2013-01-22 14:26:29 +04:00
/*
* PXA2xx SPI DMA engine support .
*
* Copyright ( C ) 2013 , Intel Corporation
* Author : Mika Westerberg < mika . westerberg @ linux . intel . com >
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation .
*/
# include <linux/device.h>
# include <linux/dma-mapping.h>
# include <linux/dmaengine.h>
# include <linux/pxa2xx_ssp.h>
# include <linux/scatterlist.h>
# include <linux/sizes.h>
# include <linux/spi/spi.h>
# include <linux/spi/pxa2xx_spi.h>
# include "spi-pxa2xx.h"
static int pxa2xx_spi_map_dma_buffer ( struct driver_data * drv_data ,
enum dma_data_direction dir )
{
int i , nents , len = drv_data - > len ;
struct scatterlist * sg ;
struct device * dmadev ;
struct sg_table * sgt ;
void * buf , * pbuf ;
if ( dir = = DMA_TO_DEVICE ) {
dmadev = drv_data - > tx_chan - > device - > dev ;
sgt = & drv_data - > tx_sgt ;
buf = drv_data - > tx ;
drv_data - > tx_map_len = len ;
} else {
dmadev = drv_data - > rx_chan - > device - > dev ;
sgt = & drv_data - > rx_sgt ;
buf = drv_data - > rx ;
drv_data - > rx_map_len = len ;
}
nents = DIV_ROUND_UP ( len , SZ_2K ) ;
if ( nents ! = sgt - > nents ) {
int ret ;
sg_free_table ( sgt ) ;
2013-06-18 18:29:44 +04:00
ret = sg_alloc_table ( sgt , nents , GFP_ATOMIC ) ;
2013-01-22 14:26:29 +04:00
if ( ret )
return ret ;
}
pbuf = buf ;
for_each_sg ( sgt - > sgl , sg , sgt - > nents , i ) {
size_t bytes = min_t ( size_t , len , SZ_2K ) ;
if ( buf )
sg_set_buf ( sg , pbuf , bytes ) ;
else
sg_set_buf ( sg , drv_data - > dummy , bytes ) ;
pbuf + = bytes ;
len - = bytes ;
}
nents = dma_map_sg ( dmadev , sgt - > sgl , sgt - > nents , dir ) ;
if ( ! nents )
return - ENOMEM ;
return nents ;
}
static void pxa2xx_spi_unmap_dma_buffer ( struct driver_data * drv_data ,
enum dma_data_direction dir )
{
struct device * dmadev ;
struct sg_table * sgt ;
if ( dir = = DMA_TO_DEVICE ) {
dmadev = drv_data - > tx_chan - > device - > dev ;
sgt = & drv_data - > tx_sgt ;
} else {
dmadev = drv_data - > rx_chan - > device - > dev ;
sgt = & drv_data - > rx_sgt ;
}
dma_unmap_sg ( dmadev , sgt - > sgl , sgt - > nents , dir ) ;
}
static void pxa2xx_spi_unmap_dma_buffers ( struct driver_data * drv_data )
{
if ( ! drv_data - > dma_mapped )
return ;
pxa2xx_spi_unmap_dma_buffer ( drv_data , DMA_FROM_DEVICE ) ;
pxa2xx_spi_unmap_dma_buffer ( drv_data , DMA_TO_DEVICE ) ;
drv_data - > dma_mapped = 0 ;
}
static void pxa2xx_spi_dma_transfer_complete ( struct driver_data * drv_data ,
bool error )
{
struct spi_message * msg = drv_data - > cur_msg ;
/*
* It is possible that one CPU is handling ROR interrupt and other
* just gets DMA completion . Calling pump_transfers ( ) twice for the
* same transfer leads to problems thus we prevent concurrent calls
* by using - > dma_running .
*/
if ( atomic_dec_and_test ( & drv_data - > dma_running ) ) {
void __iomem * reg = drv_data - > ioaddr ;
/*
* If the other CPU is still handling the ROR interrupt we
* might not know about the error yet . So we re - check the
* ROR bit here before we clear the status register .
*/
if ( ! error ) {
u32 status = read_SSSR ( reg ) & drv_data - > mask_sr ;
error = status & SSSR_ROR ;
}
/* Clear status & disable interrupts */
write_SSCR1 ( read_SSCR1 ( reg ) & ~ drv_data - > dma_cr1 , reg ) ;
write_SSSR_CS ( drv_data , drv_data - > clear_sr ) ;
if ( ! pxa25x_ssp_comp ( drv_data ) )
write_SSTO ( 0 , reg ) ;
if ( ! error ) {
pxa2xx_spi_unmap_dma_buffers ( drv_data ) ;
drv_data - > tx + = drv_data - > tx_map_len ;
drv_data - > rx + = drv_data - > rx_map_len ;
msg - > actual_length + = drv_data - > len ;
msg - > state = pxa2xx_spi_next_transfer ( drv_data ) ;
} else {
/* In case we got an error we disable the SSP now */
write_SSCR0 ( read_SSCR0 ( reg ) & ~ SSCR0_SSE , reg ) ;
msg - > state = ERROR_STATE ;
}
tasklet_schedule ( & drv_data - > pump_transfers ) ;
}
}
static void pxa2xx_spi_dma_callback ( void * data )
{
pxa2xx_spi_dma_transfer_complete ( data , false ) ;
}
static struct dma_async_tx_descriptor *
pxa2xx_spi_dma_prepare_one ( struct driver_data * drv_data ,
enum dma_transfer_direction dir )
{
struct pxa2xx_spi_master * pdata = drv_data - > master_info ;
struct chip_data * chip = drv_data - > cur_chip ;
enum dma_slave_buswidth width ;
struct dma_slave_config cfg ;
struct dma_chan * chan ;
struct sg_table * sgt ;
int nents , ret ;
switch ( drv_data - > n_bytes ) {
case 1 :
width = DMA_SLAVE_BUSWIDTH_1_BYTE ;
break ;
case 2 :
width = DMA_SLAVE_BUSWIDTH_2_BYTES ;
break ;
default :
width = DMA_SLAVE_BUSWIDTH_4_BYTES ;
break ;
}
memset ( & cfg , 0 , sizeof ( cfg ) ) ;
cfg . direction = dir ;
if ( dir = = DMA_MEM_TO_DEV ) {
cfg . dst_addr = drv_data - > ssdr_physical ;
cfg . dst_addr_width = width ;
cfg . dst_maxburst = chip - > dma_burst_size ;
cfg . slave_id = pdata - > tx_slave_id ;
sgt = & drv_data - > tx_sgt ;
nents = drv_data - > tx_nents ;
chan = drv_data - > tx_chan ;
} else {
cfg . src_addr = drv_data - > ssdr_physical ;
cfg . src_addr_width = width ;
cfg . src_maxburst = chip - > dma_burst_size ;
cfg . slave_id = pdata - > rx_slave_id ;
sgt = & drv_data - > rx_sgt ;
nents = drv_data - > rx_nents ;
chan = drv_data - > rx_chan ;
}
ret = dmaengine_slave_config ( chan , & cfg ) ;
if ( ret ) {
dev_warn ( & drv_data - > pdev - > dev , " DMA slave config failed \n " ) ;
return NULL ;
}
return dmaengine_prep_slave_sg ( chan , sgt - > sgl , nents , dir ,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK ) ;
}
static bool pxa2xx_spi_dma_filter ( struct dma_chan * chan , void * param )
{
const struct pxa2xx_spi_master * pdata = param ;
return chan - > chan_id = = pdata - > tx_chan_id | |
chan - > chan_id = = pdata - > rx_chan_id ;
}
bool pxa2xx_spi_dma_is_possible ( size_t len )
{
return len < = MAX_DMA_LEN ;
}
int pxa2xx_spi_map_dma_buffers ( struct driver_data * drv_data )
{
const struct chip_data * chip = drv_data - > cur_chip ;
int ret ;
if ( ! chip - > enable_dma )
return 0 ;
/* Don't bother with DMA if we can't do even a single burst */
if ( drv_data - > len < chip - > dma_burst_size )
return 0 ;
ret = pxa2xx_spi_map_dma_buffer ( drv_data , DMA_TO_DEVICE ) ;
if ( ret < = 0 ) {
dev_warn ( & drv_data - > pdev - > dev , " failed to DMA map TX \n " ) ;
return 0 ;
}
drv_data - > tx_nents = ret ;
ret = pxa2xx_spi_map_dma_buffer ( drv_data , DMA_FROM_DEVICE ) ;
if ( ret < = 0 ) {
pxa2xx_spi_unmap_dma_buffer ( drv_data , DMA_TO_DEVICE ) ;
dev_warn ( & drv_data - > pdev - > dev , " failed to DMA map RX \n " ) ;
return 0 ;
}
drv_data - > rx_nents = ret ;
return 1 ;
}
irqreturn_t pxa2xx_spi_dma_transfer ( struct driver_data * drv_data )
{
u32 status ;
status = read_SSSR ( drv_data - > ioaddr ) & drv_data - > mask_sr ;
if ( status & SSSR_ROR ) {
dev_err ( & drv_data - > pdev - > dev , " FIFO overrun \n " ) ;
dmaengine_terminate_all ( drv_data - > rx_chan ) ;
dmaengine_terminate_all ( drv_data - > tx_chan ) ;
pxa2xx_spi_dma_transfer_complete ( drv_data , true ) ;
return IRQ_HANDLED ;
}
return IRQ_NONE ;
}
int pxa2xx_spi_dma_prepare ( struct driver_data * drv_data , u32 dma_burst )
{
struct dma_async_tx_descriptor * tx_desc , * rx_desc ;
tx_desc = pxa2xx_spi_dma_prepare_one ( drv_data , DMA_MEM_TO_DEV ) ;
if ( ! tx_desc ) {
dev_err ( & drv_data - > pdev - > dev ,
" failed to get DMA TX descriptor \n " ) ;
return - EBUSY ;
}
rx_desc = pxa2xx_spi_dma_prepare_one ( drv_data , DMA_DEV_TO_MEM ) ;
if ( ! rx_desc ) {
dev_err ( & drv_data - > pdev - > dev ,
" failed to get DMA RX descriptor \n " ) ;
return - EBUSY ;
}
/* We are ready when RX completes */
rx_desc - > callback = pxa2xx_spi_dma_callback ;
rx_desc - > callback_param = drv_data ;
dmaengine_submit ( rx_desc ) ;
dmaengine_submit ( tx_desc ) ;
return 0 ;
}
void pxa2xx_spi_dma_start ( struct driver_data * drv_data )
{
dma_async_issue_pending ( drv_data - > rx_chan ) ;
dma_async_issue_pending ( drv_data - > tx_chan ) ;
atomic_set ( & drv_data - > dma_running , 1 ) ;
}
int pxa2xx_spi_dma_setup ( struct driver_data * drv_data )
{
struct pxa2xx_spi_master * pdata = drv_data - > master_info ;
2013-05-13 14:45:10 +04:00
struct device * dev = & drv_data - > pdev - > dev ;
2013-01-22 14:26:29 +04:00
dma_cap_mask_t mask ;
dma_cap_zero ( mask ) ;
dma_cap_set ( DMA_SLAVE , mask ) ;
2013-05-13 14:45:10 +04:00
drv_data - > dummy = devm_kzalloc ( dev , SZ_2K , GFP_KERNEL ) ;
2013-01-22 14:26:29 +04:00
if ( ! drv_data - > dummy )
return - ENOMEM ;
2013-05-13 14:45:10 +04:00
drv_data - > tx_chan = dma_request_slave_channel_compat ( mask ,
pxa2xx_spi_dma_filter , pdata , dev , " tx " ) ;
2013-01-22 14:26:29 +04:00
if ( ! drv_data - > tx_chan )
return - ENODEV ;
2013-05-13 14:45:10 +04:00
drv_data - > rx_chan = dma_request_slave_channel_compat ( mask ,
pxa2xx_spi_dma_filter , pdata , dev , " rx " ) ;
2013-01-22 14:26:29 +04:00
if ( ! drv_data - > rx_chan ) {
dma_release_channel ( drv_data - > tx_chan ) ;
drv_data - > tx_chan = NULL ;
return - ENODEV ;
}
return 0 ;
}
void pxa2xx_spi_dma_release ( struct driver_data * drv_data )
{
if ( drv_data - > rx_chan ) {
dmaengine_terminate_all ( drv_data - > rx_chan ) ;
dma_release_channel ( drv_data - > rx_chan ) ;
sg_free_table ( & drv_data - > rx_sgt ) ;
drv_data - > rx_chan = NULL ;
}
if ( drv_data - > tx_chan ) {
dmaengine_terminate_all ( drv_data - > tx_chan ) ;
dma_release_channel ( drv_data - > tx_chan ) ;
sg_free_table ( & drv_data - > tx_sgt ) ;
drv_data - > tx_chan = NULL ;
}
}
void pxa2xx_spi_dma_resume ( struct driver_data * drv_data )
{
}
int pxa2xx_spi_set_dma_burst_and_threshold ( struct chip_data * chip ,
struct spi_device * spi ,
u8 bits_per_word , u32 * burst_code ,
u32 * threshold )
{
struct pxa2xx_spi_chip * chip_info = spi - > controller_data ;
/*
* If the DMA burst size is given in chip_info we use that ,
* otherwise we use the default . Also we use the default FIFO
* thresholds for now .
*/
2014-06-05 21:45:09 +04:00
* burst_code = chip_info ? chip_info - > dma_burst_size : 1 ;
2013-01-22 14:26:29 +04:00
* threshold = SSCR1_RxTresh ( RX_THRESH_DFLT )
| SSCR1_TxTresh ( TX_THRESH_DFLT ) ;
return 0 ;
}