2019-07-22 19:26:21 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* fs / verity / hash_algs . c : fs - verity hash algorithms
*
* Copyright 2019 Google LLC
*/
# include "fsverity_private.h"
# include <crypto/hash.h>
# include <linux/scatterlist.h>
/* The hash algorithms supported by fs-verity */
struct fsverity_hash_alg fsverity_hash_algs [ ] = {
[ FS_VERITY_HASH_ALG_SHA256 ] = {
. name = " sha256 " ,
. digest_size = SHA256_DIGEST_SIZE ,
. block_size = SHA256_BLOCK_SIZE ,
} ,
2019-07-22 19:26:23 +03:00
[ FS_VERITY_HASH_ALG_SHA512 ] = {
. name = " sha512 " ,
. digest_size = SHA512_DIGEST_SIZE ,
. block_size = SHA512_BLOCK_SIZE ,
} ,
2019-07-22 19:26:21 +03:00
} ;
/**
* fsverity_get_hash_alg ( ) - validate and prepare a hash algorithm
* @ inode : optional inode for logging purposes
* @ num : the hash algorithm number
*
* Get the struct fsverity_hash_alg for the given hash algorithm number , and
* ensure it has a hash transform ready to go . The hash transforms are
* allocated on - demand so that we don ' t waste resources unnecessarily , and
* because the crypto modules may be initialized later than fs / verity / .
*
* Return : pointer to the hash alg on success , else an ERR_PTR ( )
*/
const struct fsverity_hash_alg * fsverity_get_hash_alg ( const struct inode * inode ,
unsigned int num )
{
struct fsverity_hash_alg * alg ;
struct crypto_ahash * tfm ;
int err ;
if ( num > = ARRAY_SIZE ( fsverity_hash_algs ) | |
! fsverity_hash_algs [ num ] . name ) {
fsverity_warn ( inode , " Unknown hash algorithm number: %u " , num ) ;
return ERR_PTR ( - EINVAL ) ;
}
alg = & fsverity_hash_algs [ num ] ;
/* pairs with cmpxchg() below */
tfm = READ_ONCE ( alg - > tfm ) ;
if ( likely ( tfm ! = NULL ) )
return alg ;
/*
* Using the shash API would make things a bit simpler , but the ahash
* API is preferable as it allows the use of crypto accelerators .
*/
tfm = crypto_alloc_ahash ( alg - > name , 0 , 0 ) ;
if ( IS_ERR ( tfm ) ) {
if ( PTR_ERR ( tfm ) = = - ENOENT ) {
fsverity_warn ( inode ,
" Missing crypto API support for hash algorithm \" %s \" " ,
alg - > name ) ;
return ERR_PTR ( - ENOPKG ) ;
}
fsverity_err ( inode ,
" Error allocating hash algorithm \" %s \" : %ld " ,
alg - > name , PTR_ERR ( tfm ) ) ;
return ERR_CAST ( tfm ) ;
}
err = - EINVAL ;
if ( WARN_ON ( alg - > digest_size ! = crypto_ahash_digestsize ( tfm ) ) )
goto err_free_tfm ;
if ( WARN_ON ( alg - > block_size ! = crypto_ahash_blocksize ( tfm ) ) )
goto err_free_tfm ;
pr_info ( " %s using implementation \" %s \" \n " ,
alg - > name , crypto_ahash_driver_name ( tfm ) ) ;
/* pairs with READ_ONCE() above */
if ( cmpxchg ( & alg - > tfm , NULL , tfm ) ! = NULL )
crypto_free_ahash ( tfm ) ;
return alg ;
err_free_tfm :
crypto_free_ahash ( tfm ) ;
return ERR_PTR ( err ) ;
}
/**
* fsverity_prepare_hash_state ( ) - precompute the initial hash state
* @ alg : hash algorithm
* @ salt : a salt which is to be prepended to all data to be hashed
* @ salt_size : salt size in bytes , possibly 0
*
* Return : NULL if the salt is empty , otherwise the kmalloc ( ) ' ed precomputed
* initial hash state on success or an ERR_PTR ( ) on failure .
*/
const u8 * fsverity_prepare_hash_state ( const struct fsverity_hash_alg * alg ,
const u8 * salt , size_t salt_size )
{
u8 * hashstate = NULL ;
struct ahash_request * req = NULL ;
u8 * padded_salt = NULL ;
size_t padded_salt_size ;
struct scatterlist sg ;
DECLARE_CRYPTO_WAIT ( wait ) ;
int err ;
if ( salt_size = = 0 )
return NULL ;
hashstate = kmalloc ( crypto_ahash_statesize ( alg - > tfm ) , GFP_KERNEL ) ;
if ( ! hashstate )
return ERR_PTR ( - ENOMEM ) ;
req = ahash_request_alloc ( alg - > tfm , GFP_KERNEL ) ;
if ( ! req ) {
err = - ENOMEM ;
goto err_free ;
}
/*
* Zero - pad the salt to the next multiple of the input size of the hash
* algorithm ' s compression function , e . g . 64 bytes for SHA - 256 or 128
* bytes for SHA - 512. This ensures that the hash algorithm won ' t have
* any bytes buffered internally after processing the salt , thus making
* salted hashing just as fast as unsalted hashing .
*/
padded_salt_size = round_up ( salt_size , alg - > block_size ) ;
padded_salt = kzalloc ( padded_salt_size , GFP_KERNEL ) ;
if ( ! padded_salt ) {
err = - ENOMEM ;
goto err_free ;
}
memcpy ( padded_salt , salt , salt_size ) ;
sg_init_one ( & sg , padded_salt , padded_salt_size ) ;
ahash_request_set_callback ( req , CRYPTO_TFM_REQ_MAY_SLEEP |
CRYPTO_TFM_REQ_MAY_BACKLOG ,
crypto_req_done , & wait ) ;
ahash_request_set_crypt ( req , & sg , NULL , padded_salt_size ) ;
err = crypto_wait_req ( crypto_ahash_init ( req ) , & wait ) ;
if ( err )
goto err_free ;
err = crypto_wait_req ( crypto_ahash_update ( req ) , & wait ) ;
if ( err )
goto err_free ;
err = crypto_ahash_export ( req , hashstate ) ;
if ( err )
goto err_free ;
out :
ahash_request_free ( req ) ;
kfree ( padded_salt ) ;
return hashstate ;
err_free :
kfree ( hashstate ) ;
hashstate = ERR_PTR ( err ) ;
goto out ;
}
/**
* fsverity_hash_page ( ) - hash a single data or hash page
* @ params : the Merkle tree ' s parameters
* @ inode : inode for which the hashing is being done
* @ req : preallocated hash request
* @ page : the page to hash
* @ out : output digest , size ' params - > digest_size ' bytes
*
* Hash a single data or hash block , assuming block_size = = PAGE_SIZE .
* The hash is salted if a salt is specified in the Merkle tree parameters .
*
* Return : 0 on success , - errno on failure
*/
int fsverity_hash_page ( const struct merkle_tree_params * params ,
const struct inode * inode ,
struct ahash_request * req , struct page * page , u8 * out )
{
struct scatterlist sg ;
DECLARE_CRYPTO_WAIT ( wait ) ;
int err ;
if ( WARN_ON ( params - > block_size ! = PAGE_SIZE ) )
return - EINVAL ;
sg_init_table ( & sg , 1 ) ;
sg_set_page ( & sg , page , PAGE_SIZE , 0 ) ;
ahash_request_set_callback ( req , CRYPTO_TFM_REQ_MAY_SLEEP |
CRYPTO_TFM_REQ_MAY_BACKLOG ,
crypto_req_done , & wait ) ;
ahash_request_set_crypt ( req , & sg , out , PAGE_SIZE ) ;
if ( params - > hashstate ) {
err = crypto_ahash_import ( req , params - > hashstate ) ;
if ( err ) {
fsverity_err ( inode ,
" Error %d importing hash state " , err ) ;
return err ;
}
err = crypto_ahash_finup ( req ) ;
} else {
err = crypto_ahash_digest ( req ) ;
}
err = crypto_wait_req ( err , & wait ) ;
if ( err )
fsverity_err ( inode , " Error %d computing page hash " , err ) ;
return err ;
}
/**
* fsverity_hash_buffer ( ) - hash some data
* @ alg : the hash algorithm to use
* @ data : the data to hash
* @ size : size of data to hash , in bytes
* @ out : output digest , size ' alg - > digest_size ' bytes
*
* Hash some data which is located in physically contiguous memory ( i . e . memory
* allocated by kmalloc ( ) , not by vmalloc ( ) ) . No salt is used .
*
* Return : 0 on success , - errno on failure
*/
int fsverity_hash_buffer ( const struct fsverity_hash_alg * alg ,
const void * data , size_t size , u8 * out )
{
struct ahash_request * req ;
struct scatterlist sg ;
DECLARE_CRYPTO_WAIT ( wait ) ;
int err ;
req = ahash_request_alloc ( alg - > tfm , GFP_KERNEL ) ;
if ( ! req )
return - ENOMEM ;
sg_init_one ( & sg , data , size ) ;
ahash_request_set_callback ( req , CRYPTO_TFM_REQ_MAY_SLEEP |
CRYPTO_TFM_REQ_MAY_BACKLOG ,
crypto_req_done , & wait ) ;
ahash_request_set_crypt ( req , & sg , out , size ) ;
err = crypto_wait_req ( crypto_ahash_digest ( req ) , & wait ) ;
ahash_request_free ( req ) ;
return err ;
}
void __init fsverity_check_hash_algs ( void )
{
size_t i ;
/*
* Sanity check the hash algorithms ( could be a build - time check , but
* they ' re in an array )
*/
for ( i = 0 ; i < ARRAY_SIZE ( fsverity_hash_algs ) ; i + + ) {
const struct fsverity_hash_alg * alg = & fsverity_hash_algs [ i ] ;
if ( ! alg - > name )
continue ;
BUG_ON ( alg - > digest_size > FS_VERITY_MAX_DIGEST_SIZE ) ;
/*
* For efficiency , the implementation currently assumes the
* digest and block sizes are powers of 2. This limitation can
* be lifted if the code is updated to handle other values .
*/
BUG_ON ( ! is_power_of_2 ( alg - > digest_size ) ) ;
BUG_ON ( ! is_power_of_2 ( alg - > block_size ) ) ;
}
}