2005-06-22 17:16:21 +00:00
/*
* linux / fs / nfs / nfs4_fs . h
*
* Copyright ( C ) 2005 Trond Myklebust
*
* NFSv4 - specific filesystem definitions and declarations
*/
# ifndef __LINUX_FS_NFS_NFS4_FS_H
# define __LINUX_FS_NFS_NFS4_FS_H
2013-11-13 12:29:08 -05:00
# if defined(CONFIG_NFS_V4_2)
# define NFS4_MAX_MINOR_VERSION 2
# elif defined(CONFIG_NFS_V4_1)
# define NFS4_MAX_MINOR_VERSION 1
# else
# define NFS4_MAX_MINOR_VERSION 0
# endif
2012-07-30 16:05:25 -04:00
# if IS_ENABLED(CONFIG_NFS_V4)
2005-06-22 17:16:21 +00:00
2012-11-26 13:13:29 -05:00
# define NFS4_MAX_LOOP_ON_RECOVER (10)
2013-02-07 14:41:11 -05:00
# include <linux/seqlock.h>
2005-06-22 17:16:21 +00:00
struct idmap ;
enum nfs4_client_state {
2008-12-23 15:21:48 -05:00
NFS4CLNT_MANAGER_RUNNING = 0 ,
2008-12-23 15:21:42 -05:00
NFS4CLNT_CHECK_LEASE ,
2006-01-03 09:55:24 +01:00
NFS4CLNT_LEASE_EXPIRED ,
2008-12-23 15:21:41 -05:00
NFS4CLNT_RECLAIM_REBOOT ,
NFS4CLNT_RECLAIM_NOGRACE ,
2008-12-23 15:21:47 -05:00
NFS4CLNT_DELEGRETURN ,
2009-12-04 15:55:05 -05:00
NFS4CLNT_SESSION_RESET ,
2011-04-24 14:28:18 -04:00
NFS4CLNT_LEASE_CONFIRM ,
2011-05-31 19:05:47 -04:00
NFS4CLNT_SERVER_SCOPE_MISMATCH ,
2012-05-21 22:45:33 -04:00
NFS4CLNT_PURGE_STATE ,
2012-05-24 12:26:37 -04:00
NFS4CLNT_BIND_CONN_TO_SESSION ,
2013-10-17 14:13:02 -04:00
NFS4CLNT_MOVED ,
2013-10-17 14:13:35 -04:00
NFS4CLNT_LEASE_MOVED ,
2005-06-22 17:16:21 +00:00
} ;
2011-08-24 15:07:37 -04:00
# define NFS4_RENEW_TIMEOUT 0x01
# define NFS4_RENEW_DELEGATION_CB 0x02
2015-01-23 19:19:25 -05:00
struct nfs_seqid_counter ;
2010-06-16 09:52:26 -04:00
struct nfs4_minor_version_ops {
u32 minor_version ;
2013-03-15 16:11:57 -04:00
unsigned init_caps ;
2010-06-16 09:52:26 -04:00
2013-08-09 12:49:11 -04:00
int ( * init_client ) ( struct nfs_client * ) ;
void ( * shutdown_client ) ( struct nfs_client * ) ;
2012-03-04 18:13:56 -05:00
bool ( * match_stateid ) ( const nfs4_stateid * ,
2010-06-16 09:52:27 -04:00
const nfs4_stateid * ) ;
2011-06-02 14:59:07 -04:00
int ( * find_root_sec ) ( struct nfs_server * , struct nfs_fh * ,
struct nfs_fsinfo * ) ;
2014-05-01 06:28:47 -04:00
void ( * free_lock_state ) ( struct nfs_server * ,
2013-05-03 16:22:55 -04:00
struct nfs4_lock_state * ) ;
2015-01-23 19:19:25 -05:00
struct nfs_seqid *
( * alloc_seqid ) ( struct nfs_seqid_counter * , gfp_t ) ;
2013-08-09 12:48:27 -04:00
const struct rpc_call_ops * call_sync_ops ;
2010-06-16 09:52:27 -04:00
const struct nfs4_state_recovery_ops * reboot_recovery_ops ;
const struct nfs4_state_recovery_ops * nograce_recovery_ops ;
const struct nfs4_state_maintenance_ops * state_renewal_ops ;
2013-10-17 14:12:39 -04:00
const struct nfs4_mig_recovery_ops * mig_recovery_ops ;
2010-06-16 09:52:26 -04:00
} ;
NFSv4: Add functions to order RPC calls
NFSv4 file state-changing functions such as OPEN, CLOSE, LOCK,... are all
labelled with "sequence identifiers" in order to prevent the server from
reordering RPC requests, as this could cause its file state to
become out of sync with the client.
Currently the NFS client code enforces this ordering locally using
semaphores to restrict access to structures until the RPC call is done.
This, of course, only works with synchronous RPC calls, since the
user process must first grab the semaphore.
By dropping semaphores, and instead teaching the RPC engine to hold
the RPC calls until they are ready to be sent, we can extend this
process to work nicely with asynchronous RPC calls too.
This patch adds a new list called "rpc_sequence" that defines the order
of the RPC calls to be sent. We add one such list for each state_owner.
When an RPC call is ready to be sent, it checks if it is top of the
rpc_sequence list. If so, it proceeds. If not, it goes back to sleep,
and loops until it hits top of the list.
Once the RPC call has completed, it can then bump the sequence id counter,
and remove itself from the rpc_sequence list, and then wake up the next
sleeper.
Note that the state_owner sequence ids and lock_owner sequence ids are
all indexed to the same rpc_sequence list, so OPEN, LOCK,... requests
are all ordered w.r.t. each other.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2005-10-18 14:20:12 -07:00
# define NFS_SEQID_CONFIRMED 1
struct nfs_seqid_counter {
2012-04-20 19:24:51 -04:00
ktime_t create_time ;
2012-01-17 22:04:25 -05:00
int owner_id ;
NFSv4: Add functions to order RPC calls
NFSv4 file state-changing functions such as OPEN, CLOSE, LOCK,... are all
labelled with "sequence identifiers" in order to prevent the server from
reordering RPC requests, as this could cause its file state to
become out of sync with the client.
Currently the NFS client code enforces this ordering locally using
semaphores to restrict access to structures until the RPC call is done.
This, of course, only works with synchronous RPC calls, since the
user process must first grab the semaphore.
By dropping semaphores, and instead teaching the RPC engine to hold
the RPC calls until they are ready to be sent, we can extend this
process to work nicely with asynchronous RPC calls too.
This patch adds a new list called "rpc_sequence" that defines the order
of the RPC calls to be sent. We add one such list for each state_owner.
When an RPC call is ready to be sent, it checks if it is top of the
rpc_sequence list. If so, it proceeds. If not, it goes back to sleep,
and loops until it hits top of the list.
Once the RPC call has completed, it can then bump the sequence id counter,
and remove itself from the rpc_sequence list, and then wake up the next
sleeper.
Note that the state_owner sequence ids and lock_owner sequence ids are
all indexed to the same rpc_sequence list, so OPEN, LOCK,... requests
are all ordered w.r.t. each other.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2005-10-18 14:20:12 -07:00
int flags ;
u32 counter ;
2012-01-17 22:04:25 -05:00
spinlock_t lock ; /* Protects the list */
struct list_head list ; /* Defines sequence of RPC calls */
struct rpc_wait_queue wait ; /* RPC call delay queue */
NFSv4: Add functions to order RPC calls
NFSv4 file state-changing functions such as OPEN, CLOSE, LOCK,... are all
labelled with "sequence identifiers" in order to prevent the server from
reordering RPC requests, as this could cause its file state to
become out of sync with the client.
Currently the NFS client code enforces this ordering locally using
semaphores to restrict access to structures until the RPC call is done.
This, of course, only works with synchronous RPC calls, since the
user process must first grab the semaphore.
By dropping semaphores, and instead teaching the RPC engine to hold
the RPC calls until they are ready to be sent, we can extend this
process to work nicely with asynchronous RPC calls too.
This patch adds a new list called "rpc_sequence" that defines the order
of the RPC calls to be sent. We add one such list for each state_owner.
When an RPC call is ready to be sent, it checks if it is top of the
rpc_sequence list. If so, it proceeds. If not, it goes back to sleep,
and loops until it hits top of the list.
Once the RPC call has completed, it can then bump the sequence id counter,
and remove itself from the rpc_sequence list, and then wake up the next
sleeper.
Note that the state_owner sequence ids and lock_owner sequence ids are
all indexed to the same rpc_sequence list, so OPEN, LOCK,... requests
are all ordered w.r.t. each other.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2005-10-18 14:20:12 -07:00
} ;
struct nfs_seqid {
struct nfs_seqid_counter * sequence ;
2005-10-20 14:22:41 -07:00
struct list_head list ;
2012-01-20 18:47:05 -05:00
struct rpc_task * task ;
NFSv4: Add functions to order RPC calls
NFSv4 file state-changing functions such as OPEN, CLOSE, LOCK,... are all
labelled with "sequence identifiers" in order to prevent the server from
reordering RPC requests, as this could cause its file state to
become out of sync with the client.
Currently the NFS client code enforces this ordering locally using
semaphores to restrict access to structures until the RPC call is done.
This, of course, only works with synchronous RPC calls, since the
user process must first grab the semaphore.
By dropping semaphores, and instead teaching the RPC engine to hold
the RPC calls until they are ready to be sent, we can extend this
process to work nicely with asynchronous RPC calls too.
This patch adds a new list called "rpc_sequence" that defines the order
of the RPC calls to be sent. We add one such list for each state_owner.
When an RPC call is ready to be sent, it checks if it is top of the
rpc_sequence list. If so, it proceeds. If not, it goes back to sleep,
and loops until it hits top of the list.
Once the RPC call has completed, it can then bump the sequence id counter,
and remove itself from the rpc_sequence list, and then wake up the next
sleeper.
Note that the state_owner sequence ids and lock_owner sequence ids are
all indexed to the same rpc_sequence list, so OPEN, LOCK,... requests
are all ordered w.r.t. each other.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2005-10-18 14:20:12 -07:00
} ;
static inline void nfs_confirm_seqid ( struct nfs_seqid_counter * seqid , int status )
{
if ( seqid_mutating_err ( - status ) )
seqid - > flags | = NFS_SEQID_CONFIRMED ;
}
2005-06-22 17:16:21 +00:00
/*
* NFS4 state_owners and lock_owners are simply labels for ordered
* sequences of RPC calls . Their sole purpose is to provide once - only
* semantics by allowing the server to identify replayed requests .
*/
struct nfs4_state_owner {
2007-07-06 10:53:21 -04:00
struct nfs_server * so_server ;
NFS: Cache state owners after files are closed
Servers have a finite amount of memory to store NFSv4 open and lock
owners. Moreover, servers may have a difficult time determining when
they can reap their state owner table, thanks to gray areas in the
NFSv4 protocol specification. Thus clients should be careful to reuse
state owners when possible.
Currently Linux is not too careful. When a user has closed all her
files on one mount point, the state owner's reference count goes to
zero, and it is released. The next OPEN allocates a new one. A
workload that serially opens and closes files can run through a large
number of open owners this way.
When a state owner's reference count goes to zero, slap it onto a free
list for that nfs_server, with an expiry time. Garbage collect before
looking for a state owner. This makes state owners for active users
available for re-use.
Now that there can be unused state owners remaining at umount time,
purge the state owner free list when a server is destroyed. Also be
sure not to reclaim unused state owners during state recovery.
This change has benefits for the client as well. For some workloads,
this approach drops the number of OPEN_CONFIRM calls from the same as
the number of OPEN calls, down to just one. This reduces wire traffic
and thus open(2) latency. Before this patch, untarring a kernel
source tarball shows the OPEN_CONFIRM call counter steadily increasing
through the test. With the patch, the OPEN_CONFIRM count remains at 1
throughout the entire untar.
As long as the expiry time is kept short, I don't think garbage
collection should be terribly expensive, although it does bounce the
clp->cl_lock around a bit.
[ At some point we should rationalize the use of the nfs_server
->destroy method. ]
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
[Trond: Fixed a garbage collection race and a few efficiency issues]
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2011-12-06 16:13:48 -05:00
struct list_head so_lru ;
unsigned long so_expires ;
2010-12-24 01:32:43 +00:00
struct rb_node so_server_node ;
2005-06-22 17:16:21 +00:00
struct rpc_cred * so_cred ; /* Associated cred */
2007-07-02 13:58:33 -04:00
spinlock_t so_lock ;
atomic_t so_count ;
2008-12-23 15:21:43 -05:00
unsigned long so_flags ;
2005-06-22 17:16:21 +00:00
struct list_head so_states ;
NFSv4: Add functions to order RPC calls
NFSv4 file state-changing functions such as OPEN, CLOSE, LOCK,... are all
labelled with "sequence identifiers" in order to prevent the server from
reordering RPC requests, as this could cause its file state to
become out of sync with the client.
Currently the NFS client code enforces this ordering locally using
semaphores to restrict access to structures until the RPC call is done.
This, of course, only works with synchronous RPC calls, since the
user process must first grab the semaphore.
By dropping semaphores, and instead teaching the RPC engine to hold
the RPC calls until they are ready to be sent, we can extend this
process to work nicely with asynchronous RPC calls too.
This patch adds a new list called "rpc_sequence" that defines the order
of the RPC calls to be sent. We add one such list for each state_owner.
When an RPC call is ready to be sent, it checks if it is top of the
rpc_sequence list. If so, it proceeds. If not, it goes back to sleep,
and loops until it hits top of the list.
Once the RPC call has completed, it can then bump the sequence id counter,
and remove itself from the rpc_sequence list, and then wake up the next
sleeper.
Note that the state_owner sequence ids and lock_owner sequence ids are
all indexed to the same rpc_sequence list, so OPEN, LOCK,... requests
are all ordered w.r.t. each other.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2005-10-18 14:20:12 -07:00
struct nfs_seqid_counter so_seqid ;
2013-02-07 14:41:11 -05:00
seqcount_t so_reclaim_seqcount ;
2013-02-07 10:54:07 -05:00
struct mutex so_delegreturn_mutex ;
2005-06-22 17:16:21 +00:00
} ;
2008-12-23 15:21:43 -05:00
enum {
NFS_OWNER_RECLAIM_REBOOT ,
NFS_OWNER_RECLAIM_NOGRACE
} ;
2009-12-09 01:50:14 -08:00
# define NFS_LOCK_NEW 0
# define NFS_LOCK_RECLAIM 1
# define NFS_LOCK_EXPIRED 2
2005-06-22 17:16:21 +00:00
/*
* struct nfs4_state maintains the client - side state for a given
* ( state_owner , inode ) tuple ( OPEN ) or state_owner ( LOCK ) .
*
* OPEN :
* In order to know when to OPEN_DOWNGRADE or CLOSE the state on the server ,
* we need to know how many files are open for reading or writing on a
* given inode . This information too is stored here .
*
* LOCK : one nfs4_state ( LOCK ) to hold the lock stateid nfs4_state ( OPEN )
*/
struct nfs4_lock_state {
2014-09-08 08:26:01 -04:00
struct list_head ls_locks ; /* Other lock stateids */
struct nfs4_state * ls_state ; /* Pointer to open state */
2012-09-10 13:26:49 -04:00
# define NFS_LOCK_INITIALIZED 0
2013-09-04 17:04:49 +10:00
# define NFS_LOCK_LOST 1
2014-09-08 08:26:01 -04:00
unsigned long ls_flags ;
NFSv4: Add functions to order RPC calls
NFSv4 file state-changing functions such as OPEN, CLOSE, LOCK,... are all
labelled with "sequence identifiers" in order to prevent the server from
reordering RPC requests, as this could cause its file state to
become out of sync with the client.
Currently the NFS client code enforces this ordering locally using
semaphores to restrict access to structures until the RPC call is done.
This, of course, only works with synchronous RPC calls, since the
user process must first grab the semaphore.
By dropping semaphores, and instead teaching the RPC engine to hold
the RPC calls until they are ready to be sent, we can extend this
process to work nicely with asynchronous RPC calls too.
This patch adds a new list called "rpc_sequence" that defines the order
of the RPC calls to be sent. We add one such list for each state_owner.
When an RPC call is ready to be sent, it checks if it is top of the
rpc_sequence list. If so, it proceeds. If not, it goes back to sleep,
and loops until it hits top of the list.
Once the RPC call has completed, it can then bump the sequence id counter,
and remove itself from the rpc_sequence list, and then wake up the next
sleeper.
Note that the state_owner sequence ids and lock_owner sequence ids are
all indexed to the same rpc_sequence list, so OPEN, LOCK,... requests
are all ordered w.r.t. each other.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2005-10-18 14:20:12 -07:00
struct nfs_seqid_counter ls_seqid ;
2014-09-08 08:26:01 -04:00
nfs4_stateid ls_stateid ;
atomic_t ls_count ;
fl_owner_t ls_owner ;
2005-06-22 17:16:21 +00:00
} ;
/* bits for nfs4_state->flags */
enum {
LK_STATE_IN_USE ,
2007-07-05 18:07:55 -04:00
NFS_DELEGATED_STATE , /* Current stateid is delegation */
2013-04-20 01:25:45 -04:00
NFS_OPEN_STATE , /* OPEN stateid is set */
2007-07-05 18:07:55 -04:00
NFS_O_RDONLY_STATE , /* OPEN stateid has read-only state */
NFS_O_WRONLY_STATE , /* OPEN stateid has write-only state */
NFS_O_RDWR_STATE , /* OPEN stateid has read/write state */
2008-12-23 15:21:41 -05:00
NFS_STATE_RECLAIM_REBOOT , /* OPEN stateid server rebooted */
NFS_STATE_RECLAIM_NOGRACE , /* OPEN stateid needs to recover state */
2010-01-26 15:42:30 -05:00
NFS_STATE_POSIX_LOCKS , /* Posix locks are supported */
2013-03-14 16:57:48 -04:00
NFS_STATE_RECOVERY_FAILED , /* OPEN stateid state recovery failed */
2005-06-22 17:16:21 +00:00
} ;
struct nfs4_state {
struct list_head open_states ; /* List of states for the same state_owner */
struct list_head inode_states ; /* List of states for the same inode */
struct list_head lock_states ; /* List of subservient lock stateids */
struct nfs4_state_owner * owner ; /* Pointer to the open owner */
struct inode * inode ; /* Pointer to the inode */
unsigned long flags ; /* Do we hold any locks? */
2005-06-22 17:16:32 +00:00
spinlock_t state_lock ; /* Protects the lock_states list */
2005-06-22 17:16:21 +00:00
2007-07-09 10:45:42 -04:00
seqlock_t seqlock ; /* Protects the stateid/open_stateid */
2007-07-05 18:07:55 -04:00
nfs4_stateid stateid ; /* Current stateid: may be delegation */
nfs4_stateid open_stateid ; /* OPEN stateid */
2005-06-22 17:16:21 +00:00
2007-07-09 10:45:42 -04:00
/* The following 3 fields are protected by owner->so_lock */
2007-07-05 18:07:55 -04:00
unsigned int n_rdonly ; /* Number of read-only references */
unsigned int n_wronly ; /* Number of write-only references */
unsigned int n_rdwr ; /* Number of read/write references */
2008-12-23 15:21:56 -05:00
fmode_t state ; /* State on the server (R,W, or RW) */
2005-06-22 17:16:21 +00:00
atomic_t count ;
} ;
struct nfs4_exception {
2008-12-23 15:21:46 -05:00
struct nfs4_state * state ;
2012-03-07 16:39:06 -05:00
struct inode * inode ;
2015-09-20 14:32:45 -04:00
long timeout ;
unsigned char delay : 1 ,
recovering : 1 ,
retry : 1 ;
2005-06-22 17:16:21 +00:00
} ;
struct nfs4_state_recovery_ops {
2008-12-23 15:21:43 -05:00
int owner_flag_bit ;
2008-12-23 15:21:41 -05:00
int state_flag_bit ;
2005-06-22 17:16:21 +00:00
int ( * recover_open ) ( struct nfs4_state_owner * , struct nfs4_state * ) ;
int ( * recover_lock ) ( struct nfs4_state * , struct file_lock * ) ;
2009-04-01 09:22:47 -04:00
int ( * establish_clid ) ( struct nfs_client * , struct rpc_cred * ) ;
2013-05-20 11:05:17 -04:00
int ( * reclaim_complete ) ( struct nfs_client * , struct rpc_cred * ) ;
2012-09-14 17:24:32 -04:00
int ( * detect_trunking ) ( struct nfs_client * , struct nfs_client * * ,
struct rpc_cred * ) ;
2005-06-22 17:16:21 +00:00
} ;
2009-04-01 09:22:44 -04:00
struct nfs4_state_maintenance_ops {
2011-08-24 15:07:37 -04:00
int ( * sched_state_renewal ) ( struct nfs_client * , struct rpc_cred * , unsigned ) ;
2009-04-01 09:22:46 -04:00
struct rpc_cred * ( * get_state_renewal_cred_locked ) ( struct nfs_client * ) ;
2009-04-01 09:22:45 -04:00
int ( * renew_lease ) ( struct nfs_client * , struct rpc_cred * ) ;
2009-04-01 09:22:44 -04:00
} ;
2013-10-17 14:12:39 -04:00
struct nfs4_mig_recovery_ops {
2013-10-17 14:12:50 -04:00
int ( * get_locations ) ( struct inode * , struct nfs4_fs_locations * ,
struct page * , struct rpc_cred * ) ;
2013-10-17 14:13:30 -04:00
int ( * fsid_present ) ( struct inode * , struct rpc_cred * ) ;
2013-10-17 14:12:39 -04:00
} ;
2009-02-20 05:51:22 +00:00
extern const struct dentry_operations nfs4_dentry_operations ;
2012-07-16 16:39:12 -04:00
/* dir.c */
int nfs_atomic_open ( struct inode * , struct dentry * , struct file * ,
unsigned , umode_t , int * ) ;
2005-06-22 17:16:22 +00:00
2012-08-08 13:57:06 -04:00
/* super.c */
extern struct file_system_type nfs4_fs_type ;
2012-04-27 13:27:40 -04:00
/* nfs4namespace.c */
2014-06-12 15:02:32 -04:00
struct rpc_clnt * nfs4_negotiate_security ( struct rpc_clnt * , struct inode * , struct qstr * ) ;
2012-04-27 13:27:45 -04:00
struct vfsmount * nfs4_submount ( struct nfs_server * , struct dentry * ,
struct nfs_fh * , struct nfs_fattr * ) ;
2013-10-17 14:12:34 -04:00
int nfs4_replace_transport ( struct nfs_server * server ,
const struct nfs4_fs_locations * locations ) ;
2012-04-27 13:27:40 -04:00
2005-06-22 17:16:21 +00:00
/* nfs4proc.c */
2014-11-25 13:18:15 -05:00
extern int nfs4_handle_exception ( struct nfs_server * , int , struct nfs4_exception * ) ;
2014-09-26 13:58:48 -04:00
extern int nfs4_call_sync ( struct rpc_clnt * , struct nfs_server * ,
struct rpc_message * , struct nfs4_sequence_args * ,
struct nfs4_sequence_res * , int ) ;
2015-06-23 19:51:55 +08:00
extern void nfs4_init_sequence ( struct nfs4_sequence_args * , struct nfs4_sequence_res * , int ) ;
2010-04-16 16:43:06 -04:00
extern int nfs4_proc_setclientid ( struct nfs_client * , u32 , unsigned short , struct rpc_cred * , struct nfs4_setclientid_res * ) ;
extern int nfs4_proc_setclientid_confirm ( struct nfs_client * , struct nfs4_setclientid_res * arg , struct rpc_cred * ) ;
2013-09-07 12:58:57 -04:00
extern int nfs4_proc_get_rootfh ( struct nfs_server * , struct nfs_fh * , struct nfs_fsinfo * , bool ) ;
2012-05-25 17:57:41 -04:00
extern int nfs4_proc_bind_conn_to_session ( struct nfs_client * , struct rpc_cred * cred ) ;
2009-12-04 15:52:24 -05:00
extern int nfs4_proc_exchange_id ( struct nfs_client * clp , struct rpc_cred * cred ) ;
2012-05-25 17:18:09 -04:00
extern int nfs4_destroy_clientid ( struct nfs_client * clp ) ;
2009-04-01 09:22:47 -04:00
extern int nfs4_init_clientid ( struct nfs_client * , struct rpc_cred * ) ;
2009-12-04 15:52:24 -05:00
extern int nfs41_init_clientid ( struct nfs_client * , struct rpc_cred * ) ;
2012-09-20 20:31:51 -04:00
extern int nfs4_do_close ( struct nfs4_state * state , gfp_t gfp_mask , int wait ) ;
2006-06-09 09:34:19 -04:00
extern int nfs4_server_capabilities ( struct nfs_server * server , struct nfs_fh * fhandle ) ;
2012-04-27 13:27:41 -04:00
extern int nfs4_proc_fs_locations ( struct rpc_clnt * , struct inode * , const struct qstr * ,
struct nfs4_fs_locations * , struct page * ) ;
2013-10-17 14:12:50 -04:00
extern int nfs4_proc_get_locations ( struct inode * , struct nfs4_fs_locations * ,
struct page * page , struct rpc_cred * ) ;
2013-10-17 14:13:30 -04:00
extern int nfs4_proc_fsid_present ( struct inode * , struct rpc_cred * ) ;
2012-04-27 13:27:41 -04:00
extern struct rpc_clnt * nfs4_proc_lookup_mountpoint ( struct inode * , struct qstr * ,
struct nfs_fh * , struct nfs_fattr * ) ;
2012-04-27 13:27:40 -04:00
extern int nfs4_proc_secinfo ( struct inode * , const struct qstr * , struct nfs4_secinfo_flavors * ) ;
2010-12-09 11:35:25 +00:00
extern const struct xattr_handler * nfs4_xattr_handlers [ ] ;
2013-03-16 20:54:34 -04:00
extern int nfs4_set_rw_stateid ( nfs4_stateid * stateid ,
2013-03-17 15:52:00 -04:00
const struct nfs_open_context * ctx ,
const struct nfs_lock_context * l_ctx ,
fmode_t fmode ) ;
2005-06-22 17:16:21 +00:00
2009-04-01 09:21:53 -04:00
# if defined(CONFIG_NFS_V4_1)
2010-06-16 09:52:26 -04:00
static inline struct nfs4_session * nfs4_get_session ( const struct nfs_server * server )
{
return server - > nfs_client - > cl_session ;
}
2011-03-01 01:34:19 +00:00
extern int nfs41_setup_sequence ( struct nfs4_session * session ,
struct nfs4_sequence_args * args , struct nfs4_sequence_res * res ,
2012-01-17 22:04:25 -05:00
struct rpc_task * task ) ;
2014-01-29 11:34:38 -05:00
extern int nfs41_sequence_done ( struct rpc_task * , struct nfs4_sequence_res * ) ;
2012-05-25 17:51:23 -04:00
extern int nfs4_proc_create_session ( struct nfs_client * , struct rpc_cred * ) ;
extern int nfs4_proc_destroy_session ( struct nfs4_session * , struct rpc_cred * ) ;
2009-12-06 12:23:46 -05:00
extern int nfs4_proc_get_lease_time ( struct nfs_client * clp ,
struct nfs_fsinfo * fsinfo ) ;
2011-03-23 13:27:54 +00:00
extern int nfs4_proc_layoutcommit ( struct nfs4_layoutcommit_data * data ,
2011-03-12 02:58:10 -05:00
bool sync ) ;
2011-03-01 01:34:12 +00:00
static inline bool
is_ds_only_client ( struct nfs_client * clp )
{
return ( clp - > cl_exchange_flags & EXCHGID4_FLAG_MASK_PNFS ) = =
EXCHGID4_FLAG_USE_PNFS_DS ;
}
2011-03-01 01:34:17 +00:00
static inline bool
is_ds_client ( struct nfs_client * clp )
{
return clp - > cl_exchange_flags & EXCHGID4_FLAG_USE_PNFS_DS ;
}
2013-08-13 16:37:33 -04:00
2013-08-13 16:37:37 -04:00
static inline bool
_nfs4_state_protect ( struct nfs_client * clp , unsigned long sp4_mode ,
struct rpc_clnt * * clntp , struct rpc_message * msg )
2013-08-13 16:37:33 -04:00
{
struct rpc_cred * newcred = NULL ;
rpc_authflavor_t flavor ;
if ( test_bit ( sp4_mode , & clp - > cl_sp4_flags ) ) {
spin_lock ( & clp - > cl_lock ) ;
if ( clp - > cl_machine_cred ! = NULL )
2013-09-10 18:44:32 -04:00
/* don't call get_rpccred on the machine cred -
* a reference will be held for life of clp */
newcred = clp - > cl_machine_cred ;
2013-08-13 16:37:33 -04:00
spin_unlock ( & clp - > cl_lock ) ;
msg - > rpc_cred = newcred ;
flavor = clp - > cl_rpcclient - > cl_auth - > au_flavor ;
2013-09-10 18:44:33 -04:00
WARN_ON_ONCE ( flavor ! = RPC_AUTH_GSS_KRB5I & &
flavor ! = RPC_AUTH_GSS_KRB5P ) ;
2013-08-13 16:37:33 -04:00
* clntp = clp - > cl_rpcclient ;
2013-08-13 16:37:37 -04:00
return true ;
2013-08-13 16:37:33 -04:00
}
2013-08-13 16:37:37 -04:00
return false ;
}
/*
* Function responsible for determining if an rpc_message should use the
* machine cred under SP4_MACH_CRED and if so switching the credential and
* authflavor ( using the nfs_client ' s rpc_clnt which will be krb5i / p ) .
* Should be called before rpc_call_sync / rpc_call_async .
*/
static inline void
nfs4_state_protect ( struct nfs_client * clp , unsigned long sp4_mode ,
struct rpc_clnt * * clntp , struct rpc_message * msg )
{
_nfs4_state_protect ( clp , sp4_mode , clntp , msg ) ;
}
/*
* Special wrapper to nfs4_state_protect for write .
* If WRITE can use machine cred but COMMIT cannot , make sure all writes
* that use machine cred use NFS_FILE_SYNC .
*/
static inline void
nfs4_state_protect_write ( struct nfs_client * clp , struct rpc_clnt * * clntp ,
2014-06-09 11:48:35 -04:00
struct rpc_message * msg , struct nfs_pgio_header * hdr )
2013-08-13 16:37:37 -04:00
{
if ( _nfs4_state_protect ( clp , NFS_SP4_MACH_CRED_WRITE , clntp , msg ) & &
! test_bit ( NFS_SP4_MACH_CRED_COMMIT , & clp - > cl_sp4_flags ) )
2014-06-09 11:48:35 -04:00
hdr - > args . stable = NFS_FILE_SYNC ;
2013-08-13 16:37:33 -04:00
}
2009-04-01 09:22:15 -04:00
# else /* CONFIG_NFS_v4_1 */
2010-06-16 09:52:26 -04:00
static inline struct nfs4_session * nfs4_get_session ( const struct nfs_server * server )
{
return NULL ;
}
2011-03-01 01:34:12 +00:00
static inline bool
is_ds_only_client ( struct nfs_client * clp )
2011-03-01 01:34:17 +00:00
{
return false ;
}
static inline bool
is_ds_client ( struct nfs_client * clp )
2011-03-01 01:34:12 +00:00
{
return false ;
}
2013-08-13 16:37:33 -04:00
static inline void
nfs4_state_protect ( struct nfs_client * clp , unsigned long sp4_flags ,
struct rpc_clnt * * clntp , struct rpc_message * msg )
{
}
2013-08-13 16:37:37 -04:00
static inline void
nfs4_state_protect_write ( struct nfs_client * clp , struct rpc_clnt * * clntp ,
2014-06-09 11:48:35 -04:00
struct rpc_message * msg , struct nfs_pgio_header * hdr )
2013-08-13 16:37:37 -04:00
{
}
2009-04-01 09:21:53 -04:00
# endif /* CONFIG_NFS_V4_1 */
2005-06-22 17:16:21 +00:00
2010-06-16 09:52:26 -04:00
extern const struct nfs4_minor_version_ops * nfs_v4_minor_ops [ ] ;
2009-04-01 09:22:44 -04:00
2012-06-05 09:16:47 -04:00
extern const u32 nfs4_fattr_bitmap [ 3 ] ;
2013-05-22 12:50:41 -04:00
extern const u32 nfs4_statfs_bitmap [ 3 ] ;
extern const u32 nfs4_pathconf_bitmap [ 3 ] ;
2011-07-30 20:52:37 -04:00
extern const u32 nfs4_fsinfo_bitmap [ 3 ] ;
2013-05-22 12:50:41 -04:00
extern const u32 nfs4_fs_locations_bitmap [ 3 ] ;
2005-06-22 17:16:21 +00:00
2013-08-09 12:49:11 -04:00
void nfs40_shutdown_client ( struct nfs_client * ) ;
void nfs41_shutdown_client ( struct nfs_client * ) ;
int nfs40_init_client ( struct nfs_client * ) ;
int nfs41_init_client ( struct nfs_client * ) ;
2012-06-20 15:53:45 -04:00
void nfs4_free_client ( struct nfs_client * ) ;
2012-06-20 15:53:46 -04:00
struct nfs_client * nfs4_alloc_client ( const struct nfs_client_initdata * ) ;
2005-06-22 17:16:21 +00:00
/* nfs4renewd.c */
2006-08-22 20:06:08 -04:00
extern void nfs4_schedule_state_renewal ( struct nfs_client * ) ;
2005-06-22 17:16:21 +00:00
extern void nfs4_renewd_prepare_shutdown ( struct nfs_server * ) ;
2006-08-22 20:06:08 -04:00
extern void nfs4_kill_renewd ( struct nfs_client * ) ;
2006-11-22 14:55:48 +00:00
extern void nfs4_renew_state ( struct work_struct * ) ;
2005-06-22 17:16:21 +00:00
/* nfs4state.c */
2013-07-24 12:28:37 -04:00
struct rpc_cred * nfs4_get_clid_cred ( struct nfs_client * clp ) ;
2012-11-21 22:49:36 -05:00
struct rpc_cred * nfs4_get_machine_cred_locked ( struct nfs_client * clp ) ;
2008-12-23 15:21:41 -05:00
struct rpc_cred * nfs4_get_renew_cred_locked ( struct nfs_client * clp ) ;
2012-09-14 17:24:32 -04:00
int nfs4_discover_server_trunking ( struct nfs_client * clp ,
struct nfs_client * * ) ;
int nfs40_discover_server_trunking ( struct nfs_client * clp ,
struct nfs_client * * , struct rpc_cred * ) ;
2009-04-01 09:22:46 -04:00
# if defined(CONFIG_NFS_V4_1)
2012-09-14 17:24:32 -04:00
int nfs41_discover_server_trunking ( struct nfs_client * clp ,
struct nfs_client * * , struct rpc_cred * ) ;
2012-05-27 13:02:53 -04:00
extern void nfs4_schedule_session_recovery ( struct nfs4_session * , int ) ;
2015-07-13 14:01:31 -04:00
extern void nfs41_notify_server ( struct nfs_client * ) ;
2011-03-09 16:00:53 -05:00
# else
2012-05-27 13:02:53 -04:00
static inline void nfs4_schedule_session_recovery ( struct nfs4_session * session , int err )
2011-03-09 16:00:53 -05:00
{
}
2009-04-01 09:22:46 -04:00
# endif /* CONFIG_NFS_V4_1 */
2005-06-22 17:16:21 +00:00
2012-01-17 22:04:24 -05:00
extern struct nfs4_state_owner * nfs4_get_state_owner ( struct nfs_server * , struct rpc_cred * , gfp_t ) ;
2005-06-22 17:16:21 +00:00
extern void nfs4_put_state_owner ( struct nfs4_state_owner * ) ;
NFS: Cache state owners after files are closed
Servers have a finite amount of memory to store NFSv4 open and lock
owners. Moreover, servers may have a difficult time determining when
they can reap their state owner table, thanks to gray areas in the
NFSv4 protocol specification. Thus clients should be careful to reuse
state owners when possible.
Currently Linux is not too careful. When a user has closed all her
files on one mount point, the state owner's reference count goes to
zero, and it is released. The next OPEN allocates a new one. A
workload that serially opens and closes files can run through a large
number of open owners this way.
When a state owner's reference count goes to zero, slap it onto a free
list for that nfs_server, with an expiry time. Garbage collect before
looking for a state owner. This makes state owners for active users
available for re-use.
Now that there can be unused state owners remaining at umount time,
purge the state owner free list when a server is destroyed. Also be
sure not to reclaim unused state owners during state recovery.
This change has benefits for the client as well. For some workloads,
this approach drops the number of OPEN_CONFIRM calls from the same as
the number of OPEN calls, down to just one. This reduces wire traffic
and thus open(2) latency. Before this patch, untarring a kernel
source tarball shows the OPEN_CONFIRM call counter steadily increasing
through the test. With the patch, the OPEN_CONFIRM count remains at 1
throughout the entire untar.
As long as the expiry time is kept short, I don't think garbage
collection should be terribly expensive, although it does bounce the
clp->cl_lock around a bit.
[ At some point we should rationalize the use of the nfs_server
->destroy method. ]
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
[Trond: Fixed a garbage collection race and a few efficiency issues]
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2011-12-06 16:13:48 -05:00
extern void nfs4_purge_state_owners ( struct nfs_server * ) ;
2005-06-22 17:16:21 +00:00
extern struct nfs4_state * nfs4_get_open_state ( struct inode * , struct nfs4_state_owner * ) ;
extern void nfs4_put_open_state ( struct nfs4_state * ) ;
2011-06-22 18:20:23 -04:00
extern void nfs4_close_state ( struct nfs4_state * , fmode_t ) ;
extern void nfs4_close_sync ( struct nfs4_state * , fmode_t ) ;
2008-12-23 15:21:56 -05:00
extern void nfs4_state_set_mode_locked ( struct nfs4_state * , fmode_t ) ;
2012-03-05 19:56:44 -05:00
extern void nfs_inode_find_state_and_recover ( struct inode * inode ,
const nfs4_stateid * stateid ) ;
2014-02-12 19:15:06 -05:00
extern int nfs4_state_mark_reclaim_nograce ( struct nfs_client * , struct nfs4_state * ) ;
2011-03-09 16:00:53 -05:00
extern void nfs4_schedule_lease_recovery ( struct nfs_client * ) ;
2012-11-26 13:13:29 -05:00
extern int nfs4_wait_clnt_recover ( struct nfs_client * clp ) ;
extern int nfs4_client_recover_expired_lease ( struct nfs_client * clp ) ;
2008-12-23 15:21:50 -05:00
extern void nfs4_schedule_state_manager ( struct nfs_client * ) ;
2011-08-24 15:07:37 -04:00
extern void nfs4_schedule_path_down_recovery ( struct nfs_client * clp ) ;
2013-03-14 16:57:48 -04:00
extern int nfs4_schedule_stateid_recovery ( const struct nfs_server * , struct nfs4_state * ) ;
2013-10-17 14:13:02 -04:00
extern int nfs4_schedule_migration_recovery ( const struct nfs_server * ) ;
2013-10-17 14:13:35 -04:00
extern void nfs4_schedule_lease_moved_recovery ( struct nfs_client * ) ;
2009-12-05 13:46:14 -05:00
extern void nfs41_handle_sequence_flag_errors ( struct nfs_client * clp , u32 flags ) ;
2011-05-31 19:05:47 -04:00
extern void nfs41_handle_server_scope ( struct nfs_client * ,
2012-05-21 22:44:31 -04:00
struct nfs41_server_scope * * ) ;
2005-10-18 14:20:15 -07:00
extern void nfs4_put_lock_state ( struct nfs4_lock_state * lsp ) ;
2005-06-22 17:16:32 +00:00
extern int nfs4_set_lock_state ( struct nfs4_state * state , struct file_lock * fl ) ;
2013-03-16 20:54:34 -04:00
extern int nfs4_select_rw_stateid ( nfs4_stateid * , struct nfs4_state * ,
2012-08-13 18:54:45 -04:00
fmode_t , const struct nfs_lockowner * ) ;
2005-06-22 17:16:21 +00:00
2010-05-13 12:51:01 -04:00
extern struct nfs_seqid * nfs_alloc_seqid ( struct nfs_seqid_counter * counter , gfp_t gfp_mask ) ;
NFSv4: Add functions to order RPC calls
NFSv4 file state-changing functions such as OPEN, CLOSE, LOCK,... are all
labelled with "sequence identifiers" in order to prevent the server from
reordering RPC requests, as this could cause its file state to
become out of sync with the client.
Currently the NFS client code enforces this ordering locally using
semaphores to restrict access to structures until the RPC call is done.
This, of course, only works with synchronous RPC calls, since the
user process must first grab the semaphore.
By dropping semaphores, and instead teaching the RPC engine to hold
the RPC calls until they are ready to be sent, we can extend this
process to work nicely with asynchronous RPC calls too.
This patch adds a new list called "rpc_sequence" that defines the order
of the RPC calls to be sent. We add one such list for each state_owner.
When an RPC call is ready to be sent, it checks if it is top of the
rpc_sequence list. If so, it proceeds. If not, it goes back to sleep,
and loops until it hits top of the list.
Once the RPC call has completed, it can then bump the sequence id counter,
and remove itself from the rpc_sequence list, and then wake up the next
sleeper.
Note that the state_owner sequence ids and lock_owner sequence ids are
all indexed to the same rpc_sequence list, so OPEN, LOCK,... requests
are all ordered w.r.t. each other.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2005-10-18 14:20:12 -07:00
extern int nfs_wait_on_sequence ( struct nfs_seqid * seqid , struct rpc_task * task ) ;
extern void nfs_increment_open_seqid ( int status , struct nfs_seqid * seqid ) ;
extern void nfs_increment_lock_seqid ( int status , struct nfs_seqid * seqid ) ;
2009-12-15 14:47:36 -05:00
extern void nfs_release_seqid ( struct nfs_seqid * seqid ) ;
NFSv4: Add functions to order RPC calls
NFSv4 file state-changing functions such as OPEN, CLOSE, LOCK,... are all
labelled with "sequence identifiers" in order to prevent the server from
reordering RPC requests, as this could cause its file state to
become out of sync with the client.
Currently the NFS client code enforces this ordering locally using
semaphores to restrict access to structures until the RPC call is done.
This, of course, only works with synchronous RPC calls, since the
user process must first grab the semaphore.
By dropping semaphores, and instead teaching the RPC engine to hold
the RPC calls until they are ready to be sent, we can extend this
process to work nicely with asynchronous RPC calls too.
This patch adds a new list called "rpc_sequence" that defines the order
of the RPC calls to be sent. We add one such list for each state_owner.
When an RPC call is ready to be sent, it checks if it is top of the
rpc_sequence list. If so, it proceeds. If not, it goes back to sleep,
and loops until it hits top of the list.
Once the RPC call has completed, it can then bump the sequence id counter,
and remove itself from the rpc_sequence list, and then wake up the next
sleeper.
Note that the state_owner sequence ids and lock_owner sequence ids are
all indexed to the same rpc_sequence list, so OPEN, LOCK,... requests
are all ordered w.r.t. each other.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2005-10-18 14:20:12 -07:00
extern void nfs_free_seqid ( struct nfs_seqid * seqid ) ;
2014-06-11 05:24:15 +08:00
extern int nfs40_setup_sequence ( struct nfs4_slot_table * tbl ,
struct nfs4_sequence_args * args ,
struct nfs4_sequence_res * res ,
struct rpc_task * task ) ;
2014-06-11 05:24:16 +08:00
extern int nfs4_sequence_done ( struct rpc_task * task ,
struct nfs4_sequence_res * res ) ;
NFSv4: Add functions to order RPC calls
NFSv4 file state-changing functions such as OPEN, CLOSE, LOCK,... are all
labelled with "sequence identifiers" in order to prevent the server from
reordering RPC requests, as this could cause its file state to
become out of sync with the client.
Currently the NFS client code enforces this ordering locally using
semaphores to restrict access to structures until the RPC call is done.
This, of course, only works with synchronous RPC calls, since the
user process must first grab the semaphore.
By dropping semaphores, and instead teaching the RPC engine to hold
the RPC calls until they are ready to be sent, we can extend this
process to work nicely with asynchronous RPC calls too.
This patch adds a new list called "rpc_sequence" that defines the order
of the RPC calls to be sent. We add one such list for each state_owner.
When an RPC call is ready to be sent, it checks if it is top of the
rpc_sequence list. If so, it proceeds. If not, it goes back to sleep,
and loops until it hits top of the list.
Once the RPC call has completed, it can then bump the sequence id counter,
and remove itself from the rpc_sequence list, and then wake up the next
sleeper.
Note that the state_owner sequence ids and lock_owner sequence ids are
all indexed to the same rpc_sequence list, so OPEN, LOCK,... requests
are all ordered w.r.t. each other.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2005-10-18 14:20:12 -07:00
2012-03-19 16:17:18 -04:00
extern void nfs4_free_lock_state ( struct nfs_server * server , struct nfs4_lock_state * lsp ) ;
2012-03-07 13:49:12 -05:00
2005-06-22 17:16:21 +00:00
extern const nfs4_stateid zero_stateid ;
2012-07-16 16:39:13 -04:00
/* nfs4super.c */
2012-07-16 16:39:20 -04:00
struct nfs_mount_info ;
2012-07-30 16:05:16 -04:00
extern struct nfs_subversion nfs_v4 ;
2012-07-30 16:05:18 -04:00
struct dentry * nfs4_try_mount ( int , const char * , struct nfs_mount_info * , struct nfs_subversion * ) ;
2012-07-30 16:05:22 -04:00
extern bool nfs4_disable_idmapping ;
extern unsigned short max_session_slots ;
extern unsigned short send_implementation_id ;
2013-09-04 10:08:54 -04:00
extern bool recover_lost_locks ;
2012-07-30 16:05:25 -04:00
2012-09-14 17:24:41 -04:00
# define NFS4_CLIENT_ID_UNIQ_LEN (64)
extern char nfs4_client_id_uniquifier [ NFS4_CLIENT_ID_UNIQ_LEN ] ;
2012-07-16 16:39:14 -04:00
/* nfs4sysctl.c */
# ifdef CONFIG_SYSCTL
int nfs4_register_sysctl ( void ) ;
void nfs4_unregister_sysctl ( void ) ;
# else
static inline int nfs4_register_sysctl ( void )
{
return 0 ;
}
2012-07-27 11:49:26 -07:00
static inline void nfs4_unregister_sysctl ( void )
2012-07-16 16:39:14 -04:00
{
}
# endif
2005-06-22 17:16:21 +00:00
/* nfs4xdr.c */
extern struct rpc_procinfo nfs4_procedures [ ] ;
struct nfs4_mount_data ;
/* callback_xdr.c */
extern struct svc_version nfs4_callback_version1 ;
2009-12-05 13:19:01 -05:00
extern struct svc_version nfs4_callback_version4 ;
2005-06-22 17:16:21 +00:00
2012-03-04 18:13:56 -05:00
static inline void nfs4_stateid_copy ( nfs4_stateid * dst , const nfs4_stateid * src )
{
2012-03-04 18:13:57 -05:00
memcpy ( dst , src , sizeof ( * dst ) ) ;
2012-03-04 18:13:56 -05:00
}
static inline bool nfs4_stateid_match ( const nfs4_stateid * dst , const nfs4_stateid * src )
{
2012-03-04 18:13:57 -05:00
return memcmp ( dst , src , sizeof ( * dst ) ) = = 0 ;
2012-03-04 18:13:56 -05:00
}
2014-02-10 18:20:47 -05:00
static inline bool nfs4_stateid_match_other ( const nfs4_stateid * dst , const nfs4_stateid * src )
{
return memcmp ( dst - > other , src - > other , NFS4_STATEID_OTHER_SIZE ) = = 0 ;
}
static inline bool nfs4_stateid_is_newer ( const nfs4_stateid * s1 , const nfs4_stateid * s2 )
{
return ( s32 ) ( be32_to_cpu ( s1 - > seqid ) - be32_to_cpu ( s2 - > seqid ) ) > 0 ;
}
2013-03-14 16:57:48 -04:00
static inline bool nfs4_valid_open_stateid ( const struct nfs4_state * state )
{
return test_bit ( NFS_STATE_RECOVERY_FAILED , & state - > flags ) = = 0 ;
}
2005-06-22 17:16:21 +00:00
# else
2011-06-22 18:20:23 -04:00
# define nfs4_close_state(a, b) do { } while (0)
# define nfs4_close_sync(a, b) do { } while (0)
2013-08-13 16:37:37 -04:00
# define nfs4_state_protect(a, b, c, d) do { } while (0)
# define nfs4_state_protect_write(a, b, c, d) do { } while (0)
2005-06-22 17:16:21 +00:00
# endif /* CONFIG_NFS_V4 */
# endif /* __LINUX_FS_NFS_NFS4_FS.H */