2008-03-01 07:42:48 -07:00
/*
* Freescale MPC85xx , MPC83xx DMA Engine support
*
* Copyright ( C ) 2007 Freescale Semiconductor , Inc . All rights reserved .
*
* Author :
* Zhang Wei < wei . zhang @ freescale . com > , Jul 2007
* Ebony Zhu < ebony . zhu @ freescale . com > , May 2007
*
* Description :
* DMA engine driver for Freescale MPC8540 DMA controller , which is
* also fit for MPC8560 , MPC8555 , MPC8548 , MPC8641 , and etc .
* The support for MPC8349 DMA contorller is also added .
*
2009-04-23 16:17:54 -07:00
* This driver instructs the DMA controller to issue the PCI Read Multiple
* command for PCI read operations , instead of using the default PCI Read Line
* command . Please be aware that this setting may result in read pre - fetching
* on some platforms .
*
2008-03-01 07:42:48 -07:00
* This is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
*/
# include <linux/init.h>
# include <linux/module.h>
# include <linux/pci.h>
# include <linux/interrupt.h>
# include <linux/dmaengine.h>
# include <linux/delay.h>
# include <linux/dma-mapping.h>
# include <linux/dmapool.h>
# include <linux/of_platform.h>
2009-09-08 17:53:04 -07:00
# include <asm/fsldma.h>
2008-03-01 07:42:48 -07:00
# include "fsldma.h"
static void dma_init ( struct fsl_dma_chan * fsl_chan )
{
/* Reset the channel */
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr , 0 , 32 ) ;
switch ( fsl_chan - > feature & FSL_DMA_IP_MASK ) {
case FSL_DMA_IP_85XX :
/* Set the channel to below modes:
* EIE - Error interrupt enable
* EOSIE - End of segments interrupt enable ( basic mode )
* EOLNIE - End of links interrupt enable
*/
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr , FSL_DMA_MR_EIE
| FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE , 32 ) ;
break ;
case FSL_DMA_IP_83XX :
/* Set the channel to below modes:
* EOTIE - End - of - transfer interrupt enable
2009-04-23 16:17:54 -07:00
* PRC_RM - PCI read multiple
2008-03-01 07:42:48 -07:00
*/
2009-04-23 16:17:54 -07:00
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr , FSL_DMA_MR_EOTIE
| FSL_DMA_MR_PRC_RM , 32 ) ;
2008-03-01 07:42:48 -07:00
break ;
}
}
2008-03-13 10:45:27 -07:00
static void set_sr ( struct fsl_dma_chan * fsl_chan , u32 val )
2008-03-01 07:42:48 -07:00
{
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > sr , val , 32 ) ;
}
2008-03-13 10:45:27 -07:00
static u32 get_sr ( struct fsl_dma_chan * fsl_chan )
2008-03-01 07:42:48 -07:00
{
return DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > sr , 32 ) ;
}
static void set_desc_cnt ( struct fsl_dma_chan * fsl_chan ,
struct fsl_dma_ld_hw * hw , u32 count )
{
hw - > count = CPU_TO_DMA ( fsl_chan , count , 32 ) ;
}
static void set_desc_src ( struct fsl_dma_chan * fsl_chan ,
struct fsl_dma_ld_hw * hw , dma_addr_t src )
{
u64 snoop_bits ;
snoop_bits = ( ( fsl_chan - > feature & FSL_DMA_IP_MASK ) = = FSL_DMA_IP_85XX )
? ( ( u64 ) FSL_DMA_SATR_SREADTYPE_SNOOP_READ < < 32 ) : 0 ;
hw - > src_addr = CPU_TO_DMA ( fsl_chan , snoop_bits | src , 64 ) ;
}
static void set_desc_dest ( struct fsl_dma_chan * fsl_chan ,
struct fsl_dma_ld_hw * hw , dma_addr_t dest )
{
u64 snoop_bits ;
snoop_bits = ( ( fsl_chan - > feature & FSL_DMA_IP_MASK ) = = FSL_DMA_IP_85XX )
? ( ( u64 ) FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE < < 32 ) : 0 ;
hw - > dst_addr = CPU_TO_DMA ( fsl_chan , snoop_bits | dest , 64 ) ;
}
static void set_desc_next ( struct fsl_dma_chan * fsl_chan ,
struct fsl_dma_ld_hw * hw , dma_addr_t next )
{
u64 snoop_bits ;
snoop_bits = ( ( fsl_chan - > feature & FSL_DMA_IP_MASK ) = = FSL_DMA_IP_83XX )
? FSL_DMA_SNEN : 0 ;
hw - > next_ln_addr = CPU_TO_DMA ( fsl_chan , snoop_bits | next , 64 ) ;
}
static void set_cdar ( struct fsl_dma_chan * fsl_chan , dma_addr_t addr )
{
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > cdar , addr | FSL_DMA_SNEN , 64 ) ;
}
static dma_addr_t get_cdar ( struct fsl_dma_chan * fsl_chan )
{
return DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > cdar , 64 ) & ~ FSL_DMA_SNEN ;
}
static void set_ndar ( struct fsl_dma_chan * fsl_chan , dma_addr_t addr )
{
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > ndar , addr , 64 ) ;
}
static dma_addr_t get_ndar ( struct fsl_dma_chan * fsl_chan )
{
return DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > ndar , 64 ) ;
}
2008-03-18 18:45:00 -07:00
static u32 get_bcr ( struct fsl_dma_chan * fsl_chan )
{
return DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > bcr , 32 ) ;
}
2008-03-01 07:42:48 -07:00
static int dma_is_idle ( struct fsl_dma_chan * fsl_chan )
{
u32 sr = get_sr ( fsl_chan ) ;
return ( ! ( sr & FSL_DMA_SR_CB ) ) | | ( sr & FSL_DMA_SR_CH ) ;
}
static void dma_start ( struct fsl_dma_chan * fsl_chan )
{
2009-06-28 09:26:20 -07:00
u32 mr_set = 0 ;
2008-03-01 07:42:48 -07:00
if ( fsl_chan - > feature & FSL_DMA_CHAN_PAUSE_EXT ) {
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > bcr , 0 , 32 ) ;
mr_set | = FSL_DMA_MR_EMP_EN ;
2009-05-28 09:26:40 +00:00
} else if ( ( fsl_chan - > feature & FSL_DMA_IP_MASK ) = = FSL_DMA_IP_85XX ) {
2008-03-01 07:42:48 -07:00
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr ,
DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > mr , 32 )
& ~ FSL_DMA_MR_EMP_EN , 32 ) ;
2009-05-28 09:26:40 +00:00
}
2008-03-01 07:42:48 -07:00
if ( fsl_chan - > feature & FSL_DMA_CHAN_START_EXT )
mr_set | = FSL_DMA_MR_EMS_EN ;
else
mr_set | = FSL_DMA_MR_CS ;
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr ,
DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > mr , 32 )
| mr_set , 32 ) ;
}
static void dma_halt ( struct fsl_dma_chan * fsl_chan )
{
2009-03-02 15:33:46 -07:00
int i ;
2008-03-01 07:42:48 -07:00
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr ,
DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > mr , 32 ) | FSL_DMA_MR_CA ,
32 ) ;
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr ,
DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > mr , 32 ) & ~ ( FSL_DMA_MR_CS
| FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA ) , 32 ) ;
2009-03-02 15:33:46 -07:00
for ( i = 0 ; i < 100 ; i + + ) {
if ( dma_is_idle ( fsl_chan ) )
break ;
2008-03-01 07:42:48 -07:00
udelay ( 10 ) ;
2009-03-02 15:33:46 -07:00
}
2008-03-01 07:42:48 -07:00
if ( i > = 100 & & ! dma_is_idle ( fsl_chan ) )
dev_err ( fsl_chan - > dev , " DMA halt timeout! \n " ) ;
}
static void set_ld_eol ( struct fsl_dma_chan * fsl_chan ,
struct fsl_desc_sw * desc )
{
2009-05-15 11:33:20 -07:00
u64 snoop_bits ;
snoop_bits = ( ( fsl_chan - > feature & FSL_DMA_IP_MASK ) = = FSL_DMA_IP_83XX )
? FSL_DMA_SNEN : 0 ;
2008-03-01 07:42:48 -07:00
desc - > hw . next_ln_addr = CPU_TO_DMA ( fsl_chan ,
2009-05-15 11:33:20 -07:00
DMA_TO_CPU ( fsl_chan , desc - > hw . next_ln_addr , 64 ) | FSL_DMA_EOL
| snoop_bits , 64 ) ;
2008-03-01 07:42:48 -07:00
}
static void append_ld_queue ( struct fsl_dma_chan * fsl_chan ,
struct fsl_desc_sw * new_desc )
{
struct fsl_desc_sw * queue_tail = to_fsl_desc ( fsl_chan - > ld_queue . prev ) ;
if ( list_empty ( & fsl_chan - > ld_queue ) )
return ;
/* Link to the new descriptor physical address and
* Enable End - of - segment interrupt for
* the last link descriptor .
* ( the previous node ' s next link descriptor )
*
* For FSL_DMA_IP_83xx , the snoop enable bit need be set .
*/
queue_tail - > hw . next_ln_addr = CPU_TO_DMA ( fsl_chan ,
new_desc - > async_tx . phys | FSL_DMA_EOSIE |
( ( ( fsl_chan - > feature & FSL_DMA_IP_MASK )
= = FSL_DMA_IP_83XX ) ? FSL_DMA_SNEN : 0 ) , 64 ) ;
}
/**
* fsl_chan_set_src_loop_size - Set source address hold transfer size
* @ fsl_chan : Freescale DMA channel
* @ size : Address loop size , 0 for disable loop
*
* The set source address hold transfer size . The source
* address hold or loop transfer size is when the DMA transfer
* data from source address ( SA ) , if the loop size is 4 , the DMA will
* read data from SA , SA + 1 , SA + 2 , SA + 3 , then loop back to SA ,
* SA + 1 . . . and so on .
*/
static void fsl_chan_set_src_loop_size ( struct fsl_dma_chan * fsl_chan , int size )
{
switch ( size ) {
case 0 :
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr ,
DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > mr , 32 ) &
( ~ FSL_DMA_MR_SAHE ) , 32 ) ;
break ;
case 1 :
case 2 :
case 4 :
case 8 :
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr ,
DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > mr , 32 ) |
FSL_DMA_MR_SAHE | ( __ilog2 ( size ) < < 14 ) ,
32 ) ;
break ;
}
}
/**
* fsl_chan_set_dest_loop_size - Set destination address hold transfer size
* @ fsl_chan : Freescale DMA channel
* @ size : Address loop size , 0 for disable loop
*
* The set destination address hold transfer size . The destination
* address hold or loop transfer size is when the DMA transfer
* data to destination address ( TA ) , if the loop size is 4 , the DMA will
* write data to TA , TA + 1 , TA + 2 , TA + 3 , then loop back to TA ,
* TA + 1 . . . and so on .
*/
static void fsl_chan_set_dest_loop_size ( struct fsl_dma_chan * fsl_chan , int size )
{
switch ( size ) {
case 0 :
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr ,
DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > mr , 32 ) &
( ~ FSL_DMA_MR_DAHE ) , 32 ) ;
break ;
case 1 :
case 2 :
case 4 :
case 8 :
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr ,
DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > mr , 32 ) |
FSL_DMA_MR_DAHE | ( __ilog2 ( size ) < < 16 ) ,
32 ) ;
break ;
}
}
/**
2009-09-08 17:53:04 -07:00
* fsl_chan_set_request_count - Set DMA Request Count for external control
2008-03-01 07:42:48 -07:00
* @ fsl_chan : Freescale DMA channel
2009-09-08 17:53:04 -07:00
* @ size : Number of bytes to transfer in a single request
*
* The Freescale DMA channel can be controlled by the external signal DREQ # .
* The DMA request count is how many bytes are allowed to transfer before
* pausing the channel , after which a new assertion of DREQ # resumes channel
* operation .
2008-03-01 07:42:48 -07:00
*
2009-09-08 17:53:04 -07:00
* A size of 0 disables external pause control . The maximum size is 1024.
2008-03-01 07:42:48 -07:00
*/
2009-09-08 17:53:04 -07:00
static void fsl_chan_set_request_count ( struct fsl_dma_chan * fsl_chan , int size )
2008-03-01 07:42:48 -07:00
{
2009-09-08 17:53:04 -07:00
BUG_ON ( size > 1024 ) ;
DMA_OUT ( fsl_chan , & fsl_chan - > reg_base - > mr ,
DMA_IN ( fsl_chan , & fsl_chan - > reg_base - > mr , 32 )
| ( ( __ilog2 ( size ) < < 24 ) & 0x0f000000 ) ,
32 ) ;
}
2008-03-01 07:42:48 -07:00
2009-09-08 17:53:04 -07:00
/**
* fsl_chan_toggle_ext_pause - Toggle channel external pause status
* @ fsl_chan : Freescale DMA channel
* @ enable : 0 is disabled , 1 is enabled .
*
* The Freescale DMA channel can be controlled by the external signal DREQ # .
* The DMA Request Count feature should be used in addition to this feature
* to set the number of bytes to transfer before pausing the channel .
*/
static void fsl_chan_toggle_ext_pause ( struct fsl_dma_chan * fsl_chan , int enable )
{
if ( enable )
2008-03-01 07:42:48 -07:00
fsl_chan - > feature | = FSL_DMA_CHAN_PAUSE_EXT ;
2009-09-08 17:53:04 -07:00
else
2008-03-01 07:42:48 -07:00
fsl_chan - > feature & = ~ FSL_DMA_CHAN_PAUSE_EXT ;
}
/**
* fsl_chan_toggle_ext_start - Toggle channel external start status
* @ fsl_chan : Freescale DMA channel
* @ enable : 0 is disabled , 1 is enabled .
*
* If enable the external start , the channel can be started by an
* external DMA start pin . So the dma_start ( ) does not start the
* transfer immediately . The DMA channel will wait for the
* control pin asserted .
*/
static void fsl_chan_toggle_ext_start ( struct fsl_dma_chan * fsl_chan , int enable )
{
if ( enable )
fsl_chan - > feature | = FSL_DMA_CHAN_START_EXT ;
else
fsl_chan - > feature & = ~ FSL_DMA_CHAN_START_EXT ;
}
static dma_cookie_t fsl_dma_tx_submit ( struct dma_async_tx_descriptor * tx )
{
struct fsl_dma_chan * fsl_chan = to_fsl_chan ( tx - > chan ) ;
2009-09-08 17:53:02 -07:00
struct fsl_desc_sw * desc = tx_to_fsl_desc ( tx ) ;
struct fsl_desc_sw * child ;
2008-03-01 07:42:48 -07:00
unsigned long flags ;
dma_cookie_t cookie ;
/* cookie increment and adding to ld_queue must be atomic */
spin_lock_irqsave ( & fsl_chan - > desc_lock , flags ) ;
cookie = fsl_chan - > common . cookie ;
2009-09-08 17:53:02 -07:00
list_for_each_entry ( child , & desc - > tx_list , node ) {
fsldma: fix infinite loop on multi-descriptor DMA chain completion
When creating a DMA transaction with multiple descriptors, the async_tx
cookie is set to 0 for each descriptor in the chain, excluding the last
descriptor, whose cookie is set to -EBUSY.
When fsl_dma_tx_submit() is run, it only assigns a cookie to the first
descriptor. All of the remaining descriptors keep their original value,
including the last descriptor, which is set to -EBUSY.
After the DMA completes, the driver will update the last completed cookie
to be -EBUSY, which is an error code instead of a valid cookie. This causes
dma_async_is_complete() to always return DMA_IN_PROGRESS.
This causes the fsldma driver to never cleanup the queue of link
descriptors, and the driver will re-run the DMA transaction on the hardware
each time it receives the End-of-Chain interrupt. This causes an infinite
loop.
With this patch, fsl_dma_tx_submit() is changed to assign a cookie to every
descriptor in the chain. The rest of the code then works without problems.
Signed-off-by: Ira W. Snyder <iws@ovro.caltech.edu>
Signed-off-by: Li Yang <leoli@freescale.com>
2009-05-15 14:27:16 -07:00
cookie + + ;
if ( cookie < 0 )
cookie = 1 ;
desc - > async_tx . cookie = cookie ;
}
fsl_chan - > common . cookie = cookie ;
2009-09-08 17:53:02 -07:00
append_ld_queue ( fsl_chan , desc ) ;
list_splice_init ( & desc - > tx_list , fsl_chan - > ld_queue . prev ) ;
2008-03-01 07:42:48 -07:00
spin_unlock_irqrestore ( & fsl_chan - > desc_lock , flags ) ;
return cookie ;
}
/**
* fsl_dma_alloc_descriptor - Allocate descriptor from channel ' s DMA pool .
* @ fsl_chan : Freescale DMA channel
*
* Return - The descriptor allocated . NULL for failed .
*/
static struct fsl_desc_sw * fsl_dma_alloc_descriptor (
struct fsl_dma_chan * fsl_chan )
{
dma_addr_t pdesc ;
struct fsl_desc_sw * desc_sw ;
desc_sw = dma_pool_alloc ( fsl_chan - > desc_pool , GFP_ATOMIC , & pdesc ) ;
if ( desc_sw ) {
memset ( desc_sw , 0 , sizeof ( struct fsl_desc_sw ) ) ;
2009-09-08 17:53:02 -07:00
INIT_LIST_HEAD ( & desc_sw - > tx_list ) ;
2008-03-01 07:42:48 -07:00
dma_async_tx_descriptor_init ( & desc_sw - > async_tx ,
& fsl_chan - > common ) ;
desc_sw - > async_tx . tx_submit = fsl_dma_tx_submit ;
desc_sw - > async_tx . phys = pdesc ;
}
return desc_sw ;
}
/**
* fsl_dma_alloc_chan_resources - Allocate resources for DMA channel .
* @ fsl_chan : Freescale DMA channel
*
* This function will create a dma pool for descriptor allocation .
*
* Return - The number of descriptors allocated .
*/
2009-01-06 11:38:17 -07:00
static int fsl_dma_alloc_chan_resources ( struct dma_chan * chan )
2008-03-01 07:42:48 -07:00
{
struct fsl_dma_chan * fsl_chan = to_fsl_chan ( chan ) ;
2008-09-26 17:00:11 -07:00
/* Has this channel already been allocated? */
if ( fsl_chan - > desc_pool )
return 1 ;
2008-03-01 07:42:48 -07:00
/* We need the descriptor to be aligned to 32bytes
* for meeting FSL DMA specification requirement .
*/
fsl_chan - > desc_pool = dma_pool_create ( " fsl_dma_engine_desc_pool " ,
fsl_chan - > dev , sizeof ( struct fsl_desc_sw ) ,
32 , 0 ) ;
if ( ! fsl_chan - > desc_pool ) {
dev_err ( fsl_chan - > dev , " No memory for channel %d "
" descriptor dma pool. \n " , fsl_chan - > id ) ;
return 0 ;
}
return 1 ;
}
/**
* fsl_dma_free_chan_resources - Free all resources of the channel .
* @ fsl_chan : Freescale DMA channel
*/
static void fsl_dma_free_chan_resources ( struct dma_chan * chan )
{
struct fsl_dma_chan * fsl_chan = to_fsl_chan ( chan ) ;
struct fsl_desc_sw * desc , * _desc ;
unsigned long flags ;
dev_dbg ( fsl_chan - > dev , " Free all channel resources. \n " ) ;
spin_lock_irqsave ( & fsl_chan - > desc_lock , flags ) ;
list_for_each_entry_safe ( desc , _desc , & fsl_chan - > ld_queue , node ) {
# ifdef FSL_DMA_LD_DEBUG
dev_dbg ( fsl_chan - > dev ,
" LD %p will be released. \n " , desc ) ;
# endif
list_del ( & desc - > node ) ;
/* free link descriptor */
dma_pool_free ( fsl_chan - > desc_pool , desc , desc - > async_tx . phys ) ;
}
spin_unlock_irqrestore ( & fsl_chan - > desc_lock , flags ) ;
dma_pool_destroy ( fsl_chan - > desc_pool ) ;
2008-09-26 17:00:11 -07:00
fsl_chan - > desc_pool = NULL ;
2008-03-01 07:42:48 -07:00
}
2008-03-13 17:45:28 -07:00
static struct dma_async_tx_descriptor *
2008-04-17 20:17:26 -07:00
fsl_dma_prep_interrupt ( struct dma_chan * chan , unsigned long flags )
2008-03-13 17:45:28 -07:00
{
struct fsl_dma_chan * fsl_chan ;
struct fsl_desc_sw * new ;
if ( ! chan )
return NULL ;
fsl_chan = to_fsl_chan ( chan ) ;
new = fsl_dma_alloc_descriptor ( fsl_chan ) ;
if ( ! new ) {
dev_err ( fsl_chan - > dev , " No free memory for link descriptor \n " ) ;
return NULL ;
}
new - > async_tx . cookie = - EBUSY ;
2008-04-17 20:17:26 -07:00
new - > async_tx . flags = flags ;
2008-03-13 17:45:28 -07:00
2008-03-18 18:45:00 -07:00
/* Insert the link descriptor to the LD ring */
2009-09-08 17:53:02 -07:00
list_add_tail ( & new - > node , & new - > tx_list ) ;
2008-03-18 18:45:00 -07:00
2008-03-13 17:45:28 -07:00
/* Set End-of-link to the last link descriptor of new list*/
set_ld_eol ( fsl_chan , new ) ;
return & new - > async_tx ;
}
2008-03-01 07:42:48 -07:00
static struct dma_async_tx_descriptor * fsl_dma_prep_memcpy (
struct dma_chan * chan , dma_addr_t dma_dest , dma_addr_t dma_src ,
size_t len , unsigned long flags )
{
struct fsl_dma_chan * fsl_chan ;
struct fsl_desc_sw * first = NULL , * prev = NULL , * new ;
2009-05-15 09:59:46 -07:00
struct list_head * list ;
2008-03-01 07:42:48 -07:00
size_t copy ;
if ( ! chan )
return NULL ;
if ( ! len )
return NULL ;
fsl_chan = to_fsl_chan ( chan ) ;
do {
/* Allocate the link descriptor from DMA pool */
new = fsl_dma_alloc_descriptor ( fsl_chan ) ;
if ( ! new ) {
dev_err ( fsl_chan - > dev ,
" No free memory for link descriptor \n " ) ;
2009-05-15 09:59:46 -07:00
goto fail ;
2008-03-01 07:42:48 -07:00
}
# ifdef FSL_DMA_LD_DEBUG
dev_dbg ( fsl_chan - > dev , " new link desc alloc %p \n " , new ) ;
# endif
2008-03-13 10:45:27 -07:00
copy = min ( len , ( size_t ) FSL_DMA_BCR_MAX_CNT ) ;
2008-03-01 07:42:48 -07:00
set_desc_cnt ( fsl_chan , & new - > hw , copy ) ;
set_desc_src ( fsl_chan , & new - > hw , dma_src ) ;
set_desc_dest ( fsl_chan , & new - > hw , dma_dest ) ;
if ( ! first )
first = new ;
else
set_desc_next ( fsl_chan , & prev - > hw , new - > async_tx . phys ) ;
new - > async_tx . cookie = 0 ;
2008-04-17 20:17:26 -07:00
async_tx_ack ( & new - > async_tx ) ;
2008-03-01 07:42:48 -07:00
prev = new ;
len - = copy ;
dma_src + = copy ;
dma_dest + = copy ;
/* Insert the link descriptor to the LD ring */
2009-09-08 17:53:02 -07:00
list_add_tail ( & new - > node , & first - > tx_list ) ;
2008-03-01 07:42:48 -07:00
} while ( len ) ;
2008-04-17 20:17:26 -07:00
new - > async_tx . flags = flags ; /* client is in control of this ack */
2008-03-01 07:42:48 -07:00
new - > async_tx . cookie = - EBUSY ;
/* Set End-of-link to the last link descriptor of new list*/
set_ld_eol ( fsl_chan , new ) ;
2009-05-15 09:59:46 -07:00
return & first - > async_tx ;
fail :
if ( ! first )
return NULL ;
2009-09-08 17:53:02 -07:00
list = & first - > tx_list ;
2009-05-15 09:59:46 -07:00
list_for_each_entry_safe_reverse ( new , prev , list , node ) {
list_del ( & new - > node ) ;
dma_pool_free ( fsl_chan - > desc_pool , new , new - > async_tx . phys ) ;
}
return NULL ;
2008-03-01 07:42:48 -07:00
}
2009-09-08 17:53:04 -07:00
/**
* fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
* @ chan : DMA channel
* @ sgl : scatterlist to transfer to / from
* @ sg_len : number of entries in @ scatterlist
* @ direction : DMA direction
* @ flags : DMAEngine flags
*
* Prepare a set of descriptors for a DMA_SLAVE transaction . Following the
* DMA_SLAVE API , this gets the device - specific information from the
* chan - > private variable .
*/
static struct dma_async_tx_descriptor * fsl_dma_prep_slave_sg (
struct dma_chan * chan , struct scatterlist * sgl , unsigned int sg_len ,
enum dma_data_direction direction , unsigned long flags )
{
struct fsl_dma_chan * fsl_chan ;
struct fsl_desc_sw * first = NULL , * prev = NULL , * new = NULL ;
struct fsl_dma_slave * slave ;
struct list_head * tx_list ;
size_t copy ;
int i ;
struct scatterlist * sg ;
size_t sg_used ;
size_t hw_used ;
struct fsl_dma_hw_addr * hw ;
dma_addr_t dma_dst , dma_src ;
if ( ! chan )
return NULL ;
if ( ! chan - > private )
return NULL ;
fsl_chan = to_fsl_chan ( chan ) ;
slave = chan - > private ;
if ( list_empty ( & slave - > addresses ) )
return NULL ;
hw = list_first_entry ( & slave - > addresses , struct fsl_dma_hw_addr , entry ) ;
hw_used = 0 ;
/*
* Build the hardware transaction to copy from the scatterlist to
* the hardware , or from the hardware to the scatterlist
*
* If you are copying from the hardware to the scatterlist and it
* takes two hardware entries to fill an entire page , then both
* hardware entries will be coalesced into the same page
*
* If you are copying from the scatterlist to the hardware and a
* single page can fill two hardware entries , then the data will
* be read out of the page into the first hardware entry , and so on
*/
for_each_sg ( sgl , sg , sg_len , i ) {
sg_used = 0 ;
/* Loop until the entire scatterlist entry is used */
while ( sg_used < sg_dma_len ( sg ) ) {
/*
* If we ' ve used up the current hardware address / length
* pair , we need to load a new one
*
* This is done in a while loop so that descriptors with
* length = = 0 will be skipped
*/
while ( hw_used > = hw - > length ) {
/*
* If the current hardware entry is the last
* entry in the list , we ' re finished
*/
if ( list_is_last ( & hw - > entry , & slave - > addresses ) )
goto finished ;
/* Get the next hardware address/length pair */
hw = list_entry ( hw - > entry . next ,
struct fsl_dma_hw_addr , entry ) ;
hw_used = 0 ;
}
/* Allocate the link descriptor from DMA pool */
new = fsl_dma_alloc_descriptor ( fsl_chan ) ;
if ( ! new ) {
dev_err ( fsl_chan - > dev , " No free memory for "
" link descriptor \n " ) ;
goto fail ;
}
# ifdef FSL_DMA_LD_DEBUG
dev_dbg ( fsl_chan - > dev , " new link desc alloc %p \n " , new ) ;
# endif
/*
* Calculate the maximum number of bytes to transfer ,
* making sure it is less than the DMA controller limit
*/
copy = min_t ( size_t , sg_dma_len ( sg ) - sg_used ,
hw - > length - hw_used ) ;
copy = min_t ( size_t , copy , FSL_DMA_BCR_MAX_CNT ) ;
/*
* DMA_FROM_DEVICE
* from the hardware to the scatterlist
*
* DMA_TO_DEVICE
* from the scatterlist to the hardware
*/
if ( direction = = DMA_FROM_DEVICE ) {
dma_src = hw - > address + hw_used ;
dma_dst = sg_dma_address ( sg ) + sg_used ;
} else {
dma_src = sg_dma_address ( sg ) + sg_used ;
dma_dst = hw - > address + hw_used ;
}
/* Fill in the descriptor */
set_desc_cnt ( fsl_chan , & new - > hw , copy ) ;
set_desc_src ( fsl_chan , & new - > hw , dma_src ) ;
set_desc_dest ( fsl_chan , & new - > hw , dma_dst ) ;
/*
* If this is not the first descriptor , chain the
* current descriptor after the previous descriptor
*/
if ( ! first ) {
first = new ;
} else {
set_desc_next ( fsl_chan , & prev - > hw ,
new - > async_tx . phys ) ;
}
new - > async_tx . cookie = 0 ;
async_tx_ack ( & new - > async_tx ) ;
prev = new ;
sg_used + = copy ;
hw_used + = copy ;
/* Insert the link descriptor into the LD ring */
list_add_tail ( & new - > node , & first - > tx_list ) ;
}
}
finished :
/* All of the hardware address/length pairs had length == 0 */
if ( ! first | | ! new )
return NULL ;
new - > async_tx . flags = flags ;
new - > async_tx . cookie = - EBUSY ;
/* Set End-of-link to the last link descriptor of new list */
set_ld_eol ( fsl_chan , new ) ;
/* Enable extra controller features */
if ( fsl_chan - > set_src_loop_size )
fsl_chan - > set_src_loop_size ( fsl_chan , slave - > src_loop_size ) ;
if ( fsl_chan - > set_dest_loop_size )
fsl_chan - > set_dest_loop_size ( fsl_chan , slave - > dst_loop_size ) ;
if ( fsl_chan - > toggle_ext_start )
fsl_chan - > toggle_ext_start ( fsl_chan , slave - > external_start ) ;
if ( fsl_chan - > toggle_ext_pause )
fsl_chan - > toggle_ext_pause ( fsl_chan , slave - > external_pause ) ;
if ( fsl_chan - > set_request_count )
fsl_chan - > set_request_count ( fsl_chan , slave - > request_count ) ;
return & first - > async_tx ;
fail :
/* If first was not set, then we failed to allocate the very first
* descriptor , and we ' re done */
if ( ! first )
return NULL ;
/*
* First is set , so all of the descriptors we allocated have been added
* to first - > tx_list , INCLUDING " first " itself . Therefore we
* must traverse the list backwards freeing each descriptor in turn
*
* We ' re re - using variables for the loop , oh well
*/
tx_list = & first - > tx_list ;
list_for_each_entry_safe_reverse ( new , prev , tx_list , node ) {
list_del_init ( & new - > node ) ;
dma_pool_free ( fsl_chan - > desc_pool , new , new - > async_tx . phys ) ;
}
return NULL ;
}
static void fsl_dma_device_terminate_all ( struct dma_chan * chan )
{
struct fsl_dma_chan * fsl_chan ;
struct fsl_desc_sw * desc , * tmp ;
unsigned long flags ;
if ( ! chan )
return ;
fsl_chan = to_fsl_chan ( chan ) ;
/* Halt the DMA engine */
dma_halt ( fsl_chan ) ;
spin_lock_irqsave ( & fsl_chan - > desc_lock , flags ) ;
/* Remove and free all of the descriptors in the LD queue */
list_for_each_entry_safe ( desc , tmp , & fsl_chan - > ld_queue , node ) {
list_del ( & desc - > node ) ;
dma_pool_free ( fsl_chan - > desc_pool , desc , desc - > async_tx . phys ) ;
}
spin_unlock_irqrestore ( & fsl_chan - > desc_lock , flags ) ;
}
2008-03-01 07:42:48 -07:00
/**
* fsl_dma_update_completed_cookie - Update the completed cookie .
* @ fsl_chan : Freescale DMA channel
*/
static void fsl_dma_update_completed_cookie ( struct fsl_dma_chan * fsl_chan )
{
struct fsl_desc_sw * cur_desc , * desc ;
dma_addr_t ld_phy ;
ld_phy = get_cdar ( fsl_chan ) & FSL_DMA_NLDA_MASK ;
if ( ld_phy ) {
cur_desc = NULL ;
list_for_each_entry ( desc , & fsl_chan - > ld_queue , node )
if ( desc - > async_tx . phys = = ld_phy ) {
cur_desc = desc ;
break ;
}
if ( cur_desc & & cur_desc - > async_tx . cookie ) {
if ( dma_is_idle ( fsl_chan ) )
fsl_chan - > completed_cookie =
cur_desc - > async_tx . cookie ;
else
fsl_chan - > completed_cookie =
cur_desc - > async_tx . cookie - 1 ;
}
}
}
/**
* fsl_chan_ld_cleanup - Clean up link descriptors
* @ fsl_chan : Freescale DMA channel
*
* This function clean up the ld_queue of DMA channel .
* If ' in_intr ' is set , the function will move the link descriptor to
* the recycle list . Otherwise , free it directly .
*/
static void fsl_chan_ld_cleanup ( struct fsl_dma_chan * fsl_chan )
{
struct fsl_desc_sw * desc , * _desc ;
unsigned long flags ;
spin_lock_irqsave ( & fsl_chan - > desc_lock , flags ) ;
dev_dbg ( fsl_chan - > dev , " chan completed_cookie = %d \n " ,
fsl_chan - > completed_cookie ) ;
list_for_each_entry_safe ( desc , _desc , & fsl_chan - > ld_queue , node ) {
dma_async_tx_callback callback ;
void * callback_param ;
if ( dma_async_is_complete ( desc - > async_tx . cookie ,
fsl_chan - > completed_cookie , fsl_chan - > common . cookie )
= = DMA_IN_PROGRESS )
break ;
callback = desc - > async_tx . callback ;
callback_param = desc - > async_tx . callback_param ;
/* Remove from ld_queue list */
list_del ( & desc - > node ) ;
dev_dbg ( fsl_chan - > dev , " link descriptor %p will be recycle. \n " ,
desc ) ;
dma_pool_free ( fsl_chan - > desc_pool , desc , desc - > async_tx . phys ) ;
/* Run the link descriptor callback function */
if ( callback ) {
spin_unlock_irqrestore ( & fsl_chan - > desc_lock , flags ) ;
dev_dbg ( fsl_chan - > dev , " link descriptor %p callback \n " ,
desc ) ;
callback ( callback_param ) ;
spin_lock_irqsave ( & fsl_chan - > desc_lock , flags ) ;
}
}
spin_unlock_irqrestore ( & fsl_chan - > desc_lock , flags ) ;
}
/**
* fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue .
* @ fsl_chan : Freescale DMA channel
*/
static void fsl_chan_xfer_ld_queue ( struct fsl_dma_chan * fsl_chan )
{
struct list_head * ld_node ;
dma_addr_t next_dest_addr ;
unsigned long flags ;
2009-05-19 15:42:13 -07:00
spin_lock_irqsave ( & fsl_chan - > desc_lock , flags ) ;
2008-03-01 07:42:48 -07:00
if ( ! dma_is_idle ( fsl_chan ) )
2009-05-19 15:42:13 -07:00
goto out_unlock ;
2008-03-01 07:42:48 -07:00
dma_halt ( fsl_chan ) ;
/* If there are some link descriptors
* not transfered in queue . We need to start it .
*/
/* Find the first un-transfer desciptor */
for ( ld_node = fsl_chan - > ld_queue . next ;
( ld_node ! = & fsl_chan - > ld_queue )
& & ( dma_async_is_complete (
to_fsl_desc ( ld_node ) - > async_tx . cookie ,
fsl_chan - > completed_cookie ,
fsl_chan - > common . cookie ) = = DMA_SUCCESS ) ;
ld_node = ld_node - > next ) ;
if ( ld_node ! = & fsl_chan - > ld_queue ) {
/* Get the ld start address from ld_queue */
next_dest_addr = to_fsl_desc ( ld_node ) - > async_tx . phys ;
2009-05-13 16:25:57 -05:00
dev_dbg ( fsl_chan - > dev , " xfer LDs staring from 0x%llx \n " ,
( unsigned long long ) next_dest_addr ) ;
2008-03-01 07:42:48 -07:00
set_cdar ( fsl_chan , next_dest_addr ) ;
dma_start ( fsl_chan ) ;
} else {
set_cdar ( fsl_chan , 0 ) ;
set_ndar ( fsl_chan , 0 ) ;
}
2009-05-19 15:42:13 -07:00
out_unlock :
spin_unlock_irqrestore ( & fsl_chan - > desc_lock , flags ) ;
2008-03-01 07:42:48 -07:00
}
/**
* fsl_dma_memcpy_issue_pending - Issue the DMA start command
* @ fsl_chan : Freescale DMA channel
*/
static void fsl_dma_memcpy_issue_pending ( struct dma_chan * chan )
{
struct fsl_dma_chan * fsl_chan = to_fsl_chan ( chan ) ;
# ifdef FSL_DMA_LD_DEBUG
struct fsl_desc_sw * ld ;
unsigned long flags ;
spin_lock_irqsave ( & fsl_chan - > desc_lock , flags ) ;
if ( list_empty ( & fsl_chan - > ld_queue ) ) {
spin_unlock_irqrestore ( & fsl_chan - > desc_lock , flags ) ;
return ;
}
dev_dbg ( fsl_chan - > dev , " --memcpy issue-- \n " ) ;
list_for_each_entry ( ld , & fsl_chan - > ld_queue , node ) {
int i ;
dev_dbg ( fsl_chan - > dev , " Ch %d, LD %08x \n " ,
fsl_chan - > id , ld - > async_tx . phys ) ;
for ( i = 0 ; i < 8 ; i + + )
dev_dbg ( fsl_chan - > dev , " LD offset %d: %08x \n " ,
i , * ( ( ( u32 * ) & ld - > hw ) + i ) ) ;
}
dev_dbg ( fsl_chan - > dev , " ---------------- \n " ) ;
spin_unlock_irqrestore ( & fsl_chan - > desc_lock , flags ) ;
# endif
fsl_chan_xfer_ld_queue ( fsl_chan ) ;
}
/**
* fsl_dma_is_complete - Determine the DMA status
* @ fsl_chan : Freescale DMA channel
*/
static enum dma_status fsl_dma_is_complete ( struct dma_chan * chan ,
dma_cookie_t cookie ,
dma_cookie_t * done ,
dma_cookie_t * used )
{
struct fsl_dma_chan * fsl_chan = to_fsl_chan ( chan ) ;
dma_cookie_t last_used ;
dma_cookie_t last_complete ;
fsl_chan_ld_cleanup ( fsl_chan ) ;
last_used = chan - > cookie ;
last_complete = fsl_chan - > completed_cookie ;
if ( done )
* done = last_complete ;
if ( used )
* used = last_used ;
return dma_async_is_complete ( cookie , last_complete , last_used ) ;
}
static irqreturn_t fsl_dma_chan_do_interrupt ( int irq , void * data )
{
struct fsl_dma_chan * fsl_chan = ( struct fsl_dma_chan * ) data ;
2008-03-13 10:45:27 -07:00
u32 stat ;
2008-04-17 20:17:25 -07:00
int update_cookie = 0 ;
int xfer_ld_q = 0 ;
2008-03-01 07:42:48 -07:00
stat = get_sr ( fsl_chan ) ;
dev_dbg ( fsl_chan - > dev , " event: channel %d, stat = 0x%x \n " ,
fsl_chan - > id , stat ) ;
set_sr ( fsl_chan , stat ) ; /* Clear the event register */
stat & = ~ ( FSL_DMA_SR_CB | FSL_DMA_SR_CH ) ;
if ( ! stat )
return IRQ_NONE ;
if ( stat & FSL_DMA_SR_TE )
dev_err ( fsl_chan - > dev , " Transfer Error! \n " ) ;
2008-03-18 18:45:00 -07:00
/* Programming Error
* The DMA_INTERRUPT async_tx is a NULL transfer , which will
* triger a PE interrupt .
*/
if ( stat & FSL_DMA_SR_PE ) {
dev_dbg ( fsl_chan - > dev , " event: Programming Error INT \n " ) ;
if ( get_bcr ( fsl_chan ) = = 0 ) {
/* BCR register is 0, this is a DMA_INTERRUPT async_tx.
* Now , update the completed cookie , and continue the
* next uncompleted transfer .
*/
2008-04-17 20:17:25 -07:00
update_cookie = 1 ;
xfer_ld_q = 1 ;
2008-03-18 18:45:00 -07:00
}
stat & = ~ FSL_DMA_SR_PE ;
}
2008-03-01 07:42:48 -07:00
/* If the link descriptor segment transfer finishes,
* we will recycle the used descriptor .
*/
if ( stat & FSL_DMA_SR_EOSI ) {
dev_dbg ( fsl_chan - > dev , " event: End-of-segments INT \n " ) ;
2009-05-13 16:25:57 -05:00
dev_dbg ( fsl_chan - > dev , " event: clndar 0x%llx, nlndar 0x%llx \n " ,
( unsigned long long ) get_cdar ( fsl_chan ) ,
( unsigned long long ) get_ndar ( fsl_chan ) ) ;
2008-03-01 07:42:48 -07:00
stat & = ~ FSL_DMA_SR_EOSI ;
2008-04-17 20:17:25 -07:00
update_cookie = 1 ;
}
/* For MPC8349, EOCDI event need to update cookie
* and start the next transfer if it exist .
*/
if ( stat & FSL_DMA_SR_EOCDI ) {
dev_dbg ( fsl_chan - > dev , " event: End-of-Chain link INT \n " ) ;
stat & = ~ FSL_DMA_SR_EOCDI ;
update_cookie = 1 ;
xfer_ld_q = 1 ;
2008-03-01 07:42:48 -07:00
}
/* If it current transfer is the end-of-transfer,
* we should clear the Channel Start bit for
* prepare next transfer .
*/
2008-04-17 20:17:25 -07:00
if ( stat & FSL_DMA_SR_EOLNI ) {
2008-03-01 07:42:48 -07:00
dev_dbg ( fsl_chan - > dev , " event: End-of-link INT \n " ) ;
stat & = ~ FSL_DMA_SR_EOLNI ;
2008-04-17 20:17:25 -07:00
xfer_ld_q = 1 ;
2008-03-01 07:42:48 -07:00
}
2008-04-17 20:17:25 -07:00
if ( update_cookie )
fsl_dma_update_completed_cookie ( fsl_chan ) ;
if ( xfer_ld_q )
fsl_chan_xfer_ld_queue ( fsl_chan ) ;
2008-03-01 07:42:48 -07:00
if ( stat )
dev_dbg ( fsl_chan - > dev , " event: unhandled sr 0x%02x \n " ,
stat ) ;
dev_dbg ( fsl_chan - > dev , " event: Exit \n " ) ;
tasklet_schedule ( & fsl_chan - > tasklet ) ;
return IRQ_HANDLED ;
}
static irqreturn_t fsl_dma_do_interrupt ( int irq , void * data )
{
struct fsl_dma_device * fdev = ( struct fsl_dma_device * ) data ;
u32 gsr ;
int ch_nr ;
gsr = ( fdev - > feature & FSL_DMA_BIG_ENDIAN ) ? in_be32 ( fdev - > reg_base )
: in_le32 ( fdev - > reg_base ) ;
ch_nr = ( 32 - ffs ( gsr ) ) / 8 ;
return fdev - > chan [ ch_nr ] ? fsl_dma_chan_do_interrupt ( irq ,
fdev - > chan [ ch_nr ] ) : IRQ_NONE ;
}
static void dma_do_tasklet ( unsigned long data )
{
struct fsl_dma_chan * fsl_chan = ( struct fsl_dma_chan * ) data ;
fsl_chan_ld_cleanup ( fsl_chan ) ;
}
2008-09-26 17:00:11 -07:00
static int __devinit fsl_dma_chan_probe ( struct fsl_dma_device * fdev ,
struct device_node * node , u32 feature , const char * compatible )
2008-03-01 07:42:48 -07:00
{
struct fsl_dma_chan * new_fsl_chan ;
int err ;
/* alloc channel */
new_fsl_chan = kzalloc ( sizeof ( struct fsl_dma_chan ) , GFP_KERNEL ) ;
if ( ! new_fsl_chan ) {
2008-09-26 17:00:11 -07:00
dev_err ( fdev - > dev , " No free memory for allocating "
2008-03-01 07:42:48 -07:00
" dma channels! \n " ) ;
2008-05-29 23:25:45 -07:00
return - ENOMEM ;
2008-03-01 07:42:48 -07:00
}
/* get dma channel register base */
2008-09-26 17:00:11 -07:00
err = of_address_to_resource ( node , 0 , & new_fsl_chan - > reg ) ;
2008-03-01 07:42:48 -07:00
if ( err ) {
2008-09-26 17:00:11 -07:00
dev_err ( fdev - > dev , " Can't get %s property 'reg' \n " ,
node - > full_name ) ;
2008-05-29 23:25:45 -07:00
goto err_no_reg ;
2008-03-01 07:42:48 -07:00
}
2008-09-26 17:00:11 -07:00
new_fsl_chan - > feature = feature ;
2008-03-01 07:42:48 -07:00
if ( ! fdev - > feature )
fdev - > feature = new_fsl_chan - > feature ;
/* If the DMA device's feature is different than its channels',
* report the bug .
*/
WARN_ON ( fdev - > feature ! = new_fsl_chan - > feature ) ;
2009-01-12 15:18:34 -07:00
new_fsl_chan - > dev = fdev - > dev ;
2008-03-01 07:42:48 -07:00
new_fsl_chan - > reg_base = ioremap ( new_fsl_chan - > reg . start ,
new_fsl_chan - > reg . end - new_fsl_chan - > reg . start + 1 ) ;
new_fsl_chan - > id = ( ( new_fsl_chan - > reg . start - 0x100 ) & 0xfff ) > > 7 ;
2009-05-22 16:46:52 +08:00
if ( new_fsl_chan - > id > = FSL_DMA_MAX_CHANS_PER_DEVICE ) {
2008-09-26 17:00:11 -07:00
dev_err ( fdev - > dev , " There is no %d channel! \n " ,
2008-03-01 07:42:48 -07:00
new_fsl_chan - > id ) ;
err = - EINVAL ;
2008-05-29 23:25:45 -07:00
goto err_no_chan ;
2008-03-01 07:42:48 -07:00
}
fdev - > chan [ new_fsl_chan - > id ] = new_fsl_chan ;
tasklet_init ( & new_fsl_chan - > tasklet , dma_do_tasklet ,
( unsigned long ) new_fsl_chan ) ;
/* Init the channel */
dma_init ( new_fsl_chan ) ;
/* Clear cdar registers */
set_cdar ( new_fsl_chan , 0 ) ;
switch ( new_fsl_chan - > feature & FSL_DMA_IP_MASK ) {
case FSL_DMA_IP_85XX :
new_fsl_chan - > toggle_ext_pause = fsl_chan_toggle_ext_pause ;
case FSL_DMA_IP_83XX :
2009-05-28 09:20:42 +00:00
new_fsl_chan - > toggle_ext_start = fsl_chan_toggle_ext_start ;
2008-03-01 07:42:48 -07:00
new_fsl_chan - > set_src_loop_size = fsl_chan_set_src_loop_size ;
new_fsl_chan - > set_dest_loop_size = fsl_chan_set_dest_loop_size ;
2009-09-08 17:53:04 -07:00
new_fsl_chan - > set_request_count = fsl_chan_set_request_count ;
2008-03-01 07:42:48 -07:00
}
spin_lock_init ( & new_fsl_chan - > desc_lock ) ;
INIT_LIST_HEAD ( & new_fsl_chan - > ld_queue ) ;
new_fsl_chan - > common . device = & fdev - > common ;
/* Add the channel to DMA device channel list */
list_add_tail ( & new_fsl_chan - > common . device_node ,
& fdev - > common . channels ) ;
fdev - > common . chancnt + + ;
2008-09-26 17:00:11 -07:00
new_fsl_chan - > irq = irq_of_parse_and_map ( node , 0 ) ;
2008-03-01 07:42:48 -07:00
if ( new_fsl_chan - > irq ! = NO_IRQ ) {
err = request_irq ( new_fsl_chan - > irq ,
& fsl_dma_chan_do_interrupt , IRQF_SHARED ,
" fsldma-channel " , new_fsl_chan ) ;
if ( err ) {
2008-09-26 17:00:11 -07:00
dev_err ( fdev - > dev , " DMA channel %s request_irq error "
" with return %d \n " , node - > full_name , err ) ;
2008-05-29 23:25:45 -07:00
goto err_no_irq ;
2008-03-01 07:42:48 -07:00
}
}
2008-09-26 17:00:11 -07:00
dev_info ( fdev - > dev , " #%d (%s), irq %d \n " , new_fsl_chan - > id ,
2009-01-14 22:33:31 -07:00
compatible ,
new_fsl_chan - > irq ! = NO_IRQ ? new_fsl_chan - > irq : fdev - > irq ) ;
2008-03-01 07:42:48 -07:00
return 0 ;
2008-05-29 23:25:45 -07:00
err_no_irq :
2008-03-01 07:42:48 -07:00
list_del ( & new_fsl_chan - > common . device_node ) ;
2008-05-29 23:25:45 -07:00
err_no_chan :
iounmap ( new_fsl_chan - > reg_base ) ;
err_no_reg :
2008-03-01 07:42:48 -07:00
kfree ( new_fsl_chan ) ;
return err ;
}
2008-09-26 17:00:11 -07:00
static void fsl_dma_chan_remove ( struct fsl_dma_chan * fchan )
2008-03-01 07:42:48 -07:00
{
2009-01-14 22:32:58 -07:00
if ( fchan - > irq ! = NO_IRQ )
free_irq ( fchan - > irq , fchan ) ;
2008-09-26 17:00:11 -07:00
list_del ( & fchan - > common . device_node ) ;
iounmap ( fchan - > reg_base ) ;
kfree ( fchan ) ;
2008-03-01 07:42:48 -07:00
}
static int __devinit of_fsl_dma_probe ( struct of_device * dev ,
const struct of_device_id * match )
{
int err ;
struct fsl_dma_device * fdev ;
2008-09-26 17:00:11 -07:00
struct device_node * child ;
2008-03-01 07:42:48 -07:00
fdev = kzalloc ( sizeof ( struct fsl_dma_device ) , GFP_KERNEL ) ;
if ( ! fdev ) {
dev_err ( & dev - > dev , " No enough memory for 'priv' \n " ) ;
2008-05-29 23:25:45 -07:00
return - ENOMEM ;
2008-03-01 07:42:48 -07:00
}
fdev - > dev = & dev - > dev ;
INIT_LIST_HEAD ( & fdev - > common . channels ) ;
/* get DMA controller register base */
err = of_address_to_resource ( dev - > node , 0 , & fdev - > reg ) ;
if ( err ) {
dev_err ( & dev - > dev , " Can't get %s property 'reg' \n " ,
dev - > node - > full_name ) ;
2008-05-29 23:25:45 -07:00
goto err_no_reg ;
2008-03-01 07:42:48 -07:00
}
dev_info ( & dev - > dev , " Probe the Freescale DMA driver for %s "
2009-05-13 16:25:57 -05:00
" controller at 0x%llx... \n " ,
match - > compatible , ( unsigned long long ) fdev - > reg . start ) ;
2008-03-01 07:42:48 -07:00
fdev - > reg_base = ioremap ( fdev - > reg . start , fdev - > reg . end
- fdev - > reg . start + 1 ) ;
dma_cap_set ( DMA_MEMCPY , fdev - > common . cap_mask ) ;
dma_cap_set ( DMA_INTERRUPT , fdev - > common . cap_mask ) ;
2009-09-08 17:53:04 -07:00
dma_cap_set ( DMA_SLAVE , fdev - > common . cap_mask ) ;
2008-03-01 07:42:48 -07:00
fdev - > common . device_alloc_chan_resources = fsl_dma_alloc_chan_resources ;
fdev - > common . device_free_chan_resources = fsl_dma_free_chan_resources ;
2008-03-13 17:45:28 -07:00
fdev - > common . device_prep_dma_interrupt = fsl_dma_prep_interrupt ;
2008-03-01 07:42:48 -07:00
fdev - > common . device_prep_dma_memcpy = fsl_dma_prep_memcpy ;
fdev - > common . device_is_tx_complete = fsl_dma_is_complete ;
fdev - > common . device_issue_pending = fsl_dma_memcpy_issue_pending ;
2009-09-08 17:53:04 -07:00
fdev - > common . device_prep_slave_sg = fsl_dma_prep_slave_sg ;
fdev - > common . device_terminate_all = fsl_dma_device_terminate_all ;
2008-03-01 07:42:48 -07:00
fdev - > common . dev = & dev - > dev ;
2008-09-26 17:00:11 -07:00
fdev - > irq = irq_of_parse_and_map ( dev - > node , 0 ) ;
if ( fdev - > irq ! = NO_IRQ ) {
err = request_irq ( fdev - > irq , & fsl_dma_do_interrupt , IRQF_SHARED ,
2008-03-01 07:42:48 -07:00
" fsldma-device " , fdev ) ;
if ( err ) {
dev_err ( & dev - > dev , " DMA device request_irq error "
" with return %d \n " , err ) ;
goto err ;
}
}
dev_set_drvdata ( & ( dev - > dev ) , fdev ) ;
2008-09-26 17:00:11 -07:00
/* We cannot use of_platform_bus_probe() because there is no
* of_platform_bus_remove . Instead , we manually instantiate every DMA
* channel object .
*/
for_each_child_of_node ( dev - > node , child ) {
if ( of_device_is_compatible ( child , " fsl,eloplus-dma-channel " ) )
fsl_dma_chan_probe ( fdev , child ,
FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN ,
" fsl,eloplus-dma-channel " ) ;
if ( of_device_is_compatible ( child , " fsl,elo-dma-channel " ) )
fsl_dma_chan_probe ( fdev , child ,
FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN ,
" fsl,elo-dma-channel " ) ;
}
2008-03-01 07:42:48 -07:00
dma_async_device_register ( & fdev - > common ) ;
return 0 ;
err :
iounmap ( fdev - > reg_base ) ;
2008-05-29 23:25:45 -07:00
err_no_reg :
2008-03-01 07:42:48 -07:00
kfree ( fdev ) ;
return err ;
}
2008-09-26 17:00:11 -07:00
static int of_fsl_dma_remove ( struct of_device * of_dev )
{
struct fsl_dma_device * fdev ;
unsigned int i ;
fdev = dev_get_drvdata ( & of_dev - > dev ) ;
dma_async_device_unregister ( & fdev - > common ) ;
for ( i = 0 ; i < FSL_DMA_MAX_CHANS_PER_DEVICE ; i + + )
if ( fdev - > chan [ i ] )
fsl_dma_chan_remove ( fdev - > chan [ i ] ) ;
if ( fdev - > irq ! = NO_IRQ )
free_irq ( fdev - > irq , fdev ) ;
iounmap ( fdev - > reg_base ) ;
kfree ( fdev ) ;
dev_set_drvdata ( & of_dev - > dev , NULL ) ;
return 0 ;
}
2008-03-01 07:42:48 -07:00
static struct of_device_id of_fsl_dma_ids [ ] = {
2008-03-31 11:13:21 -05:00
{ . compatible = " fsl,eloplus-dma " , } ,
{ . compatible = " fsl,elo-dma " , } ,
2008-03-01 07:42:48 -07:00
{ }
} ;
static struct of_platform_driver of_fsl_dma_driver = {
2008-09-26 17:00:11 -07:00
. name = " fsl-elo-dma " ,
2008-03-01 07:42:48 -07:00
. match_table = of_fsl_dma_ids ,
. probe = of_fsl_dma_probe ,
2008-09-26 17:00:11 -07:00
. remove = of_fsl_dma_remove ,
2008-03-01 07:42:48 -07:00
} ;
static __init int of_fsl_dma_init ( void )
{
2008-09-26 17:00:11 -07:00
int ret ;
pr_info ( " Freescale Elo / Elo Plus DMA driver \n " ) ;
ret = of_register_platform_driver ( & of_fsl_dma_driver ) ;
if ( ret )
pr_err ( " fsldma: failed to register platform driver \n " ) ;
return ret ;
}
static void __exit of_fsl_dma_exit ( void )
{
of_unregister_platform_driver ( & of_fsl_dma_driver ) ;
2008-03-01 07:42:48 -07:00
}
subsys_initcall ( of_fsl_dma_init ) ;
2008-09-26 17:00:11 -07:00
module_exit ( of_fsl_dma_exit ) ;
MODULE_DESCRIPTION ( " Freescale Elo / Elo Plus DMA driver " ) ;
MODULE_LICENSE ( " GPL " ) ;