size_read(config->owned_device->bdev->bd_inode);
config->physical_blocks = device_size / VDO_BLOCK_SIZE;
}
*config_ptr = config;
return result;
}
static struct vdo *get_vdo_for_target(struct dm_target *ti)
{
return ((struct device_config *) ti->private)->vdo;
}
static int vdo_map_bio(struct dm_target *ti, struct bio *bio)
{
struct vdo *vdo = get_vdo_for_target(ti);
struct vdo_work_queue *current_work_queue;
const struct admin_state_code *code = vdo_get_admin_state_code(&vdo->admin.state);
ASSERT_LOG_ONLY(code->normal, "vdo should not receive bios while in state %s",
code->name);
/* Count all incoming bios. */
vdo_count_bios(&vdo->stats.bios_in, bio);
/* Handle empty bios. Empty flush bios are not associated with a vio. */
if ((bio_op(bio) == REQ_OP_FLUSH) || ((bio->bi_opf & REQ_PREFLUSH) != 0)) {
vdo_launch_flush(vdo, bio);
return DM_MAPIO_SUBMITTED;
}
/* This could deadlock, */
current_work_queue = vdo_get_current_work_queue();
BUG_ON((current_work_queue != NULL) &&
(vdo == vdo_get_work_queue_owner(current_work_queue)->vdo));
vdo_launch_bio(vdo->data_vio_pool, bio);
return DM_MAPIO_SUBMITTED;
}
static void vdo_io_hints(struct dm_target *ti, struct queue_limits *limits)
{
struct vdo *vdo = get_vdo_for_target(ti);
limits->logical_block_size = vdo->device_config->logical_block_size;
limits->physical_block_size = VDO_BLOCK_SIZE;
/* The minimum io size for random io */
blk_limits_io_min(limits, VDO_BLOCK_SIZE);
/* The optimal io size for streamed/sequential io */
blk_limits_io_opt(limits, VDO_BLOCK_SIZE);
/*
* Sets the maximum discard size that will be passed into VDO. This value comes from a
* table line value passed in during dmsetup create.
*
* The value 1024 is the largest usable value on HD systems. A 2048 sector discard on a
* busy HD system takes 31 seconds. We should use a value no higher than 1024, which takes
* 15 to 16 seconds on a busy HD system.
*
* But using large values results in 120 second blocked task warnings in /var/log/kern.log.
* In order to avoid these warnings, we choose to use the smallest reasonable value. See
* VDO-3062 and VDO-3087.
*
* The value is displayed in sysfs, and also used by dm-thin to determine whether to pass
* down discards. The block layer splits large discards on this boundary when this is set.
*/
limits->max_discard_sectors =
(vdo->device_config->max_discard_blocks * VDO_SECTORS_PER_BLOCK);
/*
* Force discards to not begin or end with a partial block by stating the granularity is
* 4k.
*/
limits->discard_granularity = VDO_BLOCK_SIZE;
}
static int vdo_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn,
void *data)
{
struct device_config *config = get_vdo_for_target(ti)->device_config;
return fn(ti, config->owned_device, 0,
config->physical_blocks * VDO_SECTORS_PER_BLOCK, data);
}
/*
* Status line is:
* <device> <operating mode> <in recovery> <index state> <compression state>
* <used physical blocks> <total physical blocks>
*/
static void vdo_status(struct dm_target *ti, status_type_t status_type,
unsigned int status_flags, char *result, unsigned int maxlen)
{
struct vdo *vdo = get_vdo_for_target(ti);
struct vdo_statistics *stats;
struct device_config *device_config;
/* N.B.: The DMEMIT macro uses the variables named "sz", "result", "maxlen". */
int sz = 0;
switch (status_type) {
case STATUSTYPE_INFO:
/* Report info for dmsetup status */
mutex_lock(&vdo->stats_mutex);
vdo_fetch_statistics(vdo, &vdo->stats_buffer);
stats = &vdo->stats_buffer;
DMEMIT("/dev/%pg %s %s %s %s %llu %llu",
vdo_get_backing_device(vdo), stats->mode,
stats->in_recovery_mode ? "recovering" : "-",
vdo_get_dedupe_index_state_name(vdo->hash_zones),
vdo_get_compressing(vdo) ? "online" : "offline",
stats->data_blocks_used + stats->overhead_blocks_used,
stats->physical_blocks);
mutex_unlock(&vdo->stats_mutex);
break;
case STATUSTYPE_TABLE:
/* Report the string actually specified in the beginning. */
device_config = (struct device_config *) ti->private;
DMEMIT("%s", device_config->original_string);
break;
case STATUSTYPE_IMA:
/* FIXME: We ought to be more detailed here, but this is what thin does. */
*result = '\0';
break;
}
}
static block_count_t __must_check get_underlying_device_block_count(const struct vdo *vdo)
{
return i_size_read(vdo_get_backing_device(vdo)->bd_inode) / VDO_BLOCK_SIZE;
}
static int __must_check process_vdo_message_locked(struct vdo *vdo, unsigned int argc,
char **argv)
{
if ((argc == 2) && (strcasecmp(argv[0], "compression") == 0)) {
if (strcasecmp(argv[1], "on") == 0) {
vdo_set_compressing(vdo, true);
return 0;
}
if (strcasecmp(argv[1], "off") == 0) {
vdo_set_compressing(vdo, false);
return 0;
}
uds_log_warning("invalid argument '%s' to dmsetup compression message",
argv[1]);
return -EINVAL;
}
uds_log_warning("unrecognized dmsetup message '%s' received", argv[0]);
return -EINVAL;
}
/*
* If the message is a dump, just do it. Otherwise, check that no other message is being processed,
* and only proceed if so.
* Returns -EBUSY if another message is being processed
*/
static int __must_check process_vdo_message(struct vdo *vdo, unsigned int argc,
char **argv)
{
int result;
/*
* All messages which may be processed in parallel with other messages should be handled
* here before the atomic check below. Messages which should be exclusive should be
* processed in process_vdo_message_locked().
*/
/* Dump messages should always be processed */
if (strcasecmp(argv[0], "dump") == 0)
return vdo_dump(vdo, argc, argv, "dmsetup message");
if (argc == 1) {
if (strcasecmp(argv[0], "dump-on-shutdown") == 0) {
vdo->dump_on_shutdown = true;
return 0;
}
/* Index messages should always be processed */
if ((strcasecmp(argv[0], "index-close") == 0) ||
(strcasecmp(argv[0], "index-create") == 0) ||
(strcasecmp(argv[0], "index-disable") == 0) ||
(strcasecmp(argv[0], "index-enable") == 0))
return vdo_message_dedupe_index(vdo->hash_zones, argv[0]);
}
if (atomic_cmpxchg(&vdo->processing_message, 0, 1) != 0)
return -EBUSY;
result = process_vdo_message_locked(vdo, argc, argv);
/* Pairs with the implicit barrier in cmpxchg just above */
smp_wmb();
atomic_set(&vdo->processing_message, 0);
return result;
}
static int vdo_message(struct dm_target *ti, unsigned int argc, char **argv,
char *result_buffer, unsigned int maxlen)
{
struct registered_thread allocating_thread, instance_thread;
struct vdo *vdo;
int result;
if (argc == 0) {
uds_log_warning("unspecified dmsetup message");
return -EINVAL;
}
vdo = get_vdo_for_target(ti);
uds_register_allocating_thread(&allocating_thread, NULL);
uds_register_thread_device_id(&instance_thread, &vdo->instance);
/*
* Must be done here so we don't map return codes. The code in dm-ioctl expects a 1 for a
* return code to look at the buffer and see if it is full or not.
*/
if ((argc == 1) && (strcasecmp(argv[0], "stats") == 0)) {
vdo_write_stats(vdo, result_buffer, maxlen);
result = 1;
} else {
result = vdo_map_to_system_error(process_vdo_message(vdo, argc, argv));
}
uds_unregister_thread_device_id();
uds_unregister_allocating_thread();
return result;
}
static void configure_target_capabilities(struct dm_target *ti)
{
ti->discards_supported = 1;
ti->flush_supported = true;
ti->num_discard_bios = 1;
ti->num_flush_bios = 1;
/*
* If this value changes, please make sure to update the value for max_discard_sectors
* accordingly.
*/
BUG_ON(dm_set_target_max_io_len(ti, VDO_SECTORS_PER_BLOCK) != 0);
}
/*
* Implements vdo_filter_fn.
*/
static bool vdo_uses_device(struct vdo *vdo, const void *context)
{
const struct device_config *config = context;
return vdo_get_backing_device(vdo)->bd_dev == config->owned_device->bdev->bd_dev;
}
/**
* get_thread_id_for_phase() - Get the thread id for the current phase of the admin operation in
* progress.
*/
static thread_id_t __must_check get_thread_id_for_phase(struct vdo *vdo)
{
switch (vdo->admin.phase) {
case RESUME_PHASE_PACKER:
case RESUME_PHASE_FLUSHER:
case SUSPEND_PHASE_PACKER:
case SUSPEND_PHASE_FLUSHES:
return vdo->thread_config.packer_thread;
case RESUME_PHASE_DATA_VIOS:
case SUSPEND_PHASE_DATA_VIOS:
return vdo->thread_config.cpu_thread;
case LOAD_PHASE_DRAIN_JOURNAL:
case RESUME_PHASE_JOURNAL:
case SUSPEND_PHASE_JOURNAL:
return vdo->thread_config.journal_thread;
default:
return vdo->thread_config.admin_thread;
}
}
static struct vdo_completion *prepare_admin_completion(struct vdo *vdo,
vdo_action_fn callback,
vdo_action_fn error_handler)
{
struct vdo_completion *completion = &vdo->admin.completion;
/*
* We can't use vdo_prepare_completion_for_requeue() here because we don't want to reset
* any error in the completion.
*/
completion->callback = callback;
completion->error_handler = error_handler;
completion->callback_thread_id = get_thread_id_for_phase(vdo);
completion->requeue = true;
return completion;
}
/**
* advance_phase() - Increment the phase of the current admin operation and prepare the admin
* completion to run on the thread for the next phase.
* @vdo: The on which an admin operation is being performed
*
* Return: The current phase
*/
static u32 advance_phase(struct vdo *vdo)
{
u32 phase = vdo->admin.phase++;
vdo->admin.completion.callback_thread_id = get_thread_id_for_phase(vdo);
vdo->admin.completion.requeue = true;
return phase;
}
/*
* Perform an administrative operation (load, suspend, grow logical, or grow physical). This method
* should not be called from vdo threads.
*/
static int perform_admin_operation(struct vdo *vdo, u32 starting_phase,
vdo_action_fn callback, vdo_action_fn error_handler,
const char *type)
{
int result;
struct vdo_administrator *admin = &vdo->admin;
if (atomic_cmpxchg(&admin->busy, 0, 1) != 0) {
return uds_log_error_strerror(VDO_COMPONENT_BUSY,
"Can't start %s operation, another operation is already in progress",
type);
}
admin->phase = starting_phase;
reinit_completion(&admin->callback_sync);
vdo_reset_completion(&admin->completion);
vdo_launch_completion(prepare_admin_completion(vdo, callback, error_handler));
/*
* Using the "interruptible" interface means that Linux will not log a message when we wait
* for more than 120 seconds.
*/
while (wait_for_completion_interruptible(&admin->callback_sync) != 0)
/* * However, if we get a signal in a user-mode process, we could spin... */
fsleep(1000);
result = admin->completion.result;
/* pairs with implicit barrier in cmpxchg above */
smp_wmb();
atomic_set(&admin->busy, 0);
return result;
}
/* Assert that we are operating on the correct thread for the current phase. */
static void assert_admin_phase_thread(struct vdo *vdo, const char *what)
{
ASSERT_LOG_ONLY(vdo_get_callback_thread_id() == get_thread_id_for_phase(vdo),
"%s on correct thread for %s", what,
ADMIN_PHASE_NAMES[vdo->admin.phase]);
}
/**
* finish_operation_callback() - Callback to finish an admin operation.
* @completion: The admin_completion.
*/
static void finish_operation_callback(struct vdo_completion *completion)
{
struct vdo_administrator *admin = &completion->vdo->admin;
vdo_finish_operation(&admin->state, completion->result);
complete(&admin->callback_sync);
}
/**
* decode_from_super_block() - Decode the VDO state from the super block and validate that it is
* correct.
* @vdo: The vdo being loaded.
*
* On error from this method, the component states must be destroyed explicitly. If this method
* returns successfully, the component states must not be destroyed.
*
* Return: VDO_SUCCESS or an error.
*/
static int __must_check decode_from_super_block(struct vdo *vdo)
{
const struct device_config *config = vdo->device_config;
int result;
result = vdo_decode_component_states(vdo->super_block.buffer, &vdo->geometry,
&vdo->states);
if (result != VDO_SUCCESS)
return result;
vdo_set_state(vdo, vdo->states.vdo.state);
vdo->load_state = vdo->states.vdo.state;
/*
* If the device config specifies a larger logical size than was recorded in the super
* block, just accept it.
*/
if (vdo->states.vdo.config.logical_blocks < config->logical_blocks) {
uds_log_warning("Growing logical size: a logical size of %llu blocks was specified, but that differs from the %llu blocks configured in the vdo super block",
(unsigned long long) config->logical_blocks,
(unsigned long long) vdo->states.vdo.config.logical_blocks);
vdo->states.vdo.config.logical_blocks = config->logical_blocks;
}
result = vdo_validate_component_states(&vdo->states, vdo->geometry.nonce,
config->physical_blocks,
config->logical_blocks);
if (result != VDO_SUCCESS)
return result;
vdo->layout = vdo->states.layout;
return VDO_SUCCESS;
}
/**
* decode_vdo() - Decode the component data portion of a super block and fill in the corresponding
* portions of the vdo being loaded.
* @vdo: The vdo being loaded.
*
* This will also allocate the recovery journal and slab depot. If this method is called with an
* asynchronous layer (i.e. a thread config which specifies at least one base thread), the block
* map and packer will be constructed as well.
*
* Return: VDO_SUCCESS or an error.
*/
static int __must_check decode_vdo(struct vdo *vdo)
{
block_count_t maximum_age, journal_length;
struct partition *partition;
int result;
result = decode_from_super_block(vdo);
if (result != VDO_SUCCESS) {
vdo_destroy_component_states(&vdo->states);
return result;
}
maximum_age = vdo_convert_maximum_age(vdo->device_config->block_map_maximum_age);
journal_length =
vdo_get_recovery_journal_length(vdo->states.vdo.config.recovery_journal_size);
if (maximum_age > (journal_length / 2)) {
return uds_log_error_strerror(VDO_BAD_CONFIGURATION,
"maximum age: %llu exceeds limit %llu",
(unsigned long long) maximum_age,
(unsigned long long) (journal_length / 2));
}
if (maximum_age == 0) {
return uds_log_error_strerror(VDO_BAD_CONFIGURATION,
"maximum age must be greater than 0");
}
result = vdo_enable_read_only_entry(vdo);
if (result != VDO_SUCCESS)
return result;
partition = vdo_get_known_partition(&vdo->layout,
VDO_RECOVERY_JOURNAL_PARTITION);
result = vdo_decode_recovery_journal(vdo->states.recovery_journal,
vdo->states.vdo.nonce, vdo, partition,
vdo->states.vdo.complete_recoveries,
vdo->states.vdo.config.recovery_journal_size,
&vdo->recovery_journal);
if (result != VDO_SUCCESS)
return result;
partition = vdo_get_known_partition(&vdo->layout, VDO_SLAB_SUMMARY_PARTITION);
result = vdo_decode_slab_depot(vdo->states.slab_depot, vdo, partition,
&vdo->depot);
if (result != VDO_SUCCESS)
return result;
result = vdo_decode_block_map(vdo->states.block_map,
vdo->states.vdo.config.logical_blocks, vdo,
vdo->recovery_journal, vdo->states.vdo.nonce,
vdo->device_config->cache_size, maximum_age,
&vdo->block_map);
if (result != VDO_SUCCESS)
return result;
result = vdo_make_physical_zones(vdo, &vdo->physical_zones);
if (result != VDO_SUCCESS)
return result;
/* The logical zones depend on the physical zones already existing. */
result = vdo_make_logical_zones(vdo, &vdo->logical_zones);
if (result != VDO_SUCCESS)
return result;
return vdo_make_hash_zones(vdo, &vdo->hash_zones);
}
/**
* pre_load_callback() - Callback to initiate a pre-load, registered in vdo_initialize().
* @completion: The admin completion.
*/
static void pre_load_callback(struct vdo_completion *completion)
{
struct vdo *vdo = completion->vdo;
int result;
assert_admin_phase_thread(vdo, __func__);
switch (advance_phase(vdo)) {
case PRE_LOAD_PHASE_START:
result = vdo_start_operation(&vdo->admin.state,
VDO_ADMIN_STATE_PRE_LOADING);
if (result != VDO_SUCCESS) {
vdo_continue_completion(completion, result);
return;
}
vdo_load_super_block(vdo, completion);
return;
case PRE_LOAD_PHASE_LOAD_COMPONENTS:
vdo_continue_completion(completion, decode_vdo(vdo));
return;
case PRE_LOAD_PHASE_END:
break;
default:
vdo_set_completion_result(completion, UDS_BAD_STATE);
}
finish_operation_callback(completion);
}
static void release_instance(unsigned int instance)
{
mutex_lock(&instances_lock);
if (instance >= instances.bit_count) {
ASSERT_LOG_ONLY(false,
"instance number %u must be less than bit count %u",
instance, instances.bit_count);
} else if (test_bit(instance, instances.words) == 0) {
ASSERT_LOG_ONLY(false, "instance number %u must be allocated", instance);
} else {
__clear_bit(instance, instances.words);
instances.count -= 1;
}
mutex_unlock(&instances_lock);
}
static void set_device_config(struct dm_target *ti, struct vdo *vdo,
struct device_config *config)
{
list_del_init(&config->config_list);
list_add_tail(&config->config_list, &vdo->device_config_list);
config->vdo = vdo;
ti->private = config;
configure_target_capabilities(ti);
}
static int vdo_initialize(struct dm_target *ti, unsigned int instance,
struct device_config *config)
{
struct vdo *vdo;
int result;
u64 block_size = VDO_BLOCK_SIZE;
u64 logical_size = to_bytes(ti->len);
block_count_t logical_blocks = logical_size / block_size;
uds_log_info("loading device '%s'", vdo_get_device_name(ti));
uds_log_debug("Logical block size = %llu", (u64) config->logical_block_size);
uds_log_debug("Logical blocks = %llu", logical_blocks);
uds_log_debug("Physical block size = %llu", (u64) block_size);
uds_log_debug("Physical blocks = %llu", config->physical_blocks);
uds_log_debug("Block map cache blocks = %u", config->cache_size);
uds_log_debug("Block map maximum age = %u", config->block_map_maximum_age);
uds_log_debug("Deduplication = %s", (config->deduplication ? "on" : "off"));
uds_log_debug("Compression = %s", (config->compression ? "on" : "off"));
vdo = vdo_find_matching(vdo_uses_device, config);
if (vdo != NULL) {
uds_log_error("Existing vdo already uses device %s",
vdo->device_config->parent_device_name);
ti->error = "Cannot share storage device with already-running VDO";
return VDO_BAD_CONFIGURATION;
}
result = vdo_make(instance, config, &ti->error, &vdo);
if (result != VDO_SUCCESS) {
uds_log_error("Could not create VDO device. (VDO error %d, message %s)",
result, ti->error);
vdo_destroy(vdo);
return result;
}
result = perform_admin_operation(vdo, PRE_LOAD_PHASE_START, pre_load_callback,
finish_operation_callback, "pre-load");
if (result != VDO_SUCCESS) {
ti->error = ((result == VDO_INVALID_ADMIN_STATE) ?
"Pre-load is only valid immediately after initialization" :
"Cannot load metadata from device");
uds_log_error("Could not start VDO device. (VDO error %d, message %s)",
result, ti->error);
vdo_destroy(vdo);
return result;
}
set_device_config(ti, vdo, config);
vdo->device_config = config;
return VDO_SUCCESS;
}
/* Implements vdo_filter_fn. */
static bool __must_check vdo_is_named(struct vdo *vdo, const void *context)
{
struct dm_target *ti = vdo->device_config->owning_target;
const char *device_name = vdo_get_device_name(ti);
return strcmp(device_name, context) == 0;
}
/**
* get_bit_array_size() - Return the number of bytes needed to store a bit array of the specified
* capacity in an array of unsigned longs.
* @bit_count: The number of bits the array must hold.
*
* Return: the number of bytes needed for the array representation.
*/
static size_t get_bit_array_size(unsigned int bit_count)
{
/* Round up to a multiple of the word size and convert to a byte count. */
return (BITS_TO_LONGS(bit_count) * sizeof(unsigned long));
}
/**
* grow_bit_array() - Re-allocate the bitmap word array so there will more instance numbers that
* can be allocated.
*
* Since the array is initially NULL, this also initializes the array the first time we allocate an
* instance number.
*
* Return: UDS_SUCCESS or an error code from the allocation
*/
static int grow_bit_array(void)
{
unsigned int new_count = max(instances.bit_count + BIT_COUNT_INCREMENT,
(unsigned int) BIT_COUNT_MINIMUM);
unsigned long *new_words;
int result;
result = uds_reallocate_memory(instances.words,
get_bit_array_size(instances.bit_count),
get_bit_array_size(new_count),
"instance number bit array", &new_words);
if (result != UDS_SUCCESS)
return result;
instances.bit_count = new_count;
instances.words = new_words;
return UDS_SUCCESS;
}
/**
* allocate_instance() - Allocate an instance number.
* @instance_ptr: A point to hold the instance number
*
* Return: UDS_SUCCESS or an error code
*
* This function must be called while holding the instances lock.
*/
static int allocate_instance(unsigned int *instance_ptr)
{
unsigned int instance;
int result;
/* If there are no unallocated instances, grow the bit array. */
if (instances.count >= instances.bit_count) {
result = grow_bit_array();
if (result != UDS_SUCCESS)
return result;
}
/*
* There must be a zero bit somewhere now. Find it, starting just after the last instance
* allocated.
*/
instance = find_next_zero_bit(instances.words, instances.bit_count,
instances.next);
if (instance >= instances.bit_count) {
/* Nothing free after next, so wrap around to instance zero. */
instance = find_first_zero_bit(instances.words, instances.bit_count);
result = ASSERT(instance < instances.bit_count,
"impossibly, no zero bit found");
if (result != UDS_SUCCESS)
return result;
}
__set_bit(instance, instances.words);
instances.count++;
instances.next = instance + 1;
*instance_ptr = instance;
return UDS_SUCCESS;
}
static int construct_new_vdo_registered(struct dm_target *ti, unsigned int argc,
char **argv, unsigned int instance)
{
int result;
struct device_config *config;
result = parse_device_config(argc, argv, ti, &config);
if (result != VDO_SUCCESS) {
uds_log_error_strerror(result, "parsing failed: %s", ti->error);
release_instance(instance);
return -EINVAL;
}
/* Beyond this point, the instance number will be cleaned up for us if needed */
result = vdo_initialize(ti, instance, config);
if (result != VDO_SUCCESS) {
release_instance(instance);
free_device_config(config);
return vdo_map_to_system_error(result);
}
return VDO_SUCCESS;
}
static int construct_new_vdo(struct dm_target *ti, unsigned int argc, char **argv)
{
int result;
unsigned int instance;
struct registered_thread instance_thread;
mutex_lock(&instances_lock);
result = allocate_instance(&instance);
mutex_unlock(&instances_lock);
if (result != VDO_SUCCESS)
return -ENOMEM;
uds_register_thread_device_id(&instance_thread, &instance);
result = construct_new_vdo_registered(ti, argc, argv, instance);
uds_unregister_thread_device_id();
return result;
}
/**
* check_may_grow_physical() - Callback to check that we're not in recovery mode, used in
* vdo_prepare_to_grow_physical().
* @completion: The admin completion.
*/
static void check_may_grow_physical(struct vdo_completion *completion)
{
struct vdo *vdo = completion->vdo;
assert_admin_phase_thread(vdo, __func__);
/* These checks can only be done from a vdo thread. */
if (vdo_is_read_only(vdo))
vdo_set_completion_result(completion, VDO_READ_ONLY);
if (vdo_in_recovery_mode(vdo))
vdo_set_completion_result(completion, VDO_RETRY_AFTER_REBUILD);
finish_operation_callback(completion);
}
static block_count_t get_partition_size(struct layout *layout, enum partition_id id)
{
return vdo_get_known_partition(layout, id)->count;
}
/**
* grow_layout() - Make the layout for growing a vdo.
* @vdo: The vdo preparing to grow.
* @old_size: The current size of the vdo.
* @new_size: The size to which the vdo will be grown.
*
* Return: VDO_SUCCESS or an error code.
*/
static int grow_layout(struct vdo *vdo, block_count_t old_size, block_count_t new_size)
{
int result;
block_count_t min_new_size;
if (vdo->next_layout.size == new_size) {
/* We are already prepared to grow to the new size, so we're done. */
return VDO_SUCCESS;
}
/* Make a copy completion if there isn't one */
if (vdo->partition_copier == NULL) {
vdo->partition_copier = dm_kcopyd_client_create(NULL);
if (vdo->partition_copier == NULL)
return -ENOMEM;
}
/* Free any unused preparation. */
vdo_uninitialize_layout(&vdo->next_layout);
/*
* Make a new layout with the existing partition sizes for everything but the slab depot
* partition.
*/
result = vdo_initialize_layout(new_size, vdo->layout.start,
get_partition_size(&vdo->layout,
VDO_BLOCK_MAP_PARTITION),
get_partition_size(&vdo->layout,
VDO_RECOVERY_JOURNAL_PARTITION),
get_partition_size(&vdo->layout,
VDO_SLAB_SUMMARY_PARTITION),
&vdo->next_layout);
if (result != VDO_SUCCESS) {
dm_kcopyd_client_destroy(uds_forget(vdo->partition_copier));
return result;
}
/* Ensure the new journal and summary are entirely within the added blocks. */
min_new_size = (old_size +
get_partition_size(&vdo->next_layout,
VDO_SLAB_SUMMARY_PARTITION) +
get_partition_size(&vdo->next_layout,
VDO_RECOVERY_JOURNAL_PARTITION));
if (min_new_size > new_size) {
/* Copying the journal and summary would destroy some old metadata. */
vdo_uninitialize_layout(&vdo->next_layout);
dm_kcopyd_client_destroy(uds_forget(vdo->partition_copier));
return VDO_INCREMENT_TOO_SMALL;
}
return VDO_SUCCESS;
}
static int prepare_to_grow_physical(struct vdo *vdo, block_count_t new_physical_blocks)
{
int result;
block_count_t current_physical_blocks = vdo->states.vdo.config.physical_blocks;
uds_log_info("Preparing to resize physical to %llu",
(unsigned long long) new_physical_blocks);
ASSERT_LOG_ONLY((new_physical_blocks > current_physical_blocks),
"New physical size is larger than current physical size");
result = perform_admin_operation(vdo, PREPARE_GROW_PHYSICAL_PHASE_START,
check_may_grow_physical,
finish_operation_callback,
"prepare grow-physical");
if (result != VDO_SUCCESS)
return result;
result = grow_layout(vdo, current_physical_blocks, new_physical_blocks);
if (result != VDO_SUCCESS)
return result;
result = vdo_prepare_to_grow_slab_depot(vdo->depot,
vdo_get_known_partition(&vdo->next_layout,
VDO_SLAB_DEPOT_PARTITION));
if (result != VDO_SUCCESS) {
vdo_uninitialize_layout(&vdo->next_layout);
return result;
}
uds_log_info("Done preparing to resize physical");
return VDO_SUCCESS;
}
/**
* validate_new_device_config() - Check whether a new device config represents a valid modification
* to an existing config.
* @to_validate: The new config to validate.
* @config: The existing config.
* @may_grow: Set to true if growing the logical and physical size of the vdo is currently
* permitted.
* @error_ptr: A pointer to hold the reason for any error.
*
* Return: VDO_SUCCESS or an error.
*/
static int validate_new_device_config(struct device_config *to_validate,
struct device_config *config, bool may_grow,
char **error_ptr)
{
if (to_validate->owning_target->begin != config->owning_target->begin) {
*error_ptr = "Starting sector cannot change";
return VDO_PARAMETER_MISMATCH;
}
if (to_validate->logical_block_size != config->logical_block_size) {
*error_ptr = "Logical block size cannot change";
return VDO_PARAMETER_MISMATCH;
}
if (to_validate->logical_blocks < config->logical_blocks) {
*error_ptr = "Can't shrink VDO logical size";
return VDO_PARAMETER_MISMATCH;
}
if (to_validate->cache_size != config->cache_size) {
*error_ptr = "Block map cache size cannot change";
return VDO_PARAMETER_MISMATCH;
}
if (to_validate->block_map_maximum_age != config->block_map_maximum_age) {
*error_ptr = "Block map maximum age cannot change";
return VDO_PARAMETER_MISMATCH;
}
if (memcmp(&to_validate->thread_counts, &config->thread_counts,
sizeof(struct thread_count_config)) != 0) {
*error_ptr = "Thread configuration cannot change";
return VDO_PARAMETER_MISMATCH;
}
if (to_validate->physical_blocks < config->physical_blocks) {
*error_ptr = "Removing physical storage from a VDO is not supported";
return VDO_NOT_IMPLEMENTED;
}
if (!may_grow && (to_validate->physical_blocks > config->physical_blocks)) {
*error_ptr = "VDO physical size may not grow in current state";
return VDO_NOT_IMPLEMENTED;
}
return VDO_SUCCESS;
}
static int prepare_to_modify(struct dm_target *ti, struct device_config *config,
struct vdo *vdo)
{
int result;
bool may_grow = (vdo_get_admin_state(vdo) != VDO_ADMIN_STATE_PRE_LOADED);
result = validate_new_device_config(config, vdo->device_config, may_grow,
&ti->error);
if (result != VDO_SUCCESS)
return -EINVAL;
if (config->logical_blocks > vdo->device_config->logical_blocks) {
block_count_t logical_blocks = vdo->states.vdo.config.logical_blocks;
uds_log_info("Preparing to resize logical to %llu",
(unsigned long long) config->logical_blocks);
ASSERT_LOG_ONLY((config->logical_blocks > logical_blocks),
"New logical size is larger than current size");
result = vdo_prepare_to_grow_block_map(vdo->block_map,
config->logical_blocks);
if (result != VDO_SUCCESS) {
ti->error = "Device vdo_prepare_to_grow_logical failed";
return result;
}
uds_log_info("Done preparing to resize logical");
}
if (config->physical_blocks > vdo->device_config->physical_blocks) {
result = prepare_to_grow_physical(vdo, config->physical_blocks);
if (result != VDO_SUCCESS) {
if (result == VDO_PARAMETER_MISMATCH) {
/*
* If we don't trap this case, vdo_map_to_system_error() will remap
* it to -EIO, which is misleading and ahistorical.
*/
result = -EINVAL;
}
if (result == VDO_TOO_MANY_SLABS)
ti->error = "Device vdo_prepare_to_grow_physical failed (specified physical size too big based on formatted slab size)";
else
ti->error = "Device vdo_prepare_to_grow_physical failed";
return result;
}
}
if (strcmp(config->parent_device_name, vdo->device_config->parent_device_name) != 0) {
const char *device_name = vdo_get_device_name(config->owning_target);
uds_log_info("Updating backing device of %s from %s to %s", device_name,
vdo->device_config->parent_device_name,
config->parent_device_name);
}
return VDO_SUCCESS;
}
static int update_existing_vdo(const char *device_name, struct dm_target *ti,
unsigned int argc, char **argv, struct vdo *vdo)
{
int result;
struct device_config *config;
result = parse_device_config(argc, argv, ti, &config);
if (result != VDO_SUCCESS)
return -EINVAL;
uds_log_info("preparing to modify device '%s'", device_name);
result = prepare_to_modify(ti, config, vdo);
if (result != VDO_SUCCESS) {
free_device_config(config);
return vdo_map_to_system_error(result);
}
set_device_config(ti, vdo, config);
return VDO_SUCCESS;
}
static int vdo_ctr(struct dm_target *ti, unsigned int argc, char **argv)
{
int result;
struct registered_thread allocating_thread, instance_thread;
const char *device_name;
struct vdo *vdo;
uds_register_allocating_thread(&allocating_thread, NULL);
device_name = vdo_get_device_name(ti);
vdo = vdo_find_matching(vdo_is_named, device_name);
if (vdo == NULL) {
result = construct_new_vdo(ti, argc, argv);
} else {
uds_register_thread_device_id(&instance_thread, &vdo->instance);
result = update_existing_vdo(device_name, ti, argc, argv, vdo);
uds_unregister_thread_device_id();
}
uds_unregister_allocating_thread();
return result;
}
static void vdo_dtr(struct dm_target *ti)
{
struct device_config *config = ti->private;
struct vdo *vdo = uds_forget(config->vdo);
list_del_init(&config->config_list);
if (list_empty(&vdo->device_config_list)) {
const char *device_name;
/* This was the last config referencing the VDO. Free it. */
unsigned int instance = vdo->instance;
struct registered_thread allocating_thread, instance_thread;
uds_register_thread_device_id(&instance_thread, &instance);
uds_register_allocating_thread(&allocating_thread, NULL);
device_name = vdo_get_device_name(ti);
uds_log_info("stopping device '%s'", device_name);
if (vdo->dump_on_shutdown)
vdo_dump_all(vdo, "device shutdown");
vdo_destroy(uds_forget(vdo));
uds_log_info("device '%s' stopped", device_name);
uds_unregister_thread_device_id();
uds_unregister_allocating_thread();
release_instance(instance);
} else if (config == vdo->device_config) {
/*
* The VDO still references this config. Give it a reference to a config that isn't
* being destroyed.
*/
vdo->device_config = list_first_entry(&vdo->device_config_list,
struct device_config, config_list);
}
free_device_config(config);
ti->private = NULL;
}
static void vdo_presuspend(struct dm_target *ti)
{
get_vdo_for_target(ti)->suspend_type =
(dm_noflush_suspending(ti) ? VDO_ADMIN_STATE_SUSPENDING : VDO_ADMIN_STATE_SAVING);
}
/**
* write_super_block_for_suspend() - Update the VDO state and save the super block.
* @completion: The admin completion
*/
static void write_super_block_for_suspend(struct vdo_completion *completion)
{
struct vdo *vdo = completion->vdo;
switch (vdo_get_state(vdo)) {
case VDO_DIRTY:
case VDO_NEW:
vdo_set_state(vdo, VDO_CLEAN);
break;
case VDO_CLEAN:
case VDO_READ_ONLY_MODE:
case VDO_FORCE_REBUILD:
case VDO_RECOVERING:
case VDO_REBUILD_FOR_UPGRADE:
break;
case VDO_REPLAYING:
default:
vdo_continue_completion(completion, UDS_BAD_STATE);
return;
}
vdo_save_components(vdo, completion);
}
/**
* suspend_callback() - Callback to initiate a suspend, registered in vdo_postsuspend().
* @completion: The sub-task completion.
*/
static void suspend_callback(struct vdo_completion *completion)
{
struct vdo *vdo = completion->vdo;
struct admin_state *state = &vdo->admin.state;
int result;
assert_admin_phase_thread(vdo, __func__);
switch (advance_phase(vdo)) {
case SUSPEND_PHASE_START:
if (vdo_get_admin_state_code(state)->quiescent) {
/* Already suspended */
break;
}
vdo_continue_completion(completion,
vdo_start_operation(state, vdo->suspend_type));
return;
case SUSPEND_PHASE_PACKER:
/*
* If the VDO was already resumed from a prior suspend while read-only, some of the
* components may not have been resumed. By setting a read-only error here, we
* guarantee that the result of this suspend will be VDO_READ_ONLY and not
* VDO_INVALID_ADMIN_STATE in that case.
*/
if (vdo_in_read_only_mode(vdo))
vdo_set_completion_result(completion, VDO_READ_ONLY);
vdo_drain_packer(vdo->packer, completion);
return;
case SUSPEND_PHASE_DATA_VIOS:
drain_data_vio_pool(vdo->data_vio_pool, completion);
return;
case SUSPEND_PHASE_DEDUPE:
vdo_drain_hash_zones(vdo->hash_zones, completion);
return;
case SUSPEND_PHASE_FLUSHES:
vdo_drain_flusher(vdo->flusher, completion);
return;
case SUSPEND_PHASE_LOGICAL_ZONES:
/*
* Attempt to flush all I/O before completing post suspend work. We believe a
* suspended device is expected to have persisted all data written before the
* suspend, even if it hasn't been flushed yet.
*/
result = vdo_synchronous_flush(vdo);
if (result != VDO_SUCCESS)
vdo_enter_read_only_mode(vdo, result);
vdo_drain_logical_zones(vdo->logical_zones,
vdo_get_admin_state_code(state), completion);
return;
case SUSPEND_PHASE_BLOCK_MAP:
vdo_drain_block_map(vdo->block_map, vdo_get_admin_state_code(state),
completion);
return;
case SUSPEND_PHASE_JOURNAL:
vdo_drain_recovery_journal(vdo->recovery_journal,
vdo_get_admin_state_code(state), completion);
return;
case SUSPEND_PHASE_DEPOT:
vdo_drain_slab_depot(vdo->depot, vdo_get_admin_state_code(state),
completion);
return;
case SUSPEND_PHASE_READ_ONLY_WAIT:
vdo_wait_until_not_entering_read_only_mode(completion);
return;
case SUSPEND_PHASE_WRITE_SUPER_BLOCK:
if (vdo_is_state_suspending(state) || (completion->result != VDO_SUCCESS)) {
/* If we didn't save the VDO or there was an error, we're done. */
break;
}
write_super_block_for_suspend(completion);
return;
case SUSPEND_PHASE_END:
break;
default:
vdo_set_completion_result(completion, UDS_BAD_STATE);
}
finish_operation_callback(completion);
}
static void vdo_postsuspend(struct dm_target *ti)
{
struct vdo *vdo = get_vdo_for_target(ti);
struct registered_thread instance_thread;
const char *device_name;
int result;
uds_register_thread_device_id(&instance_thread, &vdo->instance);
device_name = vdo_get_device_name(vdo->device_config->owning_target);
uds_log_info("suspending device '%s'", device_name);
/*
* It's important to note any error here does not actually stop device-mapper from
* suspending the device. All this work is done post suspend.
*/
result = perform_admin_operation(vdo, SUSPEND_PHASE_START, suspend_callback,
suspend_callback, "suspend");
if ((result == VDO_SUCCESS) || (result == VDO_READ_ONLY)) {
/*
* Treat VDO_READ_ONLY as a success since a read-only suspension still leaves the
* VDO suspended.
*/
uds_log_info("device '%s' suspended", device_name);
} else if (result == VDO_INVALID_ADMIN_STATE) {
uds_log_error("Suspend invoked while in unexpected state: %s",
vdo_get_admin_state(vdo)->name);
} else {
uds_log_error_strerror(result, "Suspend of device '%s' failed",
device_name);
}
uds_unregister_thread_device_id();
}
/**
* was_new() - Check whether the vdo was new when it was loaded.
* @vdo: The vdo to query.
*
* Return: true if the vdo was new.
*/
static bool was_new(const struct vdo *vdo)
{
return (vdo->load_state == VDO_NEW);
}
/**
* requires_repair() - Check whether a vdo requires recovery or rebuild.
* @vdo: The vdo to query.
*
* Return: true if the vdo must be repaired.
*/
static bool __must_check requires_repair(const struct vdo *vdo)
{
switch (vdo_get_state(vdo)) {
case VDO_DIRTY:
case VDO_FORCE_REBUILD:
case VDO_REPLAYING:
case VDO_REBUILD_FOR_UPGRADE:
return true;
default:
return false;
}
}
/**
* get_load_type() - Determine how the slab depot was loaded.
* @vdo: The vdo.
*
* Return: How the depot was loaded.
*/
static enum slab_depot_load_type get_load_type(struct vdo *vdo)
{
if (vdo_state_requires_read_only_rebuild(vdo->load_state))
return VDO_SLAB_DEPOT_REBUILD_LOAD;
if (vdo_state_requires_recovery(vdo->load_state))
return VDO_SLAB_DEPOT_RECOVERY_LOAD;
return VDO_SLAB_DEPOT_NORMAL_LOAD;
}
/**
* vdo_initialize_kobjects() - Initialize the vdo sysfs directory.
* @vdo: The vdo being initialized.
*
* Return: VDO_SUCCESS or an error code.
*/
static int vdo_initialize_kobjects(struct vdo *vdo)
{
int result;
struct dm_target *target = vdo->device_config->owning_target;
struct mapped_device *md = dm_table_get_md(target->table);
kobject_init(&vdo->vdo_directory, &vdo_directory_type);
vdo->sysfs_added = true;
result = kobject_add(&vdo->vdo_directory, &disk_to_dev(dm_disk(md))->kobj,
"vdo");
if (result != 0)
return VDO_CANT_ADD_SYSFS_NODE;
result = vdo_add_dedupe_index_sysfs(vdo->hash_zones);
if (result != 0)
return VDO_CANT_ADD_SYSFS_NODE;
return vdo_add_sysfs_stats_dir(vdo);
}
/**
* load_callback() - Callback to do the destructive parts of loading a VDO.
* @completion: The sub-task completion.
*/
static void load_callback(struct vdo_completion *completion)
{
struct vdo *vdo = completion->vdo;
int result;
assert_admin_phase_thread(vdo, __func__);
switch (advance_phase(vdo)) {
case LOAD_PHASE_START:
result = vdo_start_operation(&vdo->admin.state, VDO_ADMIN_STATE_LOADING);
if (result != VDO_SUCCESS) {
vdo_continue_completion(completion, result);
return;
}
/* Prepare the recovery journal for new entries. */
vdo_open_recovery_journal(vdo->recovery_journal, vdo->depot,
vdo->block_map);
vdo_allow_read_only_mode_entry(completion);
return;
case LOAD_PHASE_STATS:
vdo_continue_completion(completion, vdo_initialize_kobjects(vdo));
return;
case LOAD_PHASE_LOAD_DEPOT:
if (vdo_is_read_only(vdo)) {
/*
* In read-only mode we don't use the allocator and it may not even be
* readable, so don't bother trying to load it.
*/
vdo_set_completion_result(completion, VDO_READ_ONLY);
break;
}
if (requires_repair(vdo)) {
vdo_repair(completion);
return;
}
vdo_load_slab_depot(vdo->depot,
(was_new(vdo) ? VDO_ADMIN_STATE_FORMATTING :
VDO_ADMIN_STATE_LOADING),
completion, NULL);
return;
case LOAD_PHASE_MAKE_DIRTY:
vdo_set_state(vdo, VDO_DIRTY);
vdo_save_components(vdo, completion);
return;
case LOAD_PHASE_PREPARE_TO_ALLOCATE:
vdo_initialize_block_map_from_journal(vdo->block_map,
vdo->recovery_journal);
vdo_prepare_slab_depot_to_allocate(vdo->depot, get_load_type(vdo),
completion);
return;
case LOAD_PHASE_SCRUB_SLABS:
if (vdo_state_requires_recovery(vdo->load_state))
vdo_enter_recovery_mode(vdo);
vdo_scrub_all_unrecovered_slabs(vdo->depot, completion);
return;
case LOAD_PHASE_DATA_REDUCTION:
WRITE_ONCE(vdo->compressing, vdo->device_config->compression);
if (vdo->device_config->deduplication) {
/*
* Don't try to load or rebuild the index first (and log scary error
* messages) if this is known to be a newly-formatted volume.
*/
vdo_start_dedupe_index(vdo->hash_zones, was_new(vdo));
}
vdo->allocations_allowed = false;
fallthrough;
case LOAD_PHASE_FINISHED:
break;
case LOAD_PHASE_DRAIN_JOURNAL:
vdo_drain_recovery_journal(vdo->recovery_journal, VDO_ADMIN_STATE_SAVING,
completion);
return;
case LOAD_PHASE_WAIT_FOR_READ_ONLY:
/* Avoid an infinite loop */
completion->error_handler = NULL;
vdo->admin.phase = LOAD_PHASE_FINISHED;
vdo_wait_until_not_entering_read_only_mode(completion);
return;
default:
vdo_set_completion_result(completion, UDS_BAD_STATE);
}
finish_operation_callback(completion);
}
/**
* handle_load_error() - Handle an error during the load operation.
* @completion: The admin completion.
*
* If at all possible, brings the vdo online in read-only mode. This handler is registered in
* vdo_preresume_registered().
*/
static void handle_load_error(struct vdo_completion *completion)
{
struct vdo *vdo = completion->vdo;
if (vdo_requeue_completion_if_needed(completion,
vdo->thread_config.admin_thread))
return;
if (vdo_state_requires_read_only_rebuild(vdo->load_state) &&
(vdo->admin.phase == LOAD_PHASE_MAKE_DIRTY)) {
uds_log_error_strerror(completion->result, "aborting load");
vdo->admin.phase = LOAD_PHASE_DRAIN_JOURNAL;
load_callback(uds_forget(completion));
return;
}
uds_log_error_strerror(completion->result,
"Entering read-only mode due to load error");
vdo->admin.phase = LOAD_PHASE_WAIT_FOR_READ_ONLY;
vdo_enter_read_only_mode(vdo, completion->result);
completion->result = VDO_READ_ONLY;
load_callback(completion);
}
/**
* write_super_block_for_resume() - Update the VDO state and save the super block.
* @completion: The admin completion
*/
static void write_super_block_for_resume(struct vdo_completion *completion)
{
struct vdo *vdo = completion->vdo;
switch (vdo_get_state(vdo)) {
case VDO_CLEAN:
case VDO_NEW:
vdo_set_state(vdo, VDO_DIRTY);
vdo_save_components(vdo, completion);
return;
case VDO_DIRTY:
case VDO_READ_ONLY_MODE:
case VDO_FORCE_REBUILD:
case VDO_RECOVERING:
case VDO_REBUILD_FOR_UPGRADE:
/* No need to write the super block in these cases */
vdo_launch_completion(completion);
return;
case VDO_REPLAYING:
default:
vdo_continue_completion(completion, UDS_BAD_STATE);
}
}
/**
* resume_callback() - Callback to resume a VDO.
* @completion: The admin completion.
*/
static void resume_callback(struct vdo_completion *completion)
{
struct vdo *vdo = completion->vdo;
int result;
assert_admin_phase_thread(vdo, __func__);
switch (advance_phase(vdo)) {
case RESUME_PHASE_START:
result = vdo_start_operation(&vdo->admin.state,
VDO_ADMIN_STATE_RESUMING);
if (result != VDO_SUCCESS) {
vdo_continue_completion(completion, result);
return;
}
write_super_block_for_resume(completion);
return;
case RESUME_PHASE_ALLOW_READ_ONLY_MODE:
vdo_allow_read_only_mode_entry(completion);
return;
case RESUME_PHASE_DEDUPE:
vdo_resume_hash_zones(vdo->hash_zones, completion);
return;
case RESUME_PHASE_DEPOT:
vdo_resume_slab_depot(vdo->depot, completion);
return;
case RESUME_PHASE_JOURNAL:
vdo_resume_recovery_journal(vdo->recovery_journal, completion);
return;
case RESUME_PHASE_BLOCK_MAP:
vdo_resume_block_map(vdo->block_map, completion);
return;
case RESUME_PHASE_LOGICAL_ZONES:
vdo_resume_logical_zones(vdo->logical_zones, completion);
return;
case RESUME_PHASE_PACKER:
{
bool was_enabled = vdo_get_compressing(vdo);
bool enable = vdo->device_config->compression;
if (enable != was_enabled)
WRITE_ONCE(vdo->compressing, enable);
uds_log_info("compression is %s", (enable ? "enabled" : "disabled"));
vdo_resume_packer(vdo->packer, completion);
return;
}
case RESUME_PHASE_FLUSHER:
vdo_resume_flusher(vdo->flusher, completion);
return;
case RESUME_PHASE_DATA_VIOS:
resume_data_vio_pool(vdo->data_vio_pool, completion);
return;
case RESUME_PHASE_END:
break;
default:
vdo_set_completion_result(completion, UDS_BAD_STATE);
}
finish_operation_callback(completion);
}
/**
* grow_logical_callback() - Callback to initiate a grow logical.
* @completion: The admin completion.
*
* Registered in perform_grow_logical().
*/
static void grow_logical_callback(struct vdo_completion *completion)
{
struct vdo *vdo = completion->vdo;
int result;
assert_admin_phase_thread(vdo, __func__);
switch (advance_phase(vdo)) {
case GROW_LOGICAL_PHASE_START:
if (vdo_is_read_only(vdo)) {
uds_log_error_strerror(VDO_READ_ONLY,
"Can't grow logical size of a read-only VDO");
vdo_set_completion_result(completion, VDO_READ_ONLY);
break;
}
result = vdo_start_operation(&vdo->admin.state,
VDO_ADMIN_STATE_SUSPENDED_OPERATION);
if (result != VDO_SUCCESS) {
vdo_continue_completion(completion, result);
return;
}
vdo->states.vdo.config.logical_blocks = vdo->block_map->next_entry_count;
vdo_save_components(vdo, completion);
return;
case GROW_LOGICAL_PHASE_GROW_BLOCK_MAP:
vdo_grow_block_map(vdo->block_map, completion);
return;
case GROW_LOGICAL_PHASE_END:
break;
case GROW_LOGICAL_PHASE_ERROR:
vdo_enter_read_only_mode(vdo, completion->result);
break;
default:
vdo_set_completion_result(completion, UDS_BAD_STATE);
}
finish_operation_callback(completion);
}
/**
* handle_logical_growth_error() - Handle an error during the grow physical process.
* @completion: The admin completion.
*/
static void handle_logical_growth_error(struct vdo_completion *completion)
{
struct vdo *vdo = completion->vdo;
if (vdo->admin.phase == GROW_LOGICAL_PHASE_GROW_BLOCK_MAP) {
/*
* We've failed to write the new size in the super block, so set our in memory
* config back to the old size.
*/
vdo->states.vdo.config.logical_blocks = vdo->block_map->entry_count;
vdo_abandon_block_map_growth(vdo->block_map);
}
vdo->admin.phase = GROW_LOGICAL_PHASE_ERROR;
grow_logical_callback(completion);
}
/**
* perform_grow_logical() - Grow the logical size of the vdo.
* @vdo: The vdo to grow.
* @new_logical_blocks: The size to which the vdo should be grown.
*
* Context: This method may only be called when the vdo has been suspended and must not be called
* from a base thread.
*
* Return: VDO_SUCCESS or an error.
*/
static int perform_grow_logical(struct vdo *vdo, block_count_t new_logical_blocks)
{
int result;
if (vdo->device_config->logical_blocks == new_logical_blocks) {
/*
* A table was loaded for which we prepared to grow, but a table without that
* growth was what we are resuming with.
*/
vdo_abandon_block_map_growth(vdo->block_map);
return VDO_SUCCESS;
}
uds_log_info("Resizing logical to %llu",
(unsigned long long) new_logical_blocks);
if (vdo->block_map->next_entry_count != new_logical_blocks)
return VDO_PARAMETER_MISMATCH;
result = perform_admin_operation(vdo, GROW_LOGICAL_PHASE_START,
grow_logical_callback,
handle_logical_growth_error, "grow logical");
if (result != VDO_SUCCESS)
return result;
uds_log_info("Logical blocks now %llu", (unsigned long long) new_logical_blocks);
return VDO_SUCCESS;
}
static void copy_callback(int read_err, unsigned long write_err, void *context)
{
struct vdo_completion *completion = context;
int result = (((read_err == 0) && (write_err == 0)) ? VDO_SUCCESS : -EIO);
vdo_continue_completion(completion, result);
}
static void partition_to_region(struct partition *partition, struct vdo *vdo,
struct dm_io_region *region)
{
physical_block_number_t pbn = partition->offset - vdo->geometry.bio_offset;
*region = (struct dm_io_region) {
.bdev = vdo_get_backing_device(vdo),
.sector = pbn * VDO_SECTORS_PER_BLOCK,
.count = partition->count * VDO_SECTORS_PER_BLOCK,
};
}
/**
* copy_partition() - Copy a partition from the location specified in the current layout to that in
* the next layout.
* @vdo: The vdo preparing to grow.
* @id: The ID of the partition to copy.
* @parent: The completion to notify when the copy is complete.
*/
static void copy_partition(struct vdo *vdo, enum partition_id id,
struct vdo_completion *parent)
{
struct dm_io_region read_region, write_regions[1];
struct partition *from = vdo_get_known_partition(&vdo->layout, id);
struct partition *to = vdo_get_known_partition(&vdo->next_layout, id);
partition_to_region(from, vdo, &read_region);
partition_to_region(to, vdo, &write_regions[0]);
dm_kcopyd_copy(vdo->partition_copier, &read_region, 1, write_regions, 0,
copy_callback, parent);
}
/**
* grow_physical_callback() - Callback to initiate a grow physical.
* @completion: The admin completion.
*
* Registered in perform_grow_physical().
*/
static void grow_physical_callback(struct vdo_completion *completion)
{
struct vdo *vdo = completion->vdo;
int result;
assert_admin_phase_thread(vdo, __func__);
switch (advance_phase(vdo)) {
case GROW_PHYSICAL_PHASE_START:
if (vdo_is_read_only(vdo)) {
uds_log_error_strerror(VDO_READ_ONLY,
"Can't grow physical size of a read-only VDO");
vdo_set_completion_result(completion, VDO_READ_ONLY);
break;
}
result = vdo_start_operation(&vdo->admin.state,
VDO_ADMIN_STATE_SUSPENDED_OPERATION);
if (result != VDO_SUCCESS) {
vdo_continue_completion(completion, result);
return;
}
/* Copy the journal into the new layout. */
copy_partition(vdo, VDO_RECOVERY_JOURNAL_PARTITION, completion);
return;
case GROW_PHYSICAL_PHASE_COPY_SUMMARY:
copy_partition(vdo, VDO_SLAB_SUMMARY_PARTITION, completion);
return;
case GROW_PHYSICAL_PHASE_UPDATE_COMPONENTS:
vdo_uninitialize_layout(&vdo->layout);
vdo->layout = vdo->next_layout;
uds_forget(vdo->next_layout.head);
vdo->states.vdo.config.physical_blocks = vdo->layout.size;
vdo_update_slab_depot_size(vdo->depot);
vdo_save_components(vdo, completion);
return;
case GROW_PHYSICAL_PHASE_USE_NEW_SLABS:
vdo_use_new_slabs(vdo->depot, completion);
return;
case GROW_PHYSICAL_PHASE_END:
vdo->depot->summary_origin =
vdo_get_known_partition(&vdo->layout,
VDO_SLAB_SUMMARY_PARTITION)->offset;
vdo->recovery_journal->origin =
vdo_get_known_partition(&vdo->layout,
VDO_RECOVERY_JOURNAL_PARTITION)->offset;
break;
case GROW_PHYSICAL_PHASE_ERROR:
vdo_enter_read_only_mode(vdo, completion->result);
break;
default:
vdo_set_completion_result(completion, UDS_BAD_STATE);
}
vdo_uninitialize_layout(&vdo->next_layout);
finish_operation_callback(completion);
}
/**
* handle_physical_growth_error() - Handle an error during the grow physical process.
* @completion: The sub-task completion.
*/
static void handle_physical_growth_error(struct vdo_completion *completion)
{
completion->vdo->admin.phase = GROW_PHYSICAL_PHASE_ERROR;
grow_physical_callback(completion);
}
/**
* perform_grow_physical() - Grow the physical size of the vdo.
* @vdo: The vdo to resize.
* @new_physical_blocks: The new physical size in blocks.
*
* Context: This method may only be called when the vdo has been suspended and must not be called
* from a base thread.
*
* Return: VDO_SUCCESS or an error.
*/
static int perform_grow_physical(struct vdo *vdo, block_count_t new_physical_blocks)
{
int result;
block_count_t new_depot_size, prepared_depot_size;
block_count_t old_physical_blocks = vdo->states.vdo.config.physical_blocks;
/* Skip any noop grows. */
if (old_physical_blocks == new_physical_blocks)
return VDO_SUCCESS;
if (new_physical_blocks != vdo->next_layout.size) {
/*
* Either the VDO isn't prepared to grow, or it was prepared to grow to a different
* size. Doing this check here relies on the fact that the call to this method is
* done under the dmsetup message lock.
*/
vdo_uninitialize_layout(&vdo->next_layout);
vdo_abandon_new_slabs(vdo->depot);
return VDO_PARAMETER_MISMATCH;
}
/* Validate that we are prepared to grow appropriately. */
new_depot_size =
vdo_get_known_partition(&vdo->next_layout, VDO_SLAB_DEPOT_PARTITION)->count;
prepared_depot_size = (vdo->depot->new_slabs == NULL) ? 0 : vdo->depot->new_size;
if (prepared_depot_size != new_depot_size)
return VDO_PARAMETER_MISMATCH;
result = perform_admin_operation(vdo, GROW_PHYSICAL_PHASE_START,
grow_physical_callback,
handle_physical_growth_error, "grow physical");
if (result != VDO_SUCCESS)
return result;
uds_log_info("Physical block count was %llu, now %llu",
(unsigned long long) old_physical_blocks,
(unsigned long long) new_physical_blocks);
return VDO_SUCCESS;
}
/**
* apply_new_vdo_configuration() - Attempt to make any configuration changes from the table being
* resumed.
* @vdo: The vdo being resumed.
* @config: The new device configuration derived from the table with which the vdo is being
* resumed.
*
* Return: VDO_SUCCESS or an error.
*/
static int __must_check apply_new_vdo_configuration(struct vdo *vdo,
struct device_config *config)
{
int result;
result = perform_grow_logical(vdo, config->logical_blocks);
if (result != VDO_SUCCESS) {
uds_log_error("grow logical operation failed, result = %d", result);
return result;
}
result = perform_grow_physical(vdo, config->physical_blocks);
if (result != VDO_SUCCESS)
uds_log_error("resize operation failed, result = %d", result);
return result;
}
static int vdo_preresume_registered(struct dm_target *ti, struct vdo *vdo)
{
struct device_config *config = ti->private;
const char *device_name = vdo_get_device_name(ti);
block_count_t backing_blocks;
int result;
backing_blocks = get_underlying_device_block_count(vdo);
if (backing_blocks < config->physical_blocks) {
/* FIXME: can this still happen? */
uds_log_error("resume of device '%s' failed: backing device has %llu blocks but VDO physical size is %llu blocks",
device_name, (unsigned long long) backing_blocks,
(unsigned long long) config->physical_blocks);
return -EINVAL;
}
if (vdo_get_admin_state(vdo) == VDO_ADMIN_STATE_PRE_LOADED) {
uds_log_info("starting device '%s'", device_name);
result = perform_admin_operation(vdo, LOAD_PHASE_START, load_callback,
handle_load_error, "load");
if ((result != VDO_SUCCESS) && (result != VDO_READ_ONLY)) {
/*
* Something has gone very wrong. Make sure everything has drained and
* leave the device in an unresumable state.
*/
uds_log_error_strerror(result,
"Start failed, could not load VDO metadata");
vdo->suspend_type = VDO_ADMIN_STATE_STOPPING;
perform_admin_operation(vdo, SUSPEND_PHASE_START,
suspend_callback, suspend_callback,
"suspend");
return result;
}
/* Even if the VDO is read-only, it is now able to handle read requests. */
uds_log_info("device '%s' started", device_name);
}
uds_log_info("resuming device '%s'", device_name);
/* If this fails, the VDO was not in a state to be resumed. This should never happen. */
result = apply_new_vdo_configuration(vdo, config);
BUG_ON(result == VDO_INVALID_ADMIN_STATE);
/*
* Now that we've tried to modify the vdo, the new config *is* the config, whether the
* modifications worked or not.
*/
vdo->device_config = config;
/*
* Any error here is highly unexpected and the state of the vdo is questionable, so we mark
* it read-only in memory. Because we are suspended, the read-only state will not be
* written to disk.
*/
if (result != VDO_SUCCESS) {
uds_log_error_strerror(result,
"Commit of modifications to device '%s' failed",
device_name);
vdo_enter_read_only_mode(vdo, result);
return result;
}
if (vdo_get_admin_state(vdo)->normal) {
/* The VDO was just started, so we don't need to resume it. */
return VDO_SUCCESS;
}
result = perform_admin_operation(vdo, RESUME_PHASE_START, resume_callback,
resume_callback, "resume");
BUG_ON(result == VDO_INVALID_ADMIN_STATE);
if (result == VDO_READ_ONLY) {
/* Even if the vdo is read-only, it has still resumed. */
result = VDO_SUCCESS;
}
if (result != VDO_SUCCESS)
uds_log_error("resume of device '%s' failed with error: %d", device_name,
result);
return result;
}
static int vdo_preresume(struct dm_target *ti)
{
struct registered_thread instance_thread;
struct vdo *vdo = get_vdo_for_target(ti);
int result;
uds_register_thread_device_id(&instance_thread, &vdo->instance);
result = vdo_preresume_registered(ti, vdo);
if ((result == VDO_PARAMETER_MISMATCH) || (result == VDO_INVALID_ADMIN_STATE))
result = -EINVAL;
uds_unregister_thread_device_id();
return vdo_map_to_system_error(result);
}
static void vdo_resume(struct dm_target *ti)
{
struct registered_thread instance_thread;
uds_register_thread_device_id(&instance_thread,
&get_vdo_for_target(ti)->instance);
uds_log_info("device '%s' resumed", vdo_get_device_name(ti));
uds_unregister_thread_device_id();
}
/*
* If anything changes that affects how user tools will interact with vdo, update the version
* number and make sure documentation about the change is complete so tools can properly update
* their management code.
*/
static struct target_type vdo_target_bio = {
.features = DM_TARGET_SINGLETON,
.name = "vdo",
.version = { 8, 2, 0 },
.module = THIS_MODULE,
.ctr = vdo_ctr,
.dtr = vdo_dtr,
.io_hints = vdo_io_hints,
.iterate_devices = vdo_iterate_devices,
.map = vdo_map_bio,
.message = vdo_message,
.status = vdo_status,
.presuspend = vdo_presuspend,
.postsuspend = vdo_postsuspend,
.preresume = vdo_preresume,
.resume = vdo_resume,
};
static bool dm_registered;
static void vdo_module_destroy(void)
{
uds_log_debug("unloading");
if (dm_registered)
dm_unregister_target(&vdo_target_bio);
ASSERT_LOG_ONLY(instances.count == 0,
"should have no instance numbers still in use, but have %u",
instances.count);
uds_free(instances.words);
memset(&instances, 0, sizeof(struct instance_tracker));
uds_log_info("unloaded version %s", CURRENT_VERSION);
}
static int __init vdo_init(void)
{
int result = 0;
/*
* UDS module level initialization must be done first, as VDO initialization depends on it
*/
uds_initialize_thread_device_registry();
uds_memory_init();
uds_init_sysfs();
vdo_initialize_device_registry_once();
uds_log_info("loaded version %s", CURRENT_VERSION);
/* Add VDO errors to the already existing set of errors in UDS. */
result = vdo_register_status_codes();
if (result != UDS_SUCCESS) {
uds_log_error("vdo_register_status_codes failed %d", result);
vdo_module_destroy();
return result;
}
result = dm_register_target(&vdo_target_bio);
if (result < 0) {
uds_log_error("dm_register_target failed %d", result);
vdo_module_destroy();
return result;
}
dm_registered = true;
return result;
}
static void __exit vdo_exit(void)
{
vdo_module_destroy();
/*
* UDS module level exit processing must be done after all VDO module exit processing is
* complete.
*/
uds_put_sysfs();
uds_memory_exit();
}
module_init(vdo_init);
module_exit(vdo_exit);
MODULE_DESCRIPTION(DM_NAME " target for transparent deduplication");
MODULE_AUTHOR("Red Hat, Inc.");
MODULE_LICENSE("GPL");