2008-10-17 04:54:25 +04:00
/* -*- mode: c; c-basic-offset: 8; -*-
* vim : noexpandtab sw = 8 ts = 8 sts = 0 :
*
* blockcheck . c
*
* Checksum and ECC codes for the OCFS2 userspace library .
*
* Copyright ( C ) 2006 , 2008 Oracle . All rights reserved .
*
* This program is free software ; you can redistribute it and / or
* modify it under the terms of the GNU General Public
* License , version 2 , as published by the Free Software Foundation .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* General Public License for more details .
*/
# include <linux/kernel.h>
# include <linux/types.h>
# include <linux/crc32.h>
# include <linux/buffer_head.h>
# include <linux/bitops.h>
# include <asm/byteorder.h>
2008-10-18 01:55:01 +04:00
# include <cluster/masklog.h>
2008-10-17 04:54:25 +04:00
# include "ocfs2.h"
# include "blockcheck.h"
/*
* We use the following conventions :
*
* d = # data bits
* p = # parity bits
* c = # total code bits ( d + p )
*/
/*
* Calculate the bit offset in the hamming code buffer based on the bit ' s
* offset in the data buffer . Since the hamming code reserves all
* power - of - two bits for parity , the data bit number and the code bit
* number are offest by all the parity bits beforehand .
*
* Recall that bit numbers in hamming code are 1 - based . This function
* takes the 0 - based data bit from the caller .
*
* An example . Take bit 1 of the data buffer . 1 is a power of two ( 2 ^ 0 ) ,
* so it ' s a parity bit . 2 is a power of two ( 2 ^ 1 ) , so it ' s a parity bit .
* 3 is not a power of two . So bit 1 of the data buffer ends up as bit 3
* in the code buffer .
*/
static unsigned int calc_code_bit ( unsigned int i )
{
unsigned int b , p ;
/*
* Data bits are 0 - based , but we ' re talking code bits , which
* are 1 - based .
*/
b = i + 1 ;
/*
* For every power of two below our bit number , bump our bit .
*
* We compare with ( b + 1 ) becuase we have to compare with what b
* would be _if_ it were bumped up by the parity bit . Capice ?
*/
for ( p = 0 ; ( 1 < < p ) < ( b + 1 ) ; p + + )
b + + ;
return b ;
}
/*
* This is the low level encoder function . It can be called across
* multiple hunks just like the crc32 code . ' d ' is the number of bits
* _in_this_hunk_ . nr is the bit offset of this hunk . So , if you had
* two 512 B buffers , you would do it like so :
*
* parity = ocfs2_hamming_encode ( 0 , buf1 , 512 * 8 , 0 ) ;
* parity = ocfs2_hamming_encode ( parity , buf2 , 512 * 8 , 512 * 8 ) ;
*
* If you just have one buffer , use ocfs2_hamming_encode_block ( ) .
*/
u32 ocfs2_hamming_encode ( u32 parity , void * data , unsigned int d , unsigned int nr )
{
2008-12-16 04:13:48 +03:00
unsigned int i , b ;
2008-10-17 04:54:25 +04:00
2008-12-16 04:13:48 +03:00
BUG_ON ( ! d ) ;
2008-10-17 04:54:25 +04:00
/*
* b is the hamming code bit number . Hamming code specifies a
* 1 - based array , but C uses 0 - based . So ' i ' is for C , and ' b ' is
* for the algorithm .
*
* The i + + in the for loop is so that the start offset passed
* to ocfs2_find_next_bit_set ( ) is one greater than the previously
* found bit .
*/
for ( i = 0 ; ( i = ocfs2_find_next_bit ( data , d , i ) ) < d ; i + + )
{
/*
* i is the offset in this hunk , nr + i is the total bit
* offset .
*/
b = calc_code_bit ( nr + i ) ;
2008-12-16 04:13:48 +03:00
/*
* Data bits in the resultant code are checked by
* parity bits that are part of the bit number
* representation . Huh ?
*
* < wikipedia href = " http://en.wikipedia.org/wiki/Hamming_code " >
* In other words , the parity bit at position 2 ^ k
* checks bits in positions having bit k set in
* their binary representation . Conversely , for
* instance , bit 13 , i . e . 1101 ( 2 ) , is checked by
* bits 1000 ( 2 ) = 8 , 0100 ( 2 ) = 4 and 0001 ( 2 ) = 1.
* < / wikipedia >
*
* Note that ' k ' is the _code_ bit number . ' b ' in
* our loop .
*/
parity ^ = b ;
2008-10-17 04:54:25 +04:00
}
/* While the data buffer was treated as little endian, the
* return value is in host endian . */
return parity ;
}
u32 ocfs2_hamming_encode_block ( void * data , unsigned int blocksize )
{
return ocfs2_hamming_encode ( 0 , data , blocksize * 8 , 0 ) ;
}
/*
* Like ocfs2_hamming_encode ( ) , this can handle hunks . nr is the bit
* offset of the current hunk . If bit to be fixed is not part of the
* current hunk , this does nothing .
*
* If you only have one hunk , use ocfs2_hamming_fix_block ( ) .
*/
void ocfs2_hamming_fix ( void * data , unsigned int d , unsigned int nr ,
unsigned int fix )
{
unsigned int i , b ;
2008-12-16 04:13:48 +03:00
BUG_ON ( ! d ) ;
2008-10-17 04:54:25 +04:00
/*
* If the bit to fix has an hweight of 1 , it ' s a parity bit . One
* busted parity bit is its own error . Nothing to do here .
*/
if ( hweight32 ( fix ) = = 1 )
return ;
/*
* nr + d is the bit right past the data hunk we ' re looking at .
* If fix after that , nothing to do
*/
if ( fix > = calc_code_bit ( nr + d ) )
return ;
/*
* nr is the offset in the data hunk we ' re starting at . Let ' s
* start b at the offset in the code buffer . See hamming_encode ( )
* for a more detailed description of ' b ' .
*/
b = calc_code_bit ( nr ) ;
/* If the fix is before this hunk, nothing to do */
if ( fix < b )
return ;
for ( i = 0 ; i < d ; i + + , b + + )
{
/* Skip past parity bits */
while ( hweight32 ( b ) = = 1 )
b + + ;
/*
* i is the offset in this data hunk .
* nr + i is the offset in the total data buffer .
* b is the offset in the total code buffer .
*
* Thus , when b = = fix , bit i in the current hunk needs
* fixing .
*/
if ( b = = fix )
{
if ( ocfs2_test_bit ( i , data ) )
ocfs2_clear_bit ( i , data ) ;
else
ocfs2_set_bit ( i , data ) ;
break ;
}
}
}
void ocfs2_hamming_fix_block ( void * data , unsigned int blocksize ,
unsigned int fix )
{
ocfs2_hamming_fix ( data , blocksize * 8 , 0 , fix ) ;
}
/*
* This function generates check information for a block .
* data is the block to be checked . bc is a pointer to the
* ocfs2_block_check structure describing the crc32 and the ecc .
*
* bc should be a pointer inside data , as the function will
* take care of zeroing it before calculating the check information . If
* bc does not point inside data , the caller must make sure any inline
* ocfs2_block_check structures are zeroed .
*
* The data buffer must be in on - disk endian ( little endian for ocfs2 ) .
* bc will be filled with little - endian values and will be ready to go to
* disk .
*/
void ocfs2_block_check_compute ( void * data , size_t blocksize ,
struct ocfs2_block_check * bc )
{
u32 crc ;
u32 ecc ;
memset ( bc , 0 , sizeof ( struct ocfs2_block_check ) ) ;
crc = crc32_le ( ~ 0 , data , blocksize ) ;
ecc = ocfs2_hamming_encode_block ( data , blocksize ) ;
/*
* No ecc ' d ocfs2 structure is larger than 4 K , so ecc will be no
* larger than 16 bits .
*/
BUG_ON ( ecc > USHORT_MAX ) ;
bc - > bc_crc32e = cpu_to_le32 ( crc ) ;
bc - > bc_ecc = cpu_to_le16 ( ( u16 ) ecc ) ;
}
/*
* This function validates existing check information . Like _compute ,
* the function will take care of zeroing bc before calculating check codes .
* If bc is not a pointer inside data , the caller must have zeroed any
* inline ocfs2_block_check structures .
*
* Again , the data passed in should be the on - disk endian .
*/
int ocfs2_block_check_validate ( void * data , size_t blocksize ,
struct ocfs2_block_check * bc )
{
int rc = 0 ;
struct ocfs2_block_check check ;
u32 crc , ecc ;
check . bc_crc32e = le32_to_cpu ( bc - > bc_crc32e ) ;
check . bc_ecc = le16_to_cpu ( bc - > bc_ecc ) ;
memset ( bc , 0 , sizeof ( struct ocfs2_block_check ) ) ;
/* Fast path - if the crc32 validates, we're good to go */
crc = crc32_le ( ~ 0 , data , blocksize ) ;
if ( crc = = check . bc_crc32e )
goto out ;
2008-10-18 01:55:01 +04:00
mlog ( ML_ERROR ,
" CRC32 failed: stored: %u, computed %u. Applying ECC. \n " ,
( unsigned int ) check . bc_crc32e , ( unsigned int ) crc ) ;
2008-10-17 04:54:25 +04:00
/* Ok, try ECC fixups */
ecc = ocfs2_hamming_encode_block ( data , blocksize ) ;
ocfs2_hamming_fix_block ( data , blocksize , ecc ^ check . bc_ecc ) ;
/* And check the crc32 again */
crc = crc32_le ( ~ 0 , data , blocksize ) ;
if ( crc = = check . bc_crc32e )
goto out ;
2008-10-18 01:55:01 +04:00
mlog ( ML_ERROR , " Fixed CRC32 failed: stored: %u, computed %u \n " ,
( unsigned int ) check . bc_crc32e , ( unsigned int ) crc ) ;
2008-10-17 04:54:25 +04:00
rc = - EIO ;
out :
bc - > bc_crc32e = cpu_to_le32 ( check . bc_crc32e ) ;
bc - > bc_ecc = cpu_to_le16 ( check . bc_ecc ) ;
return rc ;
}
/*
* This function generates check information for a list of buffer_heads .
* bhs is the blocks to be checked . bc is a pointer to the
* ocfs2_block_check structure describing the crc32 and the ecc .
*
* bc should be a pointer inside data , as the function will
* take care of zeroing it before calculating the check information . If
* bc does not point inside data , the caller must make sure any inline
* ocfs2_block_check structures are zeroed .
*
* The data buffer must be in on - disk endian ( little endian for ocfs2 ) .
* bc will be filled with little - endian values and will be ready to go to
* disk .
*/
void ocfs2_block_check_compute_bhs ( struct buffer_head * * bhs , int nr ,
struct ocfs2_block_check * bc )
{
int i ;
u32 crc , ecc ;
BUG_ON ( nr < 0 ) ;
if ( ! nr )
return ;
memset ( bc , 0 , sizeof ( struct ocfs2_block_check ) ) ;
for ( i = 0 , crc = ~ 0 , ecc = 0 ; i < nr ; i + + ) {
crc = crc32_le ( crc , bhs [ i ] - > b_data , bhs [ i ] - > b_size ) ;
/*
* The number of bits in a buffer is obviously b_size * 8.
* The offset of this buffer is b_size * i , so the bit offset
* of this buffer is b_size * 8 * i .
*/
ecc = ( u16 ) ocfs2_hamming_encode ( ecc , bhs [ i ] - > b_data ,
bhs [ i ] - > b_size * 8 ,
bhs [ i ] - > b_size * 8 * i ) ;
}
/*
* No ecc ' d ocfs2 structure is larger than 4 K , so ecc will be no
* larger than 16 bits .
*/
BUG_ON ( ecc > USHORT_MAX ) ;
bc - > bc_crc32e = cpu_to_le32 ( crc ) ;
bc - > bc_ecc = cpu_to_le16 ( ( u16 ) ecc ) ;
}
/*
* This function validates existing check information on a list of
* buffer_heads . Like _compute_bhs , the function will take care of
* zeroing bc before calculating check codes . If bc is not a pointer
* inside data , the caller must have zeroed any inline
* ocfs2_block_check structures .
*
* Again , the data passed in should be the on - disk endian .
*/
int ocfs2_block_check_validate_bhs ( struct buffer_head * * bhs , int nr ,
struct ocfs2_block_check * bc )
{
int i , rc = 0 ;
struct ocfs2_block_check check ;
u32 crc , ecc , fix ;
BUG_ON ( nr < 0 ) ;
if ( ! nr )
return 0 ;
check . bc_crc32e = le32_to_cpu ( bc - > bc_crc32e ) ;
check . bc_ecc = le16_to_cpu ( bc - > bc_ecc ) ;
memset ( bc , 0 , sizeof ( struct ocfs2_block_check ) ) ;
/* Fast path - if the crc32 validates, we're good to go */
for ( i = 0 , crc = ~ 0 ; i < nr ; i + + )
crc = crc32_le ( crc , bhs [ i ] - > b_data , bhs [ i ] - > b_size ) ;
if ( crc = = check . bc_crc32e )
goto out ;
mlog ( ML_ERROR ,
" CRC32 failed: stored: %u, computed %u. Applying ECC. \n " ,
( unsigned int ) check . bc_crc32e , ( unsigned int ) crc ) ;
/* Ok, try ECC fixups */
for ( i = 0 , ecc = 0 ; i < nr ; i + + ) {
/*
* The number of bits in a buffer is obviously b_size * 8.
* The offset of this buffer is b_size * i , so the bit offset
* of this buffer is b_size * 8 * i .
*/
ecc = ( u16 ) ocfs2_hamming_encode ( ecc , bhs [ i ] - > b_data ,
bhs [ i ] - > b_size * 8 ,
bhs [ i ] - > b_size * 8 * i ) ;
}
fix = ecc ^ check . bc_ecc ;
for ( i = 0 ; i < nr ; i + + ) {
/*
* Try the fix against each buffer . It will only affect
* one of them .
*/
ocfs2_hamming_fix ( bhs [ i ] - > b_data , bhs [ i ] - > b_size * 8 ,
bhs [ i ] - > b_size * 8 * i , fix ) ;
}
/* And check the crc32 again */
for ( i = 0 , crc = ~ 0 ; i < nr ; i + + )
crc = crc32_le ( crc , bhs [ i ] - > b_data , bhs [ i ] - > b_size ) ;
if ( crc = = check . bc_crc32e )
goto out ;
mlog ( ML_ERROR , " Fixed CRC32 failed: stored: %u, computed %u \n " ,
( unsigned int ) check . bc_crc32e , ( unsigned int ) crc ) ;
rc = - EIO ;
out :
bc - > bc_crc32e = cpu_to_le32 ( check . bc_crc32e ) ;
bc - > bc_ecc = cpu_to_le16 ( check . bc_ecc ) ;
return rc ;
}
/*
* These are the main API . They check the superblock flag before
* calling the underlying operations .
*
* They expect the buffer ( s ) to be in disk format .
*/
void ocfs2_compute_meta_ecc ( struct super_block * sb , void * data ,
struct ocfs2_block_check * bc )
{
if ( ocfs2_meta_ecc ( OCFS2_SB ( sb ) ) )
ocfs2_block_check_compute ( data , sb - > s_blocksize , bc ) ;
}
int ocfs2_validate_meta_ecc ( struct super_block * sb , void * data ,
struct ocfs2_block_check * bc )
{
int rc = 0 ;
if ( ocfs2_meta_ecc ( OCFS2_SB ( sb ) ) )
rc = ocfs2_block_check_validate ( data , sb - > s_blocksize , bc ) ;
return rc ;
}
void ocfs2_compute_meta_ecc_bhs ( struct super_block * sb ,
struct buffer_head * * bhs , int nr ,
struct ocfs2_block_check * bc )
{
if ( ocfs2_meta_ecc ( OCFS2_SB ( sb ) ) )
ocfs2_block_check_compute_bhs ( bhs , nr , bc ) ;
}
int ocfs2_validate_meta_ecc_bhs ( struct super_block * sb ,
struct buffer_head * * bhs , int nr ,
struct ocfs2_block_check * bc )
{
int rc = 0 ;
if ( ocfs2_meta_ecc ( OCFS2_SB ( sb ) ) )
rc = ocfs2_block_check_validate_bhs ( bhs , nr , bc ) ;
return rc ;
}