linux/drivers/infiniband/hw/cxgb4/iw_cxgb4.h

934 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __IW_CXGB4_H__
#define __IW_CXGB4_H__
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/idr.h>
RDMA/cxgb4: Use completion objects for event blocking There exists a race condition when using wait_queue_head_t objects that are declared on the stack. This was being done in a few places where we are sending work requests to the FW and awaiting replies, but we don't have an endpoint structure with an embedded c4iw_wr_wait struct. So the code was allocating it locally on the stack. Bad design. The race is: 1) thread on cpuX declares the wait_queue_head_t on the stack, then posts a firmware WR with that wait object ptr as the cookie to be returned in the WR reply. This thread will proceed to block in wait_event_timeout() but before it does: 2) An interrupt runs on cpuY with the WR reply. fw6_msg() handles this and calls c4iw_wake_up(). c4iw_wake_up() sets the condition variable in the c4iw_wr_wait object to TRUE and will call wake_up(), but before it calls wake_up(): 3) The thread on cpuX calls c4iw_wait_for_reply(), which calls wait_event_timeout(). The wait_event_timeout() macro checks the condition variable and returns immediately since it is TRUE. So this thread never blocks/sleeps. The function then returns effectively deallocating the c4iw_wr_wait object that was on the stack. 4) So at this point cpuY has a pointer to the c4iw_wr_wait object that is no longer valid. Further its pointing to a stack frame that might now be in use by some other context/thread. So cpuY continues execution and calls wake_up() on a ptr to a wait object that as been effectively deallocated. This race, when it hits, can cause a crash in wake_up(), which I've seen under heavy stress. It can also corrupt the referenced stack which can cause any number of failures. The fix: Use struct completion, which supports on-stack declarations. Completions use a spinlock around setting the condition to true and the wake up so that steps 2 and 4 above are atomic and step 3 can never happen in-between. Signed-off-by: Steve Wise <swise@opengridcomputing.com>
2011-05-20 20:25:05 +04:00
#include <linux/completion.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/inet.h>
#include <linux/wait.h>
#include <linux/kref.h>
#include <linux/timer.h>
#include <linux/io.h>
#include <asm/byteorder.h>
#include <net/net_namespace.h>
#include <rdma/ib_verbs.h>
#include <rdma/iw_cm.h>
#include "cxgb4.h"
#include "cxgb4_uld.h"
#include "l2t.h"
#include "user.h"
#define DRV_NAME "iw_cxgb4"
#define MOD DRV_NAME ":"
extern int c4iw_debug;
#define PDBG(fmt, args...) \
do { \
if (c4iw_debug) \
printk(MOD fmt, ## args); \
} while (0)
#include "t4.h"
#define PBL_OFF(rdev_p, a) ((a) - (rdev_p)->lldi.vr->pbl.start)
#define RQT_OFF(rdev_p, a) ((a) - (rdev_p)->lldi.vr->rq.start)
static inline void *cplhdr(struct sk_buff *skb)
{
return skb->data;
}
#define C4IW_ID_TABLE_F_RANDOM 1 /* Pseudo-randomize the id's returned */
#define C4IW_ID_TABLE_F_EMPTY 2 /* Table is initially empty */
struct c4iw_id_table {
u32 flags;
u32 start; /* logical minimal id */
u32 last; /* hint for find */
u32 max;
spinlock_t lock;
unsigned long *table;
};
struct c4iw_resource {
struct c4iw_id_table tpt_table;
struct c4iw_id_table qid_table;
struct c4iw_id_table pdid_table;
};
struct c4iw_qid_list {
struct list_head entry;
u32 qid;
};
struct c4iw_dev_ucontext {
struct list_head qpids;
struct list_head cqids;
struct mutex lock;
};
enum c4iw_rdev_flags {
T4_FATAL_ERROR = (1<<0),
};
struct c4iw_stat {
u64 total;
u64 cur;
u64 max;
u64 fail;
};
struct c4iw_stats {
struct mutex lock;
struct c4iw_stat qid;
struct c4iw_stat pd;
struct c4iw_stat stag;
struct c4iw_stat pbl;
struct c4iw_stat rqt;
struct c4iw_stat ocqp;
u64 db_full;
u64 db_empty;
u64 db_drop;
u64 db_state_transitions;
u64 tcam_full;
u64 act_ofld_conn_fails;
u64 pas_ofld_conn_fails;
};
struct c4iw_rdev {
struct c4iw_resource resource;
unsigned long qpshift;
u32 qpmask;
unsigned long cqshift;
u32 cqmask;
struct c4iw_dev_ucontext uctx;
struct gen_pool *pbl_pool;
struct gen_pool *rqt_pool;
struct gen_pool *ocqp_pool;
u32 flags;
struct cxgb4_lld_info lldi;
unsigned long oc_mw_pa;
void __iomem *oc_mw_kva;
struct c4iw_stats stats;
};
static inline int c4iw_fatal_error(struct c4iw_rdev *rdev)
{
return rdev->flags & T4_FATAL_ERROR;
}
static inline int c4iw_num_stags(struct c4iw_rdev *rdev)
{
return min((int)T4_MAX_NUM_STAG, (int)(rdev->lldi.vr->stag.size >> 5));
}
#define C4IW_WR_TO (10*HZ)
struct c4iw_wr_wait {
RDMA/cxgb4: Use completion objects for event blocking There exists a race condition when using wait_queue_head_t objects that are declared on the stack. This was being done in a few places where we are sending work requests to the FW and awaiting replies, but we don't have an endpoint structure with an embedded c4iw_wr_wait struct. So the code was allocating it locally on the stack. Bad design. The race is: 1) thread on cpuX declares the wait_queue_head_t on the stack, then posts a firmware WR with that wait object ptr as the cookie to be returned in the WR reply. This thread will proceed to block in wait_event_timeout() but before it does: 2) An interrupt runs on cpuY with the WR reply. fw6_msg() handles this and calls c4iw_wake_up(). c4iw_wake_up() sets the condition variable in the c4iw_wr_wait object to TRUE and will call wake_up(), but before it calls wake_up(): 3) The thread on cpuX calls c4iw_wait_for_reply(), which calls wait_event_timeout(). The wait_event_timeout() macro checks the condition variable and returns immediately since it is TRUE. So this thread never blocks/sleeps. The function then returns effectively deallocating the c4iw_wr_wait object that was on the stack. 4) So at this point cpuY has a pointer to the c4iw_wr_wait object that is no longer valid. Further its pointing to a stack frame that might now be in use by some other context/thread. So cpuY continues execution and calls wake_up() on a ptr to a wait object that as been effectively deallocated. This race, when it hits, can cause a crash in wake_up(), which I've seen under heavy stress. It can also corrupt the referenced stack which can cause any number of failures. The fix: Use struct completion, which supports on-stack declarations. Completions use a spinlock around setting the condition to true and the wake up so that steps 2 and 4 above are atomic and step 3 can never happen in-between. Signed-off-by: Steve Wise <swise@opengridcomputing.com>
2011-05-20 20:25:05 +04:00
struct completion completion;
int ret;
};
static inline void c4iw_init_wr_wait(struct c4iw_wr_wait *wr_waitp)
{
wr_waitp->ret = 0;
RDMA/cxgb4: Use completion objects for event blocking There exists a race condition when using wait_queue_head_t objects that are declared on the stack. This was being done in a few places where we are sending work requests to the FW and awaiting replies, but we don't have an endpoint structure with an embedded c4iw_wr_wait struct. So the code was allocating it locally on the stack. Bad design. The race is: 1) thread on cpuX declares the wait_queue_head_t on the stack, then posts a firmware WR with that wait object ptr as the cookie to be returned in the WR reply. This thread will proceed to block in wait_event_timeout() but before it does: 2) An interrupt runs on cpuY with the WR reply. fw6_msg() handles this and calls c4iw_wake_up(). c4iw_wake_up() sets the condition variable in the c4iw_wr_wait object to TRUE and will call wake_up(), but before it calls wake_up(): 3) The thread on cpuX calls c4iw_wait_for_reply(), which calls wait_event_timeout(). The wait_event_timeout() macro checks the condition variable and returns immediately since it is TRUE. So this thread never blocks/sleeps. The function then returns effectively deallocating the c4iw_wr_wait object that was on the stack. 4) So at this point cpuY has a pointer to the c4iw_wr_wait object that is no longer valid. Further its pointing to a stack frame that might now be in use by some other context/thread. So cpuY continues execution and calls wake_up() on a ptr to a wait object that as been effectively deallocated. This race, when it hits, can cause a crash in wake_up(), which I've seen under heavy stress. It can also corrupt the referenced stack which can cause any number of failures. The fix: Use struct completion, which supports on-stack declarations. Completions use a spinlock around setting the condition to true and the wake up so that steps 2 and 4 above are atomic and step 3 can never happen in-between. Signed-off-by: Steve Wise <swise@opengridcomputing.com>
2011-05-20 20:25:05 +04:00
init_completion(&wr_waitp->completion);
}
static inline void c4iw_wake_up(struct c4iw_wr_wait *wr_waitp, int ret)
{
wr_waitp->ret = ret;
RDMA/cxgb4: Use completion objects for event blocking There exists a race condition when using wait_queue_head_t objects that are declared on the stack. This was being done in a few places where we are sending work requests to the FW and awaiting replies, but we don't have an endpoint structure with an embedded c4iw_wr_wait struct. So the code was allocating it locally on the stack. Bad design. The race is: 1) thread on cpuX declares the wait_queue_head_t on the stack, then posts a firmware WR with that wait object ptr as the cookie to be returned in the WR reply. This thread will proceed to block in wait_event_timeout() but before it does: 2) An interrupt runs on cpuY with the WR reply. fw6_msg() handles this and calls c4iw_wake_up(). c4iw_wake_up() sets the condition variable in the c4iw_wr_wait object to TRUE and will call wake_up(), but before it calls wake_up(): 3) The thread on cpuX calls c4iw_wait_for_reply(), which calls wait_event_timeout(). The wait_event_timeout() macro checks the condition variable and returns immediately since it is TRUE. So this thread never blocks/sleeps. The function then returns effectively deallocating the c4iw_wr_wait object that was on the stack. 4) So at this point cpuY has a pointer to the c4iw_wr_wait object that is no longer valid. Further its pointing to a stack frame that might now be in use by some other context/thread. So cpuY continues execution and calls wake_up() on a ptr to a wait object that as been effectively deallocated. This race, when it hits, can cause a crash in wake_up(), which I've seen under heavy stress. It can also corrupt the referenced stack which can cause any number of failures. The fix: Use struct completion, which supports on-stack declarations. Completions use a spinlock around setting the condition to true and the wake up so that steps 2 and 4 above are atomic and step 3 can never happen in-between. Signed-off-by: Steve Wise <swise@opengridcomputing.com>
2011-05-20 20:25:05 +04:00
complete(&wr_waitp->completion);
}
static inline int c4iw_wait_for_reply(struct c4iw_rdev *rdev,
struct c4iw_wr_wait *wr_waitp,
u32 hwtid, u32 qpid,
const char *func)
{
unsigned to = C4IW_WR_TO;
int ret;
do {
RDMA/cxgb4: Use completion objects for event blocking There exists a race condition when using wait_queue_head_t objects that are declared on the stack. This was being done in a few places where we are sending work requests to the FW and awaiting replies, but we don't have an endpoint structure with an embedded c4iw_wr_wait struct. So the code was allocating it locally on the stack. Bad design. The race is: 1) thread on cpuX declares the wait_queue_head_t on the stack, then posts a firmware WR with that wait object ptr as the cookie to be returned in the WR reply. This thread will proceed to block in wait_event_timeout() but before it does: 2) An interrupt runs on cpuY with the WR reply. fw6_msg() handles this and calls c4iw_wake_up(). c4iw_wake_up() sets the condition variable in the c4iw_wr_wait object to TRUE and will call wake_up(), but before it calls wake_up(): 3) The thread on cpuX calls c4iw_wait_for_reply(), which calls wait_event_timeout(). The wait_event_timeout() macro checks the condition variable and returns immediately since it is TRUE. So this thread never blocks/sleeps. The function then returns effectively deallocating the c4iw_wr_wait object that was on the stack. 4) So at this point cpuY has a pointer to the c4iw_wr_wait object that is no longer valid. Further its pointing to a stack frame that might now be in use by some other context/thread. So cpuY continues execution and calls wake_up() on a ptr to a wait object that as been effectively deallocated. This race, when it hits, can cause a crash in wake_up(), which I've seen under heavy stress. It can also corrupt the referenced stack which can cause any number of failures. The fix: Use struct completion, which supports on-stack declarations. Completions use a spinlock around setting the condition to true and the wake up so that steps 2 and 4 above are atomic and step 3 can never happen in-between. Signed-off-by: Steve Wise <swise@opengridcomputing.com>
2011-05-20 20:25:05 +04:00
ret = wait_for_completion_timeout(&wr_waitp->completion, to);
if (!ret) {
printk(KERN_ERR MOD "%s - Device %s not responding - "
"tid %u qpid %u\n", func,
pci_name(rdev->lldi.pdev), hwtid, qpid);
if (c4iw_fatal_error(rdev)) {
wr_waitp->ret = -EIO;
break;
}
to = to << 2;
}
} while (!ret);
if (wr_waitp->ret)
PDBG("%s: FW reply %d tid %u qpid %u\n",
pci_name(rdev->lldi.pdev), wr_waitp->ret, hwtid, qpid);
return wr_waitp->ret;
}
enum db_state {
NORMAL = 0,
FLOW_CONTROL = 1,
RECOVERY = 2
};
struct c4iw_dev {
struct ib_device ibdev;
struct c4iw_rdev rdev;
u32 device_cap_flags;
struct idr cqidr;
struct idr qpidr;
struct idr mmidr;
spinlock_t lock;
struct mutex db_mutex;
struct dentry *debugfs_root;
enum db_state db_state;
int qpcnt;
struct idr hwtid_idr;
struct idr atid_idr;
struct idr stid_idr;
};
static inline struct c4iw_dev *to_c4iw_dev(struct ib_device *ibdev)
{
return container_of(ibdev, struct c4iw_dev, ibdev);
}
static inline struct c4iw_dev *rdev_to_c4iw_dev(struct c4iw_rdev *rdev)
{
return container_of(rdev, struct c4iw_dev, rdev);
}
static inline struct c4iw_cq *get_chp(struct c4iw_dev *rhp, u32 cqid)
{
return idr_find(&rhp->cqidr, cqid);
}
static inline struct c4iw_qp *get_qhp(struct c4iw_dev *rhp, u32 qpid)
{
return idr_find(&rhp->qpidr, qpid);
}
static inline struct c4iw_mr *get_mhp(struct c4iw_dev *rhp, u32 mmid)
{
return idr_find(&rhp->mmidr, mmid);
}
static inline int _insert_handle(struct c4iw_dev *rhp, struct idr *idr,
void *handle, u32 id, int lock)
{
int ret;
int newid;
do {
if (!idr_pre_get(idr, lock ? GFP_KERNEL : GFP_ATOMIC))
return -ENOMEM;
if (lock)
spin_lock_irq(&rhp->lock);
ret = idr_get_new_above(idr, handle, id, &newid);
BUG_ON(!ret && newid != id);
if (lock)
spin_unlock_irq(&rhp->lock);
} while (ret == -EAGAIN);
return ret;
}
static inline int insert_handle(struct c4iw_dev *rhp, struct idr *idr,
void *handle, u32 id)
{
return _insert_handle(rhp, idr, handle, id, 1);
}
static inline int insert_handle_nolock(struct c4iw_dev *rhp, struct idr *idr,
void *handle, u32 id)
{
return _insert_handle(rhp, idr, handle, id, 0);
}
static inline void _remove_handle(struct c4iw_dev *rhp, struct idr *idr,
u32 id, int lock)
{
if (lock)
spin_lock_irq(&rhp->lock);
idr_remove(idr, id);
if (lock)
spin_unlock_irq(&rhp->lock);
}
static inline void remove_handle(struct c4iw_dev *rhp, struct idr *idr, u32 id)
{
_remove_handle(rhp, idr, id, 1);
}
static inline void remove_handle_nolock(struct c4iw_dev *rhp,
struct idr *idr, u32 id)
{
_remove_handle(rhp, idr, id, 0);
}
struct c4iw_pd {
struct ib_pd ibpd;
u32 pdid;
struct c4iw_dev *rhp;
};
static inline struct c4iw_pd *to_c4iw_pd(struct ib_pd *ibpd)
{
return container_of(ibpd, struct c4iw_pd, ibpd);
}
struct tpt_attributes {
u64 len;
u64 va_fbo;
enum fw_ri_mem_perms perms;
u32 stag;
u32 pdid;
u32 qpid;
u32 pbl_addr;
u32 pbl_size;
u32 state:1;
u32 type:2;
u32 rsvd:1;
u32 remote_invaliate_disable:1;
u32 zbva:1;
u32 mw_bind_enable:1;
u32 page_size:5;
};
struct c4iw_mr {
struct ib_mr ibmr;
struct ib_umem *umem;
struct c4iw_dev *rhp;
u64 kva;
struct tpt_attributes attr;
};
static inline struct c4iw_mr *to_c4iw_mr(struct ib_mr *ibmr)
{
return container_of(ibmr, struct c4iw_mr, ibmr);
}
struct c4iw_mw {
struct ib_mw ibmw;
struct c4iw_dev *rhp;
u64 kva;
struct tpt_attributes attr;
};
static inline struct c4iw_mw *to_c4iw_mw(struct ib_mw *ibmw)
{
return container_of(ibmw, struct c4iw_mw, ibmw);
}
struct c4iw_fr_page_list {
struct ib_fast_reg_page_list ibpl;
DEFINE_DMA_UNMAP_ADDR(mapping);
dma_addr_t dma_addr;
struct c4iw_dev *dev;
int size;
};
static inline struct c4iw_fr_page_list *to_c4iw_fr_page_list(
struct ib_fast_reg_page_list *ibpl)
{
return container_of(ibpl, struct c4iw_fr_page_list, ibpl);
}
struct c4iw_cq {
struct ib_cq ibcq;
struct c4iw_dev *rhp;
struct t4_cq cq;
spinlock_t lock;
spinlock_t comp_handler_lock;
atomic_t refcnt;
wait_queue_head_t wait;
};
static inline struct c4iw_cq *to_c4iw_cq(struct ib_cq *ibcq)
{
return container_of(ibcq, struct c4iw_cq, ibcq);
}
struct c4iw_mpa_attributes {
u8 initiator;
u8 recv_marker_enabled;
u8 xmit_marker_enabled;
u8 crc_enabled;
u8 enhanced_rdma_conn;
u8 version;
u8 p2p_type;
};
struct c4iw_qp_attributes {
u32 scq;
u32 rcq;
u32 sq_num_entries;
u32 rq_num_entries;
u32 sq_max_sges;
u32 sq_max_sges_rdma_write;
u32 rq_max_sges;
u32 state;
u8 enable_rdma_read;
u8 enable_rdma_write;
u8 enable_bind;
u8 enable_mmid0_fastreg;
u32 max_ord;
u32 max_ird;
u32 pd;
u32 next_state;
char terminate_buffer[52];
u32 terminate_msg_len;
u8 is_terminate_local;
struct c4iw_mpa_attributes mpa_attr;
struct c4iw_ep *llp_stream_handle;
u8 layer_etype;
u8 ecode;
u16 sq_db_inc;
u16 rq_db_inc;
};
struct c4iw_qp {
struct ib_qp ibqp;
struct c4iw_dev *rhp;
struct c4iw_ep *ep;
struct c4iw_qp_attributes attr;
struct t4_wq wq;
spinlock_t lock;
struct mutex mutex;
atomic_t refcnt;
wait_queue_head_t wait;
struct timer_list timer;
};
static inline struct c4iw_qp *to_c4iw_qp(struct ib_qp *ibqp)
{
return container_of(ibqp, struct c4iw_qp, ibqp);
}
struct c4iw_ucontext {
struct ib_ucontext ibucontext;
struct c4iw_dev_ucontext uctx;
u32 key;
spinlock_t mmap_lock;
struct list_head mmaps;
};
static inline struct c4iw_ucontext *to_c4iw_ucontext(struct ib_ucontext *c)
{
return container_of(c, struct c4iw_ucontext, ibucontext);
}
struct c4iw_mm_entry {
struct list_head entry;
u64 addr;
u32 key;
unsigned len;
};
static inline struct c4iw_mm_entry *remove_mmap(struct c4iw_ucontext *ucontext,
u32 key, unsigned len)
{
struct list_head *pos, *nxt;
struct c4iw_mm_entry *mm;
spin_lock(&ucontext->mmap_lock);
list_for_each_safe(pos, nxt, &ucontext->mmaps) {
mm = list_entry(pos, struct c4iw_mm_entry, entry);
if (mm->key == key && mm->len == len) {
list_del_init(&mm->entry);
spin_unlock(&ucontext->mmap_lock);
PDBG("%s key 0x%x addr 0x%llx len %d\n", __func__,
key, (unsigned long long) mm->addr, mm->len);
return mm;
}
}
spin_unlock(&ucontext->mmap_lock);
return NULL;
}
static inline void insert_mmap(struct c4iw_ucontext *ucontext,
struct c4iw_mm_entry *mm)
{
spin_lock(&ucontext->mmap_lock);
PDBG("%s key 0x%x addr 0x%llx len %d\n", __func__,
mm->key, (unsigned long long) mm->addr, mm->len);
list_add_tail(&mm->entry, &ucontext->mmaps);
spin_unlock(&ucontext->mmap_lock);
}
enum c4iw_qp_attr_mask {
C4IW_QP_ATTR_NEXT_STATE = 1 << 0,
C4IW_QP_ATTR_SQ_DB = 1<<1,
C4IW_QP_ATTR_RQ_DB = 1<<2,
C4IW_QP_ATTR_ENABLE_RDMA_READ = 1 << 7,
C4IW_QP_ATTR_ENABLE_RDMA_WRITE = 1 << 8,
C4IW_QP_ATTR_ENABLE_RDMA_BIND = 1 << 9,
C4IW_QP_ATTR_MAX_ORD = 1 << 11,
C4IW_QP_ATTR_MAX_IRD = 1 << 12,
C4IW_QP_ATTR_LLP_STREAM_HANDLE = 1 << 22,
C4IW_QP_ATTR_STREAM_MSG_BUFFER = 1 << 23,
C4IW_QP_ATTR_MPA_ATTR = 1 << 24,
C4IW_QP_ATTR_QP_CONTEXT_ACTIVATE = 1 << 25,
C4IW_QP_ATTR_VALID_MODIFY = (C4IW_QP_ATTR_ENABLE_RDMA_READ |
C4IW_QP_ATTR_ENABLE_RDMA_WRITE |
C4IW_QP_ATTR_MAX_ORD |
C4IW_QP_ATTR_MAX_IRD |
C4IW_QP_ATTR_LLP_STREAM_HANDLE |
C4IW_QP_ATTR_STREAM_MSG_BUFFER |
C4IW_QP_ATTR_MPA_ATTR |
C4IW_QP_ATTR_QP_CONTEXT_ACTIVATE)
};
int c4iw_modify_qp(struct c4iw_dev *rhp,
struct c4iw_qp *qhp,
enum c4iw_qp_attr_mask mask,
struct c4iw_qp_attributes *attrs,
int internal);
enum c4iw_qp_state {
C4IW_QP_STATE_IDLE,
C4IW_QP_STATE_RTS,
C4IW_QP_STATE_ERROR,
C4IW_QP_STATE_TERMINATE,
C4IW_QP_STATE_CLOSING,
C4IW_QP_STATE_TOT
};
static inline int c4iw_convert_state(enum ib_qp_state ib_state)
{
switch (ib_state) {
case IB_QPS_RESET:
case IB_QPS_INIT:
return C4IW_QP_STATE_IDLE;
case IB_QPS_RTS:
return C4IW_QP_STATE_RTS;
case IB_QPS_SQD:
return C4IW_QP_STATE_CLOSING;
case IB_QPS_SQE:
return C4IW_QP_STATE_TERMINATE;
case IB_QPS_ERR:
return C4IW_QP_STATE_ERROR;
default:
return -1;
}
}
static inline int to_ib_qp_state(int c4iw_qp_state)
{
switch (c4iw_qp_state) {
case C4IW_QP_STATE_IDLE:
return IB_QPS_INIT;
case C4IW_QP_STATE_RTS:
return IB_QPS_RTS;
case C4IW_QP_STATE_CLOSING:
return IB_QPS_SQD;
case C4IW_QP_STATE_TERMINATE:
return IB_QPS_SQE;
case C4IW_QP_STATE_ERROR:
return IB_QPS_ERR;
}
return IB_QPS_ERR;
}
static inline u32 c4iw_ib_to_tpt_access(int a)
{
return (a & IB_ACCESS_REMOTE_WRITE ? FW_RI_MEM_ACCESS_REM_WRITE : 0) |
(a & IB_ACCESS_REMOTE_READ ? FW_RI_MEM_ACCESS_REM_READ : 0) |
(a & IB_ACCESS_LOCAL_WRITE ? FW_RI_MEM_ACCESS_LOCAL_WRITE : 0) |
FW_RI_MEM_ACCESS_LOCAL_READ;
}
static inline u32 c4iw_ib_to_tpt_bind_access(int acc)
{
return (acc & IB_ACCESS_REMOTE_WRITE ? FW_RI_MEM_ACCESS_REM_WRITE : 0) |
(acc & IB_ACCESS_REMOTE_READ ? FW_RI_MEM_ACCESS_REM_READ : 0);
}
enum c4iw_mmid_state {
C4IW_STAG_STATE_VALID,
C4IW_STAG_STATE_INVALID
};
#define C4IW_NODE_DESC "cxgb4 Chelsio Communications"
#define MPA_KEY_REQ "MPA ID Req Frame"
#define MPA_KEY_REP "MPA ID Rep Frame"
#define MPA_MAX_PRIVATE_DATA 256
#define MPA_ENHANCED_RDMA_CONN 0x10
#define MPA_REJECT 0x20
#define MPA_CRC 0x40
#define MPA_MARKERS 0x80
#define MPA_FLAGS_MASK 0xE0
#define MPA_V2_PEER2PEER_MODEL 0x8000
#define MPA_V2_ZERO_LEN_FPDU_RTR 0x4000
#define MPA_V2_RDMA_WRITE_RTR 0x8000
#define MPA_V2_RDMA_READ_RTR 0x4000
#define MPA_V2_IRD_ORD_MASK 0x3FFF
#define c4iw_put_ep(ep) { \
PDBG("put_ep (via %s:%u) ep %p refcnt %d\n", __func__, __LINE__, \
ep, atomic_read(&((ep)->kref.refcount))); \
WARN_ON(atomic_read(&((ep)->kref.refcount)) < 1); \
kref_put(&((ep)->kref), _c4iw_free_ep); \
}
#define c4iw_get_ep(ep) { \
PDBG("get_ep (via %s:%u) ep %p, refcnt %d\n", __func__, __LINE__, \
ep, atomic_read(&((ep)->kref.refcount))); \
kref_get(&((ep)->kref)); \
}
void _c4iw_free_ep(struct kref *kref);
struct mpa_message {
u8 key[16];
u8 flags;
u8 revision;
__be16 private_data_size;
u8 private_data[0];
};
struct mpa_v2_conn_params {
__be16 ird;
__be16 ord;
};
struct terminate_message {
u8 layer_etype;
u8 ecode;
__be16 hdrct_rsvd;
u8 len_hdrs[0];
};
#define TERM_MAX_LENGTH (sizeof(struct terminate_message) + 2 + 18 + 28)
enum c4iw_layers_types {
LAYER_RDMAP = 0x00,
LAYER_DDP = 0x10,
LAYER_MPA = 0x20,
RDMAP_LOCAL_CATA = 0x00,
RDMAP_REMOTE_PROT = 0x01,
RDMAP_REMOTE_OP = 0x02,
DDP_LOCAL_CATA = 0x00,
DDP_TAGGED_ERR = 0x01,
DDP_UNTAGGED_ERR = 0x02,
DDP_LLP = 0x03
};
enum c4iw_rdma_ecodes {
RDMAP_INV_STAG = 0x00,
RDMAP_BASE_BOUNDS = 0x01,
RDMAP_ACC_VIOL = 0x02,
RDMAP_STAG_NOT_ASSOC = 0x03,
RDMAP_TO_WRAP = 0x04,
RDMAP_INV_VERS = 0x05,
RDMAP_INV_OPCODE = 0x06,
RDMAP_STREAM_CATA = 0x07,
RDMAP_GLOBAL_CATA = 0x08,
RDMAP_CANT_INV_STAG = 0x09,
RDMAP_UNSPECIFIED = 0xff
};
enum c4iw_ddp_ecodes {
DDPT_INV_STAG = 0x00,
DDPT_BASE_BOUNDS = 0x01,
DDPT_STAG_NOT_ASSOC = 0x02,
DDPT_TO_WRAP = 0x03,
DDPT_INV_VERS = 0x04,
DDPU_INV_QN = 0x01,
DDPU_INV_MSN_NOBUF = 0x02,
DDPU_INV_MSN_RANGE = 0x03,
DDPU_INV_MO = 0x04,
DDPU_MSG_TOOBIG = 0x05,
DDPU_INV_VERS = 0x06
};
enum c4iw_mpa_ecodes {
MPA_CRC_ERR = 0x02,
MPA_MARKER_ERR = 0x03,
MPA_LOCAL_CATA = 0x05,
MPA_INSUFF_IRD = 0x06,
MPA_NOMATCH_RTR = 0x07,
};
enum c4iw_ep_state {
IDLE = 0,
LISTEN,
CONNECTING,
MPA_REQ_WAIT,
MPA_REQ_SENT,
MPA_REQ_RCVD,
MPA_REP_SENT,
FPDU_MODE,
ABORTING,
CLOSING,
MORIBUND,
DEAD,
};
enum c4iw_ep_flags {
PEER_ABORT_IN_PROGRESS = 0,
ABORT_REQ_IN_PROGRESS = 1,
RELEASE_RESOURCES = 2,
CLOSE_SENT = 3,
QP_REFERENCED = 5,
};
enum c4iw_ep_history {
ACT_OPEN_REQ = 0,
ACT_OFLD_CONN = 1,
ACT_OPEN_RPL = 2,
ACT_ESTAB = 3,
PASS_ACCEPT_REQ = 4,
PASS_ESTAB = 5,
ABORT_UPCALL = 6,
ESTAB_UPCALL = 7,
CLOSE_UPCALL = 8,
ULP_ACCEPT = 9,
ULP_REJECT = 10,
TIMEDOUT = 11,
PEER_ABORT = 12,
PEER_CLOSE = 13,
CONNREQ_UPCALL = 14,
ABORT_CONN = 15,
DISCONN_UPCALL = 16,
EP_DISC_CLOSE = 17,
EP_DISC_ABORT = 18,
CONN_RPL_UPCALL = 19,
ACT_RETRY_NOMEM = 20,
ACT_RETRY_INUSE = 21
};
struct c4iw_ep_common {
struct iw_cm_id *cm_id;
struct c4iw_qp *qp;
struct c4iw_dev *dev;
enum c4iw_ep_state state;
struct kref kref;
struct mutex mutex;
struct sockaddr_in local_addr;
struct sockaddr_in remote_addr;
struct c4iw_wr_wait wr_wait;
unsigned long flags;
unsigned long history;
};
struct c4iw_listen_ep {
struct c4iw_ep_common com;
unsigned int stid;
int backlog;
};
struct c4iw_ep {
struct c4iw_ep_common com;
struct c4iw_ep *parent_ep;
struct timer_list timer;
struct list_head entry;
unsigned int atid;
u32 hwtid;
u32 snd_seq;
u32 rcv_seq;
struct l2t_entry *l2t;
struct dst_entry *dst;
struct sk_buff *mpa_skb;
struct c4iw_mpa_attributes mpa_attr;
u8 mpa_pkt[sizeof(struct mpa_message) + MPA_MAX_PRIVATE_DATA];
unsigned int mpa_pkt_len;
u32 ird;
u32 ord;
u32 smac_idx;
u32 tx_chan;
u32 mtu;
u16 mss;
u16 emss;
u16 plen;
u16 rss_qid;
u16 txq_idx;
u16 ctrlq_idx;
u8 tos;
u8 retry_with_mpa_v1;
u8 tried_with_mpa_v1;
unsigned int retry_count;
};
static inline struct c4iw_ep *to_ep(struct iw_cm_id *cm_id)
{
return cm_id->provider_data;
}
static inline struct c4iw_listen_ep *to_listen_ep(struct iw_cm_id *cm_id)
{
return cm_id->provider_data;
}
static inline int compute_wscale(int win)
{
int wscale = 0;
while (wscale < 14 && (65535<<wscale) < win)
wscale++;
return wscale;
}
u32 c4iw_id_alloc(struct c4iw_id_table *alloc);
void c4iw_id_free(struct c4iw_id_table *alloc, u32 obj);
int c4iw_id_table_alloc(struct c4iw_id_table *alloc, u32 start, u32 num,
u32 reserved, u32 flags);
void c4iw_id_table_free(struct c4iw_id_table *alloc);
typedef int (*c4iw_handler_func)(struct c4iw_dev *dev, struct sk_buff *skb);
int c4iw_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
struct l2t_entry *l2t);
void c4iw_put_qpid(struct c4iw_rdev *rdev, u32 qpid,
struct c4iw_dev_ucontext *uctx);
u32 c4iw_get_resource(struct c4iw_id_table *id_table);
void c4iw_put_resource(struct c4iw_id_table *id_table, u32 entry);
int c4iw_init_resource(struct c4iw_rdev *rdev, u32 nr_tpt, u32 nr_pdid);
int c4iw_init_ctrl_qp(struct c4iw_rdev *rdev);
int c4iw_pblpool_create(struct c4iw_rdev *rdev);
int c4iw_rqtpool_create(struct c4iw_rdev *rdev);
int c4iw_ocqp_pool_create(struct c4iw_rdev *rdev);
void c4iw_pblpool_destroy(struct c4iw_rdev *rdev);
void c4iw_rqtpool_destroy(struct c4iw_rdev *rdev);
void c4iw_ocqp_pool_destroy(struct c4iw_rdev *rdev);
void c4iw_destroy_resource(struct c4iw_resource *rscp);
int c4iw_destroy_ctrl_qp(struct c4iw_rdev *rdev);
int c4iw_register_device(struct c4iw_dev *dev);
void c4iw_unregister_device(struct c4iw_dev *dev);
int __init c4iw_cm_init(void);
void __exit c4iw_cm_term(void);
void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
struct c4iw_dev_ucontext *uctx);
void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
struct c4iw_dev_ucontext *uctx);
int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc);
int c4iw_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
struct ib_send_wr **bad_wr);
int c4iw_post_receive(struct ib_qp *ibqp, struct ib_recv_wr *wr,
struct ib_recv_wr **bad_wr);
int c4iw_bind_mw(struct ib_qp *qp, struct ib_mw *mw,
struct ib_mw_bind *mw_bind);
int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param);
int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog);
int c4iw_destroy_listen(struct iw_cm_id *cm_id);
int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param);
int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len);
void c4iw_qp_add_ref(struct ib_qp *qp);
void c4iw_qp_rem_ref(struct ib_qp *qp);
void c4iw_free_fastreg_pbl(struct ib_fast_reg_page_list *page_list);
struct ib_fast_reg_page_list *c4iw_alloc_fastreg_pbl(
struct ib_device *device,
int page_list_len);
struct ib_mr *c4iw_alloc_fast_reg_mr(struct ib_pd *pd, int pbl_depth);
int c4iw_dealloc_mw(struct ib_mw *mw);
struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd);
struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start,
u64 length, u64 virt, int acc,
struct ib_udata *udata);
struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc);
struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd,
struct ib_phys_buf *buffer_list,
int num_phys_buf,
int acc,
u64 *iova_start);
int c4iw_reregister_phys_mem(struct ib_mr *mr,
int mr_rereg_mask,
struct ib_pd *pd,
struct ib_phys_buf *buffer_list,
int num_phys_buf,
int acc, u64 *iova_start);
int c4iw_dereg_mr(struct ib_mr *ib_mr);
int c4iw_destroy_cq(struct ib_cq *ib_cq);
struct ib_cq *c4iw_create_cq(struct ib_device *ibdev, int entries,
int vector,
struct ib_ucontext *ib_context,
struct ib_udata *udata);
int c4iw_resize_cq(struct ib_cq *cq, int cqe, struct ib_udata *udata);
int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags);
int c4iw_destroy_qp(struct ib_qp *ib_qp);
struct ib_qp *c4iw_create_qp(struct ib_pd *pd,
struct ib_qp_init_attr *attrs,
struct ib_udata *udata);
int c4iw_ib_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata);
int c4iw_ib_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_qp_init_attr *init_attr);
struct ib_qp *c4iw_get_qp(struct ib_device *dev, int qpn);
u32 c4iw_rqtpool_alloc(struct c4iw_rdev *rdev, int size);
void c4iw_rqtpool_free(struct c4iw_rdev *rdev, u32 addr, int size);
u32 c4iw_pblpool_alloc(struct c4iw_rdev *rdev, int size);
void c4iw_pblpool_free(struct c4iw_rdev *rdev, u32 addr, int size);
u32 c4iw_ocqp_pool_alloc(struct c4iw_rdev *rdev, int size);
void c4iw_ocqp_pool_free(struct c4iw_rdev *rdev, u32 addr, int size);
int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb);
void c4iw_flush_hw_cq(struct t4_cq *cq);
void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count);
void c4iw_count_scqes(struct t4_cq *cq, struct t4_wq *wq, int *count);
int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp);
int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count);
int c4iw_flush_sq(struct t4_wq *wq, struct t4_cq *cq, int count);
int c4iw_ev_handler(struct c4iw_dev *rnicp, u32 qid);
u16 c4iw_rqes_posted(struct c4iw_qp *qhp);
int c4iw_post_terminate(struct c4iw_qp *qhp, struct t4_cqe *err_cqe);
u32 c4iw_get_cqid(struct c4iw_rdev *rdev, struct c4iw_dev_ucontext *uctx);
void c4iw_put_cqid(struct c4iw_rdev *rdev, u32 qid,
struct c4iw_dev_ucontext *uctx);
u32 c4iw_get_qpid(struct c4iw_rdev *rdev, struct c4iw_dev_ucontext *uctx);
void c4iw_put_qpid(struct c4iw_rdev *rdev, u32 qid,
struct c4iw_dev_ucontext *uctx);
void c4iw_ev_dispatch(struct c4iw_dev *dev, struct t4_cqe *err_cqe);
extern struct cxgb4_client t4c_client;
extern c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS];
extern int c4iw_max_read_depth;
extern int db_fc_threshold;
#endif