2019-05-20 19:07:51 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
2011-08-31 14:05:16 +03:00
/* mpihelp-mul.c - MPI helper functions
* Copyright ( C ) 1994 , 1996 , 1998 , 1999 ,
* 2000 Free Software Foundation , Inc .
*
* This file is part of GnuPG .
*
* Note : This code is heavily based on the GNU MP Library .
* Actually it ' s the same code with only minor changes in the
* way the data is stored ; this is to support the abstraction
* of an optional secure memory allocation which may be used
* to avoid revealing of sensitive data due to paging etc .
* The GNU MP Library itself is published under the LGPL ;
* however I decided to publish this code under the plain GPL .
*/
# include <linux/string.h>
# include "mpi-internal.h"
# include "longlong.h"
# define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \
do { \
if ( ( size ) < KARATSUBA_THRESHOLD ) \
mul_n_basecase ( prodp , up , vp , size ) ; \
else \
mul_n ( prodp , up , vp , size , tspace ) ; \
} while ( 0 ) ;
# define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \
do { \
if ( ( size ) < KARATSUBA_THRESHOLD ) \
mpih_sqr_n_basecase ( prodp , up , size ) ; \
else \
mpih_sqr_n ( prodp , up , size , tspace ) ; \
} while ( 0 ) ;
/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
* both with SIZE limbs , and store the result at PRODP . 2 * SIZE limbs are
* always stored . Return the most significant limb .
*
* Argument constraints :
* 1. PRODP ! = UP and PRODP ! = VP , i . e . the destination
* must be distinct from the multiplier and the multiplicand .
*
*
* Handle simple cases with traditional multiplication .
*
* This is the most critical code of multiplication . All multiplies rely
* on this , both small and huge . Small ones arrive here immediately . Huge
* ones arrive here as this is the base case for Karatsuba ' s recursive
* algorithm below .
*/
static mpi_limb_t
mul_n_basecase ( mpi_ptr_t prodp , mpi_ptr_t up , mpi_ptr_t vp , mpi_size_t size )
{
mpi_size_t i ;
mpi_limb_t cy ;
mpi_limb_t v_limb ;
/* Multiply by the first limb in V separately, as the result can be
* stored ( not added ) to PROD . We also avoid a loop for zeroing . */
v_limb = vp [ 0 ] ;
if ( v_limb < = 1 ) {
if ( v_limb = = 1 )
MPN_COPY ( prodp , up , size ) ;
else
MPN_ZERO ( prodp , size ) ;
cy = 0 ;
} else
cy = mpihelp_mul_1 ( prodp , up , size , v_limb ) ;
prodp [ size ] = cy ;
prodp + + ;
/* For each iteration in the outer loop, multiply one limb from
* U with one limb from V , and add it to PROD . */
for ( i = 1 ; i < size ; i + + ) {
v_limb = vp [ i ] ;
if ( v_limb < = 1 ) {
cy = 0 ;
if ( v_limb = = 1 )
cy = mpihelp_add_n ( prodp , prodp , up , size ) ;
} else
cy = mpihelp_addmul_1 ( prodp , up , size , v_limb ) ;
prodp [ size ] = cy ;
prodp + + ;
}
return cy ;
}
static void
mul_n ( mpi_ptr_t prodp , mpi_ptr_t up , mpi_ptr_t vp ,
mpi_size_t size , mpi_ptr_t tspace )
{
if ( size & 1 ) {
/* The size is odd, and the code below doesn't handle that.
* Multiply the least significant ( size - 1 ) limbs with a recursive
* call , and handle the most significant limb of S1 and S2
* separately .
* A slightly faster way to do this would be to make the Karatsuba
* code below behave as if the size were even , and let it check for
* odd size in the end . I . e . , in essence move this code to the end .
* Doing so would save us a recursive call , and potentially make the
* stack grow a lot less .
*/
mpi_size_t esize = size - 1 ; /* even size */
mpi_limb_t cy_limb ;
MPN_MUL_N_RECURSE ( prodp , up , vp , esize , tspace ) ;
cy_limb = mpihelp_addmul_1 ( prodp + esize , up , esize , vp [ esize ] ) ;
prodp [ esize + esize ] = cy_limb ;
cy_limb = mpihelp_addmul_1 ( prodp + esize , vp , size , up [ esize ] ) ;
prodp [ esize + size ] = cy_limb ;
} else {
/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
*
* Split U in two pieces , U1 and U0 , such that
* U = U0 + U1 * ( B * * n ) ,
* and V in V1 and V0 , such that
* V = V0 + V1 * ( B * * n ) .
*
* UV is then computed recursively using the identity
*
* 2 n n n n
* UV = ( B + B ) U V + B ( U - U ) ( V - V ) + ( B + 1 ) U V
* 1 1 1 0 0 1 0 0
*
* Where B = 2 * * BITS_PER_MP_LIMB .
*/
mpi_size_t hsize = size > > 1 ;
mpi_limb_t cy ;
int negflg ;
/* Product H. ________________ ________________
* | _____U1 x V1____ | | ____U0 x V0_____ |
* Put result in upper part of PROD and pass low part of TSPACE
* as new TSPACE .
*/
MPN_MUL_N_RECURSE ( prodp + size , up + hsize , vp + hsize , hsize ,
tspace ) ;
/* Product M. ________________
* | _ ( U1 - U0 ) ( V0 - V1 ) _ |
*/
if ( mpihelp_cmp ( up + hsize , up , hsize ) > = 0 ) {
mpihelp_sub_n ( prodp , up + hsize , up , hsize ) ;
negflg = 0 ;
} else {
mpihelp_sub_n ( prodp , up , up + hsize , hsize ) ;
negflg = 1 ;
}
if ( mpihelp_cmp ( vp + hsize , vp , hsize ) > = 0 ) {
mpihelp_sub_n ( prodp + hsize , vp + hsize , vp , hsize ) ;
negflg ^ = 1 ;
} else {
mpihelp_sub_n ( prodp + hsize , vp , vp + hsize , hsize ) ;
/* No change of NEGFLG. */
}
/* Read temporary operands from low part of PROD.
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE .
*/
MPN_MUL_N_RECURSE ( tspace , prodp , prodp + hsize , hsize ,
tspace + size ) ;
/* Add/copy product H. */
MPN_COPY ( prodp + hsize , prodp + size , hsize ) ;
cy = mpihelp_add_n ( prodp + size , prodp + size ,
prodp + size + hsize , hsize ) ;
/* Add product M (if NEGFLG M is a negative number) */
if ( negflg )
cy - =
mpihelp_sub_n ( prodp + hsize , prodp + hsize , tspace ,
size ) ;
else
cy + =
mpihelp_add_n ( prodp + hsize , prodp + hsize , tspace ,
size ) ;
/* Product L. ________________ ________________
* | ________________ | | ____U0 x V0_____ |
* Read temporary operands from low part of PROD .
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE .
*/
MPN_MUL_N_RECURSE ( tspace , up , vp , hsize , tspace + size ) ;
/* Add/copy Product L (twice) */
cy + = mpihelp_add_n ( prodp + hsize , prodp + hsize , tspace , size ) ;
if ( cy )
mpihelp_add_1 ( prodp + hsize + size ,
prodp + hsize + size , hsize , cy ) ;
MPN_COPY ( prodp , tspace , hsize ) ;
cy = mpihelp_add_n ( prodp + hsize , prodp + hsize , tspace + hsize ,
hsize ) ;
if ( cy )
mpihelp_add_1 ( prodp + size , prodp + size , size , 1 ) ;
}
}
void mpih_sqr_n_basecase ( mpi_ptr_t prodp , mpi_ptr_t up , mpi_size_t size )
{
mpi_size_t i ;
mpi_limb_t cy_limb ;
mpi_limb_t v_limb ;
/* Multiply by the first limb in V separately, as the result can be
* stored ( not added ) to PROD . We also avoid a loop for zeroing . */
v_limb = up [ 0 ] ;
if ( v_limb < = 1 ) {
if ( v_limb = = 1 )
MPN_COPY ( prodp , up , size ) ;
else
MPN_ZERO ( prodp , size ) ;
cy_limb = 0 ;
} else
cy_limb = mpihelp_mul_1 ( prodp , up , size , v_limb ) ;
prodp [ size ] = cy_limb ;
prodp + + ;
/* For each iteration in the outer loop, multiply one limb from
* U with one limb from V , and add it to PROD . */
for ( i = 1 ; i < size ; i + + ) {
v_limb = up [ i ] ;
if ( v_limb < = 1 ) {
cy_limb = 0 ;
if ( v_limb = = 1 )
cy_limb = mpihelp_add_n ( prodp , prodp , up , size ) ;
} else
cy_limb = mpihelp_addmul_1 ( prodp , up , size , v_limb ) ;
prodp [ size ] = cy_limb ;
prodp + + ;
}
}
void
mpih_sqr_n ( mpi_ptr_t prodp , mpi_ptr_t up , mpi_size_t size , mpi_ptr_t tspace )
{
if ( size & 1 ) {
/* The size is odd, and the code below doesn't handle that.
* Multiply the least significant ( size - 1 ) limbs with a recursive
* call , and handle the most significant limb of S1 and S2
* separately .
* A slightly faster way to do this would be to make the Karatsuba
* code below behave as if the size were even , and let it check for
* odd size in the end . I . e . , in essence move this code to the end .
* Doing so would save us a recursive call , and potentially make the
* stack grow a lot less .
*/
mpi_size_t esize = size - 1 ; /* even size */
mpi_limb_t cy_limb ;
MPN_SQR_N_RECURSE ( prodp , up , esize , tspace ) ;
cy_limb = mpihelp_addmul_1 ( prodp + esize , up , esize , up [ esize ] ) ;
prodp [ esize + esize ] = cy_limb ;
cy_limb = mpihelp_addmul_1 ( prodp + esize , up , size , up [ esize ] ) ;
prodp [ esize + size ] = cy_limb ;
} else {
mpi_size_t hsize = size > > 1 ;
mpi_limb_t cy ;
/* Product H. ________________ ________________
* | _____U1 x U1____ | | ____U0 x U0_____ |
* Put result in upper part of PROD and pass low part of TSPACE
* as new TSPACE .
*/
MPN_SQR_N_RECURSE ( prodp + size , up + hsize , hsize , tspace ) ;
/* Product M. ________________
* | _ ( U1 - U0 ) ( U0 - U1 ) _ |
*/
if ( mpihelp_cmp ( up + hsize , up , hsize ) > = 0 )
mpihelp_sub_n ( prodp , up + hsize , up , hsize ) ;
else
mpihelp_sub_n ( prodp , up , up + hsize , hsize ) ;
/* Read temporary operands from low part of PROD.
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE . */
MPN_SQR_N_RECURSE ( tspace , prodp , hsize , tspace + size ) ;
/* Add/copy product H */
MPN_COPY ( prodp + hsize , prodp + size , hsize ) ;
cy = mpihelp_add_n ( prodp + size , prodp + size ,
prodp + size + hsize , hsize ) ;
/* Add product M (if NEGFLG M is a negative number). */
cy - = mpihelp_sub_n ( prodp + hsize , prodp + hsize , tspace , size ) ;
/* Product L. ________________ ________________
* | ________________ | | ____U0 x U0_____ |
* Read temporary operands from low part of PROD .
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE . */
MPN_SQR_N_RECURSE ( tspace , up , hsize , tspace + size ) ;
/* Add/copy Product L (twice). */
cy + = mpihelp_add_n ( prodp + hsize , prodp + hsize , tspace , size ) ;
if ( cy )
mpihelp_add_1 ( prodp + hsize + size ,
prodp + hsize + size , hsize , cy ) ;
MPN_COPY ( prodp , tspace , hsize ) ;
cy = mpihelp_add_n ( prodp + hsize , prodp + hsize , tspace + hsize ,
hsize ) ;
if ( cy )
mpihelp_add_1 ( prodp + size , prodp + size , size , 1 ) ;
}
}
int
mpihelp_mul_karatsuba_case ( mpi_ptr_t prodp ,
mpi_ptr_t up , mpi_size_t usize ,
mpi_ptr_t vp , mpi_size_t vsize ,
struct karatsuba_ctx * ctx )
{
mpi_limb_t cy ;
if ( ! ctx - > tspace | | ctx - > tspace_size < vsize ) {
if ( ctx - > tspace )
mpi_free_limb_space ( ctx - > tspace ) ;
ctx - > tspace = mpi_alloc_limb_space ( 2 * vsize ) ;
if ( ! ctx - > tspace )
return - ENOMEM ;
ctx - > tspace_size = vsize ;
}
MPN_MUL_N_RECURSE ( prodp , up , vp , vsize , ctx - > tspace ) ;
prodp + = vsize ;
up + = vsize ;
usize - = vsize ;
if ( usize > = vsize ) {
if ( ! ctx - > tp | | ctx - > tp_size < vsize ) {
if ( ctx - > tp )
mpi_free_limb_space ( ctx - > tp ) ;
ctx - > tp = mpi_alloc_limb_space ( 2 * vsize ) ;
if ( ! ctx - > tp ) {
if ( ctx - > tspace )
mpi_free_limb_space ( ctx - > tspace ) ;
ctx - > tspace = NULL ;
return - ENOMEM ;
}
ctx - > tp_size = vsize ;
}
do {
MPN_MUL_N_RECURSE ( ctx - > tp , up , vp , vsize , ctx - > tspace ) ;
cy = mpihelp_add_n ( prodp , prodp , ctx - > tp , vsize ) ;
mpihelp_add_1 ( prodp + vsize , ctx - > tp + vsize , vsize ,
cy ) ;
prodp + = vsize ;
up + = vsize ;
usize - = vsize ;
} while ( usize > = vsize ) ;
}
if ( usize ) {
if ( usize < KARATSUBA_THRESHOLD ) {
mpi_limb_t tmp ;
if ( mpihelp_mul ( ctx - > tspace , vp , vsize , up , usize , & tmp )
< 0 )
return - ENOMEM ;
} else {
if ( ! ctx - > next ) {
ctx - > next = kzalloc ( sizeof * ctx , GFP_KERNEL ) ;
if ( ! ctx - > next )
return - ENOMEM ;
}
if ( mpihelp_mul_karatsuba_case ( ctx - > tspace ,
vp , vsize ,
up , usize ,
ctx - > next ) < 0 )
return - ENOMEM ;
}
cy = mpihelp_add_n ( prodp , prodp , ctx - > tspace , vsize ) ;
mpihelp_add_1 ( prodp + vsize , ctx - > tspace + vsize , usize , cy ) ;
}
return 0 ;
}
void mpihelp_release_karatsuba_ctx ( struct karatsuba_ctx * ctx )
{
struct karatsuba_ctx * ctx2 ;
if ( ctx - > tp )
mpi_free_limb_space ( ctx - > tp ) ;
if ( ctx - > tspace )
mpi_free_limb_space ( ctx - > tspace ) ;
for ( ctx = ctx - > next ; ctx ; ctx = ctx2 ) {
ctx2 = ctx - > next ;
if ( ctx - > tp )
mpi_free_limb_space ( ctx - > tp ) ;
if ( ctx - > tspace )
mpi_free_limb_space ( ctx - > tspace ) ;
kfree ( ctx ) ;
}
}
/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
* and v ( pointed to by VP , with VSIZE limbs ) , and store the result at
* PRODP . USIZE + VSIZE limbs are always stored , but if the input
* operands are normalized . Return the most significant limb of the
* result .
*
* NOTE : The space pointed to by PRODP is overwritten before finished
* with U and V , so overlap is an error .
*
* Argument constraints :
* 1. USIZE > = VSIZE .
* 2. PRODP ! = UP and PRODP ! = VP , i . e . the destination
* must be distinct from the multiplier and the multiplicand .
*/
int
mpihelp_mul ( mpi_ptr_t prodp , mpi_ptr_t up , mpi_size_t usize ,
mpi_ptr_t vp , mpi_size_t vsize , mpi_limb_t * _result )
{
mpi_ptr_t prod_endp = prodp + usize + vsize - 1 ;
mpi_limb_t cy ;
struct karatsuba_ctx ctx ;
if ( vsize < KARATSUBA_THRESHOLD ) {
mpi_size_t i ;
mpi_limb_t v_limb ;
if ( ! vsize ) {
* _result = 0 ;
return 0 ;
}
/* Multiply by the first limb in V separately, as the result can be
* stored ( not added ) to PROD . We also avoid a loop for zeroing . */
v_limb = vp [ 0 ] ;
if ( v_limb < = 1 ) {
if ( v_limb = = 1 )
MPN_COPY ( prodp , up , usize ) ;
else
MPN_ZERO ( prodp , usize ) ;
cy = 0 ;
} else
cy = mpihelp_mul_1 ( prodp , up , usize , v_limb ) ;
prodp [ usize ] = cy ;
prodp + + ;
/* For each iteration in the outer loop, multiply one limb from
* U with one limb from V , and add it to PROD . */
for ( i = 1 ; i < vsize ; i + + ) {
v_limb = vp [ i ] ;
if ( v_limb < = 1 ) {
cy = 0 ;
if ( v_limb = = 1 )
cy = mpihelp_add_n ( prodp , prodp , up ,
usize ) ;
} else
cy = mpihelp_addmul_1 ( prodp , up , usize , v_limb ) ;
prodp [ usize ] = cy ;
prodp + + ;
}
* _result = cy ;
return 0 ;
}
memset ( & ctx , 0 , sizeof ctx ) ;
if ( mpihelp_mul_karatsuba_case ( prodp , up , usize , vp , vsize , & ctx ) < 0 )
return - ENOMEM ;
mpihelp_release_karatsuba_ctx ( & ctx ) ;
* _result = * prod_endp ;
return 0 ;
}