linux/arch/x86/kernel/cpu/perf_counter.c

580 lines
14 KiB
C
Raw Normal View History

/*
* Performance counter x86 architecture code
*
* Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
*
* For licencing details see kernel-base/COPYING
*/
#include <linux/perf_counter.h>
#include <linux/capability.h>
#include <linux/notifier.h>
#include <linux/hardirq.h>
#include <linux/kprobes.h>
#include <linux/module.h>
#include <linux/kdebug.h>
#include <linux/sched.h>
#include <asm/perf_counter.h>
#include <asm/apic.h>
static bool perf_counters_initialized __read_mostly;
/*
* Number of (generic) HW counters:
*/
static int nr_hw_counters __read_mostly;
static u32 perf_counter_mask __read_mostly;
struct cpu_hw_counters {
struct perf_counter *generic[X86_PMC_MAX_GENERIC];
unsigned long used[BITS_TO_LONGS(X86_PMC_MAX_GENERIC)];
struct perf_counter *fixed[X86_PMC_MAX_FIXED];
unsigned long used_fixed[BITS_TO_LONGS(X86_PMC_MAX_FIXED)];
};
/*
* Intel PerfMon v3. Used on Core2 and later.
*/
static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
static const int intel_perfmon_event_map[] =
{
[PERF_COUNT_CYCLES] = 0x003c,
[PERF_COUNT_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
[PERF_COUNT_CACHE_MISSES] = 0x412e,
[PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
[PERF_COUNT_BRANCH_MISSES] = 0x00c5,
};
static const int max_intel_perfmon_events = ARRAY_SIZE(intel_perfmon_event_map);
/*
* Propagate counter elapsed time into the generic counter.
* Can only be executed on the CPU where the counter is active.
* Returns the delta events processed.
*/
static void
x86_perf_counter_update(struct perf_counter *counter,
struct hw_perf_counter *hwc, int idx)
{
u64 prev_raw_count, new_raw_count, delta;
/*
* Careful: an NMI might modify the previous counter value.
*
* Our tactic to handle this is to first atomically read and
* exchange a new raw count - then add that new-prev delta
* count to the generic counter atomically:
*/
again:
prev_raw_count = atomic64_read(&hwc->prev_count);
rdmsrl(hwc->counter_base + idx, new_raw_count);
if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
/*
* Now we have the new raw value and have updated the prev
* timestamp already. We can now calculate the elapsed delta
* (counter-)time and add that to the generic counter.
*
* Careful, not all hw sign-extends above the physical width
* of the count, so we do that by clipping the delta to 32 bits:
*/
delta = (u64)(u32)((s32)new_raw_count - (s32)prev_raw_count);
atomic64_add(delta, &counter->count);
atomic64_sub(delta, &hwc->period_left);
}
/*
* Setup the hardware configuration for a given hw_event_type
*/
static int __hw_perf_counter_init(struct perf_counter *counter)
{
struct perf_counter_hw_event *hw_event = &counter->hw_event;
struct hw_perf_counter *hwc = &counter->hw;
if (unlikely(!perf_counters_initialized))
return -EINVAL;
/*
* Count user events, and generate PMC IRQs:
* (keep 'enabled' bit clear for now)
*/
hwc->config = ARCH_PERFMON_EVENTSEL_USR | ARCH_PERFMON_EVENTSEL_INT;
/*
* If privileged enough, count OS events too, and allow
* NMI events as well:
*/
hwc->nmi = 0;
if (capable(CAP_SYS_ADMIN)) {
hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
if (hw_event->nmi)
hwc->nmi = 1;
}
hwc->config_base = MSR_ARCH_PERFMON_EVENTSEL0;
hwc->counter_base = MSR_ARCH_PERFMON_PERFCTR0;
hwc->irq_period = hw_event->irq_period;
/*
* Intel PMCs cannot be accessed sanely above 32 bit width,
* so we install an artificial 1<<31 period regardless of
* the generic counter period:
*/
if ((s64)hwc->irq_period <= 0 || hwc->irq_period > 0x7FFFFFFF)
hwc->irq_period = 0x7FFFFFFF;
atomic64_set(&hwc->period_left, hwc->irq_period);
/*
* Raw event type provide the config in the event structure
*/
if (hw_event->raw) {
hwc->config |= hw_event->type;
} else {
if (hw_event->type >= max_intel_perfmon_events)
return -EINVAL;
/*
* The generic map:
*/
hwc->config |= intel_perfmon_event_map[hw_event->type];
}
counter->wakeup_pending = 0;
return 0;
}
void hw_perf_enable_all(void)
{
if (unlikely(!perf_counters_initialized))
return;
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, perf_counter_mask, 0);
}
u64 hw_perf_save_disable(void)
{
u64 ctrl;
if (unlikely(!perf_counters_initialized))
return 0;
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0);
return ctrl;
}
EXPORT_SYMBOL_GPL(hw_perf_save_disable);
void hw_perf_restore(u64 ctrl)
{
if (unlikely(!perf_counters_initialized))
return;
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, ctrl, 0);
}
EXPORT_SYMBOL_GPL(hw_perf_restore);
static inline void
__pmc_generic_disable(struct perf_counter *counter,
struct hw_perf_counter *hwc, unsigned int idx)
{
int err;
err = wrmsr_safe(hwc->config_base + idx, hwc->config, 0);
}
static DEFINE_PER_CPU(u64, prev_left[X86_PMC_MAX_GENERIC]);
/*
* Set the next IRQ period, based on the hwc->period_left value.
* To be called with the counter disabled in hw:
*/
static void
__hw_perf_counter_set_period(struct perf_counter *counter,
struct hw_perf_counter *hwc, int idx)
{
s32 left = atomic64_read(&hwc->period_left);
s32 period = hwc->irq_period;
/*
* If we are way outside a reasoable range then just skip forward:
*/
if (unlikely(left <= -period)) {
left = period;
atomic64_set(&hwc->period_left, left);
}
if (unlikely(left <= 0)) {
left += period;
atomic64_set(&hwc->period_left, left);
}
per_cpu(prev_left[idx], smp_processor_id()) = left;
/*
* The hw counter starts counting from this counter offset,
* mark it to be able to extra future deltas:
*/
atomic64_set(&hwc->prev_count, (u64)(s64)-left);
wrmsr(hwc->counter_base + idx, -left, 0);
}
static void
__pmc_generic_enable(struct perf_counter *counter,
struct hw_perf_counter *hwc, int idx)
{
wrmsr(hwc->config_base + idx,
hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE, 0);
}
/*
* Find a PMC slot for the freshly enabled / scheduled in counter:
*/
static void pmc_generic_enable(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
struct hw_perf_counter *hwc = &counter->hw;
int idx = hwc->idx;
/* Try to get the previous counter again */
if (test_and_set_bit(idx, cpuc->used)) {
idx = find_first_zero_bit(cpuc->used, nr_hw_counters);
set_bit(idx, cpuc->used);
hwc->idx = idx;
}
perf_counters_lapic_init(hwc->nmi);
__pmc_generic_disable(counter, hwc, idx);
cpuc->generic[idx] = counter;
__hw_perf_counter_set_period(counter, hwc, idx);
__pmc_generic_enable(counter, hwc, idx);
}
void perf_counter_print_debug(void)
{
u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left;
int cpu, idx;
if (!nr_hw_counters)
return;
local_irq_disable();
cpu = smp_processor_id();
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
printk(KERN_INFO "\n");
printk(KERN_INFO "CPU#%d: ctrl: %016llx\n", cpu, ctrl);
printk(KERN_INFO "CPU#%d: status: %016llx\n", cpu, status);
printk(KERN_INFO "CPU#%d: overflow: %016llx\n", cpu, overflow);
for (idx = 0; idx < nr_hw_counters; idx++) {
rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl);
rdmsrl(MSR_ARCH_PERFMON_PERFCTR0 + idx, pmc_count);
prev_left = per_cpu(prev_left[idx], cpu);
printk(KERN_INFO "CPU#%d: PMC%d ctrl: %016llx\n",
cpu, idx, pmc_ctrl);
printk(KERN_INFO "CPU#%d: PMC%d count: %016llx\n",
cpu, idx, pmc_count);
printk(KERN_INFO "CPU#%d: PMC%d left: %016llx\n",
cpu, idx, prev_left);
}
local_irq_enable();
}
static void pmc_generic_disable(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
struct hw_perf_counter *hwc = &counter->hw;
unsigned int idx = hwc->idx;
__pmc_generic_disable(counter, hwc, idx);
clear_bit(idx, cpuc->used);
cpuc->generic[idx] = NULL;
/*
* Drain the remaining delta count out of a counter
* that we are disabling:
*/
x86_perf_counter_update(counter, hwc, idx);
}
static void perf_store_irq_data(struct perf_counter *counter, u64 data)
{
struct perf_data *irqdata = counter->irqdata;
if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
irqdata->overrun++;
} else {
u64 *p = (u64 *) &irqdata->data[irqdata->len];
*p = data;
irqdata->len += sizeof(u64);
}
}
/*
* Save and restart an expired counter. Called by NMI contexts,
* so it has to be careful about preempting normal counter ops:
*/
static void perf_save_and_restart(struct perf_counter *counter)
{
struct hw_perf_counter *hwc = &counter->hw;
int idx = hwc->idx;
u64 pmc_ctrl;
rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl);
x86_perf_counter_update(counter, hwc, idx);
__hw_perf_counter_set_period(counter, hwc, idx);
if (pmc_ctrl & ARCH_PERFMON_EVENTSEL0_ENABLE)
__pmc_generic_enable(counter, hwc, idx);
}
static void
perf_handle_group(struct perf_counter *sibling, u64 *status, u64 *overflown)
{
struct perf_counter *counter, *group_leader = sibling->group_leader;
/*
* Store sibling timestamps (if any):
*/
list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
perf_store_irq_data(sibling, counter->hw_event.type);
perf_store_irq_data(sibling, atomic64_read(&counter->count));
}
}
/*
* This handler is triggered by the local APIC, so the APIC IRQ handling
* rules apply:
*/
static void __smp_perf_counter_interrupt(struct pt_regs *regs, int nmi)
{
int bit, cpu = smp_processor_id();
u64 ack, status, saved_global;
struct cpu_hw_counters *cpuc;
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, saved_global);
/* Disable counters globally */
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0);
ack_APIC_irq();
cpuc = &per_cpu(cpu_hw_counters, cpu);
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
if (!status)
goto out;
again:
ack = status;
for_each_bit(bit, (unsigned long *) &status, nr_hw_counters) {
struct perf_counter *counter = cpuc->generic[bit];
clear_bit(bit, (unsigned long *) &status);
if (!counter)
continue;
perf_save_and_restart(counter);
switch (counter->hw_event.record_type) {
case PERF_RECORD_SIMPLE:
continue;
case PERF_RECORD_IRQ:
perf_store_irq_data(counter, instruction_pointer(regs));
break;
case PERF_RECORD_GROUP:
perf_handle_group(counter, &status, &ack);
break;
}
/*
* From NMI context we cannot call into the scheduler to
* do a task wakeup - but we mark these generic as
* wakeup_pending and initate a wakeup callback:
*/
if (nmi) {
counter->wakeup_pending = 1;
set_tsk_thread_flag(current, TIF_PERF_COUNTERS);
} else {
wake_up(&counter->waitq);
}
}
wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack, 0);
/*
* Repeat if there is more work to be done:
*/
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
if (status)
goto again;
out:
/*
* Restore - do not reenable when global enable is off:
*/
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, saved_global, 0);
}
void smp_perf_counter_interrupt(struct pt_regs *regs)
{
irq_enter();
inc_irq_stat(apic_perf_irqs);
apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
__smp_perf_counter_interrupt(regs, 0);
irq_exit();
}
/*
* This handler is triggered by NMI contexts:
*/
void perf_counter_notify(struct pt_regs *regs)
{
struct cpu_hw_counters *cpuc;
unsigned long flags;
int bit, cpu;
local_irq_save(flags);
cpu = smp_processor_id();
cpuc = &per_cpu(cpu_hw_counters, cpu);
for_each_bit(bit, cpuc->used, nr_hw_counters) {
struct perf_counter *counter = cpuc->generic[bit];
if (!counter)
continue;
if (counter->wakeup_pending) {
counter->wakeup_pending = 0;
wake_up(&counter->waitq);
}
}
local_irq_restore(flags);
}
void __cpuinit perf_counters_lapic_init(int nmi)
{
u32 apic_val;
if (!perf_counters_initialized)
return;
/*
* Enable the performance counter vector in the APIC LVT:
*/
apic_val = apic_read(APIC_LVTERR);
apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED);
if (nmi)
apic_write(APIC_LVTPC, APIC_DM_NMI);
else
apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
apic_write(APIC_LVTERR, apic_val);
}
static int __kprobes
perf_counter_nmi_handler(struct notifier_block *self,
unsigned long cmd, void *__args)
{
struct die_args *args = __args;
struct pt_regs *regs;
if (likely(cmd != DIE_NMI_IPI))
return NOTIFY_DONE;
regs = args->regs;
apic_write(APIC_LVTPC, APIC_DM_NMI);
__smp_perf_counter_interrupt(regs, 1);
return NOTIFY_STOP;
}
static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
.notifier_call = perf_counter_nmi_handler
};
void __init init_hw_perf_counters(void)
{
union cpuid10_eax eax;
unsigned int unused;
unsigned int ebx;
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
return;
/*
* Check whether the Architectural PerfMon supports
* Branch Misses Retired Event or not.
*/
cpuid(10, &(eax.full), &ebx, &unused, &unused);
if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
return;
printk(KERN_INFO "Intel Performance Monitoring support detected.\n");
printk(KERN_INFO "... version: %d\n", eax.split.version_id);
printk(KERN_INFO "... num_counters: %d\n", eax.split.num_counters);
nr_hw_counters = eax.split.num_counters;
if (nr_hw_counters > X86_PMC_MAX_GENERIC) {
nr_hw_counters = X86_PMC_MAX_GENERIC;
WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
nr_hw_counters, X86_PMC_MAX_GENERIC);
}
perf_counter_mask = (1 << nr_hw_counters) - 1;
perf_max_counters = nr_hw_counters;
printk(KERN_INFO "... bit_width: %d\n", eax.split.bit_width);
printk(KERN_INFO "... mask_length: %d\n", eax.split.mask_length);
perf_counters_initialized = true;
perf_counters_lapic_init(0);
register_die_notifier(&perf_counter_nmi_notifier);
}
static void pmc_generic_read(struct perf_counter *counter)
{
x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
}
static const struct hw_perf_counter_ops x86_perf_counter_ops = {
.hw_perf_counter_enable = pmc_generic_enable,
.hw_perf_counter_disable = pmc_generic_disable,
.hw_perf_counter_read = pmc_generic_read,
};
const struct hw_perf_counter_ops *
hw_perf_counter_init(struct perf_counter *counter)
{
int err;
err = __hw_perf_counter_init(counter);
if (err)
return NULL;
return &x86_perf_counter_ops;
}