linux/mm/memory_hotplug.c

1893 lines
49 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/mm/memory_hotplug.c
*
* Copyright (C)
*/
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/pagevec.h>
#include <linux/writeback.h>
#include <linux/slab.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/memory.h>
#include <linux/memremap.h>
#include <linux/memory_hotplug.h>
#include <linux/highmem.h>
#include <linux/vmalloc.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/pfn.h>
#include <linux/suspend.h>
#include <linux/mm_inline.h>
#include <linux/firmware-map.h>
#include <linux/stop_machine.h>
mm: memory-hotplug: enable memory hotplug to handle hugepage Until now we can't offline memory blocks which contain hugepages because a hugepage is considered as an unmovable page. But now with this patch series, a hugepage has become movable, so by using hugepage migration we can offline such memory blocks. What's different from other users of hugepage migration is that we need to decompose all the hugepages inside the target memory block into free buddy pages after hugepage migration, because otherwise free hugepages remaining in the memory block intervene the memory offlining. For this reason we introduce new functions dissolve_free_huge_page() and dissolve_free_huge_pages(). Other than that, what this patch does is straightforwardly to add hugepage migration code, that is, adding hugepage code to the functions which scan over pfn and collect hugepages to be migrated, and adding a hugepage allocation function to alloc_migrate_target(). As for larger hugepages (1GB for x86_64), it's not easy to do hotremove over them because it's larger than memory block. So we now simply leave it to fail as it is. [yongjun_wei@trendmicro.com.cn: remove duplicated include] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:22:09 +04:00
#include <linux/hugetlb.h>
mem-hotplug: introduce movable_node boot option The hot-Pluggable field in SRAT specifies which memory is hotpluggable. As we mentioned before, if hotpluggable memory is used by the kernel, it cannot be hot-removed. So memory hotplug users may want to set all hotpluggable memory in ZONE_MOVABLE so that the kernel won't use it. Memory hotplug users may also set a node as movable node, which has ZONE_MOVABLE only, so that the whole node can be hot-removed. But the kernel cannot use memory in ZONE_MOVABLE. By doing this, the kernel cannot use memory in movable nodes. This will cause NUMA performance down. And other users may be unhappy. So we need a way to allow users to enable and disable this functionality. In this patch, we introduce movable_node boot option to allow users to choose to not to consume hotpluggable memory at early boot time and later we can set it as ZONE_MOVABLE. To achieve this, the movable_node boot option will control the memblock allocation direction. That said, after memblock is ready, before SRAT is parsed, we should allocate memory near the kernel image as we explained in the previous patches. So if movable_node boot option is set, the kernel does the following: 1. After memblock is ready, make memblock allocate memory bottom up. 2. After SRAT is parsed, make memblock behave as default, allocate memory top down. Users can specify "movable_node" in kernel commandline to enable this functionality. For those who don't use memory hotplug or who don't want to lose their NUMA performance, just don't specify anything. The kernel will work as before. Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Suggested-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Suggested-by: Ingo Molnar <mingo@kernel.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Toshi Kani <toshi.kani@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Thomas Renninger <trenn@suse.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 03:08:10 +04:00
#include <linux/memblock.h>
mm, compaction: introduce kcompactd Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 00:18:08 +03:00
#include <linux/compaction.h>
hwpoison, memory_hotplug: allow hwpoisoned pages to be offlined We have received a bug report that an injected MCE about faulty memory prevents memory offline to succeed on 4.4 base kernel. The underlying reason was that the HWPoison page has an elevated reference count and the migration keeps failing. There are two problems with that. First of all it is dubious to migrate the poisoned page because we know that accessing that memory is possible to fail. Secondly it doesn't make any sense to migrate a potentially broken content and preserve the memory corruption over to a new location. Oscar has found out that 4.4 and the current upstream kernels behave slightly differently with his simply testcase === int main(void) { int ret; int i; int fd; char *array = malloc(4096); char *array_locked = malloc(4096); fd = open("/tmp/data", O_RDONLY); read(fd, array, 4095); for (i = 0; i < 4096; i++) array_locked[i] = 'd'; ret = mlock((void *)PAGE_ALIGN((unsigned long)array_locked), sizeof(array_locked)); if (ret) perror("mlock"); sleep (20); ret = madvise((void *)PAGE_ALIGN((unsigned long)array_locked), 4096, MADV_HWPOISON); if (ret) perror("madvise"); for (i = 0; i < 4096; i++) array_locked[i] = 'd'; return 0; } === + offline this memory. In 4.4 kernels he saw the hwpoisoned page to be returned back to the LRU list kernel: [<ffffffff81019ac9>] dump_trace+0x59/0x340 kernel: [<ffffffff81019e9a>] show_stack_log_lvl+0xea/0x170 kernel: [<ffffffff8101ac71>] show_stack+0x21/0x40 kernel: [<ffffffff8132bb90>] dump_stack+0x5c/0x7c kernel: [<ffffffff810815a1>] warn_slowpath_common+0x81/0xb0 kernel: [<ffffffff811a275c>] __pagevec_lru_add_fn+0x14c/0x160 kernel: [<ffffffff811a2eed>] pagevec_lru_move_fn+0xad/0x100 kernel: [<ffffffff811a334c>] __lru_cache_add+0x6c/0xb0 kernel: [<ffffffff81195236>] add_to_page_cache_lru+0x46/0x70 kernel: [<ffffffffa02b4373>] extent_readpages+0xc3/0x1a0 [btrfs] kernel: [<ffffffff811a16d7>] __do_page_cache_readahead+0x177/0x200 kernel: [<ffffffff811a18c8>] ondemand_readahead+0x168/0x2a0 kernel: [<ffffffff8119673f>] generic_file_read_iter+0x41f/0x660 kernel: [<ffffffff8120e50d>] __vfs_read+0xcd/0x140 kernel: [<ffffffff8120e9ea>] vfs_read+0x7a/0x120 kernel: [<ffffffff8121404b>] kernel_read+0x3b/0x50 kernel: [<ffffffff81215c80>] do_execveat_common.isra.29+0x490/0x6f0 kernel: [<ffffffff81215f08>] do_execve+0x28/0x30 kernel: [<ffffffff81095ddb>] call_usermodehelper_exec_async+0xfb/0x130 kernel: [<ffffffff8161c045>] ret_from_fork+0x55/0x80 And that latter confuses the hotremove path because an LRU page is attempted to be migrated and that fails due to an elevated reference count. It is quite possible that the reuse of the HWPoisoned page is some kind of fixed race condition but I am not really sure about that. With the upstream kernel the failure is slightly different. The page doesn't seem to have LRU bit set but isolate_movable_page simply fails and do_migrate_range simply puts all the isolated pages back to LRU and therefore no progress is made and scan_movable_pages finds same set of pages over and over again. Fix both cases by explicitly checking HWPoisoned pages before we even try to get reference on the page, try to unmap it if it is still mapped. As explained by Naoya: : Hwpoison code never unmapped those for no big reason because : Ksm pages never dominate memory, so we simply didn't have strong : motivation to save the pages. Also put WARN_ON(PageLRU) in case there is a race and we can hit LRU HWPoison pages which shouldn't happen but I couldn't convince myself about that. Naoya has noted the following: : Theoretically no such gurantee, because try_to_unmap() doesn't have a : guarantee of success and then memory_failure() returns immediately : when hwpoison_user_mappings fails. : Or the following code (comes after hwpoison_user_mappings block) also impli= : es : that the target page can still have PageLRU flag. : : /* : * Torn down by someone else? : */ : if (PageLRU(p) && !PageSwapCache(p) && p->mapping =3D=3D NULL) { : action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); : res =3D -EBUSY; : goto out; : } : : So I think it's OK to keep "if (WARN_ON(PageLRU(page)))" block in : current version of your patch. Link: http://lkml.kernel.org/r/20181206120135.14079-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.com> Debugged-by: Oscar Salvador <osalvador@suse.com> Tested-by: Oscar Salvador <osalvador@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 11:38:01 +03:00
#include <linux/rmap.h>
#include <asm/tlbflush.h>
#include "internal.h"
mm: shuffle initial free memory to improve memory-side-cache utilization Patch series "mm: Randomize free memory", v10. This patch (of 3): Randomization of the page allocator improves the average utilization of a direct-mapped memory-side-cache. Memory side caching is a platform capability that Linux has been previously exposed to in HPC (high-performance computing) environments on specialty platforms. In that instance it was a smaller pool of high-bandwidth-memory relative to higher-capacity / lower-bandwidth DRAM. Now, this capability is going to be found on general purpose server platforms where DRAM is a cache in front of higher latency persistent memory [1]. Robert offered an explanation of the state of the art of Linux interactions with memory-side-caches [2], and I copy it here: It's been a problem in the HPC space: http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/ A kernel module called zonesort is available to try to help: https://software.intel.com/en-us/articles/xeon-phi-software and this abandoned patch series proposed that for the kernel: https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com Dan's patch series doesn't attempt to ensure buffers won't conflict, but also reduces the chance that the buffers will. This will make performance more consistent, albeit slower than "optimal" (which is near impossible to attain in a general-purpose kernel). That's better than forcing users to deploy remedies like: "To eliminate this gradual degradation, we have added a Stream measurement to the Node Health Check that follows each job; nodes are rebooted whenever their measured memory bandwidth falls below 300 GB/s." A replacement for zonesort was merged upstream in commit cc9aec03e58f ("x86/numa_emulation: Introduce uniform split capability"). With this numa_emulation capability, memory can be split into cache sized ("near-memory" sized) numa nodes. A bind operation to such a node, and disabling workloads on other nodes, enables full cache performance. However, once the workload exceeds the cache size then cache conflicts are unavoidable. While HPC environments might be able to tolerate time-scheduling of cache sized workloads, for general purpose server platforms, the oversubscribed cache case will be the common case. The worst case scenario is that a server system owner benchmarks a workload at boot with an un-contended cache only to see that performance degrade over time, even below the average cache performance due to excessive conflicts. Randomization clips the peaks and fills in the valleys of cache utilization to yield steady average performance. Here are some performance impact details of the patches: 1/ An Intel internal synthetic memory bandwidth measurement tool, saw a 3X speedup in a contrived case that tries to force cache conflicts. The contrived cased used the numa_emulation capability to force an instance of the benchmark to be run in two of the near-memory sized numa nodes. If both instances were placed on the same emulated they would fit and cause zero conflicts. While on separate emulated nodes without randomization they underutilized the cache and conflicted unnecessarily due to the in-order allocation per node. 2/ A well known Java server application benchmark was run with a heap size that exceeded cache size by 3X. The cache conflict rate was 8% for the first run and degraded to 21% after page allocator aging. With randomization enabled the rate levelled out at 11%. 3/ A MongoDB workload did not observe measurable difference in cache-conflict rates, but the overall throughput dropped by 7% with randomization in one case. 4/ Mel Gorman ran his suite of performance workloads with randomization enabled on platforms without a memory-side-cache and saw a mix of some improvements and some losses [3]. While there is potentially significant improvement for applications that depend on low latency access across a wide working-set, the performance may be negligible to negative for other workloads. For this reason the shuffle capability defaults to off unless a direct-mapped memory-side-cache is detected. Even then, the page_alloc.shuffle=0 parameter can be specified to disable the randomization on those systems. Outside of memory-side-cache utilization concerns there is potentially security benefit from randomization. Some data exfiltration and return-oriented-programming attacks rely on the ability to infer the location of sensitive data objects. The kernel page allocator, especially early in system boot, has predictable first-in-first out behavior for physical pages. Pages are freed in physical address order when first onlined. Quoting Kees: "While we already have a base-address randomization (CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and memory layouts would certainly be using the predictability of allocation ordering (i.e. for attacks where the base address isn't important: only the relative positions between allocated memory). This is common in lots of heap-style attacks. They try to gain control over ordering by spraying allocations, etc. I'd really like to see this because it gives us something similar to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator." While SLAB_FREELIST_RANDOM reduces the predictability of some local slab caches it leaves vast bulk of memory to be predictably in order allocated. However, it should be noted, the concrete security benefits are hard to quantify, and no known CVE is mitigated by this randomization. Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform a Fisher-Yates shuffle of the page allocator 'free_area' lists when they are initially populated with free memory at boot and at hotplug time. Do this based on either the presence of a page_alloc.shuffle=Y command line parameter, or autodetection of a memory-side-cache (to be added in a follow-on patch). The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e. 10, 4MB this trades off randomization granularity for time spent shuffling. MAX_ORDER-1 was chosen to be minimally invasive to the page allocator while still showing memory-side cache behavior improvements, and the expectation that the security implications of finer granularity randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM. The performance impact of the shuffling appears to be in the noise compared to other memory initialization work. This initial randomization can be undone over time so a follow-on patch is introduced to inject entropy on page free decisions. It is reasonable to ask if the page free entropy is sufficient, but it is not enough due to the in-order initial freeing of pages. At the start of that process putting page1 in front or behind page0 still keeps them close together, page2 is still near page1 and has a high chance of being adjacent. As more pages are added ordering diversity improves, but there is still high page locality for the low address pages and this leads to no significant impact to the cache conflict rate. [1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/ [2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM [3]: https://lkml.org/lkml/2018/10/12/309 [dan.j.williams@intel.com: fix shuffle enable] Link: http://lkml.kernel.org/r/154943713038.3858443.4125180191382062871.stgit@dwillia2-desk3.amr.corp.intel.com [cai@lca.pw: fix SHUFFLE_PAGE_ALLOCATOR help texts] Link: http://lkml.kernel.org/r/20190425201300.75650-1-cai@lca.pw Link: http://lkml.kernel.org/r/154899811738.3165233.12325692939590944259.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-15 01:41:28 +03:00
#include "shuffle.h"
/*
* online_page_callback contains pointer to current page onlining function.
* Initially it is generic_online_page(). If it is required it could be
* changed by calling set_online_page_callback() for callback registration
* and restore_online_page_callback() for generic callback restore.
*/
mm/page_alloc.c: memory hotplug: free pages as higher order When freeing pages are done with higher order, time spent on coalescing pages by buddy allocator can be reduced. With section size of 256MB, hot add latency of a single section shows improvement from 50-60 ms to less than 1 ms, hence improving the hot add latency by 60 times. Modify external providers of online callback to align with the change. [arunks@codeaurora.org: v11] Link: http://lkml.kernel.org/r/1547792588-18032-1-git-send-email-arunks@codeaurora.org [akpm@linux-foundation.org: remove unused local, per Arun] [akpm@linux-foundation.org: avoid return of void-returning __free_pages_core(), per Oscar] [akpm@linux-foundation.org: fix it for mm-convert-totalram_pages-and-totalhigh_pages-variables-to-atomic.patch] [arunks@codeaurora.org: v8] Link: http://lkml.kernel.org/r/1547032395-24582-1-git-send-email-arunks@codeaurora.org [arunks@codeaurora.org: v9] Link: http://lkml.kernel.org/r/1547098543-26452-1-git-send-email-arunks@codeaurora.org Link: http://lkml.kernel.org/r/1538727006-5727-1-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: K. Y. Srinivasan <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Srivatsa Vaddagiri <vatsa@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 02:42:14 +03:00
static void generic_online_page(struct page *page, unsigned int order);
static online_page_callback_t online_page_callback = generic_online_page;
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
static DEFINE_MUTEX(online_page_callback_lock);
mm/memory-hotplug: switch locking to a percpu rwsem Andrey reported a potential deadlock with the memory hotplug lock and the cpu hotplug lock. The reason is that memory hotplug takes the memory hotplug lock and then calls stop_machine() which calls get_online_cpus(). That's the reverse lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c The problem has been there forever. The reason why this was never reported is that the cpu hotplug locking had this homebrewn recursive reader writer semaphore construct which due to the recursion evaded the full lock dep coverage. The memory hotplug code copied that construct verbatim and therefor has similar issues. Three steps to fix this: 1) Convert the memory hotplug locking to a per cpu rwsem so the potential issues get reported proper by lockdep. 2) Lock the online cpus in mem_hotplug_begin() before taking the memory hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc code to avoid recursive locking. 3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this by invoking lru_add_drain_all_cpuslocked() instead. Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 01:50:09 +03:00
DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
mm/memory-hotplug: switch locking to a percpu rwsem Andrey reported a potential deadlock with the memory hotplug lock and the cpu hotplug lock. The reason is that memory hotplug takes the memory hotplug lock and then calls stop_machine() which calls get_online_cpus(). That's the reverse lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c The problem has been there forever. The reason why this was never reported is that the cpu hotplug locking had this homebrewn recursive reader writer semaphore construct which due to the recursion evaded the full lock dep coverage. The memory hotplug code copied that construct verbatim and therefor has similar issues. Three steps to fix this: 1) Convert the memory hotplug locking to a per cpu rwsem so the potential issues get reported proper by lockdep. 2) Lock the online cpus in mem_hotplug_begin() before taking the memory hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc code to avoid recursive locking. 3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this by invoking lru_add_drain_all_cpuslocked() instead. Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 01:50:09 +03:00
void get_online_mems(void)
{
percpu_down_read(&mem_hotplug_lock);
}
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
mm/memory-hotplug: switch locking to a percpu rwsem Andrey reported a potential deadlock with the memory hotplug lock and the cpu hotplug lock. The reason is that memory hotplug takes the memory hotplug lock and then calls stop_machine() which calls get_online_cpus(). That's the reverse lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c The problem has been there forever. The reason why this was never reported is that the cpu hotplug locking had this homebrewn recursive reader writer semaphore construct which due to the recursion evaded the full lock dep coverage. The memory hotplug code copied that construct verbatim and therefor has similar issues. Three steps to fix this: 1) Convert the memory hotplug locking to a per cpu rwsem so the potential issues get reported proper by lockdep. 2) Lock the online cpus in mem_hotplug_begin() before taking the memory hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc code to avoid recursive locking. 3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this by invoking lru_add_drain_all_cpuslocked() instead. Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 01:50:09 +03:00
void put_online_mems(void)
{
percpu_up_read(&mem_hotplug_lock);
}
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
bool movable_node_enabled = false;
memory_hotplug: introduce CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE This patchset continues the work I started with commit 31bc3858ea3e ("memory-hotplug: add automatic onlining policy for the newly added memory"). Initially I was going to stop there and bring the policy setting logic to userspace. I met two issues on this way: 1) It is possible to have memory hotplugged at boot (e.g. with QEMU). These blocks stay offlined if we turn the onlining policy on by userspace. 2) My attempt to bring this policy setting to systemd failed, systemd maintainers suggest to change the default in kernel or ... to use tmpfiles.d to alter the policy (which looks like a hack to me): https://github.com/systemd/systemd/pull/2938 Here I suggest to add a config option to set the default value for the policy and a kernel command line parameter to make the override. This patch (of 2): Introduce config option to set the default value for memory hotplug onlining policy (/sys/devices/system/memory/auto_online_blocks). The reason one would want to turn this option on are to have early onlining for hotpluggable memory available at boot and to not require any userspace actions to make memory hotplug work. [akpm@linux-foundation.org: tweak Kconfig text] Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Vrabel <david.vrabel@citrix.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Lennart Poettering <lennart@poettering.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 03:13:03 +03:00
#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
memory-hotplug: add automatic onlining policy for the newly added memory Currently, all newly added memory blocks remain in 'offline' state unless someone onlines them, some linux distributions carry special udev rules like: SUBSYSTEM=="memory", ACTION=="add", ATTR{state}=="offline", ATTR{state}="online" to make this happen automatically. This is not a great solution for virtual machines where memory hotplug is being used to address high memory pressure situations as such onlining is slow and a userspace process doing this (udev) has a chance of being killed by the OOM killer as it will probably require to allocate some memory. Introduce default policy for the newly added memory blocks in /sys/devices/system/memory/auto_online_blocks file with two possible values: "offline" which preserves the current behavior and "online" which causes all newly added memory blocks to go online as soon as they're added. The default is "offline". Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: David Vrabel <david.vrabel@citrix.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Kay Sievers <kay@vrfy.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:56:48 +03:00
bool memhp_auto_online;
memory_hotplug: introduce CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE This patchset continues the work I started with commit 31bc3858ea3e ("memory-hotplug: add automatic onlining policy for the newly added memory"). Initially I was going to stop there and bring the policy setting logic to userspace. I met two issues on this way: 1) It is possible to have memory hotplugged at boot (e.g. with QEMU). These blocks stay offlined if we turn the onlining policy on by userspace. 2) My attempt to bring this policy setting to systemd failed, systemd maintainers suggest to change the default in kernel or ... to use tmpfiles.d to alter the policy (which looks like a hack to me): https://github.com/systemd/systemd/pull/2938 Here I suggest to add a config option to set the default value for the policy and a kernel command line parameter to make the override. This patch (of 2): Introduce config option to set the default value for memory hotplug onlining policy (/sys/devices/system/memory/auto_online_blocks). The reason one would want to turn this option on are to have early onlining for hotpluggable memory available at boot and to not require any userspace actions to make memory hotplug work. [akpm@linux-foundation.org: tweak Kconfig text] Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Vrabel <david.vrabel@citrix.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Lennart Poettering <lennart@poettering.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 03:13:03 +03:00
#else
bool memhp_auto_online = true;
#endif
memory-hotplug: add automatic onlining policy for the newly added memory Currently, all newly added memory blocks remain in 'offline' state unless someone onlines them, some linux distributions carry special udev rules like: SUBSYSTEM=="memory", ACTION=="add", ATTR{state}=="offline", ATTR{state}="online" to make this happen automatically. This is not a great solution for virtual machines where memory hotplug is being used to address high memory pressure situations as such onlining is slow and a userspace process doing this (udev) has a chance of being killed by the OOM killer as it will probably require to allocate some memory. Introduce default policy for the newly added memory blocks in /sys/devices/system/memory/auto_online_blocks file with two possible values: "offline" which preserves the current behavior and "online" which causes all newly added memory blocks to go online as soon as they're added. The default is "offline". Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: David Vrabel <david.vrabel@citrix.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Kay Sievers <kay@vrfy.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:56:48 +03:00
EXPORT_SYMBOL_GPL(memhp_auto_online);
static int __init setup_memhp_default_state(char *str)
{
if (!strcmp(str, "online"))
memhp_auto_online = true;
else if (!strcmp(str, "offline"))
memhp_auto_online = false;
return 1;
}
__setup("memhp_default_state=", setup_memhp_default_state);
mm, hotplug: fix concurrent memory hot-add deadlock There's a deadlock when concurrently hot-adding memory through the probe interface and switching a memory block from offline to online. When hot-adding memory via the probe interface, add_memory() first takes mem_hotplug_begin() and then device_lock() is later taken when registering the newly initialized memory block. This creates a lock dependency of (1) mem_hotplug.lock (2) dev->mutex. When switching a memory block from offline to online, dev->mutex is first grabbed in device_online() when the write(2) transitions an existing memory block from offline to online, and then online_pages() will take mem_hotplug_begin(). This creates a lock inversion between mem_hotplug.lock and dev->mutex. Vitaly reports that this deadlock can happen when kworker handling a probe event races with systemd-udevd switching a memory block's state. This patch requires the state transition to take mem_hotplug_begin() before dev->mutex. Hot-adding memory via the probe interface creates a memory block while holding mem_hotplug_begin(), there is no way to take dev->mutex first in this case. online_pages() and offline_pages() are only called when transitioning memory block state. We now require that mem_hotplug_begin() is taken before calling them -- this requires exporting the mem_hotplug_begin() and mem_hotplug_done() to generic code. In all hot-add and hot-remove cases, mem_hotplug_begin() is done prior to device_online(). This is all that is needed to avoid the deadlock. Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com> Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Wang Nan <wangnan0@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 01:45:11 +03:00
void mem_hotplug_begin(void)
{
mm/memory-hotplug: switch locking to a percpu rwsem Andrey reported a potential deadlock with the memory hotplug lock and the cpu hotplug lock. The reason is that memory hotplug takes the memory hotplug lock and then calls stop_machine() which calls get_online_cpus(). That's the reverse lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c The problem has been there forever. The reason why this was never reported is that the cpu hotplug locking had this homebrewn recursive reader writer semaphore construct which due to the recursion evaded the full lock dep coverage. The memory hotplug code copied that construct verbatim and therefor has similar issues. Three steps to fix this: 1) Convert the memory hotplug locking to a per cpu rwsem so the potential issues get reported proper by lockdep. 2) Lock the online cpus in mem_hotplug_begin() before taking the memory hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc code to avoid recursive locking. 3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this by invoking lru_add_drain_all_cpuslocked() instead. Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 01:50:09 +03:00
cpus_read_lock();
percpu_down_write(&mem_hotplug_lock);
}
mm, hotplug: fix concurrent memory hot-add deadlock There's a deadlock when concurrently hot-adding memory through the probe interface and switching a memory block from offline to online. When hot-adding memory via the probe interface, add_memory() first takes mem_hotplug_begin() and then device_lock() is later taken when registering the newly initialized memory block. This creates a lock dependency of (1) mem_hotplug.lock (2) dev->mutex. When switching a memory block from offline to online, dev->mutex is first grabbed in device_online() when the write(2) transitions an existing memory block from offline to online, and then online_pages() will take mem_hotplug_begin(). This creates a lock inversion between mem_hotplug.lock and dev->mutex. Vitaly reports that this deadlock can happen when kworker handling a probe event races with systemd-udevd switching a memory block's state. This patch requires the state transition to take mem_hotplug_begin() before dev->mutex. Hot-adding memory via the probe interface creates a memory block while holding mem_hotplug_begin(), there is no way to take dev->mutex first in this case. online_pages() and offline_pages() are only called when transitioning memory block state. We now require that mem_hotplug_begin() is taken before calling them -- this requires exporting the mem_hotplug_begin() and mem_hotplug_done() to generic code. In all hot-add and hot-remove cases, mem_hotplug_begin() is done prior to device_online(). This is all that is needed to avoid the deadlock. Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com> Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Wang Nan <wangnan0@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 01:45:11 +03:00
void mem_hotplug_done(void)
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
{
mm/memory-hotplug: switch locking to a percpu rwsem Andrey reported a potential deadlock with the memory hotplug lock and the cpu hotplug lock. The reason is that memory hotplug takes the memory hotplug lock and then calls stop_machine() which calls get_online_cpus(). That's the reverse lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c The problem has been there forever. The reason why this was never reported is that the cpu hotplug locking had this homebrewn recursive reader writer semaphore construct which due to the recursion evaded the full lock dep coverage. The memory hotplug code copied that construct verbatim and therefor has similar issues. Three steps to fix this: 1) Convert the memory hotplug locking to a per cpu rwsem so the potential issues get reported proper by lockdep. 2) Lock the online cpus in mem_hotplug_begin() before taking the memory hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc code to avoid recursive locking. 3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this by invoking lru_add_drain_all_cpuslocked() instead. Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 01:50:09 +03:00
percpu_up_write(&mem_hotplug_lock);
cpus_read_unlock();
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
}
u64 max_mem_size = U64_MAX;
/* add this memory to iomem resource */
static struct resource *register_memory_resource(u64 start, u64 size)
{
mm/memory-hotplug: Allow memory resources to be children The mm/resource.c code is used to manage the physical address space. The current resource configuration can be viewed in /proc/iomem. An example of this is at the bottom of this description. The nvdimm subsystem "owns" the physical address resources which map to persistent memory and has resources inserted for them as "Persistent Memory". The best way to repurpose this for volatile use is to leave the existing resource in place, but add a "System RAM" resource underneath it. This clearly communicates the ownership relationship of this memory. The request_resource_conflict() API only deals with the top-level resources. Replace it with __request_region() which will search for !IORESOURCE_BUSY areas lower in the resource tree than the top level. We *could* also simply truncate the existing top-level "Persistent Memory" resource and take over the released address space. But, this means that if we ever decide to hot-unplug the "RAM" and give it back, we need to recreate the original setup, which may mean going back to the BIOS tables. This should have no real effect on the existing collision detection because the areas that truly conflict should be marked IORESOURCE_BUSY. 00000000-00000fff : Reserved 00001000-0009fbff : System RAM 0009fc00-0009ffff : Reserved 000a0000-000bffff : PCI Bus 0000:00 000c0000-000c97ff : Video ROM 000c9800-000ca5ff : Adapter ROM 000f0000-000fffff : Reserved 000f0000-000fffff : System ROM 00100000-9fffffff : System RAM 01000000-01e071d0 : Kernel code 01e071d1-027dfdff : Kernel data 02dc6000-0305dfff : Kernel bss a0000000-afffffff : Persistent Memory (legacy) a0000000-a7ffffff : System RAM b0000000-bffdffff : System RAM bffe0000-bfffffff : Reserved c0000000-febfffff : PCI Bus 0000:00 Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: linux-nvdimm@lists.01.org Cc: linux-kernel@vger.kernel.org Cc: linux-mm@kvack.org Cc: Huang Ying <ying.huang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-25 21:57:36 +03:00
struct resource *res;
unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
char *resource_name = "System RAM";
if (start + size > max_mem_size)
return ERR_PTR(-E2BIG);
mm/memory-hotplug: Allow memory resources to be children The mm/resource.c code is used to manage the physical address space. The current resource configuration can be viewed in /proc/iomem. An example of this is at the bottom of this description. The nvdimm subsystem "owns" the physical address resources which map to persistent memory and has resources inserted for them as "Persistent Memory". The best way to repurpose this for volatile use is to leave the existing resource in place, but add a "System RAM" resource underneath it. This clearly communicates the ownership relationship of this memory. The request_resource_conflict() API only deals with the top-level resources. Replace it with __request_region() which will search for !IORESOURCE_BUSY areas lower in the resource tree than the top level. We *could* also simply truncate the existing top-level "Persistent Memory" resource and take over the released address space. But, this means that if we ever decide to hot-unplug the "RAM" and give it back, we need to recreate the original setup, which may mean going back to the BIOS tables. This should have no real effect on the existing collision detection because the areas that truly conflict should be marked IORESOURCE_BUSY. 00000000-00000fff : Reserved 00001000-0009fbff : System RAM 0009fc00-0009ffff : Reserved 000a0000-000bffff : PCI Bus 0000:00 000c0000-000c97ff : Video ROM 000c9800-000ca5ff : Adapter ROM 000f0000-000fffff : Reserved 000f0000-000fffff : System ROM 00100000-9fffffff : System RAM 01000000-01e071d0 : Kernel code 01e071d1-027dfdff : Kernel data 02dc6000-0305dfff : Kernel bss a0000000-afffffff : Persistent Memory (legacy) a0000000-a7ffffff : System RAM b0000000-bffdffff : System RAM bffe0000-bfffffff : Reserved c0000000-febfffff : PCI Bus 0000:00 Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: linux-nvdimm@lists.01.org Cc: linux-kernel@vger.kernel.org Cc: linux-mm@kvack.org Cc: Huang Ying <ying.huang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-25 21:57:36 +03:00
/*
* Request ownership of the new memory range. This might be
* a child of an existing resource that was present but
* not marked as busy.
*/
res = __request_region(&iomem_resource, start, size,
resource_name, flags);
if (!res) {
pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
start, start + size);
return ERR_PTR(-EEXIST);
}
return res;
}
static void release_memory_resource(struct resource *res)
{
if (!res)
return;
release_resource(res);
kfree(res);
return;
}
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
memory-hotplug: implement register_page_bootmem_info_section of sparse-vmemmap For removing memmap region of sparse-vmemmap which is allocated bootmem, memmap region of sparse-vmemmap needs to be registered by get_page_bootmem(). So the patch searches pages of virtual mapping and registers the pages by get_page_bootmem(). NOTE: register_page_bootmem_memmap() is not implemented for ia64, ppc, s390, and sparc. So introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node() when platform doesn't support it. It's implemented by adding a new Kconfig option named CONFIG_HAVE_BOOTMEM_INFO_NODE, which will be automatically selected by memory-hotplug feature fully supported archs(currently only on x86_64). Since we have 2 config options called MEMORY_HOTPLUG and MEMORY_HOTREMOVE used for memory hot-add and hot-remove separately, and codes in function register_page_bootmem_info_node() are only used for collecting infomation for hot-remove, so reside it under MEMORY_HOTREMOVE. Besides page_isolation.c selected by MEMORY_ISOLATION under MEMORY_HOTPLUG is also such case, move it too. [mhocko@suse.cz: put register_page_bootmem_memmap inside CONFIG_MEMORY_HOTPLUG_SPARSE] [linfeng@cn.fujitsu.com: introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node()] [mhocko@suse.cz: remove the arch specific functions without any implementation] [linfeng@cn.fujitsu.com: mm/Kconfig: move auto selects from MEMORY_HOTPLUG to MEMORY_HOTREMOVE as needed] [rientjes@google.com: fix defined but not used warning] Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Wu Jianguo <wujianguo@huawei.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Lin Feng <linfeng@cn.fujitsu.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:33:00 +04:00
void get_page_bootmem(unsigned long info, struct page *page,
unsigned long type)
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
{
mm/memory_hotplug: set magic number to page->freelist instead of page->lru.next To identify that pages of page table are allocated from bootmem allocator, magic number sets to page->lru.next. But page->lru list is initialized in reserve_bootmem_region(). So when calling free_pagetable(), the function cannot find the magic number of pages. And free_pagetable() frees the pages by free_reserved_page() not put_page_bootmem(). But if the pages are allocated from bootmem allocator and used as page table, the pages have private flag. So before freeing the pages, we should clear the private flag by put_page_bootmem(). Before applying the commit 7bfec6f47bb0 ("mm, page_alloc: check multiple page fields with a single branch"), we could find the following visible issue: BUG: Bad page state in process kworker/u1024:1 page:ffffea103cfd8040 count:0 mapcount:0 mappi flags: 0x6fffff80000800(private) page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: 0x800(private) <snip> Call Trace: [...] dump_stack+0x63/0x87 [...] bad_page+0x114/0x130 [...] free_pages_prepare+0x299/0x2d0 [...] free_hot_cold_page+0x31/0x150 [...] __free_pages+0x25/0x30 [...] free_pagetable+0x6f/0xb4 [...] remove_pagetable+0x379/0x7ff [...] vmemmap_free+0x10/0x20 [...] sparse_remove_one_section+0x149/0x180 [...] __remove_pages+0x2e9/0x4f0 [...] arch_remove_memory+0x63/0xc0 [...] remove_memory+0x8c/0xc0 [...] acpi_memory_device_remove+0x79/0xa5 [...] acpi_bus_trim+0x5a/0x8d [...] acpi_bus_trim+0x38/0x8d [...] acpi_device_hotplug+0x1b7/0x418 [...] acpi_hotplug_work_fn+0x1e/0x29 [...] process_one_work+0x152/0x400 [...] worker_thread+0x125/0x4b0 [...] kthread+0xd8/0xf0 [...] ret_from_fork+0x22/0x40 And the issue still silently occurs. Until freeing the pages of page table allocated from bootmem allocator, the page->freelist is never used. So the patch sets magic number to page->freelist instead of page->lru.next. [isimatu.yasuaki@jp.fujitsu.com: fix merge issue] Link: http://lkml.kernel.org/r/722b1cc4-93ac-dd8b-2be2-7a7e313b3b0b@gmail.com Link: http://lkml.kernel.org/r/2c29bd9f-5b67-02d0-18a3-8828e78bbb6f@gmail.com Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 02:45:13 +03:00
page->freelist = (void *)type;
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
SetPagePrivate(page);
set_page_private(page, info);
2016-03-18 00:19:26 +03:00
page_ref_inc(page);
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
}
mm: make __free_pages_bootmem() only available at boot time In order to simpilify management of totalram_pages and zone->managed_pages, make __free_pages_bootmem() only available at boot time. With this change applied, __free_pages_bootmem() will only be used by bootmem.c and nobootmem.c at boot time, so mark it as __init. Other callers of __free_pages_bootmem() have been converted to use free_reserved_page(), which handles totalram_pages and zone->managed_pages in a safer way. This patch also fix a bug in free_pagetable() for x86_64, which should increase zone->managed_pages instead of zone->present_pages when freeing reserved pages. And now we have managed_pages_count_lock to protect totalram_pages and zone->managed_pages, so remove the redundant ppb_lock lock in put_page_bootmem(). This greatly simplifies the locking rules. Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan@kernel.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: <sworddragon2@aol.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Tejun Heo <tj@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 02:03:17 +04:00
void put_page_bootmem(struct page *page)
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
{
unsigned long type;
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
mm/memory_hotplug: set magic number to page->freelist instead of page->lru.next To identify that pages of page table are allocated from bootmem allocator, magic number sets to page->lru.next. But page->lru list is initialized in reserve_bootmem_region(). So when calling free_pagetable(), the function cannot find the magic number of pages. And free_pagetable() frees the pages by free_reserved_page() not put_page_bootmem(). But if the pages are allocated from bootmem allocator and used as page table, the pages have private flag. So before freeing the pages, we should clear the private flag by put_page_bootmem(). Before applying the commit 7bfec6f47bb0 ("mm, page_alloc: check multiple page fields with a single branch"), we could find the following visible issue: BUG: Bad page state in process kworker/u1024:1 page:ffffea103cfd8040 count:0 mapcount:0 mappi flags: 0x6fffff80000800(private) page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: 0x800(private) <snip> Call Trace: [...] dump_stack+0x63/0x87 [...] bad_page+0x114/0x130 [...] free_pages_prepare+0x299/0x2d0 [...] free_hot_cold_page+0x31/0x150 [...] __free_pages+0x25/0x30 [...] free_pagetable+0x6f/0xb4 [...] remove_pagetable+0x379/0x7ff [...] vmemmap_free+0x10/0x20 [...] sparse_remove_one_section+0x149/0x180 [...] __remove_pages+0x2e9/0x4f0 [...] arch_remove_memory+0x63/0xc0 [...] remove_memory+0x8c/0xc0 [...] acpi_memory_device_remove+0x79/0xa5 [...] acpi_bus_trim+0x5a/0x8d [...] acpi_bus_trim+0x38/0x8d [...] acpi_device_hotplug+0x1b7/0x418 [...] acpi_hotplug_work_fn+0x1e/0x29 [...] process_one_work+0x152/0x400 [...] worker_thread+0x125/0x4b0 [...] kthread+0xd8/0xf0 [...] ret_from_fork+0x22/0x40 And the issue still silently occurs. Until freeing the pages of page table allocated from bootmem allocator, the page->freelist is never used. So the patch sets magic number to page->freelist instead of page->lru.next. [isimatu.yasuaki@jp.fujitsu.com: fix merge issue] Link: http://lkml.kernel.org/r/722b1cc4-93ac-dd8b-2be2-7a7e313b3b0b@gmail.com Link: http://lkml.kernel.org/r/2c29bd9f-5b67-02d0-18a3-8828e78bbb6f@gmail.com Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 02:45:13 +03:00
type = (unsigned long) page->freelist;
BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
2016-03-18 00:19:26 +03:00
if (page_ref_dec_return(page) == 1) {
mm/memory_hotplug: set magic number to page->freelist instead of page->lru.next To identify that pages of page table are allocated from bootmem allocator, magic number sets to page->lru.next. But page->lru list is initialized in reserve_bootmem_region(). So when calling free_pagetable(), the function cannot find the magic number of pages. And free_pagetable() frees the pages by free_reserved_page() not put_page_bootmem(). But if the pages are allocated from bootmem allocator and used as page table, the pages have private flag. So before freeing the pages, we should clear the private flag by put_page_bootmem(). Before applying the commit 7bfec6f47bb0 ("mm, page_alloc: check multiple page fields with a single branch"), we could find the following visible issue: BUG: Bad page state in process kworker/u1024:1 page:ffffea103cfd8040 count:0 mapcount:0 mappi flags: 0x6fffff80000800(private) page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: 0x800(private) <snip> Call Trace: [...] dump_stack+0x63/0x87 [...] bad_page+0x114/0x130 [...] free_pages_prepare+0x299/0x2d0 [...] free_hot_cold_page+0x31/0x150 [...] __free_pages+0x25/0x30 [...] free_pagetable+0x6f/0xb4 [...] remove_pagetable+0x379/0x7ff [...] vmemmap_free+0x10/0x20 [...] sparse_remove_one_section+0x149/0x180 [...] __remove_pages+0x2e9/0x4f0 [...] arch_remove_memory+0x63/0xc0 [...] remove_memory+0x8c/0xc0 [...] acpi_memory_device_remove+0x79/0xa5 [...] acpi_bus_trim+0x5a/0x8d [...] acpi_bus_trim+0x38/0x8d [...] acpi_device_hotplug+0x1b7/0x418 [...] acpi_hotplug_work_fn+0x1e/0x29 [...] process_one_work+0x152/0x400 [...] worker_thread+0x125/0x4b0 [...] kthread+0xd8/0xf0 [...] ret_from_fork+0x22/0x40 And the issue still silently occurs. Until freeing the pages of page table allocated from bootmem allocator, the page->freelist is never used. So the patch sets magic number to page->freelist instead of page->lru.next. [isimatu.yasuaki@jp.fujitsu.com: fix merge issue] Link: http://lkml.kernel.org/r/722b1cc4-93ac-dd8b-2be2-7a7e313b3b0b@gmail.com Link: http://lkml.kernel.org/r/2c29bd9f-5b67-02d0-18a3-8828e78bbb6f@gmail.com Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 02:45:13 +03:00
page->freelist = NULL;
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
ClearPagePrivate(page);
set_page_private(page, 0);
INIT_LIST_HEAD(&page->lru);
mm: make __free_pages_bootmem() only available at boot time In order to simpilify management of totalram_pages and zone->managed_pages, make __free_pages_bootmem() only available at boot time. With this change applied, __free_pages_bootmem() will only be used by bootmem.c and nobootmem.c at boot time, so mark it as __init. Other callers of __free_pages_bootmem() have been converted to use free_reserved_page(), which handles totalram_pages and zone->managed_pages in a safer way. This patch also fix a bug in free_pagetable() for x86_64, which should increase zone->managed_pages instead of zone->present_pages when freeing reserved pages. And now we have managed_pages_count_lock to protect totalram_pages and zone->managed_pages, so remove the redundant ppb_lock lock in put_page_bootmem(). This greatly simplifies the locking rules. Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan@kernel.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: <sworddragon2@aol.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Tejun Heo <tj@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 02:03:17 +04:00
free_reserved_page(page);
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
}
}
memory-hotplug: implement register_page_bootmem_info_section of sparse-vmemmap For removing memmap region of sparse-vmemmap which is allocated bootmem, memmap region of sparse-vmemmap needs to be registered by get_page_bootmem(). So the patch searches pages of virtual mapping and registers the pages by get_page_bootmem(). NOTE: register_page_bootmem_memmap() is not implemented for ia64, ppc, s390, and sparc. So introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node() when platform doesn't support it. It's implemented by adding a new Kconfig option named CONFIG_HAVE_BOOTMEM_INFO_NODE, which will be automatically selected by memory-hotplug feature fully supported archs(currently only on x86_64). Since we have 2 config options called MEMORY_HOTPLUG and MEMORY_HOTREMOVE used for memory hot-add and hot-remove separately, and codes in function register_page_bootmem_info_node() are only used for collecting infomation for hot-remove, so reside it under MEMORY_HOTREMOVE. Besides page_isolation.c selected by MEMORY_ISOLATION under MEMORY_HOTPLUG is also such case, move it too. [mhocko@suse.cz: put register_page_bootmem_memmap inside CONFIG_MEMORY_HOTPLUG_SPARSE] [linfeng@cn.fujitsu.com: introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node()] [mhocko@suse.cz: remove the arch specific functions without any implementation] [linfeng@cn.fujitsu.com: mm/Kconfig: move auto selects from MEMORY_HOTPLUG to MEMORY_HOTREMOVE as needed] [rientjes@google.com: fix defined but not used warning] Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Wu Jianguo <wujianguo@huawei.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Lin Feng <linfeng@cn.fujitsu.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:33:00 +04:00
#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
#ifndef CONFIG_SPARSEMEM_VMEMMAP
static void register_page_bootmem_info_section(unsigned long start_pfn)
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
{
unsigned long *usemap, mapsize, section_nr, i;
struct mem_section *ms;
struct page *page, *memmap;
section_nr = pfn_to_section_nr(start_pfn);
ms = __nr_to_section(section_nr);
/* Get section's memmap address */
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
/*
* Get page for the memmap's phys address
* XXX: need more consideration for sparse_vmemmap...
*/
page = virt_to_page(memmap);
mapsize = sizeof(struct page) * PAGES_PER_SECTION;
mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
/* remember memmap's page */
for (i = 0; i < mapsize; i++, page++)
get_page_bootmem(section_nr, page, SECTION_INFO);
usemap = ms->pageblock_flags;
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
page = virt_to_page(usemap);
mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
for (i = 0; i < mapsize; i++, page++)
get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
}
memory-hotplug: implement register_page_bootmem_info_section of sparse-vmemmap For removing memmap region of sparse-vmemmap which is allocated bootmem, memmap region of sparse-vmemmap needs to be registered by get_page_bootmem(). So the patch searches pages of virtual mapping and registers the pages by get_page_bootmem(). NOTE: register_page_bootmem_memmap() is not implemented for ia64, ppc, s390, and sparc. So introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node() when platform doesn't support it. It's implemented by adding a new Kconfig option named CONFIG_HAVE_BOOTMEM_INFO_NODE, which will be automatically selected by memory-hotplug feature fully supported archs(currently only on x86_64). Since we have 2 config options called MEMORY_HOTPLUG and MEMORY_HOTREMOVE used for memory hot-add and hot-remove separately, and codes in function register_page_bootmem_info_node() are only used for collecting infomation for hot-remove, so reside it under MEMORY_HOTREMOVE. Besides page_isolation.c selected by MEMORY_ISOLATION under MEMORY_HOTPLUG is also such case, move it too. [mhocko@suse.cz: put register_page_bootmem_memmap inside CONFIG_MEMORY_HOTPLUG_SPARSE] [linfeng@cn.fujitsu.com: introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node()] [mhocko@suse.cz: remove the arch specific functions without any implementation] [linfeng@cn.fujitsu.com: mm/Kconfig: move auto selects from MEMORY_HOTPLUG to MEMORY_HOTREMOVE as needed] [rientjes@google.com: fix defined but not used warning] Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Wu Jianguo <wujianguo@huawei.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Lin Feng <linfeng@cn.fujitsu.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:33:00 +04:00
#else /* CONFIG_SPARSEMEM_VMEMMAP */
static void register_page_bootmem_info_section(unsigned long start_pfn)
{
unsigned long *usemap, mapsize, section_nr, i;
struct mem_section *ms;
struct page *page, *memmap;
section_nr = pfn_to_section_nr(start_pfn);
ms = __nr_to_section(section_nr);
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
usemap = ms->pageblock_flags;
memory-hotplug: implement register_page_bootmem_info_section of sparse-vmemmap For removing memmap region of sparse-vmemmap which is allocated bootmem, memmap region of sparse-vmemmap needs to be registered by get_page_bootmem(). So the patch searches pages of virtual mapping and registers the pages by get_page_bootmem(). NOTE: register_page_bootmem_memmap() is not implemented for ia64, ppc, s390, and sparc. So introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node() when platform doesn't support it. It's implemented by adding a new Kconfig option named CONFIG_HAVE_BOOTMEM_INFO_NODE, which will be automatically selected by memory-hotplug feature fully supported archs(currently only on x86_64). Since we have 2 config options called MEMORY_HOTPLUG and MEMORY_HOTREMOVE used for memory hot-add and hot-remove separately, and codes in function register_page_bootmem_info_node() are only used for collecting infomation for hot-remove, so reside it under MEMORY_HOTREMOVE. Besides page_isolation.c selected by MEMORY_ISOLATION under MEMORY_HOTPLUG is also such case, move it too. [mhocko@suse.cz: put register_page_bootmem_memmap inside CONFIG_MEMORY_HOTPLUG_SPARSE] [linfeng@cn.fujitsu.com: introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node()] [mhocko@suse.cz: remove the arch specific functions without any implementation] [linfeng@cn.fujitsu.com: mm/Kconfig: move auto selects from MEMORY_HOTPLUG to MEMORY_HOTREMOVE as needed] [rientjes@google.com: fix defined but not used warning] Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Wu Jianguo <wujianguo@huawei.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Lin Feng <linfeng@cn.fujitsu.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:33:00 +04:00
page = virt_to_page(usemap);
mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
for (i = 0; i < mapsize; i++, page++)
get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
{
unsigned long i, pfn, end_pfn, nr_pages;
int node = pgdat->node_id;
struct page *page;
nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
page = virt_to_page(pgdat);
for (i = 0; i < nr_pages; i++, page++)
get_page_bootmem(node, page, NODE_INFO);
pfn = pgdat->node_start_pfn;
end_pfn = pgdat_end_pfn(pgdat);
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
/* register section info */
for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
/*
* Some platforms can assign the same pfn to multiple nodes - on
* node0 as well as nodeN. To avoid registering a pfn against
* multiple nodes we check that this pfn does not already
* reside in some other nodes.
*/
if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
register_page_bootmem_info_section(pfn);
}
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
}
memory-hotplug: implement register_page_bootmem_info_section of sparse-vmemmap For removing memmap region of sparse-vmemmap which is allocated bootmem, memmap region of sparse-vmemmap needs to be registered by get_page_bootmem(). So the patch searches pages of virtual mapping and registers the pages by get_page_bootmem(). NOTE: register_page_bootmem_memmap() is not implemented for ia64, ppc, s390, and sparc. So introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node() when platform doesn't support it. It's implemented by adding a new Kconfig option named CONFIG_HAVE_BOOTMEM_INFO_NODE, which will be automatically selected by memory-hotplug feature fully supported archs(currently only on x86_64). Since we have 2 config options called MEMORY_HOTPLUG and MEMORY_HOTREMOVE used for memory hot-add and hot-remove separately, and codes in function register_page_bootmem_info_node() are only used for collecting infomation for hot-remove, so reside it under MEMORY_HOTREMOVE. Besides page_isolation.c selected by MEMORY_ISOLATION under MEMORY_HOTPLUG is also such case, move it too. [mhocko@suse.cz: put register_page_bootmem_memmap inside CONFIG_MEMORY_HOTPLUG_SPARSE] [linfeng@cn.fujitsu.com: introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node()] [mhocko@suse.cz: remove the arch specific functions without any implementation] [linfeng@cn.fujitsu.com: mm/Kconfig: move auto selects from MEMORY_HOTPLUG to MEMORY_HOTREMOVE as needed] [rientjes@google.com: fix defined but not used warning] Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Wu Jianguo <wujianguo@huawei.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Lin Feng <linfeng@cn.fujitsu.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:33:00 +04:00
#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 13:13:31 +04:00
mm, memory_hotplug: do not associate hotadded memory to zones until online The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:11 +03:00
static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
struct vmem_altmap *altmap, bool want_memblock)
{
int ret;
if (pfn_valid(phys_start_pfn))
return -EEXIST;
ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
if (ret < 0)
return ret;
mm, memory_hotplug: get rid of is_zone_device_section Device memory hotplug hooks into regular memory hotplug only half way. It needs memory sections to track struct pages but there is no need/desire to associate those sections with memory blocks and export them to the userspace via sysfs because they cannot be onlined anyway. This is currently expressed by for_device argument to arch_add_memory which then makes sure to associate the given memory range with ZONE_DEVICE. register_new_memory then relies on is_zone_device_section to distinguish special memory hotplug from the regular one. While this works now, later patches in this series want to move __add_zone outside of arch_add_memory path so we have to come up with something else. Add want_memblock down the __add_pages path and use it to control whether the section->memblock association should be done. arch_add_memory then just trivially want memblock for everything but for_device hotplug. remove_memory_section doesn't need is_zone_device_section either. We can simply skip all the memblock specific cleanup if there is no memblock for the given section. This shouldn't introduce any functional change. Link: http://lkml.kernel.org/r/20170515085827.16474-5-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:37:45 +03:00
if (!want_memblock)
return 0;
return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
}
/*
* Reasonably generic function for adding memory. It is
* expected that archs that support memory hotplug will
* call this function after deciding the zone to which to
* add the new pages.
*/
mm, memory_hotplug: do not associate hotadded memory to zones until online The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:11 +03:00
int __ref __add_pages(int nid, unsigned long phys_start_pfn,
unsigned long nr_pages, struct mhp_restrictions *restrictions)
{
unsigned long i;
int err = 0;
int start_sec, end_sec;
struct vmem_altmap *altmap = restrictions->altmap;
/* during initialize mem_map, align hot-added range to section */
start_sec = pfn_to_section_nr(phys_start_pfn);
end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
if (altmap) {
/*
* Validate altmap is within bounds of the total request
*/
if (altmap->base_pfn != phys_start_pfn
|| vmem_altmap_offset(altmap) > nr_pages) {
pr_warn_once("memory add fail, invalid altmap\n");
mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous There is a performance drop report due to hugepage allocation and in there half of cpu time are spent on pageblock_pfn_to_page() in compaction [1]. In that workload, compaction is triggered to make hugepage but most of pageblocks are un-available for compaction due to pageblock type and skip bit so compaction usually fails. Most costly operations in this case is to find valid pageblock while scanning whole zone range. To check if pageblock is valid to compact, valid pfn within pageblock is required and we can obtain it by calling pageblock_pfn_to_page(). This function checks whether pageblock is in a single zone and return valid pfn if possible. Problem is that we need to check it every time before scanning pageblock even if we re-visit it and this turns out to be very expensive in this workload. Although we have no way to skip this pageblock check in the system where hole exists at arbitrary position, we can use cached value for zone continuity and just do pfn_to_page() in the system where hole doesn't exist. This optimization considerably speeds up in above workload. Before vs After Max: 1096 MB/s vs 1325 MB/s Min: 635 MB/s 1015 MB/s Avg: 899 MB/s 1194 MB/s Avg is improved by roughly 30% [2]. [1]: http://www.spinics.net/lists/linux-mm/msg97378.html [2]: https://lkml.org/lkml/2015/12/9/23 [akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: Aaron Lu <aaron.lu@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Aaron Lu <aaron.lu@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:57:51 +03:00
err = -EINVAL;
goto out;
}
altmap->alloc = 0;
}
for (i = start_sec; i <= end_sec; i++) {
err = __add_section(nid, section_nr_to_pfn(i), altmap,
restrictions->flags & MHP_MEMBLOCK_API);
/*
* EEXIST is finally dealt with by ioresource collision
* check. see add_memory() => register_memory_resource()
* Warning will be printed if there is collision.
*/
if (err && (err != -EEXIST))
break;
err = 0;
mm, memory_hotplug: add scheduling point to __add_pages Patch series "mm, memory_hotplug: fix few soft lockups in memory hotadd". Johannes has noticed few soft lockups when adding a large nvdimm device. All of them were caused by a long loop without any explicit cond_resched which is a problem for !PREEMPT kernels. The fix is quite straightforward. Just make sure that cond_resched gets called from time to time. This patch (of 3): __add_pages gets a pfn range to add and there is no upper bound for a single call. This is usually a memory block aligned size for the regular memory hotplug - smaller sizes are usual for memory balloning drivers, or the whole NUMA node for physical memory online. There is no explicit scheduling point in that code path though. This can lead to long latencies while __add_pages is executed and we have even seen a soft lockup report during nvdimm initialization with !PREEMPT kernel NMI watchdog: BUG: soft lockup - CPU#11 stuck for 23s! [kworker/u641:3:832] [...] Workqueue: events_unbound async_run_entry_fn task: ffff881809270f40 ti: ffff881809274000 task.ti: ffff881809274000 RIP: _raw_spin_unlock_irqrestore+0x11/0x20 RSP: 0018:ffff881809277b10 EFLAGS: 00000286 [...] Call Trace: sparse_add_one_section+0x13d/0x18e __add_pages+0x10a/0x1d0 arch_add_memory+0x4a/0xc0 devm_memremap_pages+0x29d/0x430 pmem_attach_disk+0x2fd/0x3f0 [nd_pmem] nvdimm_bus_probe+0x64/0x110 [libnvdimm] driver_probe_device+0x1f7/0x420 bus_for_each_drv+0x52/0x80 __device_attach+0xb0/0x130 bus_probe_device+0x87/0xa0 device_add+0x3fc/0x5f0 nd_async_device_register+0xe/0x40 [libnvdimm] async_run_entry_fn+0x43/0x150 process_one_work+0x14e/0x410 worker_thread+0x116/0x490 kthread+0xc7/0xe0 ret_from_fork+0x3f/0x70 DWARF2 unwinder stuck at ret_from_fork+0x3f/0x70 Fix this by adding cond_resched once per each memory section in the given pfn range. Each section is constant amount of work which itself is not too expensive but many of them will just add up. Link: http://lkml.kernel.org/r/20170918121410.24466-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Johannes Thumshirn <jthumshirn@suse.de> Tested-by: Johannes Thumshirn <jthumshirn@suse.de> Cc: Dan Williams <dan.j.williams@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-04 02:16:16 +03:00
cond_resched();
}
mm/memory hotplug: print the last vmemmap region at the end of hot add memory When hot add two nodes continuously, we found the vmemmap region info is a bit messed. The last region of node 2 is printed when node 3 hot added, like the following: Initmem setup node 2 [mem 0x0000000000000000-0xffffffffffffffff] On node 2 totalpages: 0 Built 2 zonelists in Node order, mobility grouping on. Total pages: 16090539 Policy zone: Normal init_memory_mapping: [mem 0x40000000000-0x407ffffffff] [mem 0x40000000000-0x407ffffffff] page 1G [ffffea1000000000-ffffea10001fffff] PMD -> [ffff8a077d800000-ffff8a077d9fffff] on node 2 [ffffea1000200000-ffffea10003fffff] PMD -> [ffff8a077de00000-ffff8a077dffffff] on node 2 ... [ffffea101f600000-ffffea101f9fffff] PMD -> [ffff8a074ac00000-ffff8a074affffff] on node 2 [ffffea101fa00000-ffffea101fdfffff] PMD -> [ffff8a074a800000-ffff8a074abfffff] on node 2 Initmem setup node 3 [mem 0x0000000000000000-0xffffffffffffffff] On node 3 totalpages: 0 Built 3 zonelists in Node order, mobility grouping on. Total pages: 16090539 Policy zone: Normal init_memory_mapping: [mem 0x60000000000-0x607ffffffff] [mem 0x60000000000-0x607ffffffff] page 1G [ffffea101fe00000-ffffea101fffffff] PMD -> [ffff8a074a400000-ffff8a074a5fffff] on node 2 <=== node 2 ??? [ffffea1800000000-ffffea18001fffff] PMD -> [ffff8a074a600000-ffff8a074a7fffff] on node 3 [ffffea1800200000-ffffea18005fffff] PMD -> [ffff8a074a000000-ffff8a074a3fffff] on node 3 [ffffea1800600000-ffffea18009fffff] PMD -> [ffff8a0749c00000-ffff8a0749ffffff] on node 3 ... The cause is the last region was missed at the and of hot add memory, and p_start, p_end, node_start were not reset, so when hot add memory to a new node, it will consider they are not contiguous blocks and print the previous one. So we print the last vmemmap region at the end of hot add memory to avoid the confusion. Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 02:58:42 +03:00
vmemmap_populate_print_last();
mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous There is a performance drop report due to hugepage allocation and in there half of cpu time are spent on pageblock_pfn_to_page() in compaction [1]. In that workload, compaction is triggered to make hugepage but most of pageblocks are un-available for compaction due to pageblock type and skip bit so compaction usually fails. Most costly operations in this case is to find valid pageblock while scanning whole zone range. To check if pageblock is valid to compact, valid pfn within pageblock is required and we can obtain it by calling pageblock_pfn_to_page(). This function checks whether pageblock is in a single zone and return valid pfn if possible. Problem is that we need to check it every time before scanning pageblock even if we re-visit it and this turns out to be very expensive in this workload. Although we have no way to skip this pageblock check in the system where hole exists at arbitrary position, we can use cached value for zone continuity and just do pfn_to_page() in the system where hole doesn't exist. This optimization considerably speeds up in above workload. Before vs After Max: 1096 MB/s vs 1325 MB/s Min: 635 MB/s 1015 MB/s Avg: 899 MB/s 1194 MB/s Avg is improved by roughly 30% [2]. [1]: http://www.spinics.net/lists/linux-mm/msg97378.html [2]: https://lkml.org/lkml/2015/12/9/23 [akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: Aaron Lu <aaron.lu@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Aaron Lu <aaron.lu@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:57:51 +03:00
out:
return err;
}
#ifdef CONFIG_MEMORY_HOTREMOVE
/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn)
{
struct mem_section *ms;
for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
ms = __pfn_to_section(start_pfn);
if (unlikely(!valid_section(ms)))
continue;
if (unlikely(pfn_to_nid(start_pfn) != nid))
continue;
if (zone && zone != page_zone(pfn_to_page(start_pfn)))
continue;
return start_pfn;
}
return 0;
}
/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn)
{
struct mem_section *ms;
unsigned long pfn;
/* pfn is the end pfn of a memory section. */
pfn = end_pfn - 1;
for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
ms = __pfn_to_section(pfn);
if (unlikely(!valid_section(ms)))
continue;
if (unlikely(pfn_to_nid(pfn) != nid))
continue;
if (zone && zone != page_zone(pfn_to_page(pfn)))
continue;
return pfn;
}
return 0;
}
static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long zone_start_pfn = zone->zone_start_pfn;
unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
unsigned long zone_end_pfn = z;
unsigned long pfn;
struct mem_section *ms;
int nid = zone_to_nid(zone);
zone_span_writelock(zone);
if (zone_start_pfn == start_pfn) {
/*
* If the section is smallest section in the zone, it need
* shrink zone->zone_start_pfn and zone->zone_spanned_pages.
* In this case, we find second smallest valid mem_section
* for shrinking zone.
*/
pfn = find_smallest_section_pfn(nid, zone, end_pfn,
zone_end_pfn);
if (pfn) {
zone->zone_start_pfn = pfn;
zone->spanned_pages = zone_end_pfn - pfn;
}
} else if (zone_end_pfn == end_pfn) {
/*
* If the section is biggest section in the zone, it need
* shrink zone->spanned_pages.
* In this case, we find second biggest valid mem_section for
* shrinking zone.
*/
pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
start_pfn);
if (pfn)
zone->spanned_pages = pfn - zone_start_pfn + 1;
}
/*
* The section is not biggest or smallest mem_section in the zone, it
* only creates a hole in the zone. So in this case, we need not
* change the zone. But perhaps, the zone has only hole data. Thus
* it check the zone has only hole or not.
*/
pfn = zone_start_pfn;
for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
ms = __pfn_to_section(pfn);
if (unlikely(!valid_section(ms)))
continue;
if (page_zone(pfn_to_page(pfn)) != zone)
continue;
/* If the section is current section, it continues the loop */
if (start_pfn == pfn)
continue;
/* If we find valid section, we have nothing to do */
zone_span_writeunlock(zone);
return;
}
/* The zone has no valid section */
zone->zone_start_pfn = 0;
zone->spanned_pages = 0;
zone_span_writeunlock(zone);
}
static void shrink_pgdat_span(struct pglist_data *pgdat,
unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
unsigned long pgdat_end_pfn = p;
unsigned long pfn;
struct mem_section *ms;
int nid = pgdat->node_id;
if (pgdat_start_pfn == start_pfn) {
/*
* If the section is smallest section in the pgdat, it need
* shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
* In this case, we find second smallest valid mem_section
* for shrinking zone.
*/
pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
pgdat_end_pfn);
if (pfn) {
pgdat->node_start_pfn = pfn;
pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
}
} else if (pgdat_end_pfn == end_pfn) {
/*
* If the section is biggest section in the pgdat, it need
* shrink pgdat->node_spanned_pages.
* In this case, we find second biggest valid mem_section for
* shrinking zone.
*/
pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
start_pfn);
if (pfn)
pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
}
/*
* If the section is not biggest or smallest mem_section in the pgdat,
* it only creates a hole in the pgdat. So in this case, we need not
* change the pgdat.
* But perhaps, the pgdat has only hole data. Thus it check the pgdat
* has only hole or not.
*/
pfn = pgdat_start_pfn;
for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
ms = __pfn_to_section(pfn);
if (unlikely(!valid_section(ms)))
continue;
if (pfn_to_nid(pfn) != nid)
continue;
/* If the section is current section, it continues the loop */
if (start_pfn == pfn)
continue;
/* If we find valid section, we have nothing to do */
return;
}
/* The pgdat has no valid section */
pgdat->node_start_pfn = 0;
pgdat->node_spanned_pages = 0;
}
static void __remove_zone(struct zone *zone, unsigned long start_pfn)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int nr_pages = PAGES_PER_SECTION;
unsigned long flags;
pgdat_resize_lock(zone->zone_pgdat, &flags);
shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
pgdat_resize_unlock(zone->zone_pgdat, &flags);
}
mm/memory_hotplug: make __remove_section() never fail Let's just warn in case a section is not valid instead of failing to remove somewhere in the middle of the process, returning an error that will be mostly ignored by callers. Link: http://lkml.kernel.org/r/20190409100148.24703-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Qian Cai <cai@lca.pw> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Arun KS <arunks@codeaurora.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh@kernel.org> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 03:21:41 +03:00
static void __remove_section(struct zone *zone, struct mem_section *ms,
unsigned long map_offset,
struct vmem_altmap *altmap)
{
unsigned long start_pfn;
int scn_nr;
mm/memory_hotplug: make __remove_section() never fail Let's just warn in case a section is not valid instead of failing to remove somewhere in the middle of the process, returning an error that will be mostly ignored by callers. Link: http://lkml.kernel.org/r/20190409100148.24703-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Qian Cai <cai@lca.pw> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Arun KS <arunks@codeaurora.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh@kernel.org> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 03:21:41 +03:00
if (WARN_ON_ONCE(!valid_section(ms)))
return;
mm/memory_hotplug: make unregister_memory_section() never fail Failing while removing memory is mostly ignored and cannot really be handled. Let's treat errors in unregister_memory_section() in a nice way, warning, but continuing. Link: http://lkml.kernel.org/r/20190409100148.24703-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: David Hildenbrand <david@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Qian Cai <cai@lca.pw> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Arun KS <arunks@codeaurora.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh@kernel.org> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 03:21:37 +03:00
unregister_memory_section(ms);
scn_nr = __section_nr(ms);
start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
__remove_zone(zone, start_pfn);
sparse_remove_one_section(zone, ms, map_offset, altmap);
}
/**
* __remove_pages() - remove sections of pages from a zone
* @zone: zone from which pages need to be removed
* @phys_start_pfn: starting pageframe (must be aligned to start of a section)
* @nr_pages: number of pages to remove (must be multiple of section size)
* @altmap: alternative device page map or %NULL if default memmap is used
*
* Generic helper function to remove section mappings and sysfs entries
* for the section of the memory we are removing. Caller needs to make
* sure that pages are marked reserved and zones are adjust properly by
* calling offline_pages().
*/
mm/memory_hotplug: make __remove_pages() and arch_remove_memory() never fail All callers of arch_remove_memory() ignore errors. And we should really try to remove any errors from the memory removal path. No more errors are reported from __remove_pages(). BUG() in s390x code in case arch_remove_memory() is triggered. We may implement that properly later. WARN in case powerpc code failed to remove the section mapping, which is better than ignoring the error completely right now. Link: http://lkml.kernel.org/r/20190409100148.24703-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Stefan Agner <stefan@agner.ch> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Arun KS <arunks@codeaurora.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Rob Herring <robh@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Qian Cai <cai@lca.pw> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Mike Travis <mike.travis@hpe.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 03:21:46 +03:00
void __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
unsigned long nr_pages, struct vmem_altmap *altmap)
{
unsigned long i;
unsigned long map_offset = 0;
mm/memory_hotplug: make __remove_section() never fail Let's just warn in case a section is not valid instead of failing to remove somewhere in the middle of the process, returning an error that will be mostly ignored by callers. Link: http://lkml.kernel.org/r/20190409100148.24703-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Qian Cai <cai@lca.pw> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Arun KS <arunks@codeaurora.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh@kernel.org> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 03:21:41 +03:00
int sections_to_remove;
/* In the ZONE_DEVICE case device driver owns the memory region */
if (is_dev_zone(zone))
map_offset = vmem_altmap_offset(altmap);
mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous There is a performance drop report due to hugepage allocation and in there half of cpu time are spent on pageblock_pfn_to_page() in compaction [1]. In that workload, compaction is triggered to make hugepage but most of pageblocks are un-available for compaction due to pageblock type and skip bit so compaction usually fails. Most costly operations in this case is to find valid pageblock while scanning whole zone range. To check if pageblock is valid to compact, valid pfn within pageblock is required and we can obtain it by calling pageblock_pfn_to_page(). This function checks whether pageblock is in a single zone and return valid pfn if possible. Problem is that we need to check it every time before scanning pageblock even if we re-visit it and this turns out to be very expensive in this workload. Although we have no way to skip this pageblock check in the system where hole exists at arbitrary position, we can use cached value for zone continuity and just do pfn_to_page() in the system where hole doesn't exist. This optimization considerably speeds up in above workload. Before vs After Max: 1096 MB/s vs 1325 MB/s Min: 635 MB/s 1015 MB/s Avg: 899 MB/s 1194 MB/s Avg is improved by roughly 30% [2]. [1]: http://www.spinics.net/lists/linux-mm/msg97378.html [2]: https://lkml.org/lkml/2015/12/9/23 [akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: Aaron Lu <aaron.lu@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Aaron Lu <aaron.lu@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:57:51 +03:00
clear_zone_contiguous(zone);
/*
* We can only remove entire sections
*/
BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
BUG_ON(nr_pages % PAGES_PER_SECTION);
sections_to_remove = nr_pages / PAGES_PER_SECTION;
for (i = 0; i < sections_to_remove; i++) {
unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
cond_resched();
mm/memory_hotplug: make __remove_section() never fail Let's just warn in case a section is not valid instead of failing to remove somewhere in the middle of the process, returning an error that will be mostly ignored by callers. Link: http://lkml.kernel.org/r/20190409100148.24703-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Qian Cai <cai@lca.pw> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Arun KS <arunks@codeaurora.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh@kernel.org> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 03:21:41 +03:00
__remove_section(zone, __pfn_to_section(pfn), map_offset,
altmap);
map_offset = 0;
}
mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous There is a performance drop report due to hugepage allocation and in there half of cpu time are spent on pageblock_pfn_to_page() in compaction [1]. In that workload, compaction is triggered to make hugepage but most of pageblocks are un-available for compaction due to pageblock type and skip bit so compaction usually fails. Most costly operations in this case is to find valid pageblock while scanning whole zone range. To check if pageblock is valid to compact, valid pfn within pageblock is required and we can obtain it by calling pageblock_pfn_to_page(). This function checks whether pageblock is in a single zone and return valid pfn if possible. Problem is that we need to check it every time before scanning pageblock even if we re-visit it and this turns out to be very expensive in this workload. Although we have no way to skip this pageblock check in the system where hole exists at arbitrary position, we can use cached value for zone continuity and just do pfn_to_page() in the system where hole doesn't exist. This optimization considerably speeds up in above workload. Before vs After Max: 1096 MB/s vs 1325 MB/s Min: 635 MB/s 1015 MB/s Avg: 899 MB/s 1194 MB/s Avg is improved by roughly 30% [2]. [1]: http://www.spinics.net/lists/linux-mm/msg97378.html [2]: https://lkml.org/lkml/2015/12/9/23 [akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: Aaron Lu <aaron.lu@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Aaron Lu <aaron.lu@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:57:51 +03:00
set_zone_contiguous(zone);
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
int set_online_page_callback(online_page_callback_t callback)
{
int rc = -EINVAL;
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
get_online_mems();
mutex_lock(&online_page_callback_lock);
if (online_page_callback == generic_online_page) {
online_page_callback = callback;
rc = 0;
}
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
mutex_unlock(&online_page_callback_lock);
put_online_mems();
return rc;
}
EXPORT_SYMBOL_GPL(set_online_page_callback);
int restore_online_page_callback(online_page_callback_t callback)
{
int rc = -EINVAL;
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
get_online_mems();
mutex_lock(&online_page_callback_lock);
if (online_page_callback == callback) {
online_page_callback = generic_online_page;
rc = 0;
}
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
mutex_unlock(&online_page_callback_lock);
put_online_mems();
return rc;
}
EXPORT_SYMBOL_GPL(restore_online_page_callback);
void __online_page_set_limits(struct page *page)
{
}
EXPORT_SYMBOL_GPL(__online_page_set_limits);
void __online_page_increment_counters(struct page *page)
{
mm: correctly update zone->managed_pages Enhance adjust_managed_page_count() to adjust totalhigh_pages for highmem pages. And change code which directly adjusts totalram_pages to use adjust_managed_page_count() because it adjusts totalram_pages, totalhigh_pages and zone->managed_pages altogether in a safe way. Remove inc_totalhigh_pages() and dec_totalhigh_pages() from xen/balloon driver bacause adjust_managed_page_count() has already adjusted totalhigh_pages. This patch also fixes two bugs: 1) enhances virtio_balloon driver to adjust totalhigh_pages when reserve/unreserve pages. 2) enhance memory_hotplug.c to adjust totalhigh_pages when hot-removing memory. We still need to deal with modifications of totalram_pages in file arch/powerpc/platforms/pseries/cmm.c, but need help from PPC experts. [akpm@linux-foundation.org: remove ifdef, per Wanpeng Li, virtio_balloon.c cleanup, per Sergei] [akpm@linux-foundation.org: export adjust_managed_page_count() to modules, for drivers/virtio/virtio_balloon.c] Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <sworddragon2@aol.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 02:03:21 +04:00
adjust_managed_page_count(page, 1);
}
EXPORT_SYMBOL_GPL(__online_page_increment_counters);
void __online_page_free(struct page *page)
{
mm: correctly update zone->managed_pages Enhance adjust_managed_page_count() to adjust totalhigh_pages for highmem pages. And change code which directly adjusts totalram_pages to use adjust_managed_page_count() because it adjusts totalram_pages, totalhigh_pages and zone->managed_pages altogether in a safe way. Remove inc_totalhigh_pages() and dec_totalhigh_pages() from xen/balloon driver bacause adjust_managed_page_count() has already adjusted totalhigh_pages. This patch also fixes two bugs: 1) enhances virtio_balloon driver to adjust totalhigh_pages when reserve/unreserve pages. 2) enhance memory_hotplug.c to adjust totalhigh_pages when hot-removing memory. We still need to deal with modifications of totalram_pages in file arch/powerpc/platforms/pseries/cmm.c, but need help from PPC experts. [akpm@linux-foundation.org: remove ifdef, per Wanpeng Li, virtio_balloon.c cleanup, per Sergei] [akpm@linux-foundation.org: export adjust_managed_page_count() to modules, for drivers/virtio/virtio_balloon.c] Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <sworddragon2@aol.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 02:03:21 +04:00
__free_reserved_page(page);
}
EXPORT_SYMBOL_GPL(__online_page_free);
mm/page_alloc.c: memory hotplug: free pages as higher order When freeing pages are done with higher order, time spent on coalescing pages by buddy allocator can be reduced. With section size of 256MB, hot add latency of a single section shows improvement from 50-60 ms to less than 1 ms, hence improving the hot add latency by 60 times. Modify external providers of online callback to align with the change. [arunks@codeaurora.org: v11] Link: http://lkml.kernel.org/r/1547792588-18032-1-git-send-email-arunks@codeaurora.org [akpm@linux-foundation.org: remove unused local, per Arun] [akpm@linux-foundation.org: avoid return of void-returning __free_pages_core(), per Oscar] [akpm@linux-foundation.org: fix it for mm-convert-totalram_pages-and-totalhigh_pages-variables-to-atomic.patch] [arunks@codeaurora.org: v8] Link: http://lkml.kernel.org/r/1547032395-24582-1-git-send-email-arunks@codeaurora.org [arunks@codeaurora.org: v9] Link: http://lkml.kernel.org/r/1547098543-26452-1-git-send-email-arunks@codeaurora.org Link: http://lkml.kernel.org/r/1538727006-5727-1-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: K. Y. Srinivasan <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Srivatsa Vaddagiri <vatsa@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 02:42:14 +03:00
static void generic_online_page(struct page *page, unsigned int order)
{
mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC When onlining a memory block with DEBUG_PAGEALLOC, it unmaps the pages in the block from kernel, However, it does not map those pages while offlining at the beginning. As the result, it triggers a panic below while onlining on ppc64le as it checks if the pages are mapped before unmapping. However, the imbalance exists for all arches where double-unmappings could happen. Therefore, let kernel map those pages in generic_online_page() before they have being freed into the page allocator for the first time where it will set the page count to one. On the other hand, it works fine during the boot, because at least for IBM POWER8, it does, early_setup early_init_mmu harsh__early_init_mmu htab_initialize [1] htab_bolt_mapping [2] where it effectively map all memblock regions just like kernel_map_linear_page(), so later mem_init() -> memblock_free_all() will unmap them just fine without any imbalance. On other arches without this imbalance checking, it still unmap them once at the most. [1] for_each_memblock(memory, reg) { base = (unsigned long)__va(reg->base); size = reg->size; DBG("creating mapping for region: %lx..%lx (prot: %lx)\n", base, size, prot); BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), prot, mmu_linear_psize, mmu_kernel_ssize)); } [2] linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80; kernel BUG at arch/powerpc/mm/hash_utils_64.c:1815! Oops: Exception in kernel mode, sig: 5 [#1] LE SMP NR_CPUS=256 DEBUG_PAGEALLOC NUMA pSeries CPU: 2 PID: 4298 Comm: bash Not tainted 5.0.0-rc7+ #15 NIP: c000000000062670 LR: c00000000006265c CTR: 0000000000000000 REGS: c0000005bf8a75b0 TRAP: 0700 Not tainted (5.0.0-rc7+) MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 28422842 XER: 00000000 CFAR: c000000000804f44 IRQMASK: 1 NIP [c000000000062670] __kernel_map_pages+0x2e0/0x4f0 LR [c00000000006265c] __kernel_map_pages+0x2cc/0x4f0 Call Trace: __kernel_map_pages+0x2cc/0x4f0 free_unref_page_prepare+0x2f0/0x4d0 free_unref_page+0x44/0x90 __online_page_free+0x84/0x110 online_pages_range+0xc0/0x150 walk_system_ram_range+0xc8/0x120 online_pages+0x280/0x5a0 memory_subsys_online+0x1b4/0x270 device_online+0xc0/0xf0 state_store+0xc0/0x180 dev_attr_store+0x3c/0x60 sysfs_kf_write+0x70/0xb0 kernfs_fop_write+0x10c/0x250 __vfs_write+0x48/0x240 vfs_write+0xd8/0x210 ksys_write+0x70/0x120 system_call+0x5c/0x70 Link: http://lkml.kernel.org/r/20190301220814.97339-1-cai@lca.pw Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Cc: Michal Hocko <mhocko@kernel.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 02:49:57 +03:00
kernel_map_pages(page, 1 << order, 1);
mm/page_alloc.c: memory hotplug: free pages as higher order When freeing pages are done with higher order, time spent on coalescing pages by buddy allocator can be reduced. With section size of 256MB, hot add latency of a single section shows improvement from 50-60 ms to less than 1 ms, hence improving the hot add latency by 60 times. Modify external providers of online callback to align with the change. [arunks@codeaurora.org: v11] Link: http://lkml.kernel.org/r/1547792588-18032-1-git-send-email-arunks@codeaurora.org [akpm@linux-foundation.org: remove unused local, per Arun] [akpm@linux-foundation.org: avoid return of void-returning __free_pages_core(), per Oscar] [akpm@linux-foundation.org: fix it for mm-convert-totalram_pages-and-totalhigh_pages-variables-to-atomic.patch] [arunks@codeaurora.org: v8] Link: http://lkml.kernel.org/r/1547032395-24582-1-git-send-email-arunks@codeaurora.org [arunks@codeaurora.org: v9] Link: http://lkml.kernel.org/r/1547098543-26452-1-git-send-email-arunks@codeaurora.org Link: http://lkml.kernel.org/r/1538727006-5727-1-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: K. Y. Srinivasan <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Srivatsa Vaddagiri <vatsa@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 02:42:14 +03:00
__free_pages_core(page, order);
totalram_pages_add(1UL << order);
#ifdef CONFIG_HIGHMEM
if (PageHighMem(page))
totalhigh_pages_add(1UL << order);
#endif
}
static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
{
unsigned long end = start + nr_pages;
int order, onlined_pages = 0;
while (start < end) {
order = min(MAX_ORDER - 1,
get_order(PFN_PHYS(end) - PFN_PHYS(start)));
(*online_page_callback)(pfn_to_page(start), order);
onlined_pages += (1UL << order);
start += (1UL << order);
}
return onlined_pages;
}
static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
void *arg)
{
unsigned long onlined_pages = *(unsigned long *)arg;
mm: consider zone which is not fully populated to have holes __pageblock_pfn_to_page has two users currently, set_zone_contiguous which checks whether the given zone contains holes and pageblock_pfn_to_page which then carefully returns a first valid page from the given pfn range for the given zone. This doesn't handle zones which are not fully populated though. Memory pageblocks can be offlined or might not have been onlined yet. In such a case the zone should be considered to have holes otherwise pfn walkers can touch and play with offline pages. Current callers of pageblock_pfn_to_page in compaction seem to work properly right now because they only isolate PageBuddy (isolate_freepages_block) or PageLRU resp. __PageMovable (isolate_migratepages_block) which will be always false for these pages. It would be safer to skip these pages altogether, though. In order to do this patch adds a new memory section state (SECTION_IS_ONLINE) which is set in memory_present (during boot time) or in online_pages_range during the memory hotplug. Similarly offline_mem_sections clears the bit and it is called when the memory range is offlined. pfn_to_online_page helper is then added which check the mem section and only returns a page if it is onlined already. Use the new helper in __pageblock_pfn_to_page and skip the whole page block in such a case. [mhocko@suse.com: check valid section number in pfn_to_online_page (Vlastimil), mark sections online after all struct pages are initialized in online_pages_range (Vlastimil)] Link: http://lkml.kernel.org/r/20170518164210.GD18333@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170515085827.16474-8-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:37:56 +03:00
if (PageReserved(pfn_to_page(start_pfn)))
mm/page_alloc.c: memory hotplug: free pages as higher order When freeing pages are done with higher order, time spent on coalescing pages by buddy allocator can be reduced. With section size of 256MB, hot add latency of a single section shows improvement from 50-60 ms to less than 1 ms, hence improving the hot add latency by 60 times. Modify external providers of online callback to align with the change. [arunks@codeaurora.org: v11] Link: http://lkml.kernel.org/r/1547792588-18032-1-git-send-email-arunks@codeaurora.org [akpm@linux-foundation.org: remove unused local, per Arun] [akpm@linux-foundation.org: avoid return of void-returning __free_pages_core(), per Oscar] [akpm@linux-foundation.org: fix it for mm-convert-totalram_pages-and-totalhigh_pages-variables-to-atomic.patch] [arunks@codeaurora.org: v8] Link: http://lkml.kernel.org/r/1547032395-24582-1-git-send-email-arunks@codeaurora.org [arunks@codeaurora.org: v9] Link: http://lkml.kernel.org/r/1547098543-26452-1-git-send-email-arunks@codeaurora.org Link: http://lkml.kernel.org/r/1538727006-5727-1-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: K. Y. Srinivasan <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Srivatsa Vaddagiri <vatsa@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 02:42:14 +03:00
onlined_pages += online_pages_blocks(start_pfn, nr_pages);
mm: consider zone which is not fully populated to have holes __pageblock_pfn_to_page has two users currently, set_zone_contiguous which checks whether the given zone contains holes and pageblock_pfn_to_page which then carefully returns a first valid page from the given pfn range for the given zone. This doesn't handle zones which are not fully populated though. Memory pageblocks can be offlined or might not have been onlined yet. In such a case the zone should be considered to have holes otherwise pfn walkers can touch and play with offline pages. Current callers of pageblock_pfn_to_page in compaction seem to work properly right now because they only isolate PageBuddy (isolate_freepages_block) or PageLRU resp. __PageMovable (isolate_migratepages_block) which will be always false for these pages. It would be safer to skip these pages altogether, though. In order to do this patch adds a new memory section state (SECTION_IS_ONLINE) which is set in memory_present (during boot time) or in online_pages_range during the memory hotplug. Similarly offline_mem_sections clears the bit and it is called when the memory range is offlined. pfn_to_online_page helper is then added which check the mem section and only returns a page if it is onlined already. Use the new helper in __pageblock_pfn_to_page and skip the whole page block in such a case. [mhocko@suse.com: check valid section number in pfn_to_online_page (Vlastimil), mark sections online after all struct pages are initialized in online_pages_range (Vlastimil)] Link: http://lkml.kernel.org/r/20170518164210.GD18333@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170515085827.16474-8-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:37:56 +03:00
online_mem_sections(start_pfn, start_pfn + nr_pages);
*(unsigned long *)arg = onlined_pages;
return 0;
}
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
/* check which state of node_states will be changed when online memory */
static void node_states_check_changes_online(unsigned long nr_pages,
struct zone *zone, struct memory_notify *arg)
{
int nid = zone_to_nid(zone);
mm: replace all open encodings for NUMA_NO_NODE Patch series "Replace all open encodings for NUMA_NO_NODE", v3. All these places for replacement were found by running the following grep patterns on the entire kernel code. Please let me know if this might have missed some instances. This might also have replaced some false positives. I will appreciate suggestions, inputs and review. 1. git grep "nid == -1" 2. git grep "node == -1" 3. git grep "nid = -1" 4. git grep "node = -1" This patch (of 2): At present there are multiple places where invalid node number is encoded as -1. Even though implicitly understood it is always better to have macros in there. Replace these open encodings for an invalid node number with the global macro NUMA_NO_NODE. This helps remove NUMA related assumptions like 'invalid node' from various places redirecting them to a common definition. Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe] Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx] Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband] Cc: Joseph Qi <jiangqi903@gmail.com> Cc: Hans Verkuil <hverkuil@xs4all.nl> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 02:42:58 +03:00
arg->status_change_nid = NUMA_NO_NODE;
arg->status_change_nid_normal = NUMA_NO_NODE;
arg->status_change_nid_high = NUMA_NO_NODE;
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
if (!node_state(nid, N_MEMORY))
arg->status_change_nid = nid;
if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
arg->status_change_nid_normal = nid;
#ifdef CONFIG_HIGHMEM
if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
arg->status_change_nid_high = nid;
#endif
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
}
static void node_states_set_node(int node, struct memory_notify *arg)
{
if (arg->status_change_nid_normal >= 0)
node_set_state(node, N_NORMAL_MEMORY);
if (arg->status_change_nid_high >= 0)
node_set_state(node, N_HIGH_MEMORY);
if (arg->status_change_nid >= 0)
node_set_state(node, N_MEMORY);
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
}
mm, memory_hotplug: do not associate hotadded memory to zones until online The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:11 +03:00
static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
unsigned long nr_pages)
{
unsigned long old_end_pfn = zone_end_pfn(zone);
if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
zone->zone_start_pfn = start_pfn;
zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
}
static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
unsigned long nr_pages)
{
unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
pgdat->node_start_pfn = start_pfn;
pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
}
void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
unsigned long nr_pages, struct vmem_altmap *altmap)
mm, memory_hotplug: do not associate hotadded memory to zones until online The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:11 +03:00
{
struct pglist_data *pgdat = zone->zone_pgdat;
int nid = pgdat->node_id;
unsigned long flags;
mm, memory_hotplug: do not associate hotadded memory to zones until online The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:11 +03:00
clear_zone_contiguous(zone);
/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
pgdat_resize_lock(pgdat, &flags);
zone_span_writelock(zone);
if (zone_is_empty(zone))
init_currently_empty_zone(zone, start_pfn, nr_pages);
mm, memory_hotplug: do not associate hotadded memory to zones until online The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:11 +03:00
resize_zone_range(zone, start_pfn, nr_pages);
zone_span_writeunlock(zone);
resize_pgdat_range(pgdat, start_pfn, nr_pages);
pgdat_resize_unlock(pgdat, &flags);
/*
* TODO now we have a visible range of pages which are not associated
* with their zone properly. Not nice but set_pfnblock_flags_mask
* expects the zone spans the pfn range. All the pages in the range
* are reserved so nobody should be touching them so we should be safe
*/
memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
MEMMAP_HOTPLUG, altmap);
mm, memory_hotplug: do not associate hotadded memory to zones until online The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:11 +03:00
set_zone_contiguous(zone);
}
mm, memory_hotplug: do not assume ZONE_NORMAL is default kernel zone Heiko Carstens has noticed that he can generate overlapping zones for ZONE_DMA and ZONE_NORMAL: DMA [mem 0x0000000000000000-0x000000007fffffff] Normal [mem 0x0000000080000000-0x000000017fffffff] $ cat /sys/devices/system/memory/block_size_bytes 10000000 $ cat /sys/devices/system/memory/memory5/valid_zones DMA $ echo 0 > /sys/devices/system/memory/memory5/online $ cat /sys/devices/system/memory/memory5/valid_zones Normal $ echo 1 > /sys/devices/system/memory/memory5/online Normal $ cat /proc/zoneinfo Node 0, zone DMA spanned 524288 <----- present 458752 managed 455078 start_pfn: 0 <----- Node 0, zone Normal spanned 720896 present 589824 managed 571648 start_pfn: 327680 <----- The reason is that we assume that the default zone for kernel onlining is ZONE_NORMAL. This was a simplification introduced by the memory hotplug rework and it is easily fixable by checking the range overlap in the zone order and considering the first matching zone as the default one. If there is no such zone then assume ZONE_NORMAL as we have been doing so far. Fixes: "mm, memory_hotplug: do not associate hotadded memory to zones until online" Link: http://lkml.kernel.org/r/20170601083746.4924-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com> Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:18 +03:00
/*
* Returns a default kernel memory zone for the given pfn range.
* If no kernel zone covers this pfn range it will automatically go
* to the ZONE_NORMAL.
*/
mm, memory_hotplug: remove zone restrictions Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has to precede the Movable zone in the physical memory range. The purpose of the movable zone is, however, not bound to any physical memory restriction. It merely defines a class of migrateable and reclaimable memory. There are users (e.g. CMA) who might want to reserve specific physical memory ranges for their own purpose. Moreover our pfn walkers have to be prepared for zones overlapping in the physical range already because we do support interleaving NUMA nodes and therefore zones can interleave as well. This means we can allow each memory block to be associated with a different zone. Loosen the current onlining semantic and allow explicit onlining type on any memblock. That means that online_{kernel,movable} will be allowed regardless of the physical address of the memblock as long as it is offline of course. This might result in moveble zone overlapping with other kernel zones. Default onlining then becomes a bit tricky but still sensible. echo online > memoryXY/state will online the given block to 1) the default zone if the given range is outside of any zone 2) the enclosing zone if such a zone doesn't interleave with any other zone 3) the default zone if more zones interleave for this range where default zone is movable zone only if movable_node is enabled otherwise it is a kernel zone. Here is an example of the semantic with (movable_node is not present but it work in an analogous way). We start with following memblocks, all of them offline: memory34/valid_zones:Normal Movable memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Normal Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable Now, we online block 34 in default mode and block 37 as movable root@test1:/sys/devices/system/node/node1# echo online > memory34/state root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable As we can see all other blocks can still be onlined both into Normal and Movable zones and the Normal is default because the Movable zone spans only block37 now. root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Movable Normal memory39/valid_zones:Movable Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Now the default zone for blocks 37-41 has changed because movable zone spans that range. root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Note that the block 39 now belongs to the zone Normal and so block38 falls into Normal by default as well. For completness root@test1:/sys/devices/system/node/node1# for i in memory[34]? do echo online > $i/state 2>/dev/null done memory34/valid_zones:Normal memory35/valid_zones:Normal memory36/valid_zones:Normal memory37/valid_zones:Movable memory38/valid_zones:Normal memory39/valid_zones:Normal memory40/valid_zones:Movable memory41/valid_zones:Movable Implementation wise the change is quite straightforward. We can get rid of allow_online_pfn_range altogether. online_pages allows only offline nodes already. The original default_zone_for_pfn will become default_kernel_zone_for_pfn. New default_zone_for_pfn implements the above semantic. zone_for_pfn_range is slightly reorganized to implement kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a catch all default behavior. Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:40 +03:00
static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
mm, memory_hotplug: do not assume ZONE_NORMAL is default kernel zone Heiko Carstens has noticed that he can generate overlapping zones for ZONE_DMA and ZONE_NORMAL: DMA [mem 0x0000000000000000-0x000000007fffffff] Normal [mem 0x0000000080000000-0x000000017fffffff] $ cat /sys/devices/system/memory/block_size_bytes 10000000 $ cat /sys/devices/system/memory/memory5/valid_zones DMA $ echo 0 > /sys/devices/system/memory/memory5/online $ cat /sys/devices/system/memory/memory5/valid_zones Normal $ echo 1 > /sys/devices/system/memory/memory5/online Normal $ cat /proc/zoneinfo Node 0, zone DMA spanned 524288 <----- present 458752 managed 455078 start_pfn: 0 <----- Node 0, zone Normal spanned 720896 present 589824 managed 571648 start_pfn: 327680 <----- The reason is that we assume that the default zone for kernel onlining is ZONE_NORMAL. This was a simplification introduced by the memory hotplug rework and it is easily fixable by checking the range overlap in the zone order and considering the first matching zone as the default one. If there is no such zone then assume ZONE_NORMAL as we have been doing so far. Fixes: "mm, memory_hotplug: do not associate hotadded memory to zones until online" Link: http://lkml.kernel.org/r/20170601083746.4924-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com> Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:18 +03:00
unsigned long nr_pages)
{
struct pglist_data *pgdat = NODE_DATA(nid);
int zid;
for (zid = 0; zid <= ZONE_NORMAL; zid++) {
struct zone *zone = &pgdat->node_zones[zid];
if (zone_intersects(zone, start_pfn, nr_pages))
return zone;
}
return &pgdat->node_zones[ZONE_NORMAL];
}
mm, memory_hotplug: remove zone restrictions Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has to precede the Movable zone in the physical memory range. The purpose of the movable zone is, however, not bound to any physical memory restriction. It merely defines a class of migrateable and reclaimable memory. There are users (e.g. CMA) who might want to reserve specific physical memory ranges for their own purpose. Moreover our pfn walkers have to be prepared for zones overlapping in the physical range already because we do support interleaving NUMA nodes and therefore zones can interleave as well. This means we can allow each memory block to be associated with a different zone. Loosen the current onlining semantic and allow explicit onlining type on any memblock. That means that online_{kernel,movable} will be allowed regardless of the physical address of the memblock as long as it is offline of course. This might result in moveble zone overlapping with other kernel zones. Default onlining then becomes a bit tricky but still sensible. echo online > memoryXY/state will online the given block to 1) the default zone if the given range is outside of any zone 2) the enclosing zone if such a zone doesn't interleave with any other zone 3) the default zone if more zones interleave for this range where default zone is movable zone only if movable_node is enabled otherwise it is a kernel zone. Here is an example of the semantic with (movable_node is not present but it work in an analogous way). We start with following memblocks, all of them offline: memory34/valid_zones:Normal Movable memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Normal Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable Now, we online block 34 in default mode and block 37 as movable root@test1:/sys/devices/system/node/node1# echo online > memory34/state root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable As we can see all other blocks can still be onlined both into Normal and Movable zones and the Normal is default because the Movable zone spans only block37 now. root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Movable Normal memory39/valid_zones:Movable Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Now the default zone for blocks 37-41 has changed because movable zone spans that range. root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Note that the block 39 now belongs to the zone Normal and so block38 falls into Normal by default as well. For completness root@test1:/sys/devices/system/node/node1# for i in memory[34]? do echo online > $i/state 2>/dev/null done memory34/valid_zones:Normal memory35/valid_zones:Normal memory36/valid_zones:Normal memory37/valid_zones:Movable memory38/valid_zones:Normal memory39/valid_zones:Normal memory40/valid_zones:Movable memory41/valid_zones:Movable Implementation wise the change is quite straightforward. We can get rid of allow_online_pfn_range altogether. online_pages allows only offline nodes already. The original default_zone_for_pfn will become default_kernel_zone_for_pfn. New default_zone_for_pfn implements the above semantic. zone_for_pfn_range is slightly reorganized to implement kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a catch all default behavior. Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:40 +03:00
static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
unsigned long nr_pages)
mm, memory_hotplug: display allowed zones in the preferred ordering Prior to commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") we used to allow to change the valid zone types of a memory block if it is adjacent to a different zone type. This fact was reflected in memoryNN/valid_zones by the ordering of printed zones. The first one was default (echo online > memoryNN/state) and the other one could be onlined explicitly by online_{movable,kernel}. This behavior was removed by the said patch and as such the ordering was not all that important. In most cases a kernel zone would be default anyway. The only exception is movable_node handled by "mm, memory_hotplug: support movable_node for hotpluggable nodes". Let's reintroduce this behavior again because later patch will remove the zone overlap restriction and so user will be allowed to online kernel resp. movable block regardless of its placement. Original behavior will then become significant again because it would be non-trivial for users to see what is the default zone to online into. Implementation is really simple. Pull out zone selection out of move_pfn_range into zone_for_pfn_range helper and use it in show_valid_zones to display the zone for default onlining and then both kernel and movable if they are allowed. Default online zone is not duplicated. Link: http://lkml.kernel.org/r/20170714121233.16861-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:37 +03:00
{
mm, memory_hotplug: remove zone restrictions Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has to precede the Movable zone in the physical memory range. The purpose of the movable zone is, however, not bound to any physical memory restriction. It merely defines a class of migrateable and reclaimable memory. There are users (e.g. CMA) who might want to reserve specific physical memory ranges for their own purpose. Moreover our pfn walkers have to be prepared for zones overlapping in the physical range already because we do support interleaving NUMA nodes and therefore zones can interleave as well. This means we can allow each memory block to be associated with a different zone. Loosen the current onlining semantic and allow explicit onlining type on any memblock. That means that online_{kernel,movable} will be allowed regardless of the physical address of the memblock as long as it is offline of course. This might result in moveble zone overlapping with other kernel zones. Default onlining then becomes a bit tricky but still sensible. echo online > memoryXY/state will online the given block to 1) the default zone if the given range is outside of any zone 2) the enclosing zone if such a zone doesn't interleave with any other zone 3) the default zone if more zones interleave for this range where default zone is movable zone only if movable_node is enabled otherwise it is a kernel zone. Here is an example of the semantic with (movable_node is not present but it work in an analogous way). We start with following memblocks, all of them offline: memory34/valid_zones:Normal Movable memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Normal Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable Now, we online block 34 in default mode and block 37 as movable root@test1:/sys/devices/system/node/node1# echo online > memory34/state root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable As we can see all other blocks can still be onlined both into Normal and Movable zones and the Normal is default because the Movable zone spans only block37 now. root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Movable Normal memory39/valid_zones:Movable Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Now the default zone for blocks 37-41 has changed because movable zone spans that range. root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Note that the block 39 now belongs to the zone Normal and so block38 falls into Normal by default as well. For completness root@test1:/sys/devices/system/node/node1# for i in memory[34]? do echo online > $i/state 2>/dev/null done memory34/valid_zones:Normal memory35/valid_zones:Normal memory36/valid_zones:Normal memory37/valid_zones:Movable memory38/valid_zones:Normal memory39/valid_zones:Normal memory40/valid_zones:Movable memory41/valid_zones:Movable Implementation wise the change is quite straightforward. We can get rid of allow_online_pfn_range altogether. online_pages allows only offline nodes already. The original default_zone_for_pfn will become default_kernel_zone_for_pfn. New default_zone_for_pfn implements the above semantic. zone_for_pfn_range is slightly reorganized to implement kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a catch all default behavior. Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:40 +03:00
struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
nr_pages);
struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
mm, memory_hotplug: display allowed zones in the preferred ordering Prior to commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") we used to allow to change the valid zone types of a memory block if it is adjacent to a different zone type. This fact was reflected in memoryNN/valid_zones by the ordering of printed zones. The first one was default (echo online > memoryNN/state) and the other one could be onlined explicitly by online_{movable,kernel}. This behavior was removed by the said patch and as such the ordering was not all that important. In most cases a kernel zone would be default anyway. The only exception is movable_node handled by "mm, memory_hotplug: support movable_node for hotpluggable nodes". Let's reintroduce this behavior again because later patch will remove the zone overlap restriction and so user will be allowed to online kernel resp. movable block regardless of its placement. Original behavior will then become significant again because it would be non-trivial for users to see what is the default zone to online into. Implementation is really simple. Pull out zone selection out of move_pfn_range into zone_for_pfn_range helper and use it in show_valid_zones to display the zone for default onlining and then both kernel and movable if they are allowed. Default online zone is not duplicated. Link: http://lkml.kernel.org/r/20170714121233.16861-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:37 +03:00
/*
mm, memory_hotplug: remove zone restrictions Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has to precede the Movable zone in the physical memory range. The purpose of the movable zone is, however, not bound to any physical memory restriction. It merely defines a class of migrateable and reclaimable memory. There are users (e.g. CMA) who might want to reserve specific physical memory ranges for their own purpose. Moreover our pfn walkers have to be prepared for zones overlapping in the physical range already because we do support interleaving NUMA nodes and therefore zones can interleave as well. This means we can allow each memory block to be associated with a different zone. Loosen the current onlining semantic and allow explicit onlining type on any memblock. That means that online_{kernel,movable} will be allowed regardless of the physical address of the memblock as long as it is offline of course. This might result in moveble zone overlapping with other kernel zones. Default onlining then becomes a bit tricky but still sensible. echo online > memoryXY/state will online the given block to 1) the default zone if the given range is outside of any zone 2) the enclosing zone if such a zone doesn't interleave with any other zone 3) the default zone if more zones interleave for this range where default zone is movable zone only if movable_node is enabled otherwise it is a kernel zone. Here is an example of the semantic with (movable_node is not present but it work in an analogous way). We start with following memblocks, all of them offline: memory34/valid_zones:Normal Movable memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Normal Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable Now, we online block 34 in default mode and block 37 as movable root@test1:/sys/devices/system/node/node1# echo online > memory34/state root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable As we can see all other blocks can still be onlined both into Normal and Movable zones and the Normal is default because the Movable zone spans only block37 now. root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Movable Normal memory39/valid_zones:Movable Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Now the default zone for blocks 37-41 has changed because movable zone spans that range. root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Note that the block 39 now belongs to the zone Normal and so block38 falls into Normal by default as well. For completness root@test1:/sys/devices/system/node/node1# for i in memory[34]? do echo online > $i/state 2>/dev/null done memory34/valid_zones:Normal memory35/valid_zones:Normal memory36/valid_zones:Normal memory37/valid_zones:Movable memory38/valid_zones:Normal memory39/valid_zones:Normal memory40/valid_zones:Movable memory41/valid_zones:Movable Implementation wise the change is quite straightforward. We can get rid of allow_online_pfn_range altogether. online_pages allows only offline nodes already. The original default_zone_for_pfn will become default_kernel_zone_for_pfn. New default_zone_for_pfn implements the above semantic. zone_for_pfn_range is slightly reorganized to implement kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a catch all default behavior. Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:40 +03:00
* We inherit the existing zone in a simple case where zones do not
* overlap in the given range
mm, memory_hotplug: display allowed zones in the preferred ordering Prior to commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") we used to allow to change the valid zone types of a memory block if it is adjacent to a different zone type. This fact was reflected in memoryNN/valid_zones by the ordering of printed zones. The first one was default (echo online > memoryNN/state) and the other one could be onlined explicitly by online_{movable,kernel}. This behavior was removed by the said patch and as such the ordering was not all that important. In most cases a kernel zone would be default anyway. The only exception is movable_node handled by "mm, memory_hotplug: support movable_node for hotpluggable nodes". Let's reintroduce this behavior again because later patch will remove the zone overlap restriction and so user will be allowed to online kernel resp. movable block regardless of its placement. Original behavior will then become significant again because it would be non-trivial for users to see what is the default zone to online into. Implementation is really simple. Pull out zone selection out of move_pfn_range into zone_for_pfn_range helper and use it in show_valid_zones to display the zone for default onlining and then both kernel and movable if they are allowed. Default online zone is not duplicated. Link: http://lkml.kernel.org/r/20170714121233.16861-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:37 +03:00
*/
mm, memory_hotplug: remove zone restrictions Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has to precede the Movable zone in the physical memory range. The purpose of the movable zone is, however, not bound to any physical memory restriction. It merely defines a class of migrateable and reclaimable memory. There are users (e.g. CMA) who might want to reserve specific physical memory ranges for their own purpose. Moreover our pfn walkers have to be prepared for zones overlapping in the physical range already because we do support interleaving NUMA nodes and therefore zones can interleave as well. This means we can allow each memory block to be associated with a different zone. Loosen the current onlining semantic and allow explicit onlining type on any memblock. That means that online_{kernel,movable} will be allowed regardless of the physical address of the memblock as long as it is offline of course. This might result in moveble zone overlapping with other kernel zones. Default onlining then becomes a bit tricky but still sensible. echo online > memoryXY/state will online the given block to 1) the default zone if the given range is outside of any zone 2) the enclosing zone if such a zone doesn't interleave with any other zone 3) the default zone if more zones interleave for this range where default zone is movable zone only if movable_node is enabled otherwise it is a kernel zone. Here is an example of the semantic with (movable_node is not present but it work in an analogous way). We start with following memblocks, all of them offline: memory34/valid_zones:Normal Movable memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Normal Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable Now, we online block 34 in default mode and block 37 as movable root@test1:/sys/devices/system/node/node1# echo online > memory34/state root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable As we can see all other blocks can still be onlined both into Normal and Movable zones and the Normal is default because the Movable zone spans only block37 now. root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Movable Normal memory39/valid_zones:Movable Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Now the default zone for blocks 37-41 has changed because movable zone spans that range. root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Note that the block 39 now belongs to the zone Normal and so block38 falls into Normal by default as well. For completness root@test1:/sys/devices/system/node/node1# for i in memory[34]? do echo online > $i/state 2>/dev/null done memory34/valid_zones:Normal memory35/valid_zones:Normal memory36/valid_zones:Normal memory37/valid_zones:Movable memory38/valid_zones:Normal memory39/valid_zones:Normal memory40/valid_zones:Movable memory41/valid_zones:Movable Implementation wise the change is quite straightforward. We can get rid of allow_online_pfn_range altogether. online_pages allows only offline nodes already. The original default_zone_for_pfn will become default_kernel_zone_for_pfn. New default_zone_for_pfn implements the above semantic. zone_for_pfn_range is slightly reorganized to implement kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a catch all default behavior. Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:40 +03:00
if (in_kernel ^ in_movable)
return (in_kernel) ? kernel_zone : movable_zone;
mm, memory_hotplug: support movable_node for hotpluggable nodes movable_node kernel parameter allows making hotpluggable NUMA nodes to put all the hotplugable memory into movable zone which allows more or less reliable memory hotremove. At least this is the case for the NUMA nodes present during the boot (see find_zone_movable_pfns_for_nodes). This is not the case for the memory hotplug, though. echo online > /sys/devices/system/memory/memoryXYZ/state will default to a kernel zone (usually ZONE_NORMAL) unless the particular memblock is already in the movable zone range which is not the case normally when onlining the memory from the udev rule context for a freshly hotadded NUMA node. The only option currently is to have a special udev rule to echo online_movable to all memblocks belonging to such a node which is rather clumsy. Not to mention this is inconsistent as well because what ended up in the movable zone during the boot will end up in a kernel zone after hotremove & hotadd without special care. It would be nice to reuse memblock_is_hotpluggable but the runtime hotplug doesn't have that information available because the boot and hotplug paths are not shared and it would be really non trivial to make them use the same code path because the runtime hotplug doesn't play with the memblock allocator at all. Teach move_pfn_range that MMOP_ONLINE_KEEP can use the movable zone if movable_node is enabled and the range doesn't overlap with the existing normal zone. This should provide a reasonable default onlining strategy. Strictly speaking the semantic is not identical with the boot time initialization because find_zone_movable_pfns_for_nodes covers only the hotplugable range as described by the BIOS/FW. From my experience this is usually a full node though (except for Node0 which is special and never goes away completely). If this turns out to be a problem in the real life we can tweak the code to store hotplug flag into memblocks but let's keep this simple now. Link: http://lkml.kernel.org/r/20170612111227.GI7476@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 01:48:37 +03:00
mm, memory_hotplug: remove zone restrictions Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has to precede the Movable zone in the physical memory range. The purpose of the movable zone is, however, not bound to any physical memory restriction. It merely defines a class of migrateable and reclaimable memory. There are users (e.g. CMA) who might want to reserve specific physical memory ranges for their own purpose. Moreover our pfn walkers have to be prepared for zones overlapping in the physical range already because we do support interleaving NUMA nodes and therefore zones can interleave as well. This means we can allow each memory block to be associated with a different zone. Loosen the current onlining semantic and allow explicit onlining type on any memblock. That means that online_{kernel,movable} will be allowed regardless of the physical address of the memblock as long as it is offline of course. This might result in moveble zone overlapping with other kernel zones. Default onlining then becomes a bit tricky but still sensible. echo online > memoryXY/state will online the given block to 1) the default zone if the given range is outside of any zone 2) the enclosing zone if such a zone doesn't interleave with any other zone 3) the default zone if more zones interleave for this range where default zone is movable zone only if movable_node is enabled otherwise it is a kernel zone. Here is an example of the semantic with (movable_node is not present but it work in an analogous way). We start with following memblocks, all of them offline: memory34/valid_zones:Normal Movable memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Normal Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable Now, we online block 34 in default mode and block 37 as movable root@test1:/sys/devices/system/node/node1# echo online > memory34/state root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable As we can see all other blocks can still be onlined both into Normal and Movable zones and the Normal is default because the Movable zone spans only block37 now. root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Movable Normal memory39/valid_zones:Movable Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Now the default zone for blocks 37-41 has changed because movable zone spans that range. root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Note that the block 39 now belongs to the zone Normal and so block38 falls into Normal by default as well. For completness root@test1:/sys/devices/system/node/node1# for i in memory[34]? do echo online > $i/state 2>/dev/null done memory34/valid_zones:Normal memory35/valid_zones:Normal memory36/valid_zones:Normal memory37/valid_zones:Movable memory38/valid_zones:Normal memory39/valid_zones:Normal memory40/valid_zones:Movable memory41/valid_zones:Movable Implementation wise the change is quite straightforward. We can get rid of allow_online_pfn_range altogether. online_pages allows only offline nodes already. The original default_zone_for_pfn will become default_kernel_zone_for_pfn. New default_zone_for_pfn implements the above semantic. zone_for_pfn_range is slightly reorganized to implement kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a catch all default behavior. Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:40 +03:00
/*
* If the range doesn't belong to any zone or two zones overlap in the
* given range then we use movable zone only if movable_node is
* enabled because we always online to a kernel zone by default.
*/
return movable_node_enabled ? movable_zone : kernel_zone;
mm, memory_hotplug: support movable_node for hotpluggable nodes movable_node kernel parameter allows making hotpluggable NUMA nodes to put all the hotplugable memory into movable zone which allows more or less reliable memory hotremove. At least this is the case for the NUMA nodes present during the boot (see find_zone_movable_pfns_for_nodes). This is not the case for the memory hotplug, though. echo online > /sys/devices/system/memory/memoryXYZ/state will default to a kernel zone (usually ZONE_NORMAL) unless the particular memblock is already in the movable zone range which is not the case normally when onlining the memory from the udev rule context for a freshly hotadded NUMA node. The only option currently is to have a special udev rule to echo online_movable to all memblocks belonging to such a node which is rather clumsy. Not to mention this is inconsistent as well because what ended up in the movable zone during the boot will end up in a kernel zone after hotremove & hotadd without special care. It would be nice to reuse memblock_is_hotpluggable but the runtime hotplug doesn't have that information available because the boot and hotplug paths are not shared and it would be really non trivial to make them use the same code path because the runtime hotplug doesn't play with the memblock allocator at all. Teach move_pfn_range that MMOP_ONLINE_KEEP can use the movable zone if movable_node is enabled and the range doesn't overlap with the existing normal zone. This should provide a reasonable default onlining strategy. Strictly speaking the semantic is not identical with the boot time initialization because find_zone_movable_pfns_for_nodes covers only the hotplugable range as described by the BIOS/FW. From my experience this is usually a full node though (except for Node0 which is special and never goes away completely). If this turns out to be a problem in the real life we can tweak the code to store hotplug flag into memblocks but let's keep this simple now. Link: http://lkml.kernel.org/r/20170612111227.GI7476@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-11 01:48:37 +03:00
}
mm, memory_hotplug: display allowed zones in the preferred ordering Prior to commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") we used to allow to change the valid zone types of a memory block if it is adjacent to a different zone type. This fact was reflected in memoryNN/valid_zones by the ordering of printed zones. The first one was default (echo online > memoryNN/state) and the other one could be onlined explicitly by online_{movable,kernel}. This behavior was removed by the said patch and as such the ordering was not all that important. In most cases a kernel zone would be default anyway. The only exception is movable_node handled by "mm, memory_hotplug: support movable_node for hotpluggable nodes". Let's reintroduce this behavior again because later patch will remove the zone overlap restriction and so user will be allowed to online kernel resp. movable block regardless of its placement. Original behavior will then become significant again because it would be non-trivial for users to see what is the default zone to online into. Implementation is really simple. Pull out zone selection out of move_pfn_range into zone_for_pfn_range helper and use it in show_valid_zones to display the zone for default onlining and then both kernel and movable if they are allowed. Default online zone is not duplicated. Link: http://lkml.kernel.org/r/20170714121233.16861-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:37 +03:00
struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
unsigned long nr_pages)
mm, memory_hotplug: do not associate hotadded memory to zones until online The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:11 +03:00
{
mm, memory_hotplug: remove zone restrictions Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has to precede the Movable zone in the physical memory range. The purpose of the movable zone is, however, not bound to any physical memory restriction. It merely defines a class of migrateable and reclaimable memory. There are users (e.g. CMA) who might want to reserve specific physical memory ranges for their own purpose. Moreover our pfn walkers have to be prepared for zones overlapping in the physical range already because we do support interleaving NUMA nodes and therefore zones can interleave as well. This means we can allow each memory block to be associated with a different zone. Loosen the current onlining semantic and allow explicit onlining type on any memblock. That means that online_{kernel,movable} will be allowed regardless of the physical address of the memblock as long as it is offline of course. This might result in moveble zone overlapping with other kernel zones. Default onlining then becomes a bit tricky but still sensible. echo online > memoryXY/state will online the given block to 1) the default zone if the given range is outside of any zone 2) the enclosing zone if such a zone doesn't interleave with any other zone 3) the default zone if more zones interleave for this range where default zone is movable zone only if movable_node is enabled otherwise it is a kernel zone. Here is an example of the semantic with (movable_node is not present but it work in an analogous way). We start with following memblocks, all of them offline: memory34/valid_zones:Normal Movable memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Normal Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable Now, we online block 34 in default mode and block 37 as movable root@test1:/sys/devices/system/node/node1# echo online > memory34/state root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable As we can see all other blocks can still be onlined both into Normal and Movable zones and the Normal is default because the Movable zone spans only block37 now. root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Movable Normal memory39/valid_zones:Movable Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Now the default zone for blocks 37-41 has changed because movable zone spans that range. root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Note that the block 39 now belongs to the zone Normal and so block38 falls into Normal by default as well. For completness root@test1:/sys/devices/system/node/node1# for i in memory[34]? do echo online > $i/state 2>/dev/null done memory34/valid_zones:Normal memory35/valid_zones:Normal memory36/valid_zones:Normal memory37/valid_zones:Movable memory38/valid_zones:Normal memory39/valid_zones:Normal memory40/valid_zones:Movable memory41/valid_zones:Movable Implementation wise the change is quite straightforward. We can get rid of allow_online_pfn_range altogether. online_pages allows only offline nodes already. The original default_zone_for_pfn will become default_kernel_zone_for_pfn. New default_zone_for_pfn implements the above semantic. zone_for_pfn_range is slightly reorganized to implement kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a catch all default behavior. Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:40 +03:00
if (online_type == MMOP_ONLINE_KERNEL)
return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
mm, memory_hotplug: do not associate hotadded memory to zones until online The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:11 +03:00
mm, memory_hotplug: remove zone restrictions Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has to precede the Movable zone in the physical memory range. The purpose of the movable zone is, however, not bound to any physical memory restriction. It merely defines a class of migrateable and reclaimable memory. There are users (e.g. CMA) who might want to reserve specific physical memory ranges for their own purpose. Moreover our pfn walkers have to be prepared for zones overlapping in the physical range already because we do support interleaving NUMA nodes and therefore zones can interleave as well. This means we can allow each memory block to be associated with a different zone. Loosen the current onlining semantic and allow explicit onlining type on any memblock. That means that online_{kernel,movable} will be allowed regardless of the physical address of the memblock as long as it is offline of course. This might result in moveble zone overlapping with other kernel zones. Default onlining then becomes a bit tricky but still sensible. echo online > memoryXY/state will online the given block to 1) the default zone if the given range is outside of any zone 2) the enclosing zone if such a zone doesn't interleave with any other zone 3) the default zone if more zones interleave for this range where default zone is movable zone only if movable_node is enabled otherwise it is a kernel zone. Here is an example of the semantic with (movable_node is not present but it work in an analogous way). We start with following memblocks, all of them offline: memory34/valid_zones:Normal Movable memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Normal Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable Now, we online block 34 in default mode and block 37 as movable root@test1:/sys/devices/system/node/node1# echo online > memory34/state root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable As we can see all other blocks can still be onlined both into Normal and Movable zones and the Normal is default because the Movable zone spans only block37 now. root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Movable Normal memory39/valid_zones:Movable Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Now the default zone for blocks 37-41 has changed because movable zone spans that range. root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Note that the block 39 now belongs to the zone Normal and so block38 falls into Normal by default as well. For completness root@test1:/sys/devices/system/node/node1# for i in memory[34]? do echo online > $i/state 2>/dev/null done memory34/valid_zones:Normal memory35/valid_zones:Normal memory36/valid_zones:Normal memory37/valid_zones:Movable memory38/valid_zones:Normal memory39/valid_zones:Normal memory40/valid_zones:Movable memory41/valid_zones:Movable Implementation wise the change is quite straightforward. We can get rid of allow_online_pfn_range altogether. online_pages allows only offline nodes already. The original default_zone_for_pfn will become default_kernel_zone_for_pfn. New default_zone_for_pfn implements the above semantic. zone_for_pfn_range is slightly reorganized to implement kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a catch all default behavior. Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:40 +03:00
if (online_type == MMOP_ONLINE_MOVABLE)
return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
mm, memory_hotplug: remove zone restrictions Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has to precede the Movable zone in the physical memory range. The purpose of the movable zone is, however, not bound to any physical memory restriction. It merely defines a class of migrateable and reclaimable memory. There are users (e.g. CMA) who might want to reserve specific physical memory ranges for their own purpose. Moreover our pfn walkers have to be prepared for zones overlapping in the physical range already because we do support interleaving NUMA nodes and therefore zones can interleave as well. This means we can allow each memory block to be associated with a different zone. Loosen the current onlining semantic and allow explicit onlining type on any memblock. That means that online_{kernel,movable} will be allowed regardless of the physical address of the memblock as long as it is offline of course. This might result in moveble zone overlapping with other kernel zones. Default onlining then becomes a bit tricky but still sensible. echo online > memoryXY/state will online the given block to 1) the default zone if the given range is outside of any zone 2) the enclosing zone if such a zone doesn't interleave with any other zone 3) the default zone if more zones interleave for this range where default zone is movable zone only if movable_node is enabled otherwise it is a kernel zone. Here is an example of the semantic with (movable_node is not present but it work in an analogous way). We start with following memblocks, all of them offline: memory34/valid_zones:Normal Movable memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Normal Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable Now, we online block 34 in default mode and block 37 as movable root@test1:/sys/devices/system/node/node1# echo online > memory34/state root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal Movable memory40/valid_zones:Normal Movable memory41/valid_zones:Normal Movable As we can see all other blocks can still be onlined both into Normal and Movable zones and the Normal is default because the Movable zone spans only block37 now. root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Movable Normal memory39/valid_zones:Movable Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Now the default zone for blocks 37-41 has changed because movable zone spans that range. root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state memory34/valid_zones:Normal memory35/valid_zones:Normal Movable memory36/valid_zones:Normal Movable memory37/valid_zones:Movable memory38/valid_zones:Normal Movable memory39/valid_zones:Normal memory40/valid_zones:Movable Normal memory41/valid_zones:Movable Note that the block 39 now belongs to the zone Normal and so block38 falls into Normal by default as well. For completness root@test1:/sys/devices/system/node/node1# for i in memory[34]? do echo online > $i/state 2>/dev/null done memory34/valid_zones:Normal memory35/valid_zones:Normal memory36/valid_zones:Normal memory37/valid_zones:Movable memory38/valid_zones:Normal memory39/valid_zones:Normal memory40/valid_zones:Movable memory41/valid_zones:Movable Implementation wise the change is quite straightforward. We can get rid of allow_online_pfn_range altogether. online_pages allows only offline nodes already. The original default_zone_for_pfn will become default_kernel_zone_for_pfn. New default_zone_for_pfn implements the above semantic. zone_for_pfn_range is slightly reorganized to implement kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a catch all default behavior. Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:40 +03:00
return default_zone_for_pfn(nid, start_pfn, nr_pages);
mm, memory_hotplug: display allowed zones in the preferred ordering Prior to commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") we used to allow to change the valid zone types of a memory block if it is adjacent to a different zone type. This fact was reflected in memoryNN/valid_zones by the ordering of printed zones. The first one was default (echo online > memoryNN/state) and the other one could be onlined explicitly by online_{movable,kernel}. This behavior was removed by the said patch and as such the ordering was not all that important. In most cases a kernel zone would be default anyway. The only exception is movable_node handled by "mm, memory_hotplug: support movable_node for hotpluggable nodes". Let's reintroduce this behavior again because later patch will remove the zone overlap restriction and so user will be allowed to online kernel resp. movable block regardless of its placement. Original behavior will then become significant again because it would be non-trivial for users to see what is the default zone to online into. Implementation is really simple. Pull out zone selection out of move_pfn_range into zone_for_pfn_range helper and use it in show_valid_zones to display the zone for default onlining and then both kernel and movable if they are allowed. Default online zone is not duplicated. Link: http://lkml.kernel.org/r/20170714121233.16861-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07 02:19:37 +03:00
}
/*
* Associates the given pfn range with the given node and the zone appropriate
* for the given online type.
*/
static struct zone * __meminit move_pfn_range(int online_type, int nid,
unsigned long start_pfn, unsigned long nr_pages)
{
struct zone *zone;
zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
mm, memory_hotplug: do not associate hotadded memory to zones until online The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:11 +03:00
return zone;
}
mm, memory-hotplug: dynamic configure movable memory and portion memory Add online_movable and online_kernel for logic memory hotplug. This is the dynamic version of "movablecore" & "kernelcore". We have the same reason to introduce it as to introduce "movablecore" & "kernelcore". It has the same motive as "movablecore" & "kernelcore", but it is dynamic/running-time: o We can configure memory as kernelcore or movablecore after boot. Userspace workload is increased, we need more hugepage, we can't use "online_movable" to add memory and allow the system use more THP(transparent-huge-page), vice-verse when kernel workload is increase. Also help for virtualization to dynamic configure host/guest's memory, to save/(reduce waste) memory. Memory capacity on Demand o When a new node is physically online after boot, we need to use "online_movable" or "online_kernel" to configure/portion it as we expected when we logic-online it. This configuration also helps for physically-memory-migrate. o all benefit as the same as existed "movablecore" & "kernelcore". o Preparing for movable-node, which is very important for power-saving, hardware partitioning and high-available-system(hardware fault management). (Note, we don't introduce movable-node here.) Action behavior: When a memoryblock/memorysection is onlined by "online_movable", the kernel will not have directly reference to the page of the memoryblock, thus we can remove that memory any time when needed. When it is online by "online_kernel", the kernel can use it. When it is online by "online", the zone type doesn't changed. Current constraints: Only the memoryblock which is adjacent to the ZONE_MOVABLE can be online from ZONE_NORMAL to ZONE_MOVABLE. [akpm@linux-foundation.org: use min_t, cleanups] Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:03:16 +04:00
int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
{
unsigned long flags;
unsigned long onlined_pages = 0;
struct zone *zone;
int need_zonelists_rebuild = 0;
int nid;
int ret;
struct memory_notify arg;
mm/memory_hotplug: optimize memory hotplug During memory hotplugging we traverse struct pages three times: 1. memset(0) in sparse_add_one_section() 2. loop in __add_section() to set do: set_page_node(page, nid); and SetPageReserved(page); 3. loop in memmap_init_zone() to call __init_single_pfn() This patch removes the first two loops, and leaves only loop 3. All struct pages are initialized in one place, the same as it is done during boot. The benefits: - We improve memory hotplug performance because we are not evicting the cache several times and also reduce loop branching overhead. - Remove condition from hotpath in __init_single_pfn(), that was added in order to fix the problem that was reported by Bharata in the above email thread, thus also improve performance during normal boot. - Make memory hotplug more similar to the boot memory initialization path because we zero and initialize struct pages only in one function. - Simplifies memory hotplug struct page initialization code, and thus enables future improvements, such as multi-threading the initialization of struct pages in order to improve hotplug performance even further on larger machines. [pasha.tatashin@oracle.com: v5] Link: http://lkml.kernel.org/r/20180228030308.1116-7-pasha.tatashin@oracle.com Link: http://lkml.kernel.org/r/20180215165920.8570-7-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Baoquan He <bhe@redhat.com> Cc: Bharata B Rao <bharata@linux.vnet.ibm.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06 02:23:00 +03:00
struct memory_block *mem;
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock There seem to be some problems as result of 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"), which tried to fix a possible lock inversion reported and discussed in [1] due to the two locks a) device_lock() b) mem_hotplug_lock While add_memory() first takes b), followed by a) during bus_probe_device(), onlining of memory from user space first took a), followed by b), exposing a possible deadlock. In [1], and it was decided to not make use of device_hotplug_lock, but rather to enforce a locking order. The problems I spotted related to this: 1. Memory block device attributes: While .state first calls mem_hotplug_begin() and the calls device_online() - which takes device_lock() - .online does no longer call mem_hotplug_begin(), so effectively calls online_pages() without mem_hotplug_lock. 2. device_online() should be called under device_hotplug_lock, however onlining memory during add_memory() does not take care of that. In addition, I think there is also something wrong about the locking in 3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages() without locks. This was introduced after 30467e0b3be. And skimming over the code, I assume it could need some more care in regards to locking (e.g. device_online() called without device_hotplug_lock. This will be addressed in the following patches. Now that we hold the device_hotplug_lock when - adding memory (e.g. via add_memory()/add_memory_resource()) - removing memory (e.g. via remove_memory()) - device_online()/device_offline() We can move mem_hotplug_lock usage back into online_pages()/offline_pages(). Why is mem_hotplug_lock still needed? Essentially to make get_online_mems()/put_online_mems() be very fast (relying on device_hotplug_lock would be very slow), and to serialize against addition of memory that does not create memory block devices (hmm). [1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/ 2015-February/065324.html This patch is partly based on a patch by Vitaly Kuznetsov. Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:29 +03:00
mem_hotplug_begin();
mm/memory_hotplug: optimize memory hotplug During memory hotplugging we traverse struct pages three times: 1. memset(0) in sparse_add_one_section() 2. loop in __add_section() to set do: set_page_node(page, nid); and SetPageReserved(page); 3. loop in memmap_init_zone() to call __init_single_pfn() This patch removes the first two loops, and leaves only loop 3. All struct pages are initialized in one place, the same as it is done during boot. The benefits: - We improve memory hotplug performance because we are not evicting the cache several times and also reduce loop branching overhead. - Remove condition from hotpath in __init_single_pfn(), that was added in order to fix the problem that was reported by Bharata in the above email thread, thus also improve performance during normal boot. - Make memory hotplug more similar to the boot memory initialization path because we zero and initialize struct pages only in one function. - Simplifies memory hotplug struct page initialization code, and thus enables future improvements, such as multi-threading the initialization of struct pages in order to improve hotplug performance even further on larger machines. [pasha.tatashin@oracle.com: v5] Link: http://lkml.kernel.org/r/20180228030308.1116-7-pasha.tatashin@oracle.com Link: http://lkml.kernel.org/r/20180215165920.8570-7-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Baoquan He <bhe@redhat.com> Cc: Bharata B Rao <bharata@linux.vnet.ibm.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06 02:23:00 +03:00
/*
* We can't use pfn_to_nid() because nid might be stored in struct page
* which is not yet initialized. Instead, we find nid from memory block.
*/
mem = find_memory_block(__pfn_to_section(pfn));
nid = mem->nid;
put_device(&mem->dev);
mm, memory_hotplug: do not associate hotadded memory to zones until online The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 01:38:11 +03:00
/* associate pfn range with the zone */
zone = move_pfn_range(online_type, nid, pfn, nr_pages);
arg.start_pfn = pfn;
arg.nr_pages = nr_pages;
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
node_states_check_changes_online(nr_pages, zone, &arg);
ret = memory_notify(MEM_GOING_ONLINE, &arg);
ret = notifier_to_errno(ret);
if (ret)
goto failed_addition;
/*
* If this zone is not populated, then it is not in zonelist.
* This means the page allocator ignores this zone.
* So, zonelist must be updated after online.
*/
if (!populated_zone(zone)) {
need_zonelists_rebuild = 1;
setup_zone_pageset(zone);
}
ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
online_pages_range);
if (ret) {
if (need_zonelists_rebuild)
zone_pcp_reset(zone);
goto failed_addition;
}
zone->present_pages += onlined_pages;
pgdat_resize_lock(zone->zone_pgdat, &flags);
zone->zone_pgdat->node_present_pages += onlined_pages;
pgdat_resize_unlock(zone->zone_pgdat, &flags);
mm: shuffle initial free memory to improve memory-side-cache utilization Patch series "mm: Randomize free memory", v10. This patch (of 3): Randomization of the page allocator improves the average utilization of a direct-mapped memory-side-cache. Memory side caching is a platform capability that Linux has been previously exposed to in HPC (high-performance computing) environments on specialty platforms. In that instance it was a smaller pool of high-bandwidth-memory relative to higher-capacity / lower-bandwidth DRAM. Now, this capability is going to be found on general purpose server platforms where DRAM is a cache in front of higher latency persistent memory [1]. Robert offered an explanation of the state of the art of Linux interactions with memory-side-caches [2], and I copy it here: It's been a problem in the HPC space: http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/ A kernel module called zonesort is available to try to help: https://software.intel.com/en-us/articles/xeon-phi-software and this abandoned patch series proposed that for the kernel: https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com Dan's patch series doesn't attempt to ensure buffers won't conflict, but also reduces the chance that the buffers will. This will make performance more consistent, albeit slower than "optimal" (which is near impossible to attain in a general-purpose kernel). That's better than forcing users to deploy remedies like: "To eliminate this gradual degradation, we have added a Stream measurement to the Node Health Check that follows each job; nodes are rebooted whenever their measured memory bandwidth falls below 300 GB/s." A replacement for zonesort was merged upstream in commit cc9aec03e58f ("x86/numa_emulation: Introduce uniform split capability"). With this numa_emulation capability, memory can be split into cache sized ("near-memory" sized) numa nodes. A bind operation to such a node, and disabling workloads on other nodes, enables full cache performance. However, once the workload exceeds the cache size then cache conflicts are unavoidable. While HPC environments might be able to tolerate time-scheduling of cache sized workloads, for general purpose server platforms, the oversubscribed cache case will be the common case. The worst case scenario is that a server system owner benchmarks a workload at boot with an un-contended cache only to see that performance degrade over time, even below the average cache performance due to excessive conflicts. Randomization clips the peaks and fills in the valleys of cache utilization to yield steady average performance. Here are some performance impact details of the patches: 1/ An Intel internal synthetic memory bandwidth measurement tool, saw a 3X speedup in a contrived case that tries to force cache conflicts. The contrived cased used the numa_emulation capability to force an instance of the benchmark to be run in two of the near-memory sized numa nodes. If both instances were placed on the same emulated they would fit and cause zero conflicts. While on separate emulated nodes without randomization they underutilized the cache and conflicted unnecessarily due to the in-order allocation per node. 2/ A well known Java server application benchmark was run with a heap size that exceeded cache size by 3X. The cache conflict rate was 8% for the first run and degraded to 21% after page allocator aging. With randomization enabled the rate levelled out at 11%. 3/ A MongoDB workload did not observe measurable difference in cache-conflict rates, but the overall throughput dropped by 7% with randomization in one case. 4/ Mel Gorman ran his suite of performance workloads with randomization enabled on platforms without a memory-side-cache and saw a mix of some improvements and some losses [3]. While there is potentially significant improvement for applications that depend on low latency access across a wide working-set, the performance may be negligible to negative for other workloads. For this reason the shuffle capability defaults to off unless a direct-mapped memory-side-cache is detected. Even then, the page_alloc.shuffle=0 parameter can be specified to disable the randomization on those systems. Outside of memory-side-cache utilization concerns there is potentially security benefit from randomization. Some data exfiltration and return-oriented-programming attacks rely on the ability to infer the location of sensitive data objects. The kernel page allocator, especially early in system boot, has predictable first-in-first out behavior for physical pages. Pages are freed in physical address order when first onlined. Quoting Kees: "While we already have a base-address randomization (CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and memory layouts would certainly be using the predictability of allocation ordering (i.e. for attacks where the base address isn't important: only the relative positions between allocated memory). This is common in lots of heap-style attacks. They try to gain control over ordering by spraying allocations, etc. I'd really like to see this because it gives us something similar to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator." While SLAB_FREELIST_RANDOM reduces the predictability of some local slab caches it leaves vast bulk of memory to be predictably in order allocated. However, it should be noted, the concrete security benefits are hard to quantify, and no known CVE is mitigated by this randomization. Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform a Fisher-Yates shuffle of the page allocator 'free_area' lists when they are initially populated with free memory at boot and at hotplug time. Do this based on either the presence of a page_alloc.shuffle=Y command line parameter, or autodetection of a memory-side-cache (to be added in a follow-on patch). The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e. 10, 4MB this trades off randomization granularity for time spent shuffling. MAX_ORDER-1 was chosen to be minimally invasive to the page allocator while still showing memory-side cache behavior improvements, and the expectation that the security implications of finer granularity randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM. The performance impact of the shuffling appears to be in the noise compared to other memory initialization work. This initial randomization can be undone over time so a follow-on patch is introduced to inject entropy on page free decisions. It is reasonable to ask if the page free entropy is sufficient, but it is not enough due to the in-order initial freeing of pages. At the start of that process putting page1 in front or behind page0 still keeps them close together, page2 is still near page1 and has a high chance of being adjacent. As more pages are added ordering diversity improves, but there is still high page locality for the low address pages and this leads to no significant impact to the cache conflict rate. [1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/ [2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM [3]: https://lkml.org/lkml/2018/10/12/309 [dan.j.williams@intel.com: fix shuffle enable] Link: http://lkml.kernel.org/r/154943713038.3858443.4125180191382062871.stgit@dwillia2-desk3.amr.corp.intel.com [cai@lca.pw: fix SHUFFLE_PAGE_ALLOCATOR help texts] Link: http://lkml.kernel.org/r/20190425201300.75650-1-cai@lca.pw Link: http://lkml.kernel.org/r/154899811738.3165233.12325692939590944259.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-15 01:41:28 +03:00
shuffle_zone(zone);
mm/hotplug: correctly add new zone to all other nodes' zone lists When online_pages() is called to add new memory to an empty zone, it rebuilds all zone lists by calling build_all_zonelists(). But there's a bug which prevents the new zone to be added to other nodes' zone lists. online_pages() { build_all_zonelists() ..... node_set_state(zone_to_nid(zone), N_HIGH_MEMORY) } Here the node of the zone is put into N_HIGH_MEMORY state after calling build_all_zonelists(), but build_all_zonelists() only adds zones from nodes in N_HIGH_MEMORY state to the fallback zone lists. build_all_zonelists() ->__build_all_zonelists() ->build_zonelists() ->find_next_best_node() ->for_each_node_state(n, N_HIGH_MEMORY) So memory in the new zone will never be used by other nodes, and it may cause strange behavor when system is under memory pressure. So put node into N_HIGH_MEMORY state before calling build_all_zonelists(). Signed-off-by: Jianguo Wu <wujianguo@huawei.com> Signed-off-by: Jiang Liu <liuj97@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Keping Chen <chenkeping@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 03:43:30 +04:00
if (onlined_pages) {
node_states_set_node(nid, &arg);
mm/hotplug: correctly add new zone to all other nodes' zone lists When online_pages() is called to add new memory to an empty zone, it rebuilds all zone lists by calling build_all_zonelists(). But there's a bug which prevents the new zone to be added to other nodes' zone lists. online_pages() { build_all_zonelists() ..... node_set_state(zone_to_nid(zone), N_HIGH_MEMORY) } Here the node of the zone is put into N_HIGH_MEMORY state after calling build_all_zonelists(), but build_all_zonelists() only adds zones from nodes in N_HIGH_MEMORY state to the fallback zone lists. build_all_zonelists() ->__build_all_zonelists() ->build_zonelists() ->find_next_best_node() ->for_each_node_state(n, N_HIGH_MEMORY) So memory in the new zone will never be used by other nodes, and it may cause strange behavor when system is under memory pressure. So put node into N_HIGH_MEMORY state before calling build_all_zonelists(). Signed-off-by: Jianguo Wu <wujianguo@huawei.com> Signed-off-by: Jiang Liu <liuj97@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Keping Chen <chenkeping@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 03:43:30 +04:00
if (need_zonelists_rebuild)
build_all_zonelists(NULL);
mm/hotplug: correctly add new zone to all other nodes' zone lists When online_pages() is called to add new memory to an empty zone, it rebuilds all zone lists by calling build_all_zonelists(). But there's a bug which prevents the new zone to be added to other nodes' zone lists. online_pages() { build_all_zonelists() ..... node_set_state(zone_to_nid(zone), N_HIGH_MEMORY) } Here the node of the zone is put into N_HIGH_MEMORY state after calling build_all_zonelists(), but build_all_zonelists() only adds zones from nodes in N_HIGH_MEMORY state to the fallback zone lists. build_all_zonelists() ->__build_all_zonelists() ->build_zonelists() ->find_next_best_node() ->for_each_node_state(n, N_HIGH_MEMORY) So memory in the new zone will never be used by other nodes, and it may cause strange behavor when system is under memory pressure. So put node into N_HIGH_MEMORY state before calling build_all_zonelists(). Signed-off-by: Jianguo Wu <wujianguo@huawei.com> Signed-off-by: Jiang Liu <liuj97@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Keping Chen <chenkeping@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 03:43:30 +04:00
else
zone_pcp_update(zone);
}
init_per_zone_wmark_min();
mm, compaction: introduce kcompactd Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 00:18:08 +03:00
if (onlined_pages) {
kswapd_run(nid);
mm, compaction: introduce kcompactd Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 00:18:08 +03:00
kcompactd_run(nid);
}
mem-hotplug: avoid multiple zones sharing same boot strapping boot_pageset For each new populated zone of hotadded node, need to update its pagesets with dynamically allocated per_cpu_pageset struct for all possible CPUs: 1) Detach zone->pageset from the shared boot_pageset at end of __build_all_zonelists(). 2) Use mutex to protect zone->pageset when it's still shared in onlined_pages() Otherwises, multiple zones of different nodes would share same boot strapping boot_pageset for same CPU, which will finally cause below kernel panic: ------------[ cut here ]------------ kernel BUG at mm/page_alloc.c:1239! invalid opcode: 0000 [#1] SMP ... Call Trace: [<ffffffff811300c1>] __alloc_pages_nodemask+0x131/0x7b0 [<ffffffff81162e67>] alloc_pages_current+0x87/0xd0 [<ffffffff81128407>] __page_cache_alloc+0x67/0x70 [<ffffffff811325f0>] __do_page_cache_readahead+0x120/0x260 [<ffffffff81132751>] ra_submit+0x21/0x30 [<ffffffff811329c6>] ondemand_readahead+0x166/0x2c0 [<ffffffff81132ba0>] page_cache_async_readahead+0x80/0xa0 [<ffffffff8112a0e4>] generic_file_aio_read+0x364/0x670 [<ffffffff81266cfa>] nfs_file_read+0xca/0x130 [<ffffffff8117b20a>] do_sync_read+0xfa/0x140 [<ffffffff8117bf75>] vfs_read+0xb5/0x1a0 [<ffffffff8117c151>] sys_read+0x51/0x80 [<ffffffff8103c032>] system_call_fastpath+0x16/0x1b RIP [<ffffffff8112ff13>] get_page_from_freelist+0x883/0x900 RSP <ffff88000d1e78a8> ---[ end trace 4bda28328b9990db ] [akpm@linux-foundation.org: merge fix] Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: Andi Kleen <andi.kleen@intel.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 01:32:51 +04:00
vm_total_pages = nr_free_pagecache_pages();
writeback_set_ratelimit();
if (onlined_pages)
memory_notify(MEM_ONLINE, &arg);
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock There seem to be some problems as result of 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"), which tried to fix a possible lock inversion reported and discussed in [1] due to the two locks a) device_lock() b) mem_hotplug_lock While add_memory() first takes b), followed by a) during bus_probe_device(), onlining of memory from user space first took a), followed by b), exposing a possible deadlock. In [1], and it was decided to not make use of device_hotplug_lock, but rather to enforce a locking order. The problems I spotted related to this: 1. Memory block device attributes: While .state first calls mem_hotplug_begin() and the calls device_online() - which takes device_lock() - .online does no longer call mem_hotplug_begin(), so effectively calls online_pages() without mem_hotplug_lock. 2. device_online() should be called under device_hotplug_lock, however onlining memory during add_memory() does not take care of that. In addition, I think there is also something wrong about the locking in 3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages() without locks. This was introduced after 30467e0b3be. And skimming over the code, I assume it could need some more care in regards to locking (e.g. device_online() called without device_hotplug_lock. This will be addressed in the following patches. Now that we hold the device_hotplug_lock when - adding memory (e.g. via add_memory()/add_memory_resource()) - removing memory (e.g. via remove_memory()) - device_online()/device_offline() We can move mem_hotplug_lock usage back into online_pages()/offline_pages(). Why is mem_hotplug_lock still needed? Essentially to make get_online_mems()/put_online_mems() be very fast (relying on device_hotplug_lock would be very slow), and to serialize against addition of memory that does not create memory block devices (hmm). [1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/ 2015-February/065324.html This patch is partly based on a patch by Vitaly Kuznetsov. Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:29 +03:00
mem_hotplug_done();
mm, hotplug: fix concurrent memory hot-add deadlock There's a deadlock when concurrently hot-adding memory through the probe interface and switching a memory block from offline to online. When hot-adding memory via the probe interface, add_memory() first takes mem_hotplug_begin() and then device_lock() is later taken when registering the newly initialized memory block. This creates a lock dependency of (1) mem_hotplug.lock (2) dev->mutex. When switching a memory block from offline to online, dev->mutex is first grabbed in device_online() when the write(2) transitions an existing memory block from offline to online, and then online_pages() will take mem_hotplug_begin(). This creates a lock inversion between mem_hotplug.lock and dev->mutex. Vitaly reports that this deadlock can happen when kworker handling a probe event races with systemd-udevd switching a memory block's state. This patch requires the state transition to take mem_hotplug_begin() before dev->mutex. Hot-adding memory via the probe interface creates a memory block while holding mem_hotplug_begin(), there is no way to take dev->mutex first in this case. online_pages() and offline_pages() are only called when transitioning memory block state. We now require that mem_hotplug_begin() is taken before calling them -- this requires exporting the mem_hotplug_begin() and mem_hotplug_done() to generic code. In all hot-add and hot-remove cases, mem_hotplug_begin() is done prior to device_online(). This is all that is needed to avoid the deadlock. Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com> Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Wang Nan <wangnan0@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 01:45:11 +03:00
return 0;
failed_addition:
pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
(unsigned long long) pfn << PAGE_SHIFT,
(((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
memory_notify(MEM_CANCEL_ONLINE, &arg);
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock There seem to be some problems as result of 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"), which tried to fix a possible lock inversion reported and discussed in [1] due to the two locks a) device_lock() b) mem_hotplug_lock While add_memory() first takes b), followed by a) during bus_probe_device(), onlining of memory from user space first took a), followed by b), exposing a possible deadlock. In [1], and it was decided to not make use of device_hotplug_lock, but rather to enforce a locking order. The problems I spotted related to this: 1. Memory block device attributes: While .state first calls mem_hotplug_begin() and the calls device_online() - which takes device_lock() - .online does no longer call mem_hotplug_begin(), so effectively calls online_pages() without mem_hotplug_lock. 2. device_online() should be called under device_hotplug_lock, however onlining memory during add_memory() does not take care of that. In addition, I think there is also something wrong about the locking in 3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages() without locks. This was introduced after 30467e0b3be. And skimming over the code, I assume it could need some more care in regards to locking (e.g. device_online() called without device_hotplug_lock. This will be addressed in the following patches. Now that we hold the device_hotplug_lock when - adding memory (e.g. via add_memory()/add_memory_resource()) - removing memory (e.g. via remove_memory()) - device_online()/device_offline() We can move mem_hotplug_lock usage back into online_pages()/offline_pages(). Why is mem_hotplug_lock still needed? Essentially to make get_online_mems()/put_online_mems() be very fast (relying on device_hotplug_lock would be very slow), and to serialize against addition of memory that does not create memory block devices (hmm). [1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/ 2015-February/065324.html This patch is partly based on a patch by Vitaly Kuznetsov. Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:29 +03:00
mem_hotplug_done();
return ret;
}
#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
static void reset_node_present_pages(pg_data_t *pgdat)
{
struct zone *z;
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
z->present_pages = 0;
pgdat->node_present_pages = 0;
}
/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
{
struct pglist_data *pgdat;
unsigned long start_pfn = PFN_DOWN(start);
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
pgdat = NODE_DATA(nid);
if (!pgdat) {
pgdat = arch_alloc_nodedata(nid);
if (!pgdat)
return NULL;
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
arch_refresh_nodedata(nid, pgdat);
mm/memory hotplug: postpone the reset of obsolete pgdat Qiu Xishi reported the following BUG when testing hot-add/hot-remove node under stress condition: BUG: unable to handle kernel paging request at 0000000000025f60 IP: next_online_pgdat+0x1/0x50 PGD 0 Oops: 0000 [#1] SMP ACPI: Device does not support D3cold Modules linked in: fuse nls_iso8859_1 nls_cp437 vfat fat loop dm_mod coretemp mperf crc32c_intel ghash_clmulni_intel aesni_intel ablk_helper cryptd lrw gf128mul glue_helper aes_x86_64 pcspkr microcode igb dca i2c_algo_bit ipv6 megaraid_sas iTCO_wdt i2c_i801 i2c_core iTCO_vendor_support tg3 sg hwmon ptp lpc_ich pps_core mfd_core acpi_pad rtc_cmos button ext3 jbd mbcache sd_mod crc_t10dif scsi_dh_alua scsi_dh_rdac scsi_dh_hp_sw scsi_dh_emc scsi_dh ahci libahci libata scsi_mod [last unloaded: rasf] CPU: 23 PID: 238 Comm: kworker/23:1 Tainted: G O 3.10.15-5885-euler0302 #1 Hardware name: HUAWEI TECHNOLOGIES CO.,LTD. Huawei N1/Huawei N1, BIOS V100R001 03/02/2015 Workqueue: events vmstat_update task: ffffa800d32c0000 ti: ffffa800d32ae000 task.ti: ffffa800d32ae000 RIP: 0010: next_online_pgdat+0x1/0x50 RSP: 0018:ffffa800d32afce8 EFLAGS: 00010286 RAX: 0000000000001440 RBX: ffffffff81da53b8 RCX: 0000000000000082 RDX: 0000000000000000 RSI: 0000000000000082 RDI: 0000000000000000 RBP: ffffa800d32afd28 R08: ffffffff81c93bfc R09: ffffffff81cbdc96 R10: 00000000000040ec R11: 00000000000000a0 R12: ffffa800fffb3440 R13: ffffa800d32afd38 R14: 0000000000000017 R15: ffffa800e6616800 FS: 0000000000000000(0000) GS:ffffa800e6600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000025f60 CR3: 0000000001a0b000 CR4: 00000000001407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: refresh_cpu_vm_stats+0xd0/0x140 vmstat_update+0x11/0x50 process_one_work+0x194/0x3d0 worker_thread+0x12b/0x410 kthread+0xc6/0xd0 ret_from_fork+0x7c/0xb0 The cause is the "memset(pgdat, 0, sizeof(*pgdat))" at the end of try_offline_node, which will reset all the content of pgdat to 0, as the pgdat is accessed lock-free, so that the users still using the pgdat will panic, such as the vmstat_update routine. process A: offline node XX: vmstat_updat() refresh_cpu_vm_stats() for_each_populated_zone() find online node XX cond_resched() offline cpu and memory, then try_offline_node() node_set_offline(nid), and memset(pgdat, 0, sizeof(*pgdat)) zone = next_zone(zone) pg_data_t *pgdat = zone->zone_pgdat; // here pgdat is NULL now next_online_pgdat(pgdat) next_online_node(pgdat->node_id); // NULL pointer access So the solution here is postponing the reset of obsolete pgdat from try_offline_node() to hotadd_new_pgdat(), and just resetting pgdat->nr_zones and pgdat->classzone_idx to be 0 rather than the memset 0 to avoid breaking pointer information in pgdat. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Reported-by: Xishi Qiu <qiuxishi@huawei.com> Suggested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Xie XiuQi <xiexiuqi@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-26 01:55:20 +03:00
} else {
mm, vmscan: prevent kswapd sleeping prematurely due to mismatched classzone_idx kswapd is woken to reclaim a node based on a failed allocation request from any eligible zone. Once reclaiming in balance_pgdat(), it will continue reclaiming until there is an eligible zone available for the zone it was woken for. kswapd tracks what zone it was recently woken for in pgdat->kswapd_classzone_idx. If it has not been woken recently, this zone will be 0. However, the decision on whether to sleep is made on kswapd_classzone_idx which is 0 without a recent wakeup request and that classzone does not account for lowmem reserves. This allows kswapd to sleep when a low small zone such as ZONE_DMA is balanced for a GFP_DMA request even if a stream of allocations cannot use that zone. While kswapd may be woken again shortly in the near future there are two consequences -- the pgdat bits that control congestion are cleared prematurely and direct reclaim is more likely as kswapd slept prematurely. This patch flips kswapd_classzone_idx to default to MAX_NR_ZONES (an invalid index) when there has been no recent wakeups. If there are no wakeups, it'll decide whether to sleep based on the highest possible zone available (MAX_NR_ZONES - 1). It then becomes critical that the "pgdat balanced" decisions during reclaim and when deciding to sleep are the same. If there is a mismatch, kswapd can stay awake continually trying to balance tiny zones. simoop was used to evaluate it again. Two of the preparation patches regressed the workload so they are included as the second set of results. Otherwise this patch looks artifically excellent 4.11.0-rc1 4.11.0-rc1 4.11.0-rc1 vanilla clear-v2 keepawake-v2 Amean p50-Read 21670074.18 ( 0.00%) 19786774.76 ( 8.69%) 22668332.52 ( -4.61%) Amean p95-Read 25456267.64 ( 0.00%) 24101956.27 ( 5.32%) 26738688.00 ( -5.04%) Amean p99-Read 29369064.73 ( 0.00%) 27691872.71 ( 5.71%) 30991404.52 ( -5.52%) Amean p50-Write 1390.30 ( 0.00%) 1011.91 ( 27.22%) 924.91 ( 33.47%) Amean p95-Write 412901.57 ( 0.00%) 34874.98 ( 91.55%) 1362.62 ( 99.67%) Amean p99-Write 6668722.09 ( 0.00%) 575449.60 ( 91.37%) 16854.04 ( 99.75%) Amean p50-Allocation 78714.31 ( 0.00%) 84246.26 ( -7.03%) 74729.74 ( 5.06%) Amean p95-Allocation 175533.51 ( 0.00%) 400058.43 (-127.91%) 101609.74 ( 42.11%) Amean p99-Allocation 247003.02 ( 0.00%) 10905600.00 (-4315.17%) 125765.57 ( 49.08%) With this patch on top, write and allocation latencies are massively improved. The read latencies are slightly impaired but it's worth noting that this is mostly due to the IO scheduler and not directly related to reclaim. The vmstats are a bit of a mix but the relevant ones are as follows; 4.10.0-rc7 4.10.0-rc7 4.10.0-rc7 mmots-20170209 clear-v1r25keepawake-v1r25 Swap Ins 0 0 0 Swap Outs 0 608 0 Direct pages scanned 6910672 3132699 6357298 Kswapd pages scanned 57036946 82488665 56986286 Kswapd pages reclaimed 55993488 63474329 55939113 Direct pages reclaimed 6905990 2964843 6352115 Kswapd efficiency 98% 76% 98% Kswapd velocity 12494.375 17597.507 12488.065 Direct efficiency 99% 94% 99% Direct velocity 1513.835 668.306 1393.148 Page writes by reclaim 0.000 4410243.000 0.000 Page writes file 0 4409635 0 Page writes anon 0 608 0 Page reclaim immediate 1036792 14175203 1042571 4.11.0-rc1 4.11.0-rc1 4.11.0-rc1 vanilla clear-v2 keepawake-v2 Swap Ins 0 12 0 Swap Outs 0 838 0 Direct pages scanned 6579706 3237270 6256811 Kswapd pages scanned 61853702 79961486 54837791 Kswapd pages reclaimed 60768764 60755788 53849586 Direct pages reclaimed 6579055 2987453 6256151 Kswapd efficiency 98% 75% 98% Page writes by reclaim 0.000 4389496.000 0.000 Page writes file 0 4388658 0 Page writes anon 0 838 0 Page reclaim immediate 1073573 14473009 982507 Swap-outs are equivalent to baseline. Direct reclaim is reduced but not eliminated. It's worth noting that there are two periods of direct reclaim for this workload. The first is when it switches from preparing the files for the actual test itself. It's a lot of file IO followed by a lot of allocs that reclaims heavily for a brief window. While direct reclaim is lower with clear-v2, it is due to kswapd scanning aggressively and trying to reclaim the world which is not the right thing to do. With the patches applied, there is still direct reclaim but the phase change from "creating work files" to starting multiple threads that allocate a lot of anonymous memory faster than kswapd can reclaim. Scanning/reclaim efficiency is restored by this patch. Page writes from reclaim context are back at 0 which is ideal. Pages immediately reclaimed after IO completes is slightly improved but it is expected this will vary slightly. On UMA, there is almost no change so this is not expected to be a universal win. [mgorman@suse.de: fix ->kswapd_classzone_idx initialization] Link: http://lkml.kernel.org/r/20170406174538.5msrznj6nt6qpbx5@suse.de Link: http://lkml.kernel.org/r/20170309075657.25121-4-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shantanu Goel <sgoel01@yahoo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-04 00:53:45 +03:00
/*
* Reset the nr_zones, order and classzone_idx before reuse.
* Note that kswapd will init kswapd_classzone_idx properly
* when it starts in the near future.
*/
mm/memory hotplug: postpone the reset of obsolete pgdat Qiu Xishi reported the following BUG when testing hot-add/hot-remove node under stress condition: BUG: unable to handle kernel paging request at 0000000000025f60 IP: next_online_pgdat+0x1/0x50 PGD 0 Oops: 0000 [#1] SMP ACPI: Device does not support D3cold Modules linked in: fuse nls_iso8859_1 nls_cp437 vfat fat loop dm_mod coretemp mperf crc32c_intel ghash_clmulni_intel aesni_intel ablk_helper cryptd lrw gf128mul glue_helper aes_x86_64 pcspkr microcode igb dca i2c_algo_bit ipv6 megaraid_sas iTCO_wdt i2c_i801 i2c_core iTCO_vendor_support tg3 sg hwmon ptp lpc_ich pps_core mfd_core acpi_pad rtc_cmos button ext3 jbd mbcache sd_mod crc_t10dif scsi_dh_alua scsi_dh_rdac scsi_dh_hp_sw scsi_dh_emc scsi_dh ahci libahci libata scsi_mod [last unloaded: rasf] CPU: 23 PID: 238 Comm: kworker/23:1 Tainted: G O 3.10.15-5885-euler0302 #1 Hardware name: HUAWEI TECHNOLOGIES CO.,LTD. Huawei N1/Huawei N1, BIOS V100R001 03/02/2015 Workqueue: events vmstat_update task: ffffa800d32c0000 ti: ffffa800d32ae000 task.ti: ffffa800d32ae000 RIP: 0010: next_online_pgdat+0x1/0x50 RSP: 0018:ffffa800d32afce8 EFLAGS: 00010286 RAX: 0000000000001440 RBX: ffffffff81da53b8 RCX: 0000000000000082 RDX: 0000000000000000 RSI: 0000000000000082 RDI: 0000000000000000 RBP: ffffa800d32afd28 R08: ffffffff81c93bfc R09: ffffffff81cbdc96 R10: 00000000000040ec R11: 00000000000000a0 R12: ffffa800fffb3440 R13: ffffa800d32afd38 R14: 0000000000000017 R15: ffffa800e6616800 FS: 0000000000000000(0000) GS:ffffa800e6600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000025f60 CR3: 0000000001a0b000 CR4: 00000000001407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: refresh_cpu_vm_stats+0xd0/0x140 vmstat_update+0x11/0x50 process_one_work+0x194/0x3d0 worker_thread+0x12b/0x410 kthread+0xc6/0xd0 ret_from_fork+0x7c/0xb0 The cause is the "memset(pgdat, 0, sizeof(*pgdat))" at the end of try_offline_node, which will reset all the content of pgdat to 0, as the pgdat is accessed lock-free, so that the users still using the pgdat will panic, such as the vmstat_update routine. process A: offline node XX: vmstat_updat() refresh_cpu_vm_stats() for_each_populated_zone() find online node XX cond_resched() offline cpu and memory, then try_offline_node() node_set_offline(nid), and memset(pgdat, 0, sizeof(*pgdat)) zone = next_zone(zone) pg_data_t *pgdat = zone->zone_pgdat; // here pgdat is NULL now next_online_pgdat(pgdat) next_online_node(pgdat->node_id); // NULL pointer access So the solution here is postponing the reset of obsolete pgdat from try_offline_node() to hotadd_new_pgdat(), and just resetting pgdat->nr_zones and pgdat->classzone_idx to be 0 rather than the memset 0 to avoid breaking pointer information in pgdat. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Reported-by: Xishi Qiu <qiuxishi@huawei.com> Suggested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Xie XiuQi <xiexiuqi@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-26 01:55:20 +03:00
pgdat->nr_zones = 0;
pgdat->kswapd_order = 0;
pgdat->kswapd_classzone_idx = 0;
}
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
/* we can use NODE_DATA(nid) from here */
mm/page_alloc: Introduce free_area_init_core_hotplug Currently, whenever a new node is created/re-used from the memhotplug path, we call free_area_init_node()->free_area_init_core(). But there is some code that we do not really need to run when we are coming from such path. free_area_init_core() performs the following actions: 1) Initializes pgdat internals, such as spinlock, waitqueues and more. 2) Account # nr_all_pages and # nr_kernel_pages. These values are used later on when creating hash tables. 3) Account number of managed_pages per zone, substracting dma_reserved and memmap pages. 4) Initializes some fields of the zone structure data 5) Calls init_currently_empty_zone to initialize all the freelists 6) Calls memmap_init to initialize all pages belonging to certain zone When called from memhotplug path, free_area_init_core() only performs actions #1 and #4. Action #2 is pointless as the zones do not have any pages since either the node was freed, or we are re-using it, eitherway all zones belonging to this node should have 0 pages. For the same reason, action #3 results always in manages_pages being 0. Action #5 and #6 are performed later on when onlining the pages: online_pages()->move_pfn_range_to_zone()->init_currently_empty_zone() online_pages()->move_pfn_range_to_zone()->memmap_init_zone() This patch does two things: First, moves the node/zone initializtion to their own function, so it allows us to create a small version of free_area_init_core, where we only perform: 1) Initialization of pgdat internals, such as spinlock, waitqueues and more 4) Initialization of some fields of the zone structure data These two functions are: pgdat_init_internals() and zone_init_internals(). The second thing this patch does, is to introduce free_area_init_core_hotplug(), the memhotplug version of free_area_init_core(): Currently, we call free_area_init_node() from the memhotplug path. In there, we set some pgdat's fields, and call calculate_node_totalpages(). calculate_node_totalpages() calculates the # of pages the node has. Since the node is either new, or we are re-using it, the zones belonging to this node should not have any pages, so there is no point to calculate this now. Actually, we re-set these values to 0 later on with the calls to: reset_node_managed_pages() reset_node_present_pages() The # of pages per node and the # of pages per zone will be calculated when onlining the pages: online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_zone_range() online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_pgdat_range() Also, since free_area_init_core/free_area_init_node will now only get called during early init, let us replace __paginginit with __init, so their code gets freed up. [osalvador@techadventures.net: fix section usage] Link: http://lkml.kernel.org/r/20180731101752.GA473@techadventures.net [osalvador@suse.de: v6] Link: http://lkml.kernel.org/r/20180801122348.21588-6-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180730101757.28058-5-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 07:53:43 +03:00
pgdat->node_id = nid;
pgdat->node_start_pfn = start_pfn;
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
/* init node's zones as empty zones, we don't have any present pages.*/
mm/page_alloc: Introduce free_area_init_core_hotplug Currently, whenever a new node is created/re-used from the memhotplug path, we call free_area_init_node()->free_area_init_core(). But there is some code that we do not really need to run when we are coming from such path. free_area_init_core() performs the following actions: 1) Initializes pgdat internals, such as spinlock, waitqueues and more. 2) Account # nr_all_pages and # nr_kernel_pages. These values are used later on when creating hash tables. 3) Account number of managed_pages per zone, substracting dma_reserved and memmap pages. 4) Initializes some fields of the zone structure data 5) Calls init_currently_empty_zone to initialize all the freelists 6) Calls memmap_init to initialize all pages belonging to certain zone When called from memhotplug path, free_area_init_core() only performs actions #1 and #4. Action #2 is pointless as the zones do not have any pages since either the node was freed, or we are re-using it, eitherway all zones belonging to this node should have 0 pages. For the same reason, action #3 results always in manages_pages being 0. Action #5 and #6 are performed later on when onlining the pages: online_pages()->move_pfn_range_to_zone()->init_currently_empty_zone() online_pages()->move_pfn_range_to_zone()->memmap_init_zone() This patch does two things: First, moves the node/zone initializtion to their own function, so it allows us to create a small version of free_area_init_core, where we only perform: 1) Initialization of pgdat internals, such as spinlock, waitqueues and more 4) Initialization of some fields of the zone structure data These two functions are: pgdat_init_internals() and zone_init_internals(). The second thing this patch does, is to introduce free_area_init_core_hotplug(), the memhotplug version of free_area_init_core(): Currently, we call free_area_init_node() from the memhotplug path. In there, we set some pgdat's fields, and call calculate_node_totalpages(). calculate_node_totalpages() calculates the # of pages the node has. Since the node is either new, or we are re-using it, the zones belonging to this node should not have any pages, so there is no point to calculate this now. Actually, we re-set these values to 0 later on with the calls to: reset_node_managed_pages() reset_node_present_pages() The # of pages per node and the # of pages per zone will be calculated when onlining the pages: online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_zone_range() online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_pgdat_range() Also, since free_area_init_core/free_area_init_node will now only get called during early init, let us replace __paginginit with __init, so their code gets freed up. [osalvador@techadventures.net: fix section usage] Link: http://lkml.kernel.org/r/20180731101752.GA473@techadventures.net [osalvador@suse.de: v6] Link: http://lkml.kernel.org/r/20180801122348.21588-6-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180730101757.28058-5-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 07:53:43 +03:00
free_area_init_core_hotplug(nid);
mm/memory_hotplug.c: initialize per_cpu_nodestats for hotadded pgdats The following oops occurs after a pgdat is hotadded: Unable to handle kernel paging request for data at address 0x00c30001 Faulting instruction address: 0xc00000000022f8f4 Oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=2048 NUMA pSeries Modules linked in: ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw iptable_filter nls_utf8 isofs sg virtio_balloon uio_pdrv_genirq uio ip_tables xfs libcrc32c sr_mod cdrom sd_mod virtio_net ibmvscsi scsi_transport_srp virtio_pci virtio_ring virtio dm_mirror dm_region_hash dm_log dm_mod CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 4.8.0-rc1-device #110 task: c000000000ef3080 task.stack: c000000000f6c000 NIP: c00000000022f8f4 LR: c00000000022f948 CTR: 0000000000000000 REGS: c000000000f6fa50 TRAP: 0300 Tainted: G W (4.8.0-rc1-device) MSR: 800000010280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]> CR: 84002028 XER: 20000000 CFAR: d000000001d2013c DAR: 0000000000c30001 DSISR: 40000000 SOFTE: 0 NIP refresh_cpu_vm_stats+0x1a4/0x2f0 LR refresh_cpu_vm_stats+0x1f8/0x2f0 Call Trace: refresh_cpu_vm_stats+0x1f8/0x2f0 (unreliable) Add per_cpu_nodestats initialization to the hotplug codepath. Link: http://lkml.kernel.org/r/1470931473-7090-1-git-send-email-arbab@linux.vnet.ibm.com Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-12 01:33:12 +03:00
pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
/*
* The node we allocated has no zone fallback lists. For avoiding
* to access not-initialized zonelist, build here.
*/
build_all_zonelists(pgdat);
/*
* When memory is hot-added, all the memory is in offline state. So
* clear all zones' present_pages because they will be updated in
* online_pages() and offline_pages().
*/
mm/page_alloc: Introduce free_area_init_core_hotplug Currently, whenever a new node is created/re-used from the memhotplug path, we call free_area_init_node()->free_area_init_core(). But there is some code that we do not really need to run when we are coming from such path. free_area_init_core() performs the following actions: 1) Initializes pgdat internals, such as spinlock, waitqueues and more. 2) Account # nr_all_pages and # nr_kernel_pages. These values are used later on when creating hash tables. 3) Account number of managed_pages per zone, substracting dma_reserved and memmap pages. 4) Initializes some fields of the zone structure data 5) Calls init_currently_empty_zone to initialize all the freelists 6) Calls memmap_init to initialize all pages belonging to certain zone When called from memhotplug path, free_area_init_core() only performs actions #1 and #4. Action #2 is pointless as the zones do not have any pages since either the node was freed, or we are re-using it, eitherway all zones belonging to this node should have 0 pages. For the same reason, action #3 results always in manages_pages being 0. Action #5 and #6 are performed later on when onlining the pages: online_pages()->move_pfn_range_to_zone()->init_currently_empty_zone() online_pages()->move_pfn_range_to_zone()->memmap_init_zone() This patch does two things: First, moves the node/zone initializtion to their own function, so it allows us to create a small version of free_area_init_core, where we only perform: 1) Initialization of pgdat internals, such as spinlock, waitqueues and more 4) Initialization of some fields of the zone structure data These two functions are: pgdat_init_internals() and zone_init_internals(). The second thing this patch does, is to introduce free_area_init_core_hotplug(), the memhotplug version of free_area_init_core(): Currently, we call free_area_init_node() from the memhotplug path. In there, we set some pgdat's fields, and call calculate_node_totalpages(). calculate_node_totalpages() calculates the # of pages the node has. Since the node is either new, or we are re-using it, the zones belonging to this node should not have any pages, so there is no point to calculate this now. Actually, we re-set these values to 0 later on with the calls to: reset_node_managed_pages() reset_node_present_pages() The # of pages per node and the # of pages per zone will be calculated when onlining the pages: online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_zone_range() online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_pgdat_range() Also, since free_area_init_core/free_area_init_node will now only get called during early init, let us replace __paginginit with __init, so their code gets freed up. [osalvador@techadventures.net: fix section usage] Link: http://lkml.kernel.org/r/20180731101752.GA473@techadventures.net [osalvador@suse.de: v6] Link: http://lkml.kernel.org/r/20180801122348.21588-6-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180730101757.28058-5-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 07:53:43 +03:00
reset_node_managed_pages(pgdat);
reset_node_present_pages(pgdat);
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
return pgdat;
}
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
static void rollback_node_hotadd(int nid)
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
{
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
pg_data_t *pgdat = NODE_DATA(nid);
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
arch_refresh_nodedata(nid, NULL);
mm/memory_hotplug.c: initialize per_cpu_nodestats for hotadded pgdats The following oops occurs after a pgdat is hotadded: Unable to handle kernel paging request for data at address 0x00c30001 Faulting instruction address: 0xc00000000022f8f4 Oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=2048 NUMA pSeries Modules linked in: ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw iptable_filter nls_utf8 isofs sg virtio_balloon uio_pdrv_genirq uio ip_tables xfs libcrc32c sr_mod cdrom sd_mod virtio_net ibmvscsi scsi_transport_srp virtio_pci virtio_ring virtio dm_mirror dm_region_hash dm_log dm_mod CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 4.8.0-rc1-device #110 task: c000000000ef3080 task.stack: c000000000f6c000 NIP: c00000000022f8f4 LR: c00000000022f948 CTR: 0000000000000000 REGS: c000000000f6fa50 TRAP: 0300 Tainted: G W (4.8.0-rc1-device) MSR: 800000010280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]> CR: 84002028 XER: 20000000 CFAR: d000000001d2013c DAR: 0000000000c30001 DSISR: 40000000 SOFTE: 0 NIP refresh_cpu_vm_stats+0x1a4/0x2f0 LR refresh_cpu_vm_stats+0x1f8/0x2f0 Call Trace: refresh_cpu_vm_stats+0x1f8/0x2f0 (unreliable) Add per_cpu_nodestats initialization to the hotplug codepath. Link: http://lkml.kernel.org/r/1470931473-7090-1-git-send-email-arbab@linux.vnet.ibm.com Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-12 01:33:12 +03:00
free_percpu(pgdat->per_cpu_nodestats);
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
arch_free_nodedata(pgdat);
return;
}
/**
* try_online_node - online a node if offlined
* @nid: the node ID
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
* @start: start addr of the node
* @set_node_online: Whether we want to online the node
* called by cpu_up() to online a node without onlined memory.
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
*
* Returns:
* 1 -> a new node has been allocated
* 0 -> the node is already online
* -ENOMEM -> the node could not be allocated
*/
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
static int __try_online_node(int nid, u64 start, bool set_node_online)
{
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
pg_data_t *pgdat;
int ret = 1;
if (node_online(nid))
return 0;
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
pgdat = hotadd_new_pgdat(nid, start);
if (!pgdat) {
pr_err("Cannot online node %d due to NULL pgdat\n", nid);
ret = -ENOMEM;
goto out;
}
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
if (set_node_online) {
node_set_online(nid);
ret = register_one_node(nid);
BUG_ON(ret);
}
out:
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
return ret;
}
/*
* Users of this function always want to online/register the node
*/
int try_online_node(int nid)
{
int ret;
mem_hotplug_begin();
ret = __try_online_node(nid, 0, true);
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
mem_hotplug_done();
return ret;
}
static int check_hotplug_memory_range(u64 start, u64 size)
{
mm/memory_hotplug: enforce block size aligned range check Patch series "optimize memory hotplug", v3. This patchset: - Improves hotplug performance by eliminating a number of struct page traverses during memory hotplug. - Fixes some issues with hotplugging, where boundaries were not properly checked. And on x86 block size was not properly aligned with end of memory - Also, potentially improves boot performance by eliminating condition from __init_single_page(). - Adds robustness by verifying that that struct pages are correctly poisoned when flags are accessed. The following experiments were performed on Xeon(R) CPU E7-8895 v3 @ 2.60GHz with 1T RAM: booting in qemu with 960G of memory, time to initialize struct pages: no-kvm: TRY1 TRY2 BEFORE: 39.433668 39.39705 AFTER: 36.903781 36.989329 with-kvm: BEFORE: 10.977447 11.103164 AFTER: 10.929072 10.751885 Hotplug 896G memory: no-kvm: TRY1 TRY2 BEFORE: 848.740000 846.910000 AFTER: 783.070000 786.560000 with-kvm: TRY1 TRY2 BEFORE: 34.410000 33.57 AFTER: 29.810000 29.580000 This patch (of 6): Start qemu with the following arguments: -m 64G,slots=2,maxmem=66G -object memory-backend-ram,id=mem1,size=2G Which: boots machine with 64G, and adds a device mem1 with 2G which can be hotplugged later. Also make sure that config has the following turned on: CONFIG_MEMORY_HOTPLUG CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE CONFIG_ACPI_HOTPLUG_MEMORY Using the qemu monitor hotplug the memory (make sure config has (qemu) device_add pc-dimm,id=dimm1,memdev=mem1 The operation will fail with the following trace: WARNING: CPU: 0 PID: 91 at drivers/base/memory.c:205 pages_correctly_reserved+0xe6/0x110 Modules linked in: CPU: 0 PID: 91 Comm: systemd-udevd Not tainted 4.16.0-rc1_pt_master #29 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014 RIP: 0010:pages_correctly_reserved+0xe6/0x110 Call Trace: memory_subsys_online+0x44/0xa0 device_online+0x51/0x80 store_mem_state+0x5e/0xe0 kernfs_fop_write+0xfa/0x170 __vfs_write+0x2e/0x150 vfs_write+0xa8/0x1a0 SyS_write+0x4d/0xb0 do_syscall_64+0x5d/0x110 entry_SYSCALL_64_after_hwframe+0x21/0x86 ---[ end trace 6203bc4f1a5d30e8 ]--- The problem is detected in: drivers/base/memory.c static bool pages_correctly_reserved(unsigned long start_pfn) 205 if (WARN_ON_ONCE(!pfn_valid(pfn))) This function loops through every section in the newly added memory block and verifies that the first pfn is valid, meaning section exists, has mapping (struct page array), and is online. The block size on x86 is usually 128M, but when machine is booted with more than 64G of memory, the block size is changed to 2G: $ cat /sys/devices/system/memory/block_size_bytes 80000000 or $ dmesg | grep "block size" [ 0.086469] x86/mm: Memory block size: 2048MB During memory hotplug, and hotremove we verify that the range is section size aligned, but we actually must verify that it is block size aligned, because that is the proper unit for hotplug operations. See: Documentation/memory-hotplug.txt So, when the start_pfn of newly added memory is not block size aligned, we can get a memory block that has only part of it with properly populated sections. In our case the start_pfn starts from the last_pfn (end of physical memory). $ dmesg | grep last_pfn [ 0.000000] e820: last_pfn = 0x1040000 max_arch_pfn = 0x400000000 0x1040000 == 65G, and so is not 2G aligned! The fix is to enforce that memory that is hotplugged and hotremoved is block size aligned. With this fix, running the above sequence yield to the following result: (qemu) device_add pc-dimm,id=dimm1,memdev=mem1 Block size [0x80000000] unaligned hotplug range: start 0x1040000000, size 0x80000000 acpi PNP0C80:00: add_memory failed acpi PNP0C80:00: acpi_memory_enable_device() error acpi PNP0C80:00: Enumeration failure Link: http://lkml.kernel.org/r/20180213193159.14606-2-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Baoquan He <bhe@redhat.com> Cc: Bharata B Rao <bharata@linux.vnet.ibm.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06 02:22:39 +03:00
unsigned long block_sz = memory_block_size_bytes();
u64 block_nr_pages = block_sz >> PAGE_SHIFT;
u64 nr_pages = size >> PAGE_SHIFT;
mm/memory_hotplug: enforce block size aligned range check Patch series "optimize memory hotplug", v3. This patchset: - Improves hotplug performance by eliminating a number of struct page traverses during memory hotplug. - Fixes some issues with hotplugging, where boundaries were not properly checked. And on x86 block size was not properly aligned with end of memory - Also, potentially improves boot performance by eliminating condition from __init_single_page(). - Adds robustness by verifying that that struct pages are correctly poisoned when flags are accessed. The following experiments were performed on Xeon(R) CPU E7-8895 v3 @ 2.60GHz with 1T RAM: booting in qemu with 960G of memory, time to initialize struct pages: no-kvm: TRY1 TRY2 BEFORE: 39.433668 39.39705 AFTER: 36.903781 36.989329 with-kvm: BEFORE: 10.977447 11.103164 AFTER: 10.929072 10.751885 Hotplug 896G memory: no-kvm: TRY1 TRY2 BEFORE: 848.740000 846.910000 AFTER: 783.070000 786.560000 with-kvm: TRY1 TRY2 BEFORE: 34.410000 33.57 AFTER: 29.810000 29.580000 This patch (of 6): Start qemu with the following arguments: -m 64G,slots=2,maxmem=66G -object memory-backend-ram,id=mem1,size=2G Which: boots machine with 64G, and adds a device mem1 with 2G which can be hotplugged later. Also make sure that config has the following turned on: CONFIG_MEMORY_HOTPLUG CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE CONFIG_ACPI_HOTPLUG_MEMORY Using the qemu monitor hotplug the memory (make sure config has (qemu) device_add pc-dimm,id=dimm1,memdev=mem1 The operation will fail with the following trace: WARNING: CPU: 0 PID: 91 at drivers/base/memory.c:205 pages_correctly_reserved+0xe6/0x110 Modules linked in: CPU: 0 PID: 91 Comm: systemd-udevd Not tainted 4.16.0-rc1_pt_master #29 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014 RIP: 0010:pages_correctly_reserved+0xe6/0x110 Call Trace: memory_subsys_online+0x44/0xa0 device_online+0x51/0x80 store_mem_state+0x5e/0xe0 kernfs_fop_write+0xfa/0x170 __vfs_write+0x2e/0x150 vfs_write+0xa8/0x1a0 SyS_write+0x4d/0xb0 do_syscall_64+0x5d/0x110 entry_SYSCALL_64_after_hwframe+0x21/0x86 ---[ end trace 6203bc4f1a5d30e8 ]--- The problem is detected in: drivers/base/memory.c static bool pages_correctly_reserved(unsigned long start_pfn) 205 if (WARN_ON_ONCE(!pfn_valid(pfn))) This function loops through every section in the newly added memory block and verifies that the first pfn is valid, meaning section exists, has mapping (struct page array), and is online. The block size on x86 is usually 128M, but when machine is booted with more than 64G of memory, the block size is changed to 2G: $ cat /sys/devices/system/memory/block_size_bytes 80000000 or $ dmesg | grep "block size" [ 0.086469] x86/mm: Memory block size: 2048MB During memory hotplug, and hotremove we verify that the range is section size aligned, but we actually must verify that it is block size aligned, because that is the proper unit for hotplug operations. See: Documentation/memory-hotplug.txt So, when the start_pfn of newly added memory is not block size aligned, we can get a memory block that has only part of it with properly populated sections. In our case the start_pfn starts from the last_pfn (end of physical memory). $ dmesg | grep last_pfn [ 0.000000] e820: last_pfn = 0x1040000 max_arch_pfn = 0x400000000 0x1040000 == 65G, and so is not 2G aligned! The fix is to enforce that memory that is hotplugged and hotremoved is block size aligned. With this fix, running the above sequence yield to the following result: (qemu) device_add pc-dimm,id=dimm1,memdev=mem1 Block size [0x80000000] unaligned hotplug range: start 0x1040000000, size 0x80000000 acpi PNP0C80:00: add_memory failed acpi PNP0C80:00: acpi_memory_enable_device() error acpi PNP0C80:00: Enumeration failure Link: http://lkml.kernel.org/r/20180213193159.14606-2-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Baoquan He <bhe@redhat.com> Cc: Bharata B Rao <bharata@linux.vnet.ibm.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06 02:22:39 +03:00
u64 start_pfn = PFN_DOWN(start);
mm/memory_hotplug: enforce block size aligned range check Patch series "optimize memory hotplug", v3. This patchset: - Improves hotplug performance by eliminating a number of struct page traverses during memory hotplug. - Fixes some issues with hotplugging, where boundaries were not properly checked. And on x86 block size was not properly aligned with end of memory - Also, potentially improves boot performance by eliminating condition from __init_single_page(). - Adds robustness by verifying that that struct pages are correctly poisoned when flags are accessed. The following experiments were performed on Xeon(R) CPU E7-8895 v3 @ 2.60GHz with 1T RAM: booting in qemu with 960G of memory, time to initialize struct pages: no-kvm: TRY1 TRY2 BEFORE: 39.433668 39.39705 AFTER: 36.903781 36.989329 with-kvm: BEFORE: 10.977447 11.103164 AFTER: 10.929072 10.751885 Hotplug 896G memory: no-kvm: TRY1 TRY2 BEFORE: 848.740000 846.910000 AFTER: 783.070000 786.560000 with-kvm: TRY1 TRY2 BEFORE: 34.410000 33.57 AFTER: 29.810000 29.580000 This patch (of 6): Start qemu with the following arguments: -m 64G,slots=2,maxmem=66G -object memory-backend-ram,id=mem1,size=2G Which: boots machine with 64G, and adds a device mem1 with 2G which can be hotplugged later. Also make sure that config has the following turned on: CONFIG_MEMORY_HOTPLUG CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE CONFIG_ACPI_HOTPLUG_MEMORY Using the qemu monitor hotplug the memory (make sure config has (qemu) device_add pc-dimm,id=dimm1,memdev=mem1 The operation will fail with the following trace: WARNING: CPU: 0 PID: 91 at drivers/base/memory.c:205 pages_correctly_reserved+0xe6/0x110 Modules linked in: CPU: 0 PID: 91 Comm: systemd-udevd Not tainted 4.16.0-rc1_pt_master #29 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014 RIP: 0010:pages_correctly_reserved+0xe6/0x110 Call Trace: memory_subsys_online+0x44/0xa0 device_online+0x51/0x80 store_mem_state+0x5e/0xe0 kernfs_fop_write+0xfa/0x170 __vfs_write+0x2e/0x150 vfs_write+0xa8/0x1a0 SyS_write+0x4d/0xb0 do_syscall_64+0x5d/0x110 entry_SYSCALL_64_after_hwframe+0x21/0x86 ---[ end trace 6203bc4f1a5d30e8 ]--- The problem is detected in: drivers/base/memory.c static bool pages_correctly_reserved(unsigned long start_pfn) 205 if (WARN_ON_ONCE(!pfn_valid(pfn))) This function loops through every section in the newly added memory block and verifies that the first pfn is valid, meaning section exists, has mapping (struct page array), and is online. The block size on x86 is usually 128M, but when machine is booted with more than 64G of memory, the block size is changed to 2G: $ cat /sys/devices/system/memory/block_size_bytes 80000000 or $ dmesg | grep "block size" [ 0.086469] x86/mm: Memory block size: 2048MB During memory hotplug, and hotremove we verify that the range is section size aligned, but we actually must verify that it is block size aligned, because that is the proper unit for hotplug operations. See: Documentation/memory-hotplug.txt So, when the start_pfn of newly added memory is not block size aligned, we can get a memory block that has only part of it with properly populated sections. In our case the start_pfn starts from the last_pfn (end of physical memory). $ dmesg | grep last_pfn [ 0.000000] e820: last_pfn = 0x1040000 max_arch_pfn = 0x400000000 0x1040000 == 65G, and so is not 2G aligned! The fix is to enforce that memory that is hotplugged and hotremoved is block size aligned. With this fix, running the above sequence yield to the following result: (qemu) device_add pc-dimm,id=dimm1,memdev=mem1 Block size [0x80000000] unaligned hotplug range: start 0x1040000000, size 0x80000000 acpi PNP0C80:00: add_memory failed acpi PNP0C80:00: acpi_memory_enable_device() error acpi PNP0C80:00: Enumeration failure Link: http://lkml.kernel.org/r/20180213193159.14606-2-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Baoquan He <bhe@redhat.com> Cc: Bharata B Rao <bharata@linux.vnet.ibm.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06 02:22:39 +03:00
/* memory range must be block size aligned */
if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
!IS_ALIGNED(nr_pages, block_nr_pages)) {
pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
block_sz, start, size);
return -EINVAL;
}
return 0;
}
memory-hotplug: add automatic onlining policy for the newly added memory Currently, all newly added memory blocks remain in 'offline' state unless someone onlines them, some linux distributions carry special udev rules like: SUBSYSTEM=="memory", ACTION=="add", ATTR{state}=="offline", ATTR{state}="online" to make this happen automatically. This is not a great solution for virtual machines where memory hotplug is being used to address high memory pressure situations as such onlining is slow and a userspace process doing this (udev) has a chance of being killed by the OOM killer as it will probably require to allocate some memory. Introduce default policy for the newly added memory blocks in /sys/devices/system/memory/auto_online_blocks file with two possible values: "offline" which preserves the current behavior and "online" which causes all newly added memory blocks to go online as soon as they're added. The default is "offline". Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: David Vrabel <david.vrabel@citrix.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Kay Sievers <kay@vrfy.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:56:48 +03:00
static int online_memory_block(struct memory_block *mem, void *arg)
{
return device_online(&mem->dev);
memory-hotplug: add automatic onlining policy for the newly added memory Currently, all newly added memory blocks remain in 'offline' state unless someone onlines them, some linux distributions carry special udev rules like: SUBSYSTEM=="memory", ACTION=="add", ATTR{state}=="offline", ATTR{state}="online" to make this happen automatically. This is not a great solution for virtual machines where memory hotplug is being used to address high memory pressure situations as such onlining is slow and a userspace process doing this (udev) has a chance of being killed by the OOM killer as it will probably require to allocate some memory. Introduce default policy for the newly added memory blocks in /sys/devices/system/memory/auto_online_blocks file with two possible values: "offline" which preserves the current behavior and "online" which causes all newly added memory blocks to go online as soon as they're added. The default is "offline". Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: David Vrabel <david.vrabel@citrix.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Kay Sievers <kay@vrfy.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:56:48 +03:00
}
mm/memory_hotplug: make add_memory() take the device_hotplug_lock add_memory() currently does not take the device_hotplug_lock, however is aleady called under the lock from arch/powerpc/platforms/pseries/hotplug-memory.c drivers/acpi/acpi_memhotplug.c to synchronize against CPU hot-remove and similar. In general, we should hold the device_hotplug_lock when adding memory to synchronize against online/offline request (e.g. from user space) - which already resulted in lock inversions due to device_lock() and mem_hotplug_lock - see 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"). add_memory()/add_memory_resource() will create memory block devices, so this really feels like the right thing to do. Holding the device_hotplug_lock makes sure that a memory block device can really only be accessed (e.g. via .online/.state) from user space, once the memory has been fully added to the system. The lock is not held yet in drivers/xen/balloon.c arch/powerpc/platforms/powernv/memtrace.c drivers/s390/char/sclp_cmd.c drivers/hv/hv_balloon.c So, let's either use the locked variants or take the lock. Don't export add_memory_resource(), as it once was exported to be used by XEN, which is never built as a module. If somebody requires it, we also have to export a locked variant (as device_hotplug_lock is never exported). Link: http://lkml.kernel.org/r/20180925091457.28651-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mathieu Malaterre <malat@debian.org> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:24 +03:00
/*
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
* and online/offline operations (triggered e.g. by sysfs).
*
* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
*/
int __ref add_memory_resource(int nid, struct resource *res)
{
struct mhp_restrictions restrictions = {
.flags = MHP_MEMBLOCK_API,
};
u64 start, size;
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
bool new_node = false;
int ret;
start = res->start;
size = resource_size(res);
ret = check_hotplug_memory_range(start, size);
if (ret)
return ret;
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
mem_hotplug_begin();
memory-hotplug: add hot-added memory ranges to memblock before allocate node_data for a node. Commit f9126ab9241f ("memory-hotplug: fix wrong edge when hot add a new node") hot-added memory range to memblock, after creating pgdat for new node. But there is a problem: add_memory() |--> hotadd_new_pgdat() |--> free_area_init_node() |--> get_pfn_range_for_nid() |--> find start_pfn and end_pfn in memblock |--> ...... |--> memblock_add_node(start, size, nid) -------- Here, just too late. get_pfn_range_for_nid() will find that start_pfn and end_pfn are both 0. As a result, when adding memory, dmesg will give the following wrong message. Initmem setup node 5 [mem 0x0000000000000000-0xffffffffffffffff] On node 5 totalpages: 0 Built 5 zonelists in Node order, mobility grouping on. Total pages: 32588823 Policy zone: Normal init_memory_mapping: [mem 0x60000000000-0x607ffffffff] The solution is simple, just add the memory range to memblock a little earlier, before hotadd_new_pgdat(). [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Gu Zheng <guz.fnst@cn.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.2.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 01:42:32 +03:00
/*
* Add new range to memblock so that when hotadd_new_pgdat() is called
* to allocate new pgdat, get_pfn_range_for_nid() will be able to find
* this new range and calculate total pages correctly. The range will
* be removed at hot-remove time.
*/
memblock_add_node(start, size, nid);
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
ret = __try_online_node(nid, start, false);
if (ret < 0)
goto error;
new_node = ret;
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
/* call arch's memory hotadd */
ret = arch_add_memory(nid, start, size, &restrictions);
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
if (ret < 0)
goto error;
if (new_node) {
2018-08-18 01:46:18 +03:00
/* If sysfs file of new node can't be created, cpu on the node
* can't be hot-added. There is no rollback way now.
* So, check by BUG_ON() to catch it reluctantly..
2018-08-18 01:46:18 +03:00
* We online node here. We can't roll back from here.
*/
2018-08-18 01:46:18 +03:00
node_set_online(nid);
ret = __register_one_node(nid);
BUG_ON(ret);
}
2018-08-18 01:46:18 +03:00
/* link memory sections under this node.*/
ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
2018-08-18 01:46:18 +03:00
BUG_ON(ret);
/* create new memmap entry */
firmware_map_add_hotplug(start, start + size, "System RAM");
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock There seem to be some problems as result of 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"), which tried to fix a possible lock inversion reported and discussed in [1] due to the two locks a) device_lock() b) mem_hotplug_lock While add_memory() first takes b), followed by a) during bus_probe_device(), onlining of memory from user space first took a), followed by b), exposing a possible deadlock. In [1], and it was decided to not make use of device_hotplug_lock, but rather to enforce a locking order. The problems I spotted related to this: 1. Memory block device attributes: While .state first calls mem_hotplug_begin() and the calls device_online() - which takes device_lock() - .online does no longer call mem_hotplug_begin(), so effectively calls online_pages() without mem_hotplug_lock. 2. device_online() should be called under device_hotplug_lock, however onlining memory during add_memory() does not take care of that. In addition, I think there is also something wrong about the locking in 3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages() without locks. This was introduced after 30467e0b3be. And skimming over the code, I assume it could need some more care in regards to locking (e.g. device_online() called without device_hotplug_lock. This will be addressed in the following patches. Now that we hold the device_hotplug_lock when - adding memory (e.g. via add_memory()/add_memory_resource()) - removing memory (e.g. via remove_memory()) - device_online()/device_offline() We can move mem_hotplug_lock usage back into online_pages()/offline_pages(). Why is mem_hotplug_lock still needed? Essentially to make get_online_mems()/put_online_mems() be very fast (relying on device_hotplug_lock would be very slow), and to serialize against addition of memory that does not create memory block devices (hmm). [1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/ 2015-February/065324.html This patch is partly based on a patch by Vitaly Kuznetsov. Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:29 +03:00
/* device_online() will take the lock when calling online_pages() */
mem_hotplug_done();
memory-hotplug: add automatic onlining policy for the newly added memory Currently, all newly added memory blocks remain in 'offline' state unless someone onlines them, some linux distributions carry special udev rules like: SUBSYSTEM=="memory", ACTION=="add", ATTR{state}=="offline", ATTR{state}="online" to make this happen automatically. This is not a great solution for virtual machines where memory hotplug is being used to address high memory pressure situations as such onlining is slow and a userspace process doing this (udev) has a chance of being killed by the OOM killer as it will probably require to allocate some memory. Introduce default policy for the newly added memory blocks in /sys/devices/system/memory/auto_online_blocks file with two possible values: "offline" which preserves the current behavior and "online" which causes all newly added memory blocks to go online as soon as they're added. The default is "offline". Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: David Vrabel <david.vrabel@citrix.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Kay Sievers <kay@vrfy.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:56:48 +03:00
/* online pages if requested */
if (memhp_auto_online)
memory-hotplug: add automatic onlining policy for the newly added memory Currently, all newly added memory blocks remain in 'offline' state unless someone onlines them, some linux distributions carry special udev rules like: SUBSYSTEM=="memory", ACTION=="add", ATTR{state}=="offline", ATTR{state}="online" to make this happen automatically. This is not a great solution for virtual machines where memory hotplug is being used to address high memory pressure situations as such onlining is slow and a userspace process doing this (udev) has a chance of being killed by the OOM killer as it will probably require to allocate some memory. Introduce default policy for the newly added memory blocks in /sys/devices/system/memory/auto_online_blocks file with two possible values: "offline" which preserves the current behavior and "online" which causes all newly added memory blocks to go online as soon as they're added. The default is "offline". Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: David Vrabel <david.vrabel@citrix.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Kay Sievers <kay@vrfy.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:56:48 +03:00
walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
NULL, online_memory_block);
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock There seem to be some problems as result of 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"), which tried to fix a possible lock inversion reported and discussed in [1] due to the two locks a) device_lock() b) mem_hotplug_lock While add_memory() first takes b), followed by a) during bus_probe_device(), onlining of memory from user space first took a), followed by b), exposing a possible deadlock. In [1], and it was decided to not make use of device_hotplug_lock, but rather to enforce a locking order. The problems I spotted related to this: 1. Memory block device attributes: While .state first calls mem_hotplug_begin() and the calls device_online() - which takes device_lock() - .online does no longer call mem_hotplug_begin(), so effectively calls online_pages() without mem_hotplug_lock. 2. device_online() should be called under device_hotplug_lock, however onlining memory during add_memory() does not take care of that. In addition, I think there is also something wrong about the locking in 3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages() without locks. This was introduced after 30467e0b3be. And skimming over the code, I assume it could need some more care in regards to locking (e.g. device_online() called without device_hotplug_lock. This will be addressed in the following patches. Now that we hold the device_hotplug_lock when - adding memory (e.g. via add_memory()/add_memory_resource()) - removing memory (e.g. via remove_memory()) - device_online()/device_offline() We can move mem_hotplug_lock usage back into online_pages()/offline_pages(). Why is mem_hotplug_lock still needed? Essentially to make get_online_mems()/put_online_mems() be very fast (relying on device_hotplug_lock would be very slow), and to serialize against addition of memory that does not create memory block devices (hmm). [1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/ 2015-February/065324.html This patch is partly based on a patch by Vitaly Kuznetsov. Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:29 +03:00
return ret;
[PATCH] pgdat allocation for new node add (call pgdat allocation) Add node-hot-add support to add_memory(). node hotadd uses this sequence. 1. allocate pgdat. 2. refresh NODE_DATA() 3. call free_area_init_node() to initialize 4. create sysfs entry 5. add memory (old add_memory()) 6. set node online 7. run kswapd for new node. (8). update zonelist after pages are onlined. (This is already merged in -mm due to update phase is difference.) Note: To make common function as much as possible, there is 2 changes from v2. - The old add_memory(), which is defiend by each archs, is renamed to arch_add_memory(). New add_memory becomes caller of arch dependent function as a common code. - This patch changes add_memory()'s interface From: add_memory(start, end) TO : add_memory(nid, start, end). It was cause of similar code that finding node id from physical address is inside of old add_memory() on each arch. In addition, acpi memory hotplug driver can find node id easier. In v2, it must walk DSDT'S _CRS by matching physical address to get the handle of its memory device, then get _PXM and node id. Because input is just physical address. However, in v3, the acpi driver can use handle to get _PXM and node id for the new memory device. It can pass just node id to add_memory(). Fix interface of arch_add_memory() is in next patche. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 13:53:34 +04:00
error:
/* rollback pgdat allocation and others */
mm/memory_hotplug.c: make add_memory_resource use __try_online_node This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:46:15 +03:00
if (new_node)
rollback_node_hotadd(nid);
memory-hotplug: add hot-added memory ranges to memblock before allocate node_data for a node. Commit f9126ab9241f ("memory-hotplug: fix wrong edge when hot add a new node") hot-added memory range to memblock, after creating pgdat for new node. But there is a problem: add_memory() |--> hotadd_new_pgdat() |--> free_area_init_node() |--> get_pfn_range_for_nid() |--> find start_pfn and end_pfn in memblock |--> ...... |--> memblock_add_node(start, size, nid) -------- Here, just too late. get_pfn_range_for_nid() will find that start_pfn and end_pfn are both 0. As a result, when adding memory, dmesg will give the following wrong message. Initmem setup node 5 [mem 0x0000000000000000-0xffffffffffffffff] On node 5 totalpages: 0 Built 5 zonelists in Node order, mobility grouping on. Total pages: 32588823 Policy zone: Normal init_memory_mapping: [mem 0x60000000000-0x607ffffffff] The solution is simple, just add the memory range to memblock a little earlier, before hotadd_new_pgdat(). [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Gu Zheng <guz.fnst@cn.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.2.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 01:42:32 +03:00
memblock_remove(start, size);
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
mem_hotplug_done();
return ret;
}
mm/memory_hotplug: make add_memory() take the device_hotplug_lock add_memory() currently does not take the device_hotplug_lock, however is aleady called under the lock from arch/powerpc/platforms/pseries/hotplug-memory.c drivers/acpi/acpi_memhotplug.c to synchronize against CPU hot-remove and similar. In general, we should hold the device_hotplug_lock when adding memory to synchronize against online/offline request (e.g. from user space) - which already resulted in lock inversions due to device_lock() and mem_hotplug_lock - see 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"). add_memory()/add_memory_resource() will create memory block devices, so this really feels like the right thing to do. Holding the device_hotplug_lock makes sure that a memory block device can really only be accessed (e.g. via .online/.state) from user space, once the memory has been fully added to the system. The lock is not held yet in drivers/xen/balloon.c arch/powerpc/platforms/powernv/memtrace.c drivers/s390/char/sclp_cmd.c drivers/hv/hv_balloon.c So, let's either use the locked variants or take the lock. Don't export add_memory_resource(), as it once was exported to be used by XEN, which is never built as a module. If somebody requires it, we also have to export a locked variant (as device_hotplug_lock is never exported). Link: http://lkml.kernel.org/r/20180925091457.28651-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mathieu Malaterre <malat@debian.org> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:24 +03:00
/* requires device_hotplug_lock, see add_memory_resource() */
int __ref __add_memory(int nid, u64 start, u64 size)
{
struct resource *res;
int ret;
res = register_memory_resource(start, size);
if (IS_ERR(res))
return PTR_ERR(res);
ret = add_memory_resource(nid, res);
if (ret < 0)
release_memory_resource(res);
return ret;
}
mm/memory_hotplug: make add_memory() take the device_hotplug_lock add_memory() currently does not take the device_hotplug_lock, however is aleady called under the lock from arch/powerpc/platforms/pseries/hotplug-memory.c drivers/acpi/acpi_memhotplug.c to synchronize against CPU hot-remove and similar. In general, we should hold the device_hotplug_lock when adding memory to synchronize against online/offline request (e.g. from user space) - which already resulted in lock inversions due to device_lock() and mem_hotplug_lock - see 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"). add_memory()/add_memory_resource() will create memory block devices, so this really feels like the right thing to do. Holding the device_hotplug_lock makes sure that a memory block device can really only be accessed (e.g. via .online/.state) from user space, once the memory has been fully added to the system. The lock is not held yet in drivers/xen/balloon.c arch/powerpc/platforms/powernv/memtrace.c drivers/s390/char/sclp_cmd.c drivers/hv/hv_balloon.c So, let's either use the locked variants or take the lock. Don't export add_memory_resource(), as it once was exported to be used by XEN, which is never built as a module. If somebody requires it, we also have to export a locked variant (as device_hotplug_lock is never exported). Link: http://lkml.kernel.org/r/20180925091457.28651-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mathieu Malaterre <malat@debian.org> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:24 +03:00
int add_memory(int nid, u64 start, u64 size)
{
int rc;
lock_device_hotplug();
rc = __add_memory(nid, start, size);
unlock_device_hotplug();
return rc;
}
EXPORT_SYMBOL_GPL(add_memory);
#ifdef CONFIG_MEMORY_HOTREMOVE
memory-hotplug: add sysfs removable attribute for hotplug memory remove Memory may be hot-removed on a per-memory-block basis, particularly on POWER where the SPARSEMEM section size often matches the memory-block size. A user-level agent must be able to identify which sections of memory are likely to be removable before attempting the potentially expensive operation. This patch adds a file called "removable" to the memory directory in sysfs to help such an agent. In this patch, a memory block is considered removable if; o It contains only MOVABLE pageblocks o It contains only pageblocks with free pages regardless of pageblock type On the other hand, a memory block starting with a PageReserved() page will never be considered removable. Without this patch, the user-agent is forced to choose a memory block to remove randomly. Sample output of the sysfs files: ./memory/memory0/removable: 0 ./memory/memory1/removable: 0 ./memory/memory2/removable: 0 ./memory/memory3/removable: 0 ./memory/memory4/removable: 0 ./memory/memory5/removable: 0 ./memory/memory6/removable: 0 ./memory/memory7/removable: 1 ./memory/memory8/removable: 0 ./memory/memory9/removable: 0 ./memory/memory10/removable: 0 ./memory/memory11/removable: 0 ./memory/memory12/removable: 0 ./memory/memory13/removable: 0 ./memory/memory14/removable: 0 ./memory/memory15/removable: 0 ./memory/memory16/removable: 0 ./memory/memory17/removable: 1 ./memory/memory18/removable: 1 ./memory/memory19/removable: 1 ./memory/memory20/removable: 1 ./memory/memory21/removable: 1 ./memory/memory22/removable: 1 Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 08:28:19 +04:00
/*
* A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
* set and the size of the free page is given by page_order(). Using this,
* the function determines if the pageblock contains only free pages.
* Due to buddy contraints, a free page at least the size of a pageblock will
* be located at the start of the pageblock
*/
static inline int pageblock_free(struct page *page)
{
return PageBuddy(page) && page_order(page) >= pageblock_order;
}
mm, memory_hotplug: fix off-by-one in is_pageblock_removable Rong Chen has reported the following boot crash: PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 RIP: 0010:page_mapping+0x12/0x80 Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48 RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202 RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000 RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13 R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000 R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001 FS: 00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0 Call Trace: __dump_page+0x14/0x2c0 is_mem_section_removable+0x24c/0x2c0 removable_show+0x87/0xa0 dev_attr_show+0x25/0x60 sysfs_kf_seq_show+0xba/0x110 seq_read+0x196/0x3f0 __vfs_read+0x34/0x180 vfs_read+0xa0/0x150 ksys_read+0x44/0xb0 do_syscall_64+0x5e/0x4a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe and bisected it down to commit efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone"). The reason for the crash is that the mapping is garbage for poisoned (uninitialized) page. This shouldn't happen as all pages in the zone's boundary should be initialized. Later debugging revealed that the actual problem is an off-by-one when evaluating the end_page. 'start_pfn + nr_pages' resp 'zone_end_pfn' refers to a pfn after the range and as such it might belong to a differen memory section. This along with CONFIG_SPARSEMEM then makes the loop condition completely bogus because a pointer arithmetic doesn't work for pages from two different sections in that memory model. Fix the issue by reworking is_pageblock_removable to be pfn based and only use struct page where necessary. This makes the code slightly easier to follow and we will remove the problematic pointer arithmetic completely. Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org Fixes: efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: <rong.a.chen@intel.com> Tested-by: <rong.a.chen@intel.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:20:46 +03:00
/* Return the pfn of the start of the next active pageblock after a given pfn */
static unsigned long next_active_pageblock(unsigned long pfn)
memory-hotplug: add sysfs removable attribute for hotplug memory remove Memory may be hot-removed on a per-memory-block basis, particularly on POWER where the SPARSEMEM section size often matches the memory-block size. A user-level agent must be able to identify which sections of memory are likely to be removable before attempting the potentially expensive operation. This patch adds a file called "removable" to the memory directory in sysfs to help such an agent. In this patch, a memory block is considered removable if; o It contains only MOVABLE pageblocks o It contains only pageblocks with free pages regardless of pageblock type On the other hand, a memory block starting with a PageReserved() page will never be considered removable. Without this patch, the user-agent is forced to choose a memory block to remove randomly. Sample output of the sysfs files: ./memory/memory0/removable: 0 ./memory/memory1/removable: 0 ./memory/memory2/removable: 0 ./memory/memory3/removable: 0 ./memory/memory4/removable: 0 ./memory/memory5/removable: 0 ./memory/memory6/removable: 0 ./memory/memory7/removable: 1 ./memory/memory8/removable: 0 ./memory/memory9/removable: 0 ./memory/memory10/removable: 0 ./memory/memory11/removable: 0 ./memory/memory12/removable: 0 ./memory/memory13/removable: 0 ./memory/memory14/removable: 0 ./memory/memory15/removable: 0 ./memory/memory16/removable: 0 ./memory/memory17/removable: 1 ./memory/memory18/removable: 1 ./memory/memory19/removable: 1 ./memory/memory20/removable: 1 ./memory/memory21/removable: 1 ./memory/memory22/removable: 1 Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 08:28:19 +04:00
{
mm, memory_hotplug: fix off-by-one in is_pageblock_removable Rong Chen has reported the following boot crash: PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 RIP: 0010:page_mapping+0x12/0x80 Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48 RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202 RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000 RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13 R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000 R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001 FS: 00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0 Call Trace: __dump_page+0x14/0x2c0 is_mem_section_removable+0x24c/0x2c0 removable_show+0x87/0xa0 dev_attr_show+0x25/0x60 sysfs_kf_seq_show+0xba/0x110 seq_read+0x196/0x3f0 __vfs_read+0x34/0x180 vfs_read+0xa0/0x150 ksys_read+0x44/0xb0 do_syscall_64+0x5e/0x4a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe and bisected it down to commit efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone"). The reason for the crash is that the mapping is garbage for poisoned (uninitialized) page. This shouldn't happen as all pages in the zone's boundary should be initialized. Later debugging revealed that the actual problem is an off-by-one when evaluating the end_page. 'start_pfn + nr_pages' resp 'zone_end_pfn' refers to a pfn after the range and as such it might belong to a differen memory section. This along with CONFIG_SPARSEMEM then makes the loop condition completely bogus because a pointer arithmetic doesn't work for pages from two different sections in that memory model. Fix the issue by reworking is_pageblock_removable to be pfn based and only use struct page where necessary. This makes the code slightly easier to follow and we will remove the problematic pointer arithmetic completely. Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org Fixes: efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: <rong.a.chen@intel.com> Tested-by: <rong.a.chen@intel.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:20:46 +03:00
struct page *page = pfn_to_page(pfn);
memory-hotplug: add sysfs removable attribute for hotplug memory remove Memory may be hot-removed on a per-memory-block basis, particularly on POWER where the SPARSEMEM section size often matches the memory-block size. A user-level agent must be able to identify which sections of memory are likely to be removable before attempting the potentially expensive operation. This patch adds a file called "removable" to the memory directory in sysfs to help such an agent. In this patch, a memory block is considered removable if; o It contains only MOVABLE pageblocks o It contains only pageblocks with free pages regardless of pageblock type On the other hand, a memory block starting with a PageReserved() page will never be considered removable. Without this patch, the user-agent is forced to choose a memory block to remove randomly. Sample output of the sysfs files: ./memory/memory0/removable: 0 ./memory/memory1/removable: 0 ./memory/memory2/removable: 0 ./memory/memory3/removable: 0 ./memory/memory4/removable: 0 ./memory/memory5/removable: 0 ./memory/memory6/removable: 0 ./memory/memory7/removable: 1 ./memory/memory8/removable: 0 ./memory/memory9/removable: 0 ./memory/memory10/removable: 0 ./memory/memory11/removable: 0 ./memory/memory12/removable: 0 ./memory/memory13/removable: 0 ./memory/memory14/removable: 0 ./memory/memory15/removable: 0 ./memory/memory16/removable: 0 ./memory/memory17/removable: 1 ./memory/memory18/removable: 1 ./memory/memory19/removable: 1 ./memory/memory20/removable: 1 ./memory/memory21/removable: 1 ./memory/memory22/removable: 1 Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 08:28:19 +04:00
/* Ensure the starting page is pageblock-aligned */
mm, memory_hotplug: fix off-by-one in is_pageblock_removable Rong Chen has reported the following boot crash: PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 RIP: 0010:page_mapping+0x12/0x80 Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48 RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202 RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000 RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13 R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000 R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001 FS: 00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0 Call Trace: __dump_page+0x14/0x2c0 is_mem_section_removable+0x24c/0x2c0 removable_show+0x87/0xa0 dev_attr_show+0x25/0x60 sysfs_kf_seq_show+0xba/0x110 seq_read+0x196/0x3f0 __vfs_read+0x34/0x180 vfs_read+0xa0/0x150 ksys_read+0x44/0xb0 do_syscall_64+0x5e/0x4a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe and bisected it down to commit efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone"). The reason for the crash is that the mapping is garbage for poisoned (uninitialized) page. This shouldn't happen as all pages in the zone's boundary should be initialized. Later debugging revealed that the actual problem is an off-by-one when evaluating the end_page. 'start_pfn + nr_pages' resp 'zone_end_pfn' refers to a pfn after the range and as such it might belong to a differen memory section. This along with CONFIG_SPARSEMEM then makes the loop condition completely bogus because a pointer arithmetic doesn't work for pages from two different sections in that memory model. Fix the issue by reworking is_pageblock_removable to be pfn based and only use struct page where necessary. This makes the code slightly easier to follow and we will remove the problematic pointer arithmetic completely. Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org Fixes: efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: <rong.a.chen@intel.com> Tested-by: <rong.a.chen@intel.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:20:46 +03:00
BUG_ON(pfn & (pageblock_nr_pages - 1));
memory-hotplug: add sysfs removable attribute for hotplug memory remove Memory may be hot-removed on a per-memory-block basis, particularly on POWER where the SPARSEMEM section size often matches the memory-block size. A user-level agent must be able to identify which sections of memory are likely to be removable before attempting the potentially expensive operation. This patch adds a file called "removable" to the memory directory in sysfs to help such an agent. In this patch, a memory block is considered removable if; o It contains only MOVABLE pageblocks o It contains only pageblocks with free pages regardless of pageblock type On the other hand, a memory block starting with a PageReserved() page will never be considered removable. Without this patch, the user-agent is forced to choose a memory block to remove randomly. Sample output of the sysfs files: ./memory/memory0/removable: 0 ./memory/memory1/removable: 0 ./memory/memory2/removable: 0 ./memory/memory3/removable: 0 ./memory/memory4/removable: 0 ./memory/memory5/removable: 0 ./memory/memory6/removable: 0 ./memory/memory7/removable: 1 ./memory/memory8/removable: 0 ./memory/memory9/removable: 0 ./memory/memory10/removable: 0 ./memory/memory11/removable: 0 ./memory/memory12/removable: 0 ./memory/memory13/removable: 0 ./memory/memory14/removable: 0 ./memory/memory15/removable: 0 ./memory/memory16/removable: 0 ./memory/memory17/removable: 1 ./memory/memory18/removable: 1 ./memory/memory19/removable: 1 ./memory/memory20/removable: 1 ./memory/memory21/removable: 1 ./memory/memory22/removable: 1 Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 08:28:19 +04:00
/* If the entire pageblock is free, move to the end of free page */
if (pageblock_free(page)) {
int order;
/* be careful. we don't have locks, page_order can be changed.*/
order = page_order(page);
if ((order < MAX_ORDER) && (order >= pageblock_order))
mm, memory_hotplug: fix off-by-one in is_pageblock_removable Rong Chen has reported the following boot crash: PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 RIP: 0010:page_mapping+0x12/0x80 Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48 RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202 RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000 RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13 R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000 R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001 FS: 00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0 Call Trace: __dump_page+0x14/0x2c0 is_mem_section_removable+0x24c/0x2c0 removable_show+0x87/0xa0 dev_attr_show+0x25/0x60 sysfs_kf_seq_show+0xba/0x110 seq_read+0x196/0x3f0 __vfs_read+0x34/0x180 vfs_read+0xa0/0x150 ksys_read+0x44/0xb0 do_syscall_64+0x5e/0x4a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe and bisected it down to commit efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone"). The reason for the crash is that the mapping is garbage for poisoned (uninitialized) page. This shouldn't happen as all pages in the zone's boundary should be initialized. Later debugging revealed that the actual problem is an off-by-one when evaluating the end_page. 'start_pfn + nr_pages' resp 'zone_end_pfn' refers to a pfn after the range and as such it might belong to a differen memory section. This along with CONFIG_SPARSEMEM then makes the loop condition completely bogus because a pointer arithmetic doesn't work for pages from two different sections in that memory model. Fix the issue by reworking is_pageblock_removable to be pfn based and only use struct page where necessary. This makes the code slightly easier to follow and we will remove the problematic pointer arithmetic completely. Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org Fixes: efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: <rong.a.chen@intel.com> Tested-by: <rong.a.chen@intel.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:20:46 +03:00
return pfn + (1 << order);
}
memory-hotplug: add sysfs removable attribute for hotplug memory remove Memory may be hot-removed on a per-memory-block basis, particularly on POWER where the SPARSEMEM section size often matches the memory-block size. A user-level agent must be able to identify which sections of memory are likely to be removable before attempting the potentially expensive operation. This patch adds a file called "removable" to the memory directory in sysfs to help such an agent. In this patch, a memory block is considered removable if; o It contains only MOVABLE pageblocks o It contains only pageblocks with free pages regardless of pageblock type On the other hand, a memory block starting with a PageReserved() page will never be considered removable. Without this patch, the user-agent is forced to choose a memory block to remove randomly. Sample output of the sysfs files: ./memory/memory0/removable: 0 ./memory/memory1/removable: 0 ./memory/memory2/removable: 0 ./memory/memory3/removable: 0 ./memory/memory4/removable: 0 ./memory/memory5/removable: 0 ./memory/memory6/removable: 0 ./memory/memory7/removable: 1 ./memory/memory8/removable: 0 ./memory/memory9/removable: 0 ./memory/memory10/removable: 0 ./memory/memory11/removable: 0 ./memory/memory12/removable: 0 ./memory/memory13/removable: 0 ./memory/memory14/removable: 0 ./memory/memory15/removable: 0 ./memory/memory16/removable: 0 ./memory/memory17/removable: 1 ./memory/memory18/removable: 1 ./memory/memory19/removable: 1 ./memory/memory20/removable: 1 ./memory/memory21/removable: 1 ./memory/memory22/removable: 1 Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 08:28:19 +04:00
mm, memory_hotplug: fix off-by-one in is_pageblock_removable Rong Chen has reported the following boot crash: PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 RIP: 0010:page_mapping+0x12/0x80 Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48 RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202 RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000 RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13 R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000 R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001 FS: 00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0 Call Trace: __dump_page+0x14/0x2c0 is_mem_section_removable+0x24c/0x2c0 removable_show+0x87/0xa0 dev_attr_show+0x25/0x60 sysfs_kf_seq_show+0xba/0x110 seq_read+0x196/0x3f0 __vfs_read+0x34/0x180 vfs_read+0xa0/0x150 ksys_read+0x44/0xb0 do_syscall_64+0x5e/0x4a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe and bisected it down to commit efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone"). The reason for the crash is that the mapping is garbage for poisoned (uninitialized) page. This shouldn't happen as all pages in the zone's boundary should be initialized. Later debugging revealed that the actual problem is an off-by-one when evaluating the end_page. 'start_pfn + nr_pages' resp 'zone_end_pfn' refers to a pfn after the range and as such it might belong to a differen memory section. This along with CONFIG_SPARSEMEM then makes the loop condition completely bogus because a pointer arithmetic doesn't work for pages from two different sections in that memory model. Fix the issue by reworking is_pageblock_removable to be pfn based and only use struct page where necessary. This makes the code slightly easier to follow and we will remove the problematic pointer arithmetic completely. Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org Fixes: efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: <rong.a.chen@intel.com> Tested-by: <rong.a.chen@intel.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:20:46 +03:00
return pfn + pageblock_nr_pages;
memory-hotplug: add sysfs removable attribute for hotplug memory remove Memory may be hot-removed on a per-memory-block basis, particularly on POWER where the SPARSEMEM section size often matches the memory-block size. A user-level agent must be able to identify which sections of memory are likely to be removable before attempting the potentially expensive operation. This patch adds a file called "removable" to the memory directory in sysfs to help such an agent. In this patch, a memory block is considered removable if; o It contains only MOVABLE pageblocks o It contains only pageblocks with free pages regardless of pageblock type On the other hand, a memory block starting with a PageReserved() page will never be considered removable. Without this patch, the user-agent is forced to choose a memory block to remove randomly. Sample output of the sysfs files: ./memory/memory0/removable: 0 ./memory/memory1/removable: 0 ./memory/memory2/removable: 0 ./memory/memory3/removable: 0 ./memory/memory4/removable: 0 ./memory/memory5/removable: 0 ./memory/memory6/removable: 0 ./memory/memory7/removable: 1 ./memory/memory8/removable: 0 ./memory/memory9/removable: 0 ./memory/memory10/removable: 0 ./memory/memory11/removable: 0 ./memory/memory12/removable: 0 ./memory/memory13/removable: 0 ./memory/memory14/removable: 0 ./memory/memory15/removable: 0 ./memory/memory16/removable: 0 ./memory/memory17/removable: 1 ./memory/memory18/removable: 1 ./memory/memory19/removable: 1 ./memory/memory20/removable: 1 ./memory/memory21/removable: 1 ./memory/memory22/removable: 1 Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 08:28:19 +04:00
}
mm, memory_hotplug: fix off-by-one in is_pageblock_removable Rong Chen has reported the following boot crash: PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 RIP: 0010:page_mapping+0x12/0x80 Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48 RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202 RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000 RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13 R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000 R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001 FS: 00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0 Call Trace: __dump_page+0x14/0x2c0 is_mem_section_removable+0x24c/0x2c0 removable_show+0x87/0xa0 dev_attr_show+0x25/0x60 sysfs_kf_seq_show+0xba/0x110 seq_read+0x196/0x3f0 __vfs_read+0x34/0x180 vfs_read+0xa0/0x150 ksys_read+0x44/0xb0 do_syscall_64+0x5e/0x4a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe and bisected it down to commit efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone"). The reason for the crash is that the mapping is garbage for poisoned (uninitialized) page. This shouldn't happen as all pages in the zone's boundary should be initialized. Later debugging revealed that the actual problem is an off-by-one when evaluating the end_page. 'start_pfn + nr_pages' resp 'zone_end_pfn' refers to a pfn after the range and as such it might belong to a differen memory section. This along with CONFIG_SPARSEMEM then makes the loop condition completely bogus because a pointer arithmetic doesn't work for pages from two different sections in that memory model. Fix the issue by reworking is_pageblock_removable to be pfn based and only use struct page where necessary. This makes the code slightly easier to follow and we will remove the problematic pointer arithmetic completely. Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org Fixes: efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: <rong.a.chen@intel.com> Tested-by: <rong.a.chen@intel.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:20:46 +03:00
static bool is_pageblock_removable_nolock(unsigned long pfn)
{
mm, memory_hotplug: fix off-by-one in is_pageblock_removable Rong Chen has reported the following boot crash: PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 RIP: 0010:page_mapping+0x12/0x80 Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48 RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202 RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000 RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13 R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000 R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001 FS: 00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0 Call Trace: __dump_page+0x14/0x2c0 is_mem_section_removable+0x24c/0x2c0 removable_show+0x87/0xa0 dev_attr_show+0x25/0x60 sysfs_kf_seq_show+0xba/0x110 seq_read+0x196/0x3f0 __vfs_read+0x34/0x180 vfs_read+0xa0/0x150 ksys_read+0x44/0xb0 do_syscall_64+0x5e/0x4a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe and bisected it down to commit efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone"). The reason for the crash is that the mapping is garbage for poisoned (uninitialized) page. This shouldn't happen as all pages in the zone's boundary should be initialized. Later debugging revealed that the actual problem is an off-by-one when evaluating the end_page. 'start_pfn + nr_pages' resp 'zone_end_pfn' refers to a pfn after the range and as such it might belong to a differen memory section. This along with CONFIG_SPARSEMEM then makes the loop condition completely bogus because a pointer arithmetic doesn't work for pages from two different sections in that memory model. Fix the issue by reworking is_pageblock_removable to be pfn based and only use struct page where necessary. This makes the code slightly easier to follow and we will remove the problematic pointer arithmetic completely. Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org Fixes: efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: <rong.a.chen@intel.com> Tested-by: <rong.a.chen@intel.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:20:46 +03:00
struct page *page = pfn_to_page(pfn);
struct zone *zone;
/*
* We have to be careful here because we are iterating over memory
* sections which are not zone aware so we might end up outside of
* the zone but still within the section.
* We have to take care about the node as well. If the node is offline
* its NODE_DATA will be NULL - see page_zone.
*/
if (!node_online(page_to_nid(page)))
return false;
zone = page_zone(page);
pfn = page_to_pfn(page);
if (!zone_spans_pfn(zone, pfn))
return false;
mm: only report isolation failures when offlining memory Heiko has complained that his log is swamped by warnings from has_unmovable_pages [ 20.536664] page dumped because: has_unmovable_pages [ 20.536792] page:000003d081ff4080 count:1 mapcount:0 mapping:000000008ff88600 index:0x0 compound_mapcount: 0 [ 20.536794] flags: 0x3fffe0000010200(slab|head) [ 20.536795] raw: 03fffe0000010200 0000000000000100 0000000000000200 000000008ff88600 [ 20.536796] raw: 0000000000000000 0020004100000000 ffffffff00000001 0000000000000000 [ 20.536797] page dumped because: has_unmovable_pages [ 20.536814] page:000003d0823b0000 count:1 mapcount:0 mapping:0000000000000000 index:0x0 [ 20.536815] flags: 0x7fffe0000000000() [ 20.536817] raw: 07fffe0000000000 0000000000000100 0000000000000200 0000000000000000 [ 20.536818] raw: 0000000000000000 0000000000000000 ffffffff00000001 0000000000000000 which are not triggered by the memory hotplug but rather CMA allocator. The original idea behind dumping the page state for all call paths was that these messages will be helpful debugging failures. From the above it seems that this is not the case for the CMA path because we are lacking much more context. E.g the second reported page might be a CMA allocated page. It is still interesting to see a slab page in the CMA area but it is hard to tell whether this is bug from the above output alone. Address this issue by dumping the page state only on request. Both start_isolate_page_range and has_unmovable_pages already have an argument to ignore hwpoison pages so make this argument more generic and turn it into flags and allow callers to combine non-default modes into a mask. While we are at it, has_unmovable_pages call from is_pageblock_removable_nolock (sysfs removable file) is questionable to report the failure so drop it from there as well. Link: http://lkml.kernel.org/r/20181218092802.31429-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 11:33:56 +03:00
return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
}
memory-hotplug: add sysfs removable attribute for hotplug memory remove Memory may be hot-removed on a per-memory-block basis, particularly on POWER where the SPARSEMEM section size often matches the memory-block size. A user-level agent must be able to identify which sections of memory are likely to be removable before attempting the potentially expensive operation. This patch adds a file called "removable" to the memory directory in sysfs to help such an agent. In this patch, a memory block is considered removable if; o It contains only MOVABLE pageblocks o It contains only pageblocks with free pages regardless of pageblock type On the other hand, a memory block starting with a PageReserved() page will never be considered removable. Without this patch, the user-agent is forced to choose a memory block to remove randomly. Sample output of the sysfs files: ./memory/memory0/removable: 0 ./memory/memory1/removable: 0 ./memory/memory2/removable: 0 ./memory/memory3/removable: 0 ./memory/memory4/removable: 0 ./memory/memory5/removable: 0 ./memory/memory6/removable: 0 ./memory/memory7/removable: 1 ./memory/memory8/removable: 0 ./memory/memory9/removable: 0 ./memory/memory10/removable: 0 ./memory/memory11/removable: 0 ./memory/memory12/removable: 0 ./memory/memory13/removable: 0 ./memory/memory14/removable: 0 ./memory/memory15/removable: 0 ./memory/memory16/removable: 0 ./memory/memory17/removable: 1 ./memory/memory18/removable: 1 ./memory/memory19/removable: 1 ./memory/memory20/removable: 1 ./memory/memory21/removable: 1 ./memory/memory22/removable: 1 Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 08:28:19 +04:00
/* Checks if this range of memory is likely to be hot-removable. */
bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
memory-hotplug: add sysfs removable attribute for hotplug memory remove Memory may be hot-removed on a per-memory-block basis, particularly on POWER where the SPARSEMEM section size often matches the memory-block size. A user-level agent must be able to identify which sections of memory are likely to be removable before attempting the potentially expensive operation. This patch adds a file called "removable" to the memory directory in sysfs to help such an agent. In this patch, a memory block is considered removable if; o It contains only MOVABLE pageblocks o It contains only pageblocks with free pages regardless of pageblock type On the other hand, a memory block starting with a PageReserved() page will never be considered removable. Without this patch, the user-agent is forced to choose a memory block to remove randomly. Sample output of the sysfs files: ./memory/memory0/removable: 0 ./memory/memory1/removable: 0 ./memory/memory2/removable: 0 ./memory/memory3/removable: 0 ./memory/memory4/removable: 0 ./memory/memory5/removable: 0 ./memory/memory6/removable: 0 ./memory/memory7/removable: 1 ./memory/memory8/removable: 0 ./memory/memory9/removable: 0 ./memory/memory10/removable: 0 ./memory/memory11/removable: 0 ./memory/memory12/removable: 0 ./memory/memory13/removable: 0 ./memory/memory14/removable: 0 ./memory/memory15/removable: 0 ./memory/memory16/removable: 0 ./memory/memory17/removable: 1 ./memory/memory18/removable: 1 ./memory/memory19/removable: 1 ./memory/memory20/removable: 1 ./memory/memory21/removable: 1 ./memory/memory22/removable: 1 Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 08:28:19 +04:00
{
mm, memory_hotplug: fix off-by-one in is_pageblock_removable Rong Chen has reported the following boot crash: PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 RIP: 0010:page_mapping+0x12/0x80 Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48 RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202 RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000 RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13 R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000 R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001 FS: 00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0 Call Trace: __dump_page+0x14/0x2c0 is_mem_section_removable+0x24c/0x2c0 removable_show+0x87/0xa0 dev_attr_show+0x25/0x60 sysfs_kf_seq_show+0xba/0x110 seq_read+0x196/0x3f0 __vfs_read+0x34/0x180 vfs_read+0xa0/0x150 ksys_read+0x44/0xb0 do_syscall_64+0x5e/0x4a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe and bisected it down to commit efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone"). The reason for the crash is that the mapping is garbage for poisoned (uninitialized) page. This shouldn't happen as all pages in the zone's boundary should be initialized. Later debugging revealed that the actual problem is an off-by-one when evaluating the end_page. 'start_pfn + nr_pages' resp 'zone_end_pfn' refers to a pfn after the range and as such it might belong to a differen memory section. This along with CONFIG_SPARSEMEM then makes the loop condition completely bogus because a pointer arithmetic doesn't work for pages from two different sections in that memory model. Fix the issue by reworking is_pageblock_removable to be pfn based and only use struct page where necessary. This makes the code slightly easier to follow and we will remove the problematic pointer arithmetic completely. Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org Fixes: efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: <rong.a.chen@intel.com> Tested-by: <rong.a.chen@intel.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:20:46 +03:00
unsigned long end_pfn, pfn;
end_pfn = min(start_pfn + nr_pages,
zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
memory-hotplug: add sysfs removable attribute for hotplug memory remove Memory may be hot-removed on a per-memory-block basis, particularly on POWER where the SPARSEMEM section size often matches the memory-block size. A user-level agent must be able to identify which sections of memory are likely to be removable before attempting the potentially expensive operation. This patch adds a file called "removable" to the memory directory in sysfs to help such an agent. In this patch, a memory block is considered removable if; o It contains only MOVABLE pageblocks o It contains only pageblocks with free pages regardless of pageblock type On the other hand, a memory block starting with a PageReserved() page will never be considered removable. Without this patch, the user-agent is forced to choose a memory block to remove randomly. Sample output of the sysfs files: ./memory/memory0/removable: 0 ./memory/memory1/removable: 0 ./memory/memory2/removable: 0 ./memory/memory3/removable: 0 ./memory/memory4/removable: 0 ./memory/memory5/removable: 0 ./memory/memory6/removable: 0 ./memory/memory7/removable: 1 ./memory/memory8/removable: 0 ./memory/memory9/removable: 0 ./memory/memory10/removable: 0 ./memory/memory11/removable: 0 ./memory/memory12/removable: 0 ./memory/memory13/removable: 0 ./memory/memory14/removable: 0 ./memory/memory15/removable: 0 ./memory/memory16/removable: 0 ./memory/memory17/removable: 1 ./memory/memory18/removable: 1 ./memory/memory19/removable: 1 ./memory/memory20/removable: 1 ./memory/memory21/removable: 1 ./memory/memory22/removable: 1 Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 08:28:19 +04:00
/* Check the starting page of each pageblock within the range */
mm, memory_hotplug: fix off-by-one in is_pageblock_removable Rong Chen has reported the following boot crash: PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 RIP: 0010:page_mapping+0x12/0x80 Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48 RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202 RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000 RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13 R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000 R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001 FS: 00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0 Call Trace: __dump_page+0x14/0x2c0 is_mem_section_removable+0x24c/0x2c0 removable_show+0x87/0xa0 dev_attr_show+0x25/0x60 sysfs_kf_seq_show+0xba/0x110 seq_read+0x196/0x3f0 __vfs_read+0x34/0x180 vfs_read+0xa0/0x150 ksys_read+0x44/0xb0 do_syscall_64+0x5e/0x4a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe and bisected it down to commit efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone"). The reason for the crash is that the mapping is garbage for poisoned (uninitialized) page. This shouldn't happen as all pages in the zone's boundary should be initialized. Later debugging revealed that the actual problem is an off-by-one when evaluating the end_page. 'start_pfn + nr_pages' resp 'zone_end_pfn' refers to a pfn after the range and as such it might belong to a differen memory section. This along with CONFIG_SPARSEMEM then makes the loop condition completely bogus because a pointer arithmetic doesn't work for pages from two different sections in that memory model. Fix the issue by reworking is_pageblock_removable to be pfn based and only use struct page where necessary. This makes the code slightly easier to follow and we will remove the problematic pointer arithmetic completely. Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org Fixes: efad4e475c31 ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: <rong.a.chen@intel.com> Tested-by: <rong.a.chen@intel.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:20:46 +03:00
for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
if (!is_pageblock_removable_nolock(pfn))
return false;
cond_resched();
memory-hotplug: add sysfs removable attribute for hotplug memory remove Memory may be hot-removed on a per-memory-block basis, particularly on POWER where the SPARSEMEM section size often matches the memory-block size. A user-level agent must be able to identify which sections of memory are likely to be removable before attempting the potentially expensive operation. This patch adds a file called "removable" to the memory directory in sysfs to help such an agent. In this patch, a memory block is considered removable if; o It contains only MOVABLE pageblocks o It contains only pageblocks with free pages regardless of pageblock type On the other hand, a memory block starting with a PageReserved() page will never be considered removable. Without this patch, the user-agent is forced to choose a memory block to remove randomly. Sample output of the sysfs files: ./memory/memory0/removable: 0 ./memory/memory1/removable: 0 ./memory/memory2/removable: 0 ./memory/memory3/removable: 0 ./memory/memory4/removable: 0 ./memory/memory5/removable: 0 ./memory/memory6/removable: 0 ./memory/memory7/removable: 1 ./memory/memory8/removable: 0 ./memory/memory9/removable: 0 ./memory/memory10/removable: 0 ./memory/memory11/removable: 0 ./memory/memory12/removable: 0 ./memory/memory13/removable: 0 ./memory/memory14/removable: 0 ./memory/memory15/removable: 0 ./memory/memory16/removable: 0 ./memory/memory17/removable: 1 ./memory/memory18/removable: 1 ./memory/memory19/removable: 1 ./memory/memory20/removable: 1 ./memory/memory21/removable: 1 ./memory/memory22/removable: 1 Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 08:28:19 +04:00
}
/* All pageblocks in the memory block are likely to be hot-removable */
return true;
memory-hotplug: add sysfs removable attribute for hotplug memory remove Memory may be hot-removed on a per-memory-block basis, particularly on POWER where the SPARSEMEM section size often matches the memory-block size. A user-level agent must be able to identify which sections of memory are likely to be removable before attempting the potentially expensive operation. This patch adds a file called "removable" to the memory directory in sysfs to help such an agent. In this patch, a memory block is considered removable if; o It contains only MOVABLE pageblocks o It contains only pageblocks with free pages regardless of pageblock type On the other hand, a memory block starting with a PageReserved() page will never be considered removable. Without this patch, the user-agent is forced to choose a memory block to remove randomly. Sample output of the sysfs files: ./memory/memory0/removable: 0 ./memory/memory1/removable: 0 ./memory/memory2/removable: 0 ./memory/memory3/removable: 0 ./memory/memory4/removable: 0 ./memory/memory5/removable: 0 ./memory/memory6/removable: 0 ./memory/memory7/removable: 1 ./memory/memory8/removable: 0 ./memory/memory9/removable: 0 ./memory/memory10/removable: 0 ./memory/memory11/removable: 0 ./memory/memory12/removable: 0 ./memory/memory13/removable: 0 ./memory/memory14/removable: 0 ./memory/memory15/removable: 0 ./memory/memory16/removable: 0 ./memory/memory17/removable: 1 ./memory/memory18/removable: 1 ./memory/memory19/removable: 1 ./memory/memory20/removable: 1 ./memory/memory21/removable: 1 ./memory/memory22/removable: 1 Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 08:28:19 +04:00
}
/*
mm/memory_hotplug.c: check start_pfn in test_pages_in_a_zone() Patch series "fix a kernel oops when reading sysfs valid_zones", v2. A sysfs memory file is created for each 2GiB memory block on x86-64 when the system has 64GiB or more memory. [1] When the start address of a memory block is not backed by struct page, i.e. a memory range is not aligned by 2GiB, reading its 'valid_zones' attribute file leads to a kernel oops. This issue was observed on multiple x86-64 systems with more than 64GiB of memory. This patch-set fixes this issue. Patch 1 first fixes an issue in test_pages_in_a_zone(), which does not test the start section. Patch 2 then fixes the kernel oops by extending test_pages_in_a_zone() to return valid [start, end). Note for stable kernels: The memory block size change was made by commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems"), which was accepted to 3.9. However, this patch-set depends on (and fixes) the change to test_pages_in_a_zone() made by commit 5f0f2887f4de ("mm/memory_hotplug.c: check for missing sections in test_pages_in_a_zone()"), which was accepted to 4.4. So, I recommend that we backport it up to 4.4. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' This patch (of 2): test_pages_in_a_zone() does not check 'start_pfn' when it is aligned by section since 'sec_end_pfn' is set equal to 'pfn'. Since this function is called for testing the range of a sysfs memory file, 'start_pfn' is always aligned by section. Fix it by properly setting 'sec_end_pfn' to the next section pfn. Also make sure that this function returns 1 only when the range belongs to a zone. Link: http://lkml.kernel.org/r/20170127222149.30893-2-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Andrew Banman <abanman@sgi.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Greg KH <greg@kroah.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:20 +03:00
* Confirm all pages in a range [start, end) belong to the same zone.
base/memory, hotplug: fix a kernel oops in show_valid_zones() Reading a sysfs "memoryN/valid_zones" file leads to the following oops when the first page of a range is not backed by struct page. show_valid_zones() assumes that 'start_pfn' is always valid for page_zone(). BUG: unable to handle kernel paging request at ffffea017a000000 IP: show_valid_zones+0x6f/0x160 This issue may happen on x86-64 systems with 64GiB or more memory since their memory block size is bumped up to 2GiB. [1] An example of such systems is desribed below. 0x3240000000 is only aligned by 1GiB and this memory block starts from 0x3200000000, which is not backed by struct page. BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable Since test_pages_in_a_zone() already checks holes, fix this issue by extending this function to return 'valid_start' and 'valid_end' for a given range. show_valid_zones() then proceeds with the valid range. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:23 +03:00
* When true, return its valid [start, end).
*/
base/memory, hotplug: fix a kernel oops in show_valid_zones() Reading a sysfs "memoryN/valid_zones" file leads to the following oops when the first page of a range is not backed by struct page. show_valid_zones() assumes that 'start_pfn' is always valid for page_zone(). BUG: unable to handle kernel paging request at ffffea017a000000 IP: show_valid_zones+0x6f/0x160 This issue may happen on x86-64 systems with 64GiB or more memory since their memory block size is bumped up to 2GiB. [1] An example of such systems is desribed below. 0x3240000000 is only aligned by 1GiB and this memory block starts from 0x3200000000, which is not backed by struct page. BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable Since test_pages_in_a_zone() already checks holes, fix this issue by extending this function to return 'valid_start' and 'valid_end' for a given range. show_valid_zones() then proceeds with the valid range. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:23 +03:00
int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
unsigned long *valid_start, unsigned long *valid_end)
{
unsigned long pfn, sec_end_pfn;
base/memory, hotplug: fix a kernel oops in show_valid_zones() Reading a sysfs "memoryN/valid_zones" file leads to the following oops when the first page of a range is not backed by struct page. show_valid_zones() assumes that 'start_pfn' is always valid for page_zone(). BUG: unable to handle kernel paging request at ffffea017a000000 IP: show_valid_zones+0x6f/0x160 This issue may happen on x86-64 systems with 64GiB or more memory since their memory block size is bumped up to 2GiB. [1] An example of such systems is desribed below. 0x3240000000 is only aligned by 1GiB and this memory block starts from 0x3200000000, which is not backed by struct page. BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable Since test_pages_in_a_zone() already checks holes, fix this issue by extending this function to return 'valid_start' and 'valid_end' for a given range. show_valid_zones() then proceeds with the valid range. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:23 +03:00
unsigned long start, end;
struct zone *zone = NULL;
struct page *page;
int i;
mm/memory_hotplug.c: check start_pfn in test_pages_in_a_zone() Patch series "fix a kernel oops when reading sysfs valid_zones", v2. A sysfs memory file is created for each 2GiB memory block on x86-64 when the system has 64GiB or more memory. [1] When the start address of a memory block is not backed by struct page, i.e. a memory range is not aligned by 2GiB, reading its 'valid_zones' attribute file leads to a kernel oops. This issue was observed on multiple x86-64 systems with more than 64GiB of memory. This patch-set fixes this issue. Patch 1 first fixes an issue in test_pages_in_a_zone(), which does not test the start section. Patch 2 then fixes the kernel oops by extending test_pages_in_a_zone() to return valid [start, end). Note for stable kernels: The memory block size change was made by commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems"), which was accepted to 3.9. However, this patch-set depends on (and fixes) the change to test_pages_in_a_zone() made by commit 5f0f2887f4de ("mm/memory_hotplug.c: check for missing sections in test_pages_in_a_zone()"), which was accepted to 4.4. So, I recommend that we backport it up to 4.4. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' This patch (of 2): test_pages_in_a_zone() does not check 'start_pfn' when it is aligned by section since 'sec_end_pfn' is set equal to 'pfn'. Since this function is called for testing the range of a sysfs memory file, 'start_pfn' is always aligned by section. Fix it by properly setting 'sec_end_pfn' to the next section pfn. Also make sure that this function returns 1 only when the range belongs to a zone. Link: http://lkml.kernel.org/r/20170127222149.30893-2-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Andrew Banman <abanman@sgi.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Greg KH <greg@kroah.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:20 +03:00
for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
pfn < end_pfn;
mm/memory_hotplug.c: check start_pfn in test_pages_in_a_zone() Patch series "fix a kernel oops when reading sysfs valid_zones", v2. A sysfs memory file is created for each 2GiB memory block on x86-64 when the system has 64GiB or more memory. [1] When the start address of a memory block is not backed by struct page, i.e. a memory range is not aligned by 2GiB, reading its 'valid_zones' attribute file leads to a kernel oops. This issue was observed on multiple x86-64 systems with more than 64GiB of memory. This patch-set fixes this issue. Patch 1 first fixes an issue in test_pages_in_a_zone(), which does not test the start section. Patch 2 then fixes the kernel oops by extending test_pages_in_a_zone() to return valid [start, end). Note for stable kernels: The memory block size change was made by commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems"), which was accepted to 3.9. However, this patch-set depends on (and fixes) the change to test_pages_in_a_zone() made by commit 5f0f2887f4de ("mm/memory_hotplug.c: check for missing sections in test_pages_in_a_zone()"), which was accepted to 4.4. So, I recommend that we backport it up to 4.4. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' This patch (of 2): test_pages_in_a_zone() does not check 'start_pfn' when it is aligned by section since 'sec_end_pfn' is set equal to 'pfn'. Since this function is called for testing the range of a sysfs memory file, 'start_pfn' is always aligned by section. Fix it by properly setting 'sec_end_pfn' to the next section pfn. Also make sure that this function returns 1 only when the range belongs to a zone. Link: http://lkml.kernel.org/r/20170127222149.30893-2-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Andrew Banman <abanman@sgi.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Greg KH <greg@kroah.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:20 +03:00
pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
/* Make sure the memory section is present first */
if (!present_section_nr(pfn_to_section_nr(pfn)))
continue;
for (; pfn < sec_end_pfn && pfn < end_pfn;
pfn += MAX_ORDER_NR_PAGES) {
i = 0;
/* This is just a CONFIG_HOLES_IN_ZONE check.*/
while ((i < MAX_ORDER_NR_PAGES) &&
!pfn_valid_within(pfn + i))
i++;
if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
continue;
mm, memory_hotplug: test_pages_in_a_zone do not pass the end of zone If memory end is not aligned with the sparse memory section boundary, the mapping of such a section is only partly initialized. This may lead to VM_BUG_ON due to uninitialized struct pages access from test_pages_in_a_zone() function triggered by memory_hotplug sysfs handlers. Here are the the panic examples: CONFIG_DEBUG_VM_PGFLAGS=y kernel parameter mem=2050M -------------------------- page:000003d082008000 is uninitialized and poisoned page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p)) Call Trace: test_pages_in_a_zone+0xde/0x160 show_valid_zones+0x5c/0x190 dev_attr_show+0x34/0x70 sysfs_kf_seq_show+0xc8/0x148 seq_read+0x204/0x480 __vfs_read+0x32/0x178 vfs_read+0x82/0x138 ksys_read+0x5a/0xb0 system_call+0xdc/0x2d8 Last Breaking-Event-Address: test_pages_in_a_zone+0xde/0x160 Kernel panic - not syncing: Fatal exception: panic_on_oops Fix this by checking whether the pfn to check is within the zone. [mhocko@suse.com: separated this change from http://lkml.kernel.org/r/20181105150401.97287-2-zaslonko@linux.ibm.com] Link: http://lkml.kernel.org/r/20190128144506.15603-3-mhocko@kernel.org [mhocko@suse.com: separated this change from http://lkml.kernel.org/r/20181105150401.97287-2-zaslonko@linux.ibm.com] Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Mikhail Zaslonko <zaslonko@linux.ibm.com> Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-02 01:20:38 +03:00
/* Check if we got outside of the zone */
if (zone && !zone_spans_pfn(zone, pfn + i))
return 0;
page = pfn_to_page(pfn + i);
if (zone && page_zone(page) != zone)
return 0;
base/memory, hotplug: fix a kernel oops in show_valid_zones() Reading a sysfs "memoryN/valid_zones" file leads to the following oops when the first page of a range is not backed by struct page. show_valid_zones() assumes that 'start_pfn' is always valid for page_zone(). BUG: unable to handle kernel paging request at ffffea017a000000 IP: show_valid_zones+0x6f/0x160 This issue may happen on x86-64 systems with 64GiB or more memory since their memory block size is bumped up to 2GiB. [1] An example of such systems is desribed below. 0x3240000000 is only aligned by 1GiB and this memory block starts from 0x3200000000, which is not backed by struct page. BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable Since test_pages_in_a_zone() already checks holes, fix this issue by extending this function to return 'valid_start' and 'valid_end' for a given range. show_valid_zones() then proceeds with the valid range. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:23 +03:00
if (!zone)
start = pfn + i;
zone = page_zone(page);
base/memory, hotplug: fix a kernel oops in show_valid_zones() Reading a sysfs "memoryN/valid_zones" file leads to the following oops when the first page of a range is not backed by struct page. show_valid_zones() assumes that 'start_pfn' is always valid for page_zone(). BUG: unable to handle kernel paging request at ffffea017a000000 IP: show_valid_zones+0x6f/0x160 This issue may happen on x86-64 systems with 64GiB or more memory since their memory block size is bumped up to 2GiB. [1] An example of such systems is desribed below. 0x3240000000 is only aligned by 1GiB and this memory block starts from 0x3200000000, which is not backed by struct page. BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable Since test_pages_in_a_zone() already checks holes, fix this issue by extending this function to return 'valid_start' and 'valid_end' for a given range. show_valid_zones() then proceeds with the valid range. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:23 +03:00
end = pfn + MAX_ORDER_NR_PAGES;
}
}
mm/memory_hotplug.c: check start_pfn in test_pages_in_a_zone() Patch series "fix a kernel oops when reading sysfs valid_zones", v2. A sysfs memory file is created for each 2GiB memory block on x86-64 when the system has 64GiB or more memory. [1] When the start address of a memory block is not backed by struct page, i.e. a memory range is not aligned by 2GiB, reading its 'valid_zones' attribute file leads to a kernel oops. This issue was observed on multiple x86-64 systems with more than 64GiB of memory. This patch-set fixes this issue. Patch 1 first fixes an issue in test_pages_in_a_zone(), which does not test the start section. Patch 2 then fixes the kernel oops by extending test_pages_in_a_zone() to return valid [start, end). Note for stable kernels: The memory block size change was made by commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems"), which was accepted to 3.9. However, this patch-set depends on (and fixes) the change to test_pages_in_a_zone() made by commit 5f0f2887f4de ("mm/memory_hotplug.c: check for missing sections in test_pages_in_a_zone()"), which was accepted to 4.4. So, I recommend that we backport it up to 4.4. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' This patch (of 2): test_pages_in_a_zone() does not check 'start_pfn' when it is aligned by section since 'sec_end_pfn' is set equal to 'pfn'. Since this function is called for testing the range of a sysfs memory file, 'start_pfn' is always aligned by section. Fix it by properly setting 'sec_end_pfn' to the next section pfn. Also make sure that this function returns 1 only when the range belongs to a zone. Link: http://lkml.kernel.org/r/20170127222149.30893-2-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Andrew Banman <abanman@sgi.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Greg KH <greg@kroah.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:20 +03:00
base/memory, hotplug: fix a kernel oops in show_valid_zones() Reading a sysfs "memoryN/valid_zones" file leads to the following oops when the first page of a range is not backed by struct page. show_valid_zones() assumes that 'start_pfn' is always valid for page_zone(). BUG: unable to handle kernel paging request at ffffea017a000000 IP: show_valid_zones+0x6f/0x160 This issue may happen on x86-64 systems with 64GiB or more memory since their memory block size is bumped up to 2GiB. [1] An example of such systems is desribed below. 0x3240000000 is only aligned by 1GiB and this memory block starts from 0x3200000000, which is not backed by struct page. BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable Since test_pages_in_a_zone() already checks holes, fix this issue by extending this function to return 'valid_start' and 'valid_end' for a given range. show_valid_zones() then proceeds with the valid range. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:23 +03:00
if (zone) {
*valid_start = start;
*valid_end = min(end, end_pfn);
mm/memory_hotplug.c: check start_pfn in test_pages_in_a_zone() Patch series "fix a kernel oops when reading sysfs valid_zones", v2. A sysfs memory file is created for each 2GiB memory block on x86-64 when the system has 64GiB or more memory. [1] When the start address of a memory block is not backed by struct page, i.e. a memory range is not aligned by 2GiB, reading its 'valid_zones' attribute file leads to a kernel oops. This issue was observed on multiple x86-64 systems with more than 64GiB of memory. This patch-set fixes this issue. Patch 1 first fixes an issue in test_pages_in_a_zone(), which does not test the start section. Patch 2 then fixes the kernel oops by extending test_pages_in_a_zone() to return valid [start, end). Note for stable kernels: The memory block size change was made by commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems"), which was accepted to 3.9. However, this patch-set depends on (and fixes) the change to test_pages_in_a_zone() made by commit 5f0f2887f4de ("mm/memory_hotplug.c: check for missing sections in test_pages_in_a_zone()"), which was accepted to 4.4. So, I recommend that we backport it up to 4.4. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' This patch (of 2): test_pages_in_a_zone() does not check 'start_pfn' when it is aligned by section since 'sec_end_pfn' is set equal to 'pfn'. Since this function is called for testing the range of a sysfs memory file, 'start_pfn' is always aligned by section. Fix it by properly setting 'sec_end_pfn' to the next section pfn. Also make sure that this function returns 1 only when the range belongs to a zone. Link: http://lkml.kernel.org/r/20170127222149.30893-2-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Andrew Banman <abanman@sgi.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Greg KH <greg@kroah.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:20 +03:00
return 1;
base/memory, hotplug: fix a kernel oops in show_valid_zones() Reading a sysfs "memoryN/valid_zones" file leads to the following oops when the first page of a range is not backed by struct page. show_valid_zones() assumes that 'start_pfn' is always valid for page_zone(). BUG: unable to handle kernel paging request at ffffea017a000000 IP: show_valid_zones+0x6f/0x160 This issue may happen on x86-64 systems with 64GiB or more memory since their memory block size is bumped up to 2GiB. [1] An example of such systems is desribed below. 0x3240000000 is only aligned by 1GiB and this memory block starts from 0x3200000000, which is not backed by struct page. BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable Since test_pages_in_a_zone() already checks holes, fix this issue by extending this function to return 'valid_start' and 'valid_end' for a given range. show_valid_zones() then proceeds with the valid range. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:23 +03:00
} else {
mm/memory_hotplug.c: check start_pfn in test_pages_in_a_zone() Patch series "fix a kernel oops when reading sysfs valid_zones", v2. A sysfs memory file is created for each 2GiB memory block on x86-64 when the system has 64GiB or more memory. [1] When the start address of a memory block is not backed by struct page, i.e. a memory range is not aligned by 2GiB, reading its 'valid_zones' attribute file leads to a kernel oops. This issue was observed on multiple x86-64 systems with more than 64GiB of memory. This patch-set fixes this issue. Patch 1 first fixes an issue in test_pages_in_a_zone(), which does not test the start section. Patch 2 then fixes the kernel oops by extending test_pages_in_a_zone() to return valid [start, end). Note for stable kernels: The memory block size change was made by commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems"), which was accepted to 3.9. However, this patch-set depends on (and fixes) the change to test_pages_in_a_zone() made by commit 5f0f2887f4de ("mm/memory_hotplug.c: check for missing sections in test_pages_in_a_zone()"), which was accepted to 4.4. So, I recommend that we backport it up to 4.4. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' This patch (of 2): test_pages_in_a_zone() does not check 'start_pfn' when it is aligned by section since 'sec_end_pfn' is set equal to 'pfn'. Since this function is called for testing the range of a sysfs memory file, 'start_pfn' is always aligned by section. Fix it by properly setting 'sec_end_pfn' to the next section pfn. Also make sure that this function returns 1 only when the range belongs to a zone. Link: http://lkml.kernel.org/r/20170127222149.30893-2-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Andrew Banman <abanman@sgi.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Greg KH <greg@kroah.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:20 +03:00
return 0;
base/memory, hotplug: fix a kernel oops in show_valid_zones() Reading a sysfs "memoryN/valid_zones" file leads to the following oops when the first page of a range is not backed by struct page. show_valid_zones() assumes that 'start_pfn' is always valid for page_zone(). BUG: unable to handle kernel paging request at ffffea017a000000 IP: show_valid_zones+0x6f/0x160 This issue may happen on x86-64 systems with 64GiB or more memory since their memory block size is bumped up to 2GiB. [1] An example of such systems is desribed below. 0x3240000000 is only aligned by 1GiB and this memory block starts from 0x3200000000, which is not backed by struct page. BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable Since test_pages_in_a_zone() already checks holes, fix this issue by extending this function to return 'valid_start' and 'valid_end' for a given range. show_valid_zones() then proceeds with the valid range. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:23 +03:00
}
}
/*
* Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
* non-lru movable pages and hugepages). We scan pfn because it's much
* easier than scanning over linked list. This function returns the pfn
* of the first found movable page if it's found, otherwise 0.
*/
mm: memory-hotplug: enable memory hotplug to handle hugepage Until now we can't offline memory blocks which contain hugepages because a hugepage is considered as an unmovable page. But now with this patch series, a hugepage has become movable, so by using hugepage migration we can offline such memory blocks. What's different from other users of hugepage migration is that we need to decompose all the hugepages inside the target memory block into free buddy pages after hugepage migration, because otherwise free hugepages remaining in the memory block intervene the memory offlining. For this reason we introduce new functions dissolve_free_huge_page() and dissolve_free_huge_pages(). Other than that, what this patch does is straightforwardly to add hugepage migration code, that is, adding hugepage code to the functions which scan over pfn and collect hugepages to be migrated, and adding a hugepage allocation function to alloc_migrate_target(). As for larger hugepages (1GB for x86_64), it's not easy to do hotremove over them because it's larger than memory block. So we now simply leave it to fail as it is. [yongjun_wei@trendmicro.com.cn: remove duplicated include] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:22:09 +04:00
static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
{
unsigned long pfn;
mm,memory_hotplug: fix scan_movable_pages() for gigantic hugepages This is the same sort of error we saw in commit 17e2e7d7e1b8 ("mm, page_alloc: fix has_unmovable_pages for HugePages"). Gigantic hugepages cross several memblocks, so it can be that the page we get in scan_movable_pages() is a page-tail belonging to a 1G-hugepage. If that happens, page_hstate()->size_to_hstate() will return NULL, and we will blow up in hugepage_migration_supported(). The splat is as follows: BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 #PF error: [normal kernel read fault] PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 1 PID: 1350 Comm: bash Tainted: G E 5.0.0-rc1-mm1-1-default+ #27 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014 RIP: 0010:__offline_pages+0x6ae/0x900 Call Trace: memory_subsys_offline+0x42/0x60 device_offline+0x80/0xa0 state_store+0xab/0xc0 kernfs_fop_write+0x102/0x180 __vfs_write+0x26/0x190 vfs_write+0xad/0x1b0 ksys_write+0x42/0x90 do_syscall_64+0x5b/0x180 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Modules linked in: af_packet(E) xt_tcpudp(E) ipt_REJECT(E) xt_conntrack(E) nf_conntrack(E) nf_defrag_ipv4(E) ip_set(E) nfnetlink(E) ebtable_nat(E) ebtable_broute(E) bridge(E) stp(E) llc(E) iptable_mangle(E) iptable_raw(E) iptable_security(E) ebtable_filter(E) ebtables(E) iptable_filter(E) ip_tables(E) x_tables(E) kvm_intel(E) kvm(E) irqbypass(E) crct10dif_pclmul(E) crc32_pclmul(E) ghash_clmulni_intel(E) bochs_drm(E) ttm(E) aesni_intel(E) drm_kms_helper(E) aes_x86_64(E) crypto_simd(E) cryptd(E) glue_helper(E) drm(E) virtio_net(E) syscopyarea(E) sysfillrect(E) net_failover(E) sysimgblt(E) pcspkr(E) failover(E) i2c_piix4(E) fb_sys_fops(E) parport_pc(E) parport(E) button(E) btrfs(E) libcrc32c(E) xor(E) zstd_decompress(E) zstd_compress(E) xxhash(E) raid6_pq(E) sd_mod(E) ata_generic(E) ata_piix(E) ahci(E) libahci(E) libata(E) crc32c_intel(E) serio_raw(E) virtio_pci(E) virtio_ring(E) virtio(E) sg(E) scsi_mod(E) autofs4(E) [akpm@linux-foundation.org: fix brace layout, per David. Reduce indentation] Link: http://lkml.kernel.org/r/20190122154407.18417-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-02 01:20:47 +03:00
for (pfn = start; pfn < end; pfn++) {
mm,memory_hotplug: fix scan_movable_pages() for gigantic hugepages This is the same sort of error we saw in commit 17e2e7d7e1b8 ("mm, page_alloc: fix has_unmovable_pages for HugePages"). Gigantic hugepages cross several memblocks, so it can be that the page we get in scan_movable_pages() is a page-tail belonging to a 1G-hugepage. If that happens, page_hstate()->size_to_hstate() will return NULL, and we will blow up in hugepage_migration_supported(). The splat is as follows: BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 #PF error: [normal kernel read fault] PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 1 PID: 1350 Comm: bash Tainted: G E 5.0.0-rc1-mm1-1-default+ #27 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014 RIP: 0010:__offline_pages+0x6ae/0x900 Call Trace: memory_subsys_offline+0x42/0x60 device_offline+0x80/0xa0 state_store+0xab/0xc0 kernfs_fop_write+0x102/0x180 __vfs_write+0x26/0x190 vfs_write+0xad/0x1b0 ksys_write+0x42/0x90 do_syscall_64+0x5b/0x180 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Modules linked in: af_packet(E) xt_tcpudp(E) ipt_REJECT(E) xt_conntrack(E) nf_conntrack(E) nf_defrag_ipv4(E) ip_set(E) nfnetlink(E) ebtable_nat(E) ebtable_broute(E) bridge(E) stp(E) llc(E) iptable_mangle(E) iptable_raw(E) iptable_security(E) ebtable_filter(E) ebtables(E) iptable_filter(E) ip_tables(E) x_tables(E) kvm_intel(E) kvm(E) irqbypass(E) crct10dif_pclmul(E) crc32_pclmul(E) ghash_clmulni_intel(E) bochs_drm(E) ttm(E) aesni_intel(E) drm_kms_helper(E) aes_x86_64(E) crypto_simd(E) cryptd(E) glue_helper(E) drm(E) virtio_net(E) syscopyarea(E) sysfillrect(E) net_failover(E) sysimgblt(E) pcspkr(E) failover(E) i2c_piix4(E) fb_sys_fops(E) parport_pc(E) parport(E) button(E) btrfs(E) libcrc32c(E) xor(E) zstd_decompress(E) zstd_compress(E) xxhash(E) raid6_pq(E) sd_mod(E) ata_generic(E) ata_piix(E) ahci(E) libahci(E) libata(E) crc32c_intel(E) serio_raw(E) virtio_pci(E) virtio_ring(E) virtio(E) sg(E) scsi_mod(E) autofs4(E) [akpm@linux-foundation.org: fix brace layout, per David. Reduce indentation] Link: http://lkml.kernel.org/r/20190122154407.18417-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-02 01:20:47 +03:00
struct page *page, *head;
unsigned long skip;
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
if (PageLRU(page))
return pfn;
if (__PageMovable(page))
return pfn;
if (!PageHuge(page))
continue;
head = compound_head(page);
if (page_huge_active(head))
mm,memory_hotplug: fix scan_movable_pages() for gigantic hugepages This is the same sort of error we saw in commit 17e2e7d7e1b8 ("mm, page_alloc: fix has_unmovable_pages for HugePages"). Gigantic hugepages cross several memblocks, so it can be that the page we get in scan_movable_pages() is a page-tail belonging to a 1G-hugepage. If that happens, page_hstate()->size_to_hstate() will return NULL, and we will blow up in hugepage_migration_supported(). The splat is as follows: BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 #PF error: [normal kernel read fault] PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 1 PID: 1350 Comm: bash Tainted: G E 5.0.0-rc1-mm1-1-default+ #27 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014 RIP: 0010:__offline_pages+0x6ae/0x900 Call Trace: memory_subsys_offline+0x42/0x60 device_offline+0x80/0xa0 state_store+0xab/0xc0 kernfs_fop_write+0x102/0x180 __vfs_write+0x26/0x190 vfs_write+0xad/0x1b0 ksys_write+0x42/0x90 do_syscall_64+0x5b/0x180 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Modules linked in: af_packet(E) xt_tcpudp(E) ipt_REJECT(E) xt_conntrack(E) nf_conntrack(E) nf_defrag_ipv4(E) ip_set(E) nfnetlink(E) ebtable_nat(E) ebtable_broute(E) bridge(E) stp(E) llc(E) iptable_mangle(E) iptable_raw(E) iptable_security(E) ebtable_filter(E) ebtables(E) iptable_filter(E) ip_tables(E) x_tables(E) kvm_intel(E) kvm(E) irqbypass(E) crct10dif_pclmul(E) crc32_pclmul(E) ghash_clmulni_intel(E) bochs_drm(E) ttm(E) aesni_intel(E) drm_kms_helper(E) aes_x86_64(E) crypto_simd(E) cryptd(E) glue_helper(E) drm(E) virtio_net(E) syscopyarea(E) sysfillrect(E) net_failover(E) sysimgblt(E) pcspkr(E) failover(E) i2c_piix4(E) fb_sys_fops(E) parport_pc(E) parport(E) button(E) btrfs(E) libcrc32c(E) xor(E) zstd_decompress(E) zstd_compress(E) xxhash(E) raid6_pq(E) sd_mod(E) ata_generic(E) ata_piix(E) ahci(E) libahci(E) libata(E) crc32c_intel(E) serio_raw(E) virtio_pci(E) virtio_ring(E) virtio(E) sg(E) scsi_mod(E) autofs4(E) [akpm@linux-foundation.org: fix brace layout, per David. Reduce indentation] Link: http://lkml.kernel.org/r/20190122154407.18417-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-02 01:20:47 +03:00
return pfn;
skip = (1 << compound_order(head)) - (page - head);
pfn += skip - 1;
}
return 0;
}
static struct page *new_node_page(struct page *page, unsigned long private)
{
int nid = page_to_nid(page);
nodemask_t nmask = node_states[N_MEMORY];
/*
* try to allocate from a different node but reuse this node if there
* are no other online nodes to be used (e.g. we are offlining a part
* of the only existing node)
*/
node_clear(nid, nmask);
if (nodes_empty(nmask))
node_set(nid, nmask);
2017-07-11 01:48:47 +03:00
return new_page_nodemask(page, nid, &nmask);
}
static int
do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
struct page *page;
int ret = 0;
LIST_HEAD(source);
mm, memory_hotplug: try to migrate full pfn range Patch series "few memory offlining enhancements". I have been chasing memory offlining not making progress recently. On the way I have noticed few weird decisions in the code. The migration itself is restricted without a reasonable justification and the retry loop around the migration is quite messy. This is addressed by patch 1 and patch 2. Patch 3 is targeting on the faultaround code which has been a hot candidate for the initial issue reported upstream [2] and that I am debugging internally. It turned out to be not the main contributor in the end but I believe we should address it regardless. See the patch description for more details. [1] http://lkml.kernel.org/r/20181120134323.13007-1-mhocko@kernel.org [2] http://lkml.kernel.org/r/20181114070909.GB2653@MiWiFi-R3L-srv This patch (of 3): do_migrate_range has been limiting the number of pages to migrate to 256 for some reason which is not documented. Even if the limit made some sense back then when it was introduced it doesn't really serve a good purpose these days. If the range contains huge pages then we break out of the loop too early and go through LRU and pcp caches draining and scan_movable_pages is quite suboptimal. The only reason to limit the number of pages I can think of is to reduce the potential time to react on the fatal signal. But even then the number of pages is a questionable metric because even a single page migration might block in a non-killable state (e.g. __unmap_and_move). Remove the limit and offline the full requested range (this is one memblock worth of pages with the current code). Should we ever get a report that offlining takes too long to react on fatal signal then we should rather fix the core migration to use killable waits and bailout on a signal. Link: http://lkml.kernel.org/r/20181211142741.2607-1-mhocko@kernel.org Link: http://lkml.kernel.org/r/20181211142741.2607-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 11:38:29 +03:00
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
mm: memory-hotplug: enable memory hotplug to handle hugepage Until now we can't offline memory blocks which contain hugepages because a hugepage is considered as an unmovable page. But now with this patch series, a hugepage has become movable, so by using hugepage migration we can offline such memory blocks. What's different from other users of hugepage migration is that we need to decompose all the hugepages inside the target memory block into free buddy pages after hugepage migration, because otherwise free hugepages remaining in the memory block intervene the memory offlining. For this reason we introduce new functions dissolve_free_huge_page() and dissolve_free_huge_pages(). Other than that, what this patch does is straightforwardly to add hugepage migration code, that is, adding hugepage code to the functions which scan over pfn and collect hugepages to be migrated, and adding a hugepage allocation function to alloc_migrate_target(). As for larger hugepages (1GB for x86_64), it's not easy to do hotremove over them because it's larger than memory block. So we now simply leave it to fail as it is. [yongjun_wei@trendmicro.com.cn: remove duplicated include] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:22:09 +04:00
if (PageHuge(page)) {
struct page *head = compound_head(page);
pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
isolate_huge_page(head, &source);
mm: memory-hotplug: enable memory hotplug to handle hugepage Until now we can't offline memory blocks which contain hugepages because a hugepage is considered as an unmovable page. But now with this patch series, a hugepage has become movable, so by using hugepage migration we can offline such memory blocks. What's different from other users of hugepage migration is that we need to decompose all the hugepages inside the target memory block into free buddy pages after hugepage migration, because otherwise free hugepages remaining in the memory block intervene the memory offlining. For this reason we introduce new functions dissolve_free_huge_page() and dissolve_free_huge_pages(). Other than that, what this patch does is straightforwardly to add hugepage migration code, that is, adding hugepage code to the functions which scan over pfn and collect hugepages to be migrated, and adding a hugepage allocation function to alloc_migrate_target(). As for larger hugepages (1GB for x86_64), it's not easy to do hotremove over them because it's larger than memory block. So we now simply leave it to fail as it is. [yongjun_wei@trendmicro.com.cn: remove duplicated include] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:22:09 +04:00
continue;
mm: unclutter THP migration THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 02:30:07 +03:00
} else if (PageTransHuge(page))
pfn = page_to_pfn(compound_head(page))
+ hpage_nr_pages(page) - 1;
mm: memory-hotplug: enable memory hotplug to handle hugepage Until now we can't offline memory blocks which contain hugepages because a hugepage is considered as an unmovable page. But now with this patch series, a hugepage has become movable, so by using hugepage migration we can offline such memory blocks. What's different from other users of hugepage migration is that we need to decompose all the hugepages inside the target memory block into free buddy pages after hugepage migration, because otherwise free hugepages remaining in the memory block intervene the memory offlining. For this reason we introduce new functions dissolve_free_huge_page() and dissolve_free_huge_pages(). Other than that, what this patch does is straightforwardly to add hugepage migration code, that is, adding hugepage code to the functions which scan over pfn and collect hugepages to be migrated, and adding a hugepage allocation function to alloc_migrate_target(). As for larger hugepages (1GB for x86_64), it's not easy to do hotremove over them because it's larger than memory block. So we now simply leave it to fail as it is. [yongjun_wei@trendmicro.com.cn: remove duplicated include] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:22:09 +04:00
hwpoison, memory_hotplug: allow hwpoisoned pages to be offlined We have received a bug report that an injected MCE about faulty memory prevents memory offline to succeed on 4.4 base kernel. The underlying reason was that the HWPoison page has an elevated reference count and the migration keeps failing. There are two problems with that. First of all it is dubious to migrate the poisoned page because we know that accessing that memory is possible to fail. Secondly it doesn't make any sense to migrate a potentially broken content and preserve the memory corruption over to a new location. Oscar has found out that 4.4 and the current upstream kernels behave slightly differently with his simply testcase === int main(void) { int ret; int i; int fd; char *array = malloc(4096); char *array_locked = malloc(4096); fd = open("/tmp/data", O_RDONLY); read(fd, array, 4095); for (i = 0; i < 4096; i++) array_locked[i] = 'd'; ret = mlock((void *)PAGE_ALIGN((unsigned long)array_locked), sizeof(array_locked)); if (ret) perror("mlock"); sleep (20); ret = madvise((void *)PAGE_ALIGN((unsigned long)array_locked), 4096, MADV_HWPOISON); if (ret) perror("madvise"); for (i = 0; i < 4096; i++) array_locked[i] = 'd'; return 0; } === + offline this memory. In 4.4 kernels he saw the hwpoisoned page to be returned back to the LRU list kernel: [<ffffffff81019ac9>] dump_trace+0x59/0x340 kernel: [<ffffffff81019e9a>] show_stack_log_lvl+0xea/0x170 kernel: [<ffffffff8101ac71>] show_stack+0x21/0x40 kernel: [<ffffffff8132bb90>] dump_stack+0x5c/0x7c kernel: [<ffffffff810815a1>] warn_slowpath_common+0x81/0xb0 kernel: [<ffffffff811a275c>] __pagevec_lru_add_fn+0x14c/0x160 kernel: [<ffffffff811a2eed>] pagevec_lru_move_fn+0xad/0x100 kernel: [<ffffffff811a334c>] __lru_cache_add+0x6c/0xb0 kernel: [<ffffffff81195236>] add_to_page_cache_lru+0x46/0x70 kernel: [<ffffffffa02b4373>] extent_readpages+0xc3/0x1a0 [btrfs] kernel: [<ffffffff811a16d7>] __do_page_cache_readahead+0x177/0x200 kernel: [<ffffffff811a18c8>] ondemand_readahead+0x168/0x2a0 kernel: [<ffffffff8119673f>] generic_file_read_iter+0x41f/0x660 kernel: [<ffffffff8120e50d>] __vfs_read+0xcd/0x140 kernel: [<ffffffff8120e9ea>] vfs_read+0x7a/0x120 kernel: [<ffffffff8121404b>] kernel_read+0x3b/0x50 kernel: [<ffffffff81215c80>] do_execveat_common.isra.29+0x490/0x6f0 kernel: [<ffffffff81215f08>] do_execve+0x28/0x30 kernel: [<ffffffff81095ddb>] call_usermodehelper_exec_async+0xfb/0x130 kernel: [<ffffffff8161c045>] ret_from_fork+0x55/0x80 And that latter confuses the hotremove path because an LRU page is attempted to be migrated and that fails due to an elevated reference count. It is quite possible that the reuse of the HWPoisoned page is some kind of fixed race condition but I am not really sure about that. With the upstream kernel the failure is slightly different. The page doesn't seem to have LRU bit set but isolate_movable_page simply fails and do_migrate_range simply puts all the isolated pages back to LRU and therefore no progress is made and scan_movable_pages finds same set of pages over and over again. Fix both cases by explicitly checking HWPoisoned pages before we even try to get reference on the page, try to unmap it if it is still mapped. As explained by Naoya: : Hwpoison code never unmapped those for no big reason because : Ksm pages never dominate memory, so we simply didn't have strong : motivation to save the pages. Also put WARN_ON(PageLRU) in case there is a race and we can hit LRU HWPoison pages which shouldn't happen but I couldn't convince myself about that. Naoya has noted the following: : Theoretically no such gurantee, because try_to_unmap() doesn't have a : guarantee of success and then memory_failure() returns immediately : when hwpoison_user_mappings fails. : Or the following code (comes after hwpoison_user_mappings block) also impli= : es : that the target page can still have PageLRU flag. : : /* : * Torn down by someone else? : */ : if (PageLRU(p) && !PageSwapCache(p) && p->mapping =3D=3D NULL) { : action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); : res =3D -EBUSY; : goto out; : } : : So I think it's OK to keep "if (WARN_ON(PageLRU(page)))" block in : current version of your patch. Link: http://lkml.kernel.org/r/20181206120135.14079-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.com> Debugged-by: Oscar Salvador <osalvador@suse.com> Tested-by: Oscar Salvador <osalvador@suse.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 11:38:01 +03:00
/*
* HWPoison pages have elevated reference counts so the migration would
* fail on them. It also doesn't make any sense to migrate them in the
* first place. Still try to unmap such a page in case it is still mapped
* (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
* the unmap as the catch all safety net).
*/
if (PageHWPoison(page)) {
if (WARN_ON(PageLRU(page)))
isolate_lru_page(page);
if (page_mapped(page))
try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
continue;
}
if (!get_page_unless_zero(page))
continue;
/*
* We can skip free pages. And we can deal with pages on
* LRU and non-lru movable pages.
*/
if (PageLRU(page))
ret = isolate_lru_page(page);
else
ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
if (!ret) { /* Success */
vmscan: move isolate_lru_page() to vmscan.c On large memory systems, the VM can spend way too much time scanning through pages that it cannot (or should not) evict from memory. Not only does it use up CPU time, but it also provokes lock contention and can leave large systems under memory presure in a catatonic state. This patch series improves VM scalability by: 1) putting filesystem backed, swap backed and unevictable pages onto their own LRUs, so the system only scans the pages that it can/should evict from memory 2) switching to two handed clock replacement for the anonymous LRUs, so the number of pages that need to be scanned when the system starts swapping is bound to a reasonable number 3) keeping unevictable pages off the LRU completely, so the VM does not waste CPU time scanning them. ramfs, ramdisk, SHM_LOCKED shared memory segments and mlock()ed VMA pages are keept on the unevictable list. This patch: isolate_lru_page logically belongs to be in vmscan.c than migrate.c. It is tough, because we don't need that function without memory migration so there is a valid argument to have it in migrate.c. However a subsequent patch needs to make use of it in the core mm, so we can happily move it to vmscan.c. Also, make the function a little more generic by not requiring that it adds an isolated page to a given list. Callers can do that. Note that we now have '__isolate_lru_page()', that does something quite different, visible outside of vmscan.c for use with memory controller. Methinks we need to rationalize these names/purposes. --lts [akpm@linux-foundation.org: fix mm/memory_hotplug.c build] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 07:26:09 +04:00
list_add_tail(&page->lru, &source);
if (!__PageMovable(page))
inc_node_page_state(page, NR_ISOLATED_ANON +
page_is_file_cache(page));
} else {
mm, memory_hotplug: be more verbose for memory offline failures There is only very limited information printed when the memory offlining fails: [ 1984.506184] rac1 kernel: memory offlining [mem 0x82600000000-0x8267fffffff] failed due to signal backoff This tells us that the failure is triggered by the userspace intervention but it doesn't tell us much more about the underlying reason. It might be that the page migration failes repeatedly and the userspace timeout expires and send a signal or it might be some of the earlier steps (isolation, memory notifier) takes too long. If the migration failes then it would be really helpful to see which page that and its state. The same applies to the isolation phase. If we fail to isolate a page from the allocator then knowing the state of the page would be helpful as well. Dump the page state that fails to get isolated or migrated. This will tell us more about the failure and what to focus on during debugging. [akpm@linux-foundation.org: add missing printk arg] [mhocko@suse.com: tweak dump_page() `reason' text] Link: http://lkml.kernel.org/r/20181116083020.20260-6-mhocko@kernel.org Link: http://lkml.kernel.org/r/20181107101830.17405-6-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Baoquan He <bhe@redhat.com> Cc: Oscar Salvador <OSalvador@suse.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 11:33:53 +03:00
pr_warn("failed to isolate pfn %lx\n", pfn);
dump_page(page, "isolation failed");
}
mm, memory_hotplug: don't bail out in do_migrate_range() prematurely do_migrate_range() takes a memory range and tries to isolate the pages to put them into a list. This list will be later on used in migrate_pages() to know the pages we need to migrate. Currently, if we fail to isolate a single page, we put all already isolated pages back to their LRU and we bail out from the function. This is quite suboptimal, as this will force us to start over again because scan_movable_pages will give us the same range. If there is no chance that we can isolate that page, we will loop here forever. Issue debugged in [1] has proved that. During the debugging of that issue, it was noticed that if do_migrate_ranges() fails to isolate a single page, we will just discard the work we have done so far and bail out, which means that scan_movable_pages() will find again the same set of pages. Instead, we can just skip the error, keep isolating as much pages as possible and then proceed with the call to migrate_pages(). This will allow us to do as much work as possible at once. [1] https://lkml.org/lkml/2018/12/6/324 Michal said: : I still think that this doesn't give us a whole picture. Looping for : ever is a bug. Failing the isolation is quite possible and it should : be a ephemeral condition (e.g. a race with freeing the page or : somebody else isolating the page for whatever reason). And here comes : the disadvantage of the current implementation. We simply throw : everything on the floor just because of a ephemeral condition. The : racy page_count check is quite dubious to prevent from that. Link: http://lkml.kernel.org/r/20181211135312.27034-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Dan Williams <dan.j.williams@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-02 01:19:57 +03:00
put_page(page);
}
if (!list_empty(&source)) {
/* Allocate a new page from the nearest neighbor node */
ret = migrate_pages(&source, new_node_page, NULL, 0,
MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
mm, memory_hotplug: be more verbose for memory offline failures There is only very limited information printed when the memory offlining fails: [ 1984.506184] rac1 kernel: memory offlining [mem 0x82600000000-0x8267fffffff] failed due to signal backoff This tells us that the failure is triggered by the userspace intervention but it doesn't tell us much more about the underlying reason. It might be that the page migration failes repeatedly and the userspace timeout expires and send a signal or it might be some of the earlier steps (isolation, memory notifier) takes too long. If the migration failes then it would be really helpful to see which page that and its state. The same applies to the isolation phase. If we fail to isolate a page from the allocator then knowing the state of the page would be helpful as well. Dump the page state that fails to get isolated or migrated. This will tell us more about the failure and what to focus on during debugging. [akpm@linux-foundation.org: add missing printk arg] [mhocko@suse.com: tweak dump_page() `reason' text] Link: http://lkml.kernel.org/r/20181116083020.20260-6-mhocko@kernel.org Link: http://lkml.kernel.org/r/20181107101830.17405-6-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Baoquan He <bhe@redhat.com> Cc: Oscar Salvador <OSalvador@suse.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 11:33:53 +03:00
if (ret) {
list_for_each_entry(page, &source, lru) {
pr_warn("migrating pfn %lx failed ret:%d ",
page_to_pfn(page), ret);
dump_page(page, "migration failure");
}
mm: memory-hotplug: enable memory hotplug to handle hugepage Until now we can't offline memory blocks which contain hugepages because a hugepage is considered as an unmovable page. But now with this patch series, a hugepage has become movable, so by using hugepage migration we can offline such memory blocks. What's different from other users of hugepage migration is that we need to decompose all the hugepages inside the target memory block into free buddy pages after hugepage migration, because otherwise free hugepages remaining in the memory block intervene the memory offlining. For this reason we introduce new functions dissolve_free_huge_page() and dissolve_free_huge_pages(). Other than that, what this patch does is straightforwardly to add hugepage migration code, that is, adding hugepage code to the functions which scan over pfn and collect hugepages to be migrated, and adding a hugepage allocation function to alloc_migrate_target(). As for larger hugepages (1GB for x86_64), it's not easy to do hotremove over them because it's larger than memory block. So we now simply leave it to fail as it is. [yongjun_wei@trendmicro.com.cn: remove duplicated include] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:22:09 +04:00
putback_movable_pages(&source);
mm, memory_hotplug: be more verbose for memory offline failures There is only very limited information printed when the memory offlining fails: [ 1984.506184] rac1 kernel: memory offlining [mem 0x82600000000-0x8267fffffff] failed due to signal backoff This tells us that the failure is triggered by the userspace intervention but it doesn't tell us much more about the underlying reason. It might be that the page migration failes repeatedly and the userspace timeout expires and send a signal or it might be some of the earlier steps (isolation, memory notifier) takes too long. If the migration failes then it would be really helpful to see which page that and its state. The same applies to the isolation phase. If we fail to isolate a page from the allocator then knowing the state of the page would be helpful as well. Dump the page state that fails to get isolated or migrated. This will tell us more about the failure and what to focus on during debugging. [akpm@linux-foundation.org: add missing printk arg] [mhocko@suse.com: tweak dump_page() `reason' text] Link: http://lkml.kernel.org/r/20181116083020.20260-6-mhocko@kernel.org Link: http://lkml.kernel.org/r/20181107101830.17405-6-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Baoquan He <bhe@redhat.com> Cc: Oscar Salvador <OSalvador@suse.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 11:33:53 +03:00
}
}
mm, memory_hotplug: don't bail out in do_migrate_range() prematurely do_migrate_range() takes a memory range and tries to isolate the pages to put them into a list. This list will be later on used in migrate_pages() to know the pages we need to migrate. Currently, if we fail to isolate a single page, we put all already isolated pages back to their LRU and we bail out from the function. This is quite suboptimal, as this will force us to start over again because scan_movable_pages will give us the same range. If there is no chance that we can isolate that page, we will loop here forever. Issue debugged in [1] has proved that. During the debugging of that issue, it was noticed that if do_migrate_ranges() fails to isolate a single page, we will just discard the work we have done so far and bail out, which means that scan_movable_pages() will find again the same set of pages. Instead, we can just skip the error, keep isolating as much pages as possible and then proceed with the call to migrate_pages(). This will allow us to do as much work as possible at once. [1] https://lkml.org/lkml/2018/12/6/324 Michal said: : I still think that this doesn't give us a whole picture. Looping for : ever is a bug. Failing the isolation is quite possible and it should : be a ephemeral condition (e.g. a race with freeing the page or : somebody else isolating the page for whatever reason). And here comes : the disadvantage of the current implementation. We simply throw : everything on the floor just because of a ephemeral condition. The : racy page_count check is quite dubious to prevent from that. Link: http://lkml.kernel.org/r/20181211135312.27034-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Dan Williams <dan.j.williams@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-02 01:19:57 +03:00
return ret;
}
/*
* remove from free_area[] and mark all as Reserved.
*/
static int
offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
void *data)
{
unsigned long *offlined_pages = (unsigned long *)data;
*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
return 0;
}
/*
* Check all pages in range, recoreded as memory resource, are isolated.
*/
static int
check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
void *data)
{
return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
}
mem-hotplug: introduce movable_node boot option The hot-Pluggable field in SRAT specifies which memory is hotpluggable. As we mentioned before, if hotpluggable memory is used by the kernel, it cannot be hot-removed. So memory hotplug users may want to set all hotpluggable memory in ZONE_MOVABLE so that the kernel won't use it. Memory hotplug users may also set a node as movable node, which has ZONE_MOVABLE only, so that the whole node can be hot-removed. But the kernel cannot use memory in ZONE_MOVABLE. By doing this, the kernel cannot use memory in movable nodes. This will cause NUMA performance down. And other users may be unhappy. So we need a way to allow users to enable and disable this functionality. In this patch, we introduce movable_node boot option to allow users to choose to not to consume hotpluggable memory at early boot time and later we can set it as ZONE_MOVABLE. To achieve this, the movable_node boot option will control the memblock allocation direction. That said, after memblock is ready, before SRAT is parsed, we should allocate memory near the kernel image as we explained in the previous patches. So if movable_node boot option is set, the kernel does the following: 1. After memblock is ready, make memblock allocate memory bottom up. 2. After SRAT is parsed, make memblock behave as default, allocate memory top down. Users can specify "movable_node" in kernel commandline to enable this functionality. For those who don't use memory hotplug or who don't want to lose their NUMA performance, just don't specify anything. The kernel will work as before. Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Suggested-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Suggested-by: Ingo Molnar <mingo@kernel.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Toshi Kani <toshi.kani@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Thomas Renninger <trenn@suse.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 03:08:10 +04:00
static int __init cmdline_parse_movable_node(char *p)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
memblock, mem_hotplug: make memblock skip hotpluggable regions if needed Linux kernel cannot migrate pages used by the kernel. As a result, hotpluggable memory used by the kernel won't be able to be hot-removed. To solve this problem, the basic idea is to prevent memblock from allocating hotpluggable memory for the kernel at early time, and arrange all hotpluggable memory in ACPI SRAT(System Resource Affinity Table) as ZONE_MOVABLE when initializing zones. In the previous patches, we have marked hotpluggable memory regions with MEMBLOCK_HOTPLUG flag in memblock.memory. In this patch, we make memblock skip these hotpluggable memory regions in the default top-down allocation function if movable_node boot option is specified. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Chen Tang <imtangchen@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Liu Jiang <jiang.liu@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Renninger <trenn@suse.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 03:49:35 +04:00
movable_node_enabled = true;
#else
pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
#endif
mem-hotplug: introduce movable_node boot option The hot-Pluggable field in SRAT specifies which memory is hotpluggable. As we mentioned before, if hotpluggable memory is used by the kernel, it cannot be hot-removed. So memory hotplug users may want to set all hotpluggable memory in ZONE_MOVABLE so that the kernel won't use it. Memory hotplug users may also set a node as movable node, which has ZONE_MOVABLE only, so that the whole node can be hot-removed. But the kernel cannot use memory in ZONE_MOVABLE. By doing this, the kernel cannot use memory in movable nodes. This will cause NUMA performance down. And other users may be unhappy. So we need a way to allow users to enable and disable this functionality. In this patch, we introduce movable_node boot option to allow users to choose to not to consume hotpluggable memory at early boot time and later we can set it as ZONE_MOVABLE. To achieve this, the movable_node boot option will control the memblock allocation direction. That said, after memblock is ready, before SRAT is parsed, we should allocate memory near the kernel image as we explained in the previous patches. So if movable_node boot option is set, the kernel does the following: 1. After memblock is ready, make memblock allocate memory bottom up. 2. After SRAT is parsed, make memblock behave as default, allocate memory top down. Users can specify "movable_node" in kernel commandline to enable this functionality. For those who don't use memory hotplug or who don't want to lose their NUMA performance, just don't specify anything. The kernel will work as before. Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Suggested-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Suggested-by: Ingo Molnar <mingo@kernel.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Toshi Kani <toshi.kani@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Thomas Renninger <trenn@suse.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 03:08:10 +04:00
return 0;
}
early_param("movable_node", cmdline_parse_movable_node);
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
/* check which state of node_states will be changed when offline memory */
static void node_states_check_changes_offline(unsigned long nr_pages,
struct zone *zone, struct memory_notify *arg)
{
struct pglist_data *pgdat = zone->zone_pgdat;
unsigned long present_pages = 0;
mm/memory_hotplug.c: clean up node_states_check_changes_offline() This patch, as the previous one, gets rid of the wrong if statements. While at it, I realized that the comments are sometimes very confusing, to say the least, and wrong. For example: ___ zone_last = ZONE_MOVABLE; /* * check whether node_states[N_HIGH_MEMORY] will be changed * If we try to offline the last present @nr_pages from the node, * we can determind we will need to clear the node from * node_states[N_HIGH_MEMORY]. */ for (; zt <= zone_last; zt++) present_pages += pgdat->node_zones[zt].present_pages; if (nr_pages >= present_pages) arg->status_change_nid = zone_to_nid(zone); else arg->status_change_nid = -1; ___ In case the node gets empry, it must be removed from N_MEMORY. We already check N_HIGH_MEMORY a bit above within the CONFIG_HIGHMEM ifdef code. Not to say that status_change_nid is for N_MEMORY, and not for N_HIGH_MEMORY. So I re-wrote some of the comments to what I think is better. [osalvador@suse.de: address feedback from Pavel] Link: http://lkml.kernel.org/r/20180921132634.10103-5-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180919100819.25518-6-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 01:07:38 +03:00
enum zone_type zt;
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
mm: replace all open encodings for NUMA_NO_NODE Patch series "Replace all open encodings for NUMA_NO_NODE", v3. All these places for replacement were found by running the following grep patterns on the entire kernel code. Please let me know if this might have missed some instances. This might also have replaced some false positives. I will appreciate suggestions, inputs and review. 1. git grep "nid == -1" 2. git grep "node == -1" 3. git grep "nid = -1" 4. git grep "node = -1" This patch (of 2): At present there are multiple places where invalid node number is encoded as -1. Even though implicitly understood it is always better to have macros in there. Replace these open encodings for an invalid node number with the global macro NUMA_NO_NODE. This helps remove NUMA related assumptions like 'invalid node' from various places redirecting them to a common definition. Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe] Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx] Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband] Cc: Joseph Qi <jiangqi903@gmail.com> Cc: Hans Verkuil <hverkuil@xs4all.nl> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 02:42:58 +03:00
arg->status_change_nid = NUMA_NO_NODE;
arg->status_change_nid_normal = NUMA_NO_NODE;
arg->status_change_nid_high = NUMA_NO_NODE;
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
/*
mm/memory_hotplug.c: clean up node_states_check_changes_offline() This patch, as the previous one, gets rid of the wrong if statements. While at it, I realized that the comments are sometimes very confusing, to say the least, and wrong. For example: ___ zone_last = ZONE_MOVABLE; /* * check whether node_states[N_HIGH_MEMORY] will be changed * If we try to offline the last present @nr_pages from the node, * we can determind we will need to clear the node from * node_states[N_HIGH_MEMORY]. */ for (; zt <= zone_last; zt++) present_pages += pgdat->node_zones[zt].present_pages; if (nr_pages >= present_pages) arg->status_change_nid = zone_to_nid(zone); else arg->status_change_nid = -1; ___ In case the node gets empry, it must be removed from N_MEMORY. We already check N_HIGH_MEMORY a bit above within the CONFIG_HIGHMEM ifdef code. Not to say that status_change_nid is for N_MEMORY, and not for N_HIGH_MEMORY. So I re-wrote some of the comments to what I think is better. [osalvador@suse.de: address feedback from Pavel] Link: http://lkml.kernel.org/r/20180921132634.10103-5-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180919100819.25518-6-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 01:07:38 +03:00
* Check whether node_states[N_NORMAL_MEMORY] will be changed.
* If the memory to be offline is within the range
* [0..ZONE_NORMAL], and it is the last present memory there,
* the zones in that range will become empty after the offlining,
* thus we can determine that we need to clear the node from
* node_states[N_NORMAL_MEMORY].
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
*/
mm/memory_hotplug.c: clean up node_states_check_changes_offline() This patch, as the previous one, gets rid of the wrong if statements. While at it, I realized that the comments are sometimes very confusing, to say the least, and wrong. For example: ___ zone_last = ZONE_MOVABLE; /* * check whether node_states[N_HIGH_MEMORY] will be changed * If we try to offline the last present @nr_pages from the node, * we can determind we will need to clear the node from * node_states[N_HIGH_MEMORY]. */ for (; zt <= zone_last; zt++) present_pages += pgdat->node_zones[zt].present_pages; if (nr_pages >= present_pages) arg->status_change_nid = zone_to_nid(zone); else arg->status_change_nid = -1; ___ In case the node gets empry, it must be removed from N_MEMORY. We already check N_HIGH_MEMORY a bit above within the CONFIG_HIGHMEM ifdef code. Not to say that status_change_nid is for N_MEMORY, and not for N_HIGH_MEMORY. So I re-wrote some of the comments to what I think is better. [osalvador@suse.de: address feedback from Pavel] Link: http://lkml.kernel.org/r/20180921132634.10103-5-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180919100819.25518-6-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 01:07:38 +03:00
for (zt = 0; zt <= ZONE_NORMAL; zt++)
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
present_pages += pgdat->node_zones[zt].present_pages;
mm/memory_hotplug.c: clean up node_states_check_changes_offline() This patch, as the previous one, gets rid of the wrong if statements. While at it, I realized that the comments are sometimes very confusing, to say the least, and wrong. For example: ___ zone_last = ZONE_MOVABLE; /* * check whether node_states[N_HIGH_MEMORY] will be changed * If we try to offline the last present @nr_pages from the node, * we can determind we will need to clear the node from * node_states[N_HIGH_MEMORY]. */ for (; zt <= zone_last; zt++) present_pages += pgdat->node_zones[zt].present_pages; if (nr_pages >= present_pages) arg->status_change_nid = zone_to_nid(zone); else arg->status_change_nid = -1; ___ In case the node gets empry, it must be removed from N_MEMORY. We already check N_HIGH_MEMORY a bit above within the CONFIG_HIGHMEM ifdef code. Not to say that status_change_nid is for N_MEMORY, and not for N_HIGH_MEMORY. So I re-wrote some of the comments to what I think is better. [osalvador@suse.de: address feedback from Pavel] Link: http://lkml.kernel.org/r/20180921132634.10103-5-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180919100819.25518-6-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 01:07:38 +03:00
if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
arg->status_change_nid_normal = zone_to_nid(zone);
#ifdef CONFIG_HIGHMEM
/*
mm/memory_hotplug.c: clean up node_states_check_changes_offline() This patch, as the previous one, gets rid of the wrong if statements. While at it, I realized that the comments are sometimes very confusing, to say the least, and wrong. For example: ___ zone_last = ZONE_MOVABLE; /* * check whether node_states[N_HIGH_MEMORY] will be changed * If we try to offline the last present @nr_pages from the node, * we can determind we will need to clear the node from * node_states[N_HIGH_MEMORY]. */ for (; zt <= zone_last; zt++) present_pages += pgdat->node_zones[zt].present_pages; if (nr_pages >= present_pages) arg->status_change_nid = zone_to_nid(zone); else arg->status_change_nid = -1; ___ In case the node gets empry, it must be removed from N_MEMORY. We already check N_HIGH_MEMORY a bit above within the CONFIG_HIGHMEM ifdef code. Not to say that status_change_nid is for N_MEMORY, and not for N_HIGH_MEMORY. So I re-wrote some of the comments to what I think is better. [osalvador@suse.de: address feedback from Pavel] Link: http://lkml.kernel.org/r/20180921132634.10103-5-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180919100819.25518-6-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 01:07:38 +03:00
* node_states[N_HIGH_MEMORY] contains nodes which
* have normal memory or high memory.
* Here we add the present_pages belonging to ZONE_HIGHMEM.
* If the zone is within the range of [0..ZONE_HIGHMEM), and
* we determine that the zones in that range become empty,
* we need to clear the node for N_HIGH_MEMORY.
*/
mm/memory_hotplug.c: clean up node_states_check_changes_offline() This patch, as the previous one, gets rid of the wrong if statements. While at it, I realized that the comments are sometimes very confusing, to say the least, and wrong. For example: ___ zone_last = ZONE_MOVABLE; /* * check whether node_states[N_HIGH_MEMORY] will be changed * If we try to offline the last present @nr_pages from the node, * we can determind we will need to clear the node from * node_states[N_HIGH_MEMORY]. */ for (; zt <= zone_last; zt++) present_pages += pgdat->node_zones[zt].present_pages; if (nr_pages >= present_pages) arg->status_change_nid = zone_to_nid(zone); else arg->status_change_nid = -1; ___ In case the node gets empry, it must be removed from N_MEMORY. We already check N_HIGH_MEMORY a bit above within the CONFIG_HIGHMEM ifdef code. Not to say that status_change_nid is for N_MEMORY, and not for N_HIGH_MEMORY. So I re-wrote some of the comments to what I think is better. [osalvador@suse.de: address feedback from Pavel] Link: http://lkml.kernel.org/r/20180921132634.10103-5-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180919100819.25518-6-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 01:07:38 +03:00
present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
arg->status_change_nid_high = zone_to_nid(zone);
#endif
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
/*
mm/memory_hotplug.c: clean up node_states_check_changes_offline() This patch, as the previous one, gets rid of the wrong if statements. While at it, I realized that the comments are sometimes very confusing, to say the least, and wrong. For example: ___ zone_last = ZONE_MOVABLE; /* * check whether node_states[N_HIGH_MEMORY] will be changed * If we try to offline the last present @nr_pages from the node, * we can determind we will need to clear the node from * node_states[N_HIGH_MEMORY]. */ for (; zt <= zone_last; zt++) present_pages += pgdat->node_zones[zt].present_pages; if (nr_pages >= present_pages) arg->status_change_nid = zone_to_nid(zone); else arg->status_change_nid = -1; ___ In case the node gets empry, it must be removed from N_MEMORY. We already check N_HIGH_MEMORY a bit above within the CONFIG_HIGHMEM ifdef code. Not to say that status_change_nid is for N_MEMORY, and not for N_HIGH_MEMORY. So I re-wrote some of the comments to what I think is better. [osalvador@suse.de: address feedback from Pavel] Link: http://lkml.kernel.org/r/20180921132634.10103-5-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180919100819.25518-6-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 01:07:38 +03:00
* We have accounted the pages from [0..ZONE_NORMAL), and
* in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
* as well.
* Here we count the possible pages from ZONE_MOVABLE.
* If after having accounted all the pages, we see that the nr_pages
* to be offlined is over or equal to the accounted pages,
* we know that the node will become empty, and so, we can clear
* it for N_MEMORY as well.
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
*/
mm/memory_hotplug.c: clean up node_states_check_changes_offline() This patch, as the previous one, gets rid of the wrong if statements. While at it, I realized that the comments are sometimes very confusing, to say the least, and wrong. For example: ___ zone_last = ZONE_MOVABLE; /* * check whether node_states[N_HIGH_MEMORY] will be changed * If we try to offline the last present @nr_pages from the node, * we can determind we will need to clear the node from * node_states[N_HIGH_MEMORY]. */ for (; zt <= zone_last; zt++) present_pages += pgdat->node_zones[zt].present_pages; if (nr_pages >= present_pages) arg->status_change_nid = zone_to_nid(zone); else arg->status_change_nid = -1; ___ In case the node gets empry, it must be removed from N_MEMORY. We already check N_HIGH_MEMORY a bit above within the CONFIG_HIGHMEM ifdef code. Not to say that status_change_nid is for N_MEMORY, and not for N_HIGH_MEMORY. So I re-wrote some of the comments to what I think is better. [osalvador@suse.de: address feedback from Pavel] Link: http://lkml.kernel.org/r/20180921132634.10103-5-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180919100819.25518-6-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-27 01:07:38 +03:00
present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
if (nr_pages >= present_pages)
arg->status_change_nid = zone_to_nid(zone);
}
static void node_states_clear_node(int node, struct memory_notify *arg)
{
if (arg->status_change_nid_normal >= 0)
node_clear_state(node, N_NORMAL_MEMORY);
if (arg->status_change_nid_high >= 0)
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
node_clear_state(node, N_HIGH_MEMORY);
if (arg->status_change_nid >= 0)
node_clear_state(node, N_MEMORY);
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
}
static int __ref __offline_pages(unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn, nr_pages;
unsigned long offlined_pages = 0;
mm/hotplug: fix offline undo_isolate_page_range() Commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") introduced move_pfn_range_to_zone() which calls memmap_init_zone() during onlining a memory block. memmap_init_zone() will reset pagetype flags and makes migrate type to be MOVABLE. However, in __offline_pages(), it also call undo_isolate_page_range() after offline_isolated_pages() to do the same thing. Due to commit 2ce13640b3f4 ("mm: __first_valid_page skip over offline pages") changed __first_valid_page() to skip offline pages, undo_isolate_page_range() here just waste CPU cycles looping around the offlining PFN range while doing nothing, because __first_valid_page() will return NULL as offline_isolated_pages() has already marked all memory sections within the pfn range as offline via offline_mem_sections(). Also, after calling the "useless" undo_isolate_page_range() here, it reaches the point of no returning by notifying MEM_OFFLINE. Those pages will be marked as MIGRATE_MOVABLE again once onlining. The only thing left to do is to decrease the number of isolated pageblocks zone counter which would make some paths of the page allocation slower that the above commit introduced. Even if alloc_contig_range() can be used to isolate 16GB-hugetlb pages on ppc64, an "int" should still be enough to represent the number of pageblocks there. Fix an incorrect comment along the way. [cai@lca.pw: v4] Link: http://lkml.kernel.org/r/20190314150641.59358-1-cai@lca.pw Link: http://lkml.kernel.org/r/20190313143133.46200-1-cai@lca.pw Fixes: 2ce13640b3f4 ("mm: __first_valid_page skip over offline pages") Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> [4.13+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 06:43:34 +03:00
int ret, node, nr_isolate_pageblock;
unsigned long flags;
base/memory, hotplug: fix a kernel oops in show_valid_zones() Reading a sysfs "memoryN/valid_zones" file leads to the following oops when the first page of a range is not backed by struct page. show_valid_zones() assumes that 'start_pfn' is always valid for page_zone(). BUG: unable to handle kernel paging request at ffffea017a000000 IP: show_valid_zones+0x6f/0x160 This issue may happen on x86-64 systems with 64GiB or more memory since their memory block size is bumped up to 2GiB. [1] An example of such systems is desribed below. 0x3240000000 is only aligned by 1GiB and this memory block starts from 0x3200000000, which is not backed by struct page. BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable Since test_pages_in_a_zone() already checks holes, fix this issue by extending this function to return 'valid_start' and 'valid_end' for a given range. show_valid_zones() then proceeds with the valid range. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:23 +03:00
unsigned long valid_start, valid_end;
struct zone *zone;
struct memory_notify arg;
char *reason;
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock There seem to be some problems as result of 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"), which tried to fix a possible lock inversion reported and discussed in [1] due to the two locks a) device_lock() b) mem_hotplug_lock While add_memory() first takes b), followed by a) during bus_probe_device(), onlining of memory from user space first took a), followed by b), exposing a possible deadlock. In [1], and it was decided to not make use of device_hotplug_lock, but rather to enforce a locking order. The problems I spotted related to this: 1. Memory block device attributes: While .state first calls mem_hotplug_begin() and the calls device_online() - which takes device_lock() - .online does no longer call mem_hotplug_begin(), so effectively calls online_pages() without mem_hotplug_lock. 2. device_online() should be called under device_hotplug_lock, however onlining memory during add_memory() does not take care of that. In addition, I think there is also something wrong about the locking in 3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages() without locks. This was introduced after 30467e0b3be. And skimming over the code, I assume it could need some more care in regards to locking (e.g. device_online() called without device_hotplug_lock. This will be addressed in the following patches. Now that we hold the device_hotplug_lock when - adding memory (e.g. via add_memory()/add_memory_resource()) - removing memory (e.g. via remove_memory()) - device_online()/device_offline() We can move mem_hotplug_lock usage back into online_pages()/offline_pages(). Why is mem_hotplug_lock still needed? Essentially to make get_online_mems()/put_online_mems() be very fast (relying on device_hotplug_lock would be very slow), and to serialize against addition of memory that does not create memory block devices (hmm). [1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/ 2015-February/065324.html This patch is partly based on a patch by Vitaly Kuznetsov. Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:29 +03:00
mem_hotplug_begin();
/* This makes hotplug much easier...and readable.
we assume this for now. .*/
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock There seem to be some problems as result of 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"), which tried to fix a possible lock inversion reported and discussed in [1] due to the two locks a) device_lock() b) mem_hotplug_lock While add_memory() first takes b), followed by a) during bus_probe_device(), onlining of memory from user space first took a), followed by b), exposing a possible deadlock. In [1], and it was decided to not make use of device_hotplug_lock, but rather to enforce a locking order. The problems I spotted related to this: 1. Memory block device attributes: While .state first calls mem_hotplug_begin() and the calls device_online() - which takes device_lock() - .online does no longer call mem_hotplug_begin(), so effectively calls online_pages() without mem_hotplug_lock. 2. device_online() should be called under device_hotplug_lock, however onlining memory during add_memory() does not take care of that. In addition, I think there is also something wrong about the locking in 3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages() without locks. This was introduced after 30467e0b3be. And skimming over the code, I assume it could need some more care in regards to locking (e.g. device_online() called without device_hotplug_lock. This will be addressed in the following patches. Now that we hold the device_hotplug_lock when - adding memory (e.g. via add_memory()/add_memory_resource()) - removing memory (e.g. via remove_memory()) - device_online()/device_offline() We can move mem_hotplug_lock usage back into online_pages()/offline_pages(). Why is mem_hotplug_lock still needed? Essentially to make get_online_mems()/put_online_mems() be very fast (relying on device_hotplug_lock would be very slow), and to serialize against addition of memory that does not create memory block devices (hmm). [1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/ 2015-February/065324.html This patch is partly based on a patch by Vitaly Kuznetsov. Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:29 +03:00
if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
&valid_end)) {
ret = -EINVAL;
reason = "multizone range";
goto failed_removal;
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock There seem to be some problems as result of 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"), which tried to fix a possible lock inversion reported and discussed in [1] due to the two locks a) device_lock() b) mem_hotplug_lock While add_memory() first takes b), followed by a) during bus_probe_device(), onlining of memory from user space first took a), followed by b), exposing a possible deadlock. In [1], and it was decided to not make use of device_hotplug_lock, but rather to enforce a locking order. The problems I spotted related to this: 1. Memory block device attributes: While .state first calls mem_hotplug_begin() and the calls device_online() - which takes device_lock() - .online does no longer call mem_hotplug_begin(), so effectively calls online_pages() without mem_hotplug_lock. 2. device_online() should be called under device_hotplug_lock, however onlining memory during add_memory() does not take care of that. In addition, I think there is also something wrong about the locking in 3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages() without locks. This was introduced after 30467e0b3be. And skimming over the code, I assume it could need some more care in regards to locking (e.g. device_online() called without device_hotplug_lock. This will be addressed in the following patches. Now that we hold the device_hotplug_lock when - adding memory (e.g. via add_memory()/add_memory_resource()) - removing memory (e.g. via remove_memory()) - device_online()/device_offline() We can move mem_hotplug_lock usage back into online_pages()/offline_pages(). Why is mem_hotplug_lock still needed? Essentially to make get_online_mems()/put_online_mems() be very fast (relying on device_hotplug_lock would be very slow), and to serialize against addition of memory that does not create memory block devices (hmm). [1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/ 2015-February/065324.html This patch is partly based on a patch by Vitaly Kuznetsov. Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:29 +03:00
}
base/memory, hotplug: fix a kernel oops in show_valid_zones() Reading a sysfs "memoryN/valid_zones" file leads to the following oops when the first page of a range is not backed by struct page. show_valid_zones() assumes that 'start_pfn' is always valid for page_zone(). BUG: unable to handle kernel paging request at ffffea017a000000 IP: show_valid_zones+0x6f/0x160 This issue may happen on x86-64 systems with 64GiB or more memory since their memory block size is bumped up to 2GiB. [1] An example of such systems is desribed below. 0x3240000000 is only aligned by 1GiB and this memory block starts from 0x3200000000, which is not backed by struct page. BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable Since test_pages_in_a_zone() already checks holes, fix this issue by extending this function to return 'valid_start' and 'valid_end' for a given range. show_valid_zones() then proceeds with the valid range. [1] 'Commit bdee237c0343 ("x86: mm: Use 2GB memory block size on large-memory x86-64 systems")' Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> [4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-04 00:13:23 +03:00
zone = page_zone(pfn_to_page(valid_start));
node = zone_to_nid(zone);
nr_pages = end_pfn - start_pfn;
/* set above range as isolated */
ret = start_isolate_page_range(start_pfn, end_pfn,
mm: only report isolation failures when offlining memory Heiko has complained that his log is swamped by warnings from has_unmovable_pages [ 20.536664] page dumped because: has_unmovable_pages [ 20.536792] page:000003d081ff4080 count:1 mapcount:0 mapping:000000008ff88600 index:0x0 compound_mapcount: 0 [ 20.536794] flags: 0x3fffe0000010200(slab|head) [ 20.536795] raw: 03fffe0000010200 0000000000000100 0000000000000200 000000008ff88600 [ 20.536796] raw: 0000000000000000 0020004100000000 ffffffff00000001 0000000000000000 [ 20.536797] page dumped because: has_unmovable_pages [ 20.536814] page:000003d0823b0000 count:1 mapcount:0 mapping:0000000000000000 index:0x0 [ 20.536815] flags: 0x7fffe0000000000() [ 20.536817] raw: 07fffe0000000000 0000000000000100 0000000000000200 0000000000000000 [ 20.536818] raw: 0000000000000000 0000000000000000 ffffffff00000001 0000000000000000 which are not triggered by the memory hotplug but rather CMA allocator. The original idea behind dumping the page state for all call paths was that these messages will be helpful debugging failures. From the above it seems that this is not the case for the CMA path because we are lacking much more context. E.g the second reported page might be a CMA allocated page. It is still interesting to see a slab page in the CMA area but it is hard to tell whether this is bug from the above output alone. Address this issue by dumping the page state only on request. Both start_isolate_page_range and has_unmovable_pages already have an argument to ignore hwpoison pages so make this argument more generic and turn it into flags and allow callers to combine non-default modes into a mask. While we are at it, has_unmovable_pages call from is_pageblock_removable_nolock (sysfs removable file) is questionable to report the failure so drop it from there as well. Link: http://lkml.kernel.org/r/20181218092802.31429-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 11:33:56 +03:00
MIGRATE_MOVABLE,
SKIP_HWPOISON | REPORT_FAILURE);
mm/hotplug: fix offline undo_isolate_page_range() Commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") introduced move_pfn_range_to_zone() which calls memmap_init_zone() during onlining a memory block. memmap_init_zone() will reset pagetype flags and makes migrate type to be MOVABLE. However, in __offline_pages(), it also call undo_isolate_page_range() after offline_isolated_pages() to do the same thing. Due to commit 2ce13640b3f4 ("mm: __first_valid_page skip over offline pages") changed __first_valid_page() to skip offline pages, undo_isolate_page_range() here just waste CPU cycles looping around the offlining PFN range while doing nothing, because __first_valid_page() will return NULL as offline_isolated_pages() has already marked all memory sections within the pfn range as offline via offline_mem_sections(). Also, after calling the "useless" undo_isolate_page_range() here, it reaches the point of no returning by notifying MEM_OFFLINE. Those pages will be marked as MIGRATE_MOVABLE again once onlining. The only thing left to do is to decrease the number of isolated pageblocks zone counter which would make some paths of the page allocation slower that the above commit introduced. Even if alloc_contig_range() can be used to isolate 16GB-hugetlb pages on ppc64, an "int" should still be enough to represent the number of pageblocks there. Fix an incorrect comment along the way. [cai@lca.pw: v4] Link: http://lkml.kernel.org/r/20190314150641.59358-1-cai@lca.pw Link: http://lkml.kernel.org/r/20190313143133.46200-1-cai@lca.pw Fixes: 2ce13640b3f4 ("mm: __first_valid_page skip over offline pages") Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> [4.13+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 06:43:34 +03:00
if (ret < 0) {
reason = "failure to isolate range";
goto failed_removal;
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock There seem to be some problems as result of 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"), which tried to fix a possible lock inversion reported and discussed in [1] due to the two locks a) device_lock() b) mem_hotplug_lock While add_memory() first takes b), followed by a) during bus_probe_device(), onlining of memory from user space first took a), followed by b), exposing a possible deadlock. In [1], and it was decided to not make use of device_hotplug_lock, but rather to enforce a locking order. The problems I spotted related to this: 1. Memory block device attributes: While .state first calls mem_hotplug_begin() and the calls device_online() - which takes device_lock() - .online does no longer call mem_hotplug_begin(), so effectively calls online_pages() without mem_hotplug_lock. 2. device_online() should be called under device_hotplug_lock, however onlining memory during add_memory() does not take care of that. In addition, I think there is also something wrong about the locking in 3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages() without locks. This was introduced after 30467e0b3be. And skimming over the code, I assume it could need some more care in regards to locking (e.g. device_online() called without device_hotplug_lock. This will be addressed in the following patches. Now that we hold the device_hotplug_lock when - adding memory (e.g. via add_memory()/add_memory_resource()) - removing memory (e.g. via remove_memory()) - device_online()/device_offline() We can move mem_hotplug_lock usage back into online_pages()/offline_pages(). Why is mem_hotplug_lock still needed? Essentially to make get_online_mems()/put_online_mems() be very fast (relying on device_hotplug_lock would be very slow), and to serialize against addition of memory that does not create memory block devices (hmm). [1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/ 2015-February/065324.html This patch is partly based on a patch by Vitaly Kuznetsov. Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:29 +03:00
}
mm/hotplug: fix offline undo_isolate_page_range() Commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") introduced move_pfn_range_to_zone() which calls memmap_init_zone() during onlining a memory block. memmap_init_zone() will reset pagetype flags and makes migrate type to be MOVABLE. However, in __offline_pages(), it also call undo_isolate_page_range() after offline_isolated_pages() to do the same thing. Due to commit 2ce13640b3f4 ("mm: __first_valid_page skip over offline pages") changed __first_valid_page() to skip offline pages, undo_isolate_page_range() here just waste CPU cycles looping around the offlining PFN range while doing nothing, because __first_valid_page() will return NULL as offline_isolated_pages() has already marked all memory sections within the pfn range as offline via offline_mem_sections(). Also, after calling the "useless" undo_isolate_page_range() here, it reaches the point of no returning by notifying MEM_OFFLINE. Those pages will be marked as MIGRATE_MOVABLE again once onlining. The only thing left to do is to decrease the number of isolated pageblocks zone counter which would make some paths of the page allocation slower that the above commit introduced. Even if alloc_contig_range() can be used to isolate 16GB-hugetlb pages on ppc64, an "int" should still be enough to represent the number of pageblocks there. Fix an incorrect comment along the way. [cai@lca.pw: v4] Link: http://lkml.kernel.org/r/20190314150641.59358-1-cai@lca.pw Link: http://lkml.kernel.org/r/20190313143133.46200-1-cai@lca.pw Fixes: 2ce13640b3f4 ("mm: __first_valid_page skip over offline pages") Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> [4.13+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 06:43:34 +03:00
nr_isolate_pageblock = ret;
arg.start_pfn = start_pfn;
arg.nr_pages = nr_pages;
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
node_states_check_changes_offline(nr_pages, zone, &arg);
ret = memory_notify(MEM_GOING_OFFLINE, &arg);
ret = notifier_to_errno(ret);
if (ret) {
reason = "notifier failure";
goto failed_removal_isolated;
}
do {
for (pfn = start_pfn; pfn;) {
if (signal_pending(current)) {
ret = -EINTR;
reason = "signal backoff";
goto failed_removal_isolated;
}
mm, memory_hotplug: do not fail offlining too early Patch series "mm, memory_hotplug: redefine memory offline retry logic", v2. While testing memory hotplug on a large 4TB machine we have noticed that memory offlining is just too eager to fail. The primary reason is that the retry logic is just too easy to give up. We have 4 ways out of the offline - we have a permanent failure (isolation or memory notifiers fail, or hugetlb pages cannot be dropped) - userspace sends a signal - a hardcoded 120s timeout expires - page migration fails 5 times This is way too convoluted and it doesn't scale very well. We have seen both temporary migration failures as well as 120s being triggered. After removing those restrictions we were able to pass stress testing during memory hot remove without any other negative side effects observed. Therefore I suggest dropping both hard coded policies. I couldn't have found any specific reason for them in the changelog. I neither didn't get any response [1] from Kamezawa. If we need some upper bound - e.g. timeout based - then we should have a proper and user defined policy for that. In any case there should be a clear use case when introducing it. This patch (of 2): Memory offlining can fail too eagerly under heavy memory pressure. page:ffffea22a646bd00 count:255 mapcount:252 mapping:ffff88ff926c9f38 index:0x3 flags: 0x9855fe40010048(uptodate|active|mappedtodisk) page dumped because: isolation failed page->mem_cgroup:ffff8801cd662000 memory offlining [mem 0x18b580000000-0x18b5ffffffff] failed Isolation has failed here because the page is not on LRU. Most probably because it was on the pcp LRU cache or it has been removed from the LRU already but it hasn't been freed yet. In both cases the page doesn't look non-migrable so retrying more makes sense. __offline_pages seems rather cluttered when it comes to the retry logic. We have 5 retries at maximum and a timeout. We could argue whether the timeout makes sense but failing just because of a race when somebody isoltes a page from LRU or puts it on a pcp LRU lists is just wrong. It only takes it to race with a process which unmaps some pages and remove them from the LRU list and we can fail the whole offline because of something that is a temporary condition and actually not harmful for the offline. Please note that unmovable pages should be already excluded during start_isolate_page_range. We could argue that has_unmovable_pages is racy and MIGRATE_MOVABLE check doesn't provide any hard guarantee either but kernel zones (aka < ZONE_MOVABLE) will very likely detect unmovable pages in most cases and movable zone shouldn't contain unmovable pages at all. Some of those pages might be pinned but not for ever because that would be a bug on its own. In any case the context is still interruptible and so the userspace can easily bail out when the operation takes too long. This is certainly better behavior than a hardcoded retry loop which is racy. Fix this by removing the max retry count and only rely on the timeout resp. interruption by a signal from the userspace. Also retry rather than fail when check_pages_isolated sees some !free pages because those could be a result of the race as well. Link: http://lkml.kernel.org/r/20170918070834.13083-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 04:33:34 +03:00
cond_resched();
lru_add_drain_all();
pfn = scan_movable_pages(pfn, end_pfn);
if (pfn) {
/*
* TODO: fatal migration failures should bail
* out
*/
do_migrate_range(pfn, end_pfn);
}
}
/*
* Dissolve free hugepages in the memory block before doing
* offlining actually in order to make hugetlbfs's object
* counting consistent.
*/
ret = dissolve_free_huge_pages(start_pfn, end_pfn);
if (ret) {
reason = "failure to dissolve huge pages";
goto failed_removal_isolated;
}
/* check again */
ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
NULL, check_pages_isolated_cb);
} while (ret);
mm, memory_hotplug: do not fail offlining too early Patch series "mm, memory_hotplug: redefine memory offline retry logic", v2. While testing memory hotplug on a large 4TB machine we have noticed that memory offlining is just too eager to fail. The primary reason is that the retry logic is just too easy to give up. We have 4 ways out of the offline - we have a permanent failure (isolation or memory notifiers fail, or hugetlb pages cannot be dropped) - userspace sends a signal - a hardcoded 120s timeout expires - page migration fails 5 times This is way too convoluted and it doesn't scale very well. We have seen both temporary migration failures as well as 120s being triggered. After removing those restrictions we were able to pass stress testing during memory hot remove without any other negative side effects observed. Therefore I suggest dropping both hard coded policies. I couldn't have found any specific reason for them in the changelog. I neither didn't get any response [1] from Kamezawa. If we need some upper bound - e.g. timeout based - then we should have a proper and user defined policy for that. In any case there should be a clear use case when introducing it. This patch (of 2): Memory offlining can fail too eagerly under heavy memory pressure. page:ffffea22a646bd00 count:255 mapcount:252 mapping:ffff88ff926c9f38 index:0x3 flags: 0x9855fe40010048(uptodate|active|mappedtodisk) page dumped because: isolation failed page->mem_cgroup:ffff8801cd662000 memory offlining [mem 0x18b580000000-0x18b5ffffffff] failed Isolation has failed here because the page is not on LRU. Most probably because it was on the pcp LRU cache or it has been removed from the LRU already but it hasn't been freed yet. In both cases the page doesn't look non-migrable so retrying more makes sense. __offline_pages seems rather cluttered when it comes to the retry logic. We have 5 retries at maximum and a timeout. We could argue whether the timeout makes sense but failing just because of a race when somebody isoltes a page from LRU or puts it on a pcp LRU lists is just wrong. It only takes it to race with a process which unmaps some pages and remove them from the LRU list and we can fail the whole offline because of something that is a temporary condition and actually not harmful for the offline. Please note that unmovable pages should be already excluded during start_isolate_page_range. We could argue that has_unmovable_pages is racy and MIGRATE_MOVABLE check doesn't provide any hard guarantee either but kernel zones (aka < ZONE_MOVABLE) will very likely detect unmovable pages in most cases and movable zone shouldn't contain unmovable pages at all. Some of those pages might be pinned but not for ever because that would be a bug on its own. In any case the context is still interruptible and so the userspace can easily bail out when the operation takes too long. This is certainly better behavior than a hardcoded retry loop which is racy. Fix this by removing the max retry count and only rely on the timeout resp. interruption by a signal from the userspace. Also retry rather than fail when check_pages_isolated sees some !free pages because those could be a result of the race as well. Link: http://lkml.kernel.org/r/20170918070834.13083-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 04:33:34 +03:00
/* Ok, all of our target is isolated.
We cannot do rollback at this point. */
walk_system_ram_range(start_pfn, end_pfn - start_pfn,
&offlined_pages, offline_isolated_pages_cb);
pr_info("Offlined Pages %ld\n", offlined_pages);
mm/hotplug: fix offline undo_isolate_page_range() Commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") introduced move_pfn_range_to_zone() which calls memmap_init_zone() during onlining a memory block. memmap_init_zone() will reset pagetype flags and makes migrate type to be MOVABLE. However, in __offline_pages(), it also call undo_isolate_page_range() after offline_isolated_pages() to do the same thing. Due to commit 2ce13640b3f4 ("mm: __first_valid_page skip over offline pages") changed __first_valid_page() to skip offline pages, undo_isolate_page_range() here just waste CPU cycles looping around the offlining PFN range while doing nothing, because __first_valid_page() will return NULL as offline_isolated_pages() has already marked all memory sections within the pfn range as offline via offline_mem_sections(). Also, after calling the "useless" undo_isolate_page_range() here, it reaches the point of no returning by notifying MEM_OFFLINE. Those pages will be marked as MIGRATE_MOVABLE again once onlining. The only thing left to do is to decrease the number of isolated pageblocks zone counter which would make some paths of the page allocation slower that the above commit introduced. Even if alloc_contig_range() can be used to isolate 16GB-hugetlb pages on ppc64, an "int" should still be enough to represent the number of pageblocks there. Fix an incorrect comment along the way. [cai@lca.pw: v4] Link: http://lkml.kernel.org/r/20190314150641.59358-1-cai@lca.pw Link: http://lkml.kernel.org/r/20190313143133.46200-1-cai@lca.pw Fixes: 2ce13640b3f4 ("mm: __first_valid_page skip over offline pages") Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> [4.13+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 06:43:34 +03:00
/*
* Onlining will reset pagetype flags and makes migrate type
* MOVABLE, so just need to decrease the number of isolated
* pageblocks zone counter here.
*/
spin_lock_irqsave(&zone->lock, flags);
zone->nr_isolate_pageblock -= nr_isolate_pageblock;
spin_unlock_irqrestore(&zone->lock, flags);
/* removal success */
mm: correctly update zone->managed_pages Enhance adjust_managed_page_count() to adjust totalhigh_pages for highmem pages. And change code which directly adjusts totalram_pages to use adjust_managed_page_count() because it adjusts totalram_pages, totalhigh_pages and zone->managed_pages altogether in a safe way. Remove inc_totalhigh_pages() and dec_totalhigh_pages() from xen/balloon driver bacause adjust_managed_page_count() has already adjusted totalhigh_pages. This patch also fixes two bugs: 1) enhances virtio_balloon driver to adjust totalhigh_pages when reserve/unreserve pages. 2) enhance memory_hotplug.c to adjust totalhigh_pages when hot-removing memory. We still need to deal with modifications of totalram_pages in file arch/powerpc/platforms/pseries/cmm.c, but need help from PPC experts. [akpm@linux-foundation.org: remove ifdef, per Wanpeng Li, virtio_balloon.c cleanup, per Sergei] [akpm@linux-foundation.org: export adjust_managed_page_count() to modules, for drivers/virtio/virtio_balloon.c] Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <sworddragon2@aol.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 02:03:21 +04:00
adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
zone->present_pages -= offlined_pages;
pgdat_resize_lock(zone->zone_pgdat, &flags);
zone->zone_pgdat->node_present_pages -= offlined_pages;
pgdat_resize_unlock(zone->zone_pgdat, &flags);
init_per_zone_wmark_min();
if (!populated_zone(zone)) {
zone_pcp_reset(zone);
build_all_zonelists(NULL);
} else
zone_pcp_update(zone);
memory_hotplug: fix possible incorrect node_states[N_NORMAL_MEMORY] Currently memory_hotplug only manages the node_states[N_HIGH_MEMORY], it forgets to manage node_states[N_NORMAL_MEMORY]. This may cause node_states[N_NORMAL_MEMORY] to become incorrect. Example, if a node is empty before online, and we online a memory which is in ZONE_NORMAL. And after online, node_states[N_HIGH_MEMORY] is correct, but node_states[N_NORMAL_MEMORY] is incorrect, the online code doesn't set the new online node to node_states[N_NORMAL_MEMORY]. The same thing will happen when offlining (the offline code doesn't clear the node from node_states[N_NORMAL_MEMORY] when needed). Some memory managment code depends node_states[N_NORMAL_MEMORY], so we have to fix up the node_states[N_NORMAL_MEMORY]. We add node_states_check_changes_online() and node_states_check_changes_offline() to detect whether node_states[N_HIGH_MEMORY] and node_states[N_NORMAL_MEMORY] are changed while hotpluging. Also add @status_change_nid_normal to struct memory_notify, thus the memory hotplug callbacks know whether the node_states[N_NORMAL_MEMORY] are changed. (We can add a @flags and reuse @status_change_nid instead of introducing @status_change_nid_normal, but it will add much more complexity in memory hotplug callback in every subsystem. So introducing @status_change_nid_normal is better and it doesn't change the sematics of @status_change_nid) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Rob Landley <rob@landley.net> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 04:01:03 +04:00
node_states_clear_node(node, &arg);
mm, compaction: introduce kcompactd Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 00:18:08 +03:00
if (arg.status_change_nid >= 0) {
kswapd_stop(node);
mm, compaction: introduce kcompactd Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 00:18:08 +03:00
kcompactd_stop(node);
}
vm_total_pages = nr_free_pagecache_pages();
writeback_set_ratelimit();
memory_notify(MEM_OFFLINE, &arg);
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock There seem to be some problems as result of 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"), which tried to fix a possible lock inversion reported and discussed in [1] due to the two locks a) device_lock() b) mem_hotplug_lock While add_memory() first takes b), followed by a) during bus_probe_device(), onlining of memory from user space first took a), followed by b), exposing a possible deadlock. In [1], and it was decided to not make use of device_hotplug_lock, but rather to enforce a locking order. The problems I spotted related to this: 1. Memory block device attributes: While .state first calls mem_hotplug_begin() and the calls device_online() - which takes device_lock() - .online does no longer call mem_hotplug_begin(), so effectively calls online_pages() without mem_hotplug_lock. 2. device_online() should be called under device_hotplug_lock, however onlining memory during add_memory() does not take care of that. In addition, I think there is also something wrong about the locking in 3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages() without locks. This was introduced after 30467e0b3be. And skimming over the code, I assume it could need some more care in regards to locking (e.g. device_online() called without device_hotplug_lock. This will be addressed in the following patches. Now that we hold the device_hotplug_lock when - adding memory (e.g. via add_memory()/add_memory_resource()) - removing memory (e.g. via remove_memory()) - device_online()/device_offline() We can move mem_hotplug_lock usage back into online_pages()/offline_pages(). Why is mem_hotplug_lock still needed? Essentially to make get_online_mems()/put_online_mems() be very fast (relying on device_hotplug_lock would be very slow), and to serialize against addition of memory that does not create memory block devices (hmm). [1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/ 2015-February/065324.html This patch is partly based on a patch by Vitaly Kuznetsov. Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:29 +03:00
mem_hotplug_done();
return 0;
failed_removal_isolated:
undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
mm/memory_hotplug.c: fix notification in offline error path When start_isolate_page_range() returned -EBUSY in __offline_pages(), it calls memory_notify(MEM_CANCEL_OFFLINE, &arg) with an uninitialized "arg". As the result, it triggers warnings below. Also, it is only necessary to notify MEM_CANCEL_OFFLINE after MEM_GOING_OFFLINE. page:ffffea0001200000 count:1 mapcount:0 mapping:0000000000000000 index:0x0 flags: 0x3fffe000001000(reserved) raw: 003fffe000001000 ffffea0001200008 ffffea0001200008 0000000000000000 raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000 page dumped because: unmovable page WARNING: CPU: 25 PID: 1665 at mm/kasan/common.c:665 kasan_mem_notifier+0x34/0x23b CPU: 25 PID: 1665 Comm: bash Tainted: G W 5.0.0+ #94 Hardware name: HP ProLiant DL180 Gen9/ProLiant DL180 Gen9, BIOS U20 10/25/2017 RIP: 0010:kasan_mem_notifier+0x34/0x23b RSP: 0018:ffff8883ec737890 EFLAGS: 00010206 RAX: 0000000000000246 RBX: ff10f0f4435f1000 RCX: f887a7a21af88000 RDX: dffffc0000000000 RSI: 0000000000000020 RDI: ffff8881f221af88 RBP: ffff8883ec737898 R08: ffff888000000000 R09: ffffffffb0bddcd0 R10: ffffed103e857088 R11: ffff8881f42b8443 R12: dffffc0000000000 R13: 00000000fffffff9 R14: dffffc0000000000 R15: 0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000560fbd31d730 CR3: 00000004049c6003 CR4: 00000000001606a0 Call Trace: notifier_call_chain+0xbf/0x130 __blocking_notifier_call_chain+0x76/0xc0 blocking_notifier_call_chain+0x16/0x20 memory_notify+0x1b/0x20 __offline_pages+0x3e2/0x1210 offline_pages+0x11/0x20 memory_block_action+0x144/0x300 memory_subsys_offline+0xe5/0x170 device_offline+0x13f/0x1e0 state_store+0xeb/0x110 dev_attr_store+0x3f/0x70 sysfs_kf_write+0x104/0x150 kernfs_fop_write+0x25c/0x410 __vfs_write+0x66/0x120 vfs_write+0x15a/0x4f0 ksys_write+0xd2/0x1b0 __x64_sys_write+0x73/0xb0 do_syscall_64+0xeb/0xb78 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f14f75cc3b8 RSP: 002b:00007ffe84d01d68 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000008 RCX: 00007f14f75cc3b8 RDX: 0000000000000008 RSI: 0000563f8e433d70 RDI: 0000000000000001 RBP: 0000563f8e433d70 R08: 000000000000000a R09: 00007ffe84d018f0 R10: 000000000000000a R11: 0000000000000246 R12: 00007f14f789e780 R13: 0000000000000008 R14: 00007f14f7899740 R15: 0000000000000008 Link: http://lkml.kernel.org/r/20190320204255.53571-1-cai@lca.pw Fixes: 7960509329c2 ("mm, memory_hotplug: print reason for the offlining failure") Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: <stable@vger.kernel.org> [5.0.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 06:44:16 +03:00
memory_notify(MEM_CANCEL_OFFLINE, &arg);
failed_removal:
pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
(unsigned long long) start_pfn << PAGE_SHIFT,
((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
reason);
/* pushback to free area */
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock There seem to be some problems as result of 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"), which tried to fix a possible lock inversion reported and discussed in [1] due to the two locks a) device_lock() b) mem_hotplug_lock While add_memory() first takes b), followed by a) during bus_probe_device(), onlining of memory from user space first took a), followed by b), exposing a possible deadlock. In [1], and it was decided to not make use of device_hotplug_lock, but rather to enforce a locking order. The problems I spotted related to this: 1. Memory block device attributes: While .state first calls mem_hotplug_begin() and the calls device_online() - which takes device_lock() - .online does no longer call mem_hotplug_begin(), so effectively calls online_pages() without mem_hotplug_lock. 2. device_online() should be called under device_hotplug_lock, however onlining memory during add_memory() does not take care of that. In addition, I think there is also something wrong about the locking in 3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages() without locks. This was introduced after 30467e0b3be. And skimming over the code, I assume it could need some more care in regards to locking (e.g. device_online() called without device_hotplug_lock. This will be addressed in the following patches. Now that we hold the device_hotplug_lock when - adding memory (e.g. via add_memory()/add_memory_resource()) - removing memory (e.g. via remove_memory()) - device_online()/device_offline() We can move mem_hotplug_lock usage back into online_pages()/offline_pages(). Why is mem_hotplug_lock still needed? Essentially to make get_online_mems()/put_online_mems() be very fast (relying on device_hotplug_lock would be very slow), and to serialize against addition of memory that does not create memory block devices (hmm). [1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/ 2015-February/065324.html This patch is partly based on a patch by Vitaly Kuznetsov. Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:29 +03:00
mem_hotplug_done();
return ret;
}
int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
{
return __offline_pages(start_pfn, start_pfn + nr_pages);
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
/**
* walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
* @start_pfn: start pfn of the memory range
* @end_pfn: end pfn of the memory range
* @arg: argument passed to func
* @func: callback for each memory section walked
*
* This function walks through all present mem sections in range
* [start_pfn, end_pfn) and call func on each mem section.
*
* Returns the return value of func.
*/
int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
void *arg, int (*func)(struct memory_block *, void *))
{
struct memory_block *mem = NULL;
struct mem_section *section;
unsigned long pfn, section_nr;
int ret;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
section_nr = pfn_to_section_nr(pfn);
if (!present_section_nr(section_nr))
continue;
section = __nr_to_section(section_nr);
/* same memblock? */
if (mem)
if ((section_nr >= mem->start_section_nr) &&
(section_nr <= mem->end_section_nr))
continue;
mem = find_memory_block_hinted(section, mem);
if (!mem)
continue;
ret = func(mem, arg);
if (ret) {
kobject_put(&mem->dev.kobj);
return ret;
}
}
if (mem)
kobject_put(&mem->dev.kobj);
return 0;
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
{
int ret = !is_memblock_offlined(mem);
if (unlikely(ret)) {
phys_addr_t beginpa, endpa;
beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
&beginpa, &endpa);
mm/hotplug: make remove_memory() interface usable Presently the remove_memory() interface is inherently broken. It tries to remove memory but panics if some memory is not offline. The problem is that it is impossible to ensure that all memory blocks are offline as this function also takes lock_device_hotplug that is required to change memory state via sysfs. So, between calling this function and offlining all memory blocks there is always a window when lock_device_hotplug is released, and therefore, there is always a chance for a panic during this window. Make this interface to return an error if memory removal fails. This way it is safe to call this function without panicking machine, and also makes it symmetric to add_memory() which already returns an error. Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Takashi Iwai <tiwai@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 02:30:31 +03:00
return -EBUSY;
}
return 0;
}
mm/hotplug: remove stop_machine() from try_offline_node() lock_device_hotplug() serializes hotplug & online/offline operations. The lock is held in common sysfs online/offline interfaces and ACPI hotplug code paths. And here are the code paths: - CPU & Mem online/offline via sysfs online store_online()->lock_device_hotplug() - Mem online via sysfs state: store_mem_state()->lock_device_hotplug() - ACPI CPU & Mem hot-add: acpi_scan_bus_device_check()->lock_device_hotplug() - ACPI CPU & Mem hot-delete: acpi_scan_hot_remove()->lock_device_hotplug() try_offline_node() off-lines a node if all memory sections and cpus are removed on the node. It is called from acpi_processor_remove() and acpi_memory_remove_memory()->remove_memory() paths, both of which are in the ACPI hotplug code. try_offline_node() calls stop_machine() to stop all cpus while checking all cpu status with the assumption that the caller is not protected from CPU hotplug or CPU online/offline operations. However, the caller is always serialized with lock_device_hotplug(). Also, the code needs to be properly serialized with a lock, not by stopping all cpus at a random place with stop_machine(). This patch removes the use of stop_machine() in try_offline_node() and adds comments to try_offline_node() and remove_memory() that lock_device_hotplug() is required. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:21:50 +04:00
static int check_cpu_on_node(pg_data_t *pgdat)
{
int cpu;
for_each_present_cpu(cpu) {
if (cpu_to_node(cpu) == pgdat->node_id)
/*
* the cpu on this node isn't removed, and we can't
* offline this node.
*/
return -EBUSY;
}
return 0;
}
mm/hotplug: remove stop_machine() from try_offline_node() lock_device_hotplug() serializes hotplug & online/offline operations. The lock is held in common sysfs online/offline interfaces and ACPI hotplug code paths. And here are the code paths: - CPU & Mem online/offline via sysfs online store_online()->lock_device_hotplug() - Mem online via sysfs state: store_mem_state()->lock_device_hotplug() - ACPI CPU & Mem hot-add: acpi_scan_bus_device_check()->lock_device_hotplug() - ACPI CPU & Mem hot-delete: acpi_scan_hot_remove()->lock_device_hotplug() try_offline_node() off-lines a node if all memory sections and cpus are removed on the node. It is called from acpi_processor_remove() and acpi_memory_remove_memory()->remove_memory() paths, both of which are in the ACPI hotplug code. try_offline_node() calls stop_machine() to stop all cpus while checking all cpu status with the assumption that the caller is not protected from CPU hotplug or CPU online/offline operations. However, the caller is always serialized with lock_device_hotplug(). Also, the code needs to be properly serialized with a lock, not by stopping all cpus at a random place with stop_machine(). This patch removes the use of stop_machine() in try_offline_node() and adds comments to try_offline_node() and remove_memory() that lock_device_hotplug() is required. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:21:50 +04:00
/**
* try_offline_node
* @nid: the node ID
mm/hotplug: remove stop_machine() from try_offline_node() lock_device_hotplug() serializes hotplug & online/offline operations. The lock is held in common sysfs online/offline interfaces and ACPI hotplug code paths. And here are the code paths: - CPU & Mem online/offline via sysfs online store_online()->lock_device_hotplug() - Mem online via sysfs state: store_mem_state()->lock_device_hotplug() - ACPI CPU & Mem hot-add: acpi_scan_bus_device_check()->lock_device_hotplug() - ACPI CPU & Mem hot-delete: acpi_scan_hot_remove()->lock_device_hotplug() try_offline_node() off-lines a node if all memory sections and cpus are removed on the node. It is called from acpi_processor_remove() and acpi_memory_remove_memory()->remove_memory() paths, both of which are in the ACPI hotplug code. try_offline_node() calls stop_machine() to stop all cpus while checking all cpu status with the assumption that the caller is not protected from CPU hotplug or CPU online/offline operations. However, the caller is always serialized with lock_device_hotplug(). Also, the code needs to be properly serialized with a lock, not by stopping all cpus at a random place with stop_machine(). This patch removes the use of stop_machine() in try_offline_node() and adds comments to try_offline_node() and remove_memory() that lock_device_hotplug() is required. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 01:21:50 +04:00
*
* Offline a node if all memory sections and cpus of the node are removed.
*
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
* and online/offline operations before this call.
*/
void try_offline_node(int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
unsigned long start_pfn = pgdat->node_start_pfn;
unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
if (!present_section_nr(section_nr))
continue;
if (pfn_to_nid(pfn) != nid)
continue;
/*
* some memory sections of this node are not removed, and we
* can't offline node now.
*/
return;
}
mm, memory_hotplug: do not clear numa_node association after hot_remove Per-cpu numa_node provides a default node for each possible cpu. The association gets initialized during the boot when the architecture specific code explores cpu->NUMA affinity. When the whole NUMA node is removed though we are clearing this association try_offline_node check_and_unmap_cpu_on_node unmap_cpu_on_node numa_clear_node numa_set_node(cpu, NUMA_NO_NODE) This means that whoever calls cpu_to_node for a cpu associated with such a node will get NUMA_NO_NODE. This is problematic for two reasons. First it is fragile because __alloc_pages_node would simply blow up on an out-of-bound access. We have encountered this when loading kvm module BUG: unable to handle kernel paging request at 00000000000021c0 IP: __alloc_pages_nodemask+0x93/0xb70 PGD 800000ffe853e067 PUD 7336bbc067 PMD 0 Oops: 0000 [#1] SMP [...] CPU: 88 PID: 1223749 Comm: modprobe Tainted: G W 4.4.156-94.64-default #1 RIP: __alloc_pages_nodemask+0x93/0xb70 RSP: 0018:ffff887354493b40 EFLAGS: 00010202 RAX: 00000000000021c0 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000002 RDI: 00000000014000c0 RBP: 00000000014000c0 R08: ffffffffffffffff R09: 0000000000000000 R10: ffff88fffc89e790 R11: 0000000000014000 R12: 0000000000000101 R13: ffffffffa0772cd4 R14: ffffffffa0769ac0 R15: 0000000000000000 FS: 00007fdf2f2f1700(0000) GS:ffff88fffc880000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000021c0 CR3: 00000077205ee000 CR4: 0000000000360670 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: alloc_vmcs_cpu+0x3d/0x90 [kvm_intel] hardware_setup+0x781/0x849 [kvm_intel] kvm_arch_hardware_setup+0x28/0x190 [kvm] kvm_init+0x7c/0x2d0 [kvm] vmx_init+0x1e/0x32c [kvm_intel] do_one_initcall+0xca/0x1f0 do_init_module+0x5a/0x1d7 load_module+0x1393/0x1c90 SYSC_finit_module+0x70/0xa0 entry_SYSCALL_64_fastpath+0x1e/0xb7 DWARF2 unwinder stuck at entry_SYSCALL_64_fastpath+0x1e/0xb7 on an older kernel but the code is basically the same in the current Linus tree as well. alloc_vmcs_cpu could use alloc_pages_nodemask which would recognize NUMA_NO_NODE and use alloc_pages_node which would translate it to numa_mem_id but that is wrong as well because it would use a cpu affinity of the local CPU which might be quite far from the original node. It is also reasonable to expect that cpu_to_node will provide a sane value and there might be many more callers like that. The second problem is that __register_one_node relies on cpu_to_node to properly associate cpus back to the node when it is onlined. We do not want to lose that link as there is no arch independent way to get it from the early boot time AFAICS. Drop the whole check_and_unmap_cpu_on_node machinery and keep the association to fix both issues. The NODE_DATA(nid) is not deallocated so it will stay in place and if anybody wants to allocate from that node then a fallback node will be used. Thanks to Vlastimil Babka for his live system debugging skills that helped debugging the issue. Link: http://lkml.kernel.org/r/20181108100413.966-1-mhocko@kernel.org Fixes: e13fe8695c57 ("cpu-hotplug,memory-hotplug: clear cpu_to_node() when offlining the node") Signed-off-by: Michal Hocko <mhocko@suse.com> Debugged-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 11:34:13 +03:00
if (check_cpu_on_node(pgdat))
return;
/*
* all memory/cpu of this node are removed, we can offline this
* node now.
*/
node_set_offline(nid);
unregister_one_node(nid);
}
EXPORT_SYMBOL(try_offline_node);
mm/memory_hotplug: release memory resource after arch_remove_memory() Patch series "mm/memory_hotplug: Better error handling when removing memory", v1. Error handling when removing memory is somewhat messed up right now. Some errors result in warnings, others are completely ignored. Memory unplug code can essentially not deal with errors properly as of now. remove_memory() will never fail. We have basically two choices: 1. Allow arch_remov_memory() and friends to fail, propagating errors via remove_memory(). Might be problematic (e.g. DIMMs consisting of multiple pieces added/removed separately). 2. Don't allow the functions to fail, handling errors in a nicer way. It seems like most errors that can theoretically happen are really corner cases and mostly theoretical (e.g. "section not valid"). However e.g. aborting removal of sections while all callers simply continue in case of errors is not nice. If we can gurantee that removal of memory always works (and WARN/skip in case of theoretical errors so we can figure out what is going on), we can go ahead and implement better error handling when adding memory. E.g. via add_memory(): arch_add_memory() ret = do_stuff() if (ret) { arch_remove_memory(); goto error; } Handling here that arch_remove_memory() might fail is basically impossible. So I suggest, let's avoid reporting errors while removing memory, warning on theoretical errors instead and continuing instead of aborting. This patch (of 4): __add_pages() doesn't add the memory resource, so __remove_pages() shouldn't remove it. Let's factor it out. Especially as it is a special case for memory used as system memory, added via add_memory() and friends. We now remove the resource after removing the sections instead of doing it the other way around. I don't think this change is problematic. add_memory() register memory resource arch_add_memory() remove_memory arch_remove_memory() release memory resource While at it, explain why we ignore errors and that it only happeny if we remove memory in a different granularity as we added it. [david@redhat.com: fix printk warning] Link: http://lkml.kernel.org/r/20190417120204.6997-1-david@redhat.com Link: http://lkml.kernel.org/r/20190409100148.24703-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Qian Cai <cai@lca.pw> Cc: Arun KS <arunks@codeaurora.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh@kernel.org> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 03:21:33 +03:00
static void __release_memory_resource(resource_size_t start,
resource_size_t size)
{
int ret;
/*
* When removing memory in the same granularity as it was added,
* this function never fails. It might only fail if resources
* have to be adjusted or split. We'll ignore the error, as
* removing of memory cannot fail.
*/
ret = release_mem_region_adjustable(&iomem_resource, start, size);
if (ret) {
resource_size_t endres = start + size - 1;
pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
&start, &endres, ret);
}
}
mm/hotplug: make remove_memory() interface usable Presently the remove_memory() interface is inherently broken. It tries to remove memory but panics if some memory is not offline. The problem is that it is impossible to ensure that all memory blocks are offline as this function also takes lock_device_hotplug that is required to change memory state via sysfs. So, between calling this function and offlining all memory blocks there is always a window when lock_device_hotplug is released, and therefore, there is always a chance for a panic during this window. Make this interface to return an error if memory removal fails. This way it is safe to call this function without panicking machine, and also makes it symmetric to add_memory() which already returns an error. Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Takashi Iwai <tiwai@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 02:30:31 +03:00
static int __ref try_remove_memory(int nid, u64 start, u64 size)
{
mm/hotplug: make remove_memory() interface usable Presently the remove_memory() interface is inherently broken. It tries to remove memory but panics if some memory is not offline. The problem is that it is impossible to ensure that all memory blocks are offline as this function also takes lock_device_hotplug that is required to change memory state via sysfs. So, between calling this function and offlining all memory blocks there is always a window when lock_device_hotplug is released, and therefore, there is always a chance for a panic during this window. Make this interface to return an error if memory removal fails. This way it is safe to call this function without panicking machine, and also makes it symmetric to add_memory() which already returns an error. Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Takashi Iwai <tiwai@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 02:30:31 +03:00
int rc = 0;
memory-hotplug: try to offline the memory twice to avoid dependence memory can't be offlined when CONFIG_MEMCG is selected. For example: there is a memory device on node 1. The address range is [1G, 1.5G). You will find 4 new directories memory8, memory9, memory10, and memory11 under the directory /sys/devices/system/memory/. If CONFIG_MEMCG is selected, we will allocate memory to store page cgroup when we online pages. When we online memory8, the memory stored page cgroup is not provided by this memory device. But when we online memory9, the memory stored page cgroup may be provided by memory8. So we can't offline memory8 now. We should offline the memory in the reversed order. When the memory device is hotremoved, we will auto offline memory provided by this memory device. But we don't know which memory is onlined first, so offlining memory may fail. In such case, iterate twice to offline the memory. 1st iterate: offline every non primary memory block. 2nd iterate: offline primary (i.e. first added) memory block. This idea is suggested by KOSAKI Motohiro. Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Wu Jianguo <wujianguo@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:32:50 +04:00
BUG_ON(check_hotplug_memory_range(start, size));
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
mem_hotplug_begin();
memory-hotplug: check whether all memory blocks are offlined or not when removing memory We remove the memory like this: 1. lock memory hotplug 2. offline a memory block 3. unlock memory hotplug 4. repeat 1-3 to offline all memory blocks 5. lock memory hotplug 6. remove memory(TODO) 7. unlock memory hotplug All memory blocks must be offlined before removing memory. But we don't hold the lock in the whole operation. So we should check whether all memory blocks are offlined before step6. Otherwise, kernel maybe panicked. Offlining a memory block and removing a memory device can be two different operations. Users can just offline some memory blocks without removing the memory device. For this purpose, the kernel has held lock_memory_hotplug() in __offline_pages(). To reuse the code for memory hot-remove, we repeat step 1-3 to offline all the memory blocks, repeatedly lock and unlock memory hotplug, but not hold the memory hotplug lock in the whole operation. Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Wu Jianguo <wujianguo@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:32:52 +04:00
/*
* All memory blocks must be offlined before removing memory. Check
mm/hotplug: make remove_memory() interface usable Presently the remove_memory() interface is inherently broken. It tries to remove memory but panics if some memory is not offline. The problem is that it is impossible to ensure that all memory blocks are offline as this function also takes lock_device_hotplug that is required to change memory state via sysfs. So, between calling this function and offlining all memory blocks there is always a window when lock_device_hotplug is released, and therefore, there is always a chance for a panic during this window. Make this interface to return an error if memory removal fails. This way it is safe to call this function without panicking machine, and also makes it symmetric to add_memory() which already returns an error. Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Takashi Iwai <tiwai@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 02:30:31 +03:00
* whether all memory blocks in question are offline and return error
* if this is not the case.
memory-hotplug: check whether all memory blocks are offlined or not when removing memory We remove the memory like this: 1. lock memory hotplug 2. offline a memory block 3. unlock memory hotplug 4. repeat 1-3 to offline all memory blocks 5. lock memory hotplug 6. remove memory(TODO) 7. unlock memory hotplug All memory blocks must be offlined before removing memory. But we don't hold the lock in the whole operation. So we should check whether all memory blocks are offlined before step6. Otherwise, kernel maybe panicked. Offlining a memory block and removing a memory device can be two different operations. Users can just offline some memory blocks without removing the memory device. For this purpose, the kernel has held lock_memory_hotplug() in __offline_pages(). To reuse the code for memory hot-remove, we repeat step 1-3 to offline all the memory blocks, repeatedly lock and unlock memory hotplug, but not hold the memory hotplug lock in the whole operation. Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Wu Jianguo <wujianguo@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:32:52 +04:00
*/
mm/hotplug: make remove_memory() interface usable Presently the remove_memory() interface is inherently broken. It tries to remove memory but panics if some memory is not offline. The problem is that it is impossible to ensure that all memory blocks are offline as this function also takes lock_device_hotplug that is required to change memory state via sysfs. So, between calling this function and offlining all memory blocks there is always a window when lock_device_hotplug is released, and therefore, there is always a chance for a panic during this window. Make this interface to return an error if memory removal fails. This way it is safe to call this function without panicking machine, and also makes it symmetric to add_memory() which already returns an error. Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Takashi Iwai <tiwai@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 02:30:31 +03:00
rc = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
check_memblock_offlined_cb);
if (rc)
goto done;
memory-hotplug: check whether all memory blocks are offlined or not when removing memory We remove the memory like this: 1. lock memory hotplug 2. offline a memory block 3. unlock memory hotplug 4. repeat 1-3 to offline all memory blocks 5. lock memory hotplug 6. remove memory(TODO) 7. unlock memory hotplug All memory blocks must be offlined before removing memory. But we don't hold the lock in the whole operation. So we should check whether all memory blocks are offlined before step6. Otherwise, kernel maybe panicked. Offlining a memory block and removing a memory device can be two different operations. Users can just offline some memory blocks without removing the memory device. For this purpose, the kernel has held lock_memory_hotplug() in __offline_pages(). To reuse the code for memory hot-remove, we repeat step 1-3 to offline all the memory blocks, repeatedly lock and unlock memory hotplug, but not hold the memory hotplug lock in the whole operation. Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Wu Jianguo <wujianguo@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:32:52 +04:00
memory-hotplug: remove /sys/firmware/memmap/X sysfs When (hot)adding memory into system, /sys/firmware/memmap/X/{end, start, type} sysfs files are created. But there is no code to remove these files. This patch implements the function to remove them. We cannot free firmware_map_entry which is allocated by bootmem because there is no way to do so when the system is up. But we can at least remember the address of that memory and reuse the storage when the memory is added next time. This patch also introduces a new list map_entries_bootmem to link the map entries allocated by bootmem when they are removed, and a lock to protect it. And these entries will be reused when the memory is hot-added again. The idea is suggestted by Andrew Morton. NOTE: It is unsafe to return an entry pointer and release the map_entries_lock. So we should not hold the map_entries_lock separately in firmware_map_find_entry() and firmware_map_remove_entry(). Hold the map_entries_lock across find and remove /sys/firmware/memmap/X operation. And also, users of these two functions need to be careful to hold the lock when using these two functions. [tangchen@cn.fujitsu.com: Hold spinlock across find|remove /sys operation] [tangchen@cn.fujitsu.com: fix the wrong comments of map_entries] [tangchen@cn.fujitsu.com: reuse the storage of /sys/firmware/memmap/X/ allocated by bootmem] [tangchen@cn.fujitsu.com: fix section mismatch problem] [tangchen@cn.fujitsu.com: fix the doc format in drivers/firmware/memmap.c] Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Julian Calaby <julian.calaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:32:56 +04:00
/* remove memmap entry */
firmware_map_remove(start, start + size, "System RAM");
memblock_free(start, size);
memblock_remove(start, size);
memory-hotplug: remove /sys/firmware/memmap/X sysfs When (hot)adding memory into system, /sys/firmware/memmap/X/{end, start, type} sysfs files are created. But there is no code to remove these files. This patch implements the function to remove them. We cannot free firmware_map_entry which is allocated by bootmem because there is no way to do so when the system is up. But we can at least remember the address of that memory and reuse the storage when the memory is added next time. This patch also introduces a new list map_entries_bootmem to link the map entries allocated by bootmem when they are removed, and a lock to protect it. And these entries will be reused when the memory is hot-added again. The idea is suggestted by Andrew Morton. NOTE: It is unsafe to return an entry pointer and release the map_entries_lock. So we should not hold the map_entries_lock separately in firmware_map_find_entry() and firmware_map_remove_entry(). Hold the map_entries_lock across find and remove /sys/firmware/memmap/X operation. And also, users of these two functions need to be careful to hold the lock when using these two functions. [tangchen@cn.fujitsu.com: Hold spinlock across find|remove /sys operation] [tangchen@cn.fujitsu.com: fix the wrong comments of map_entries] [tangchen@cn.fujitsu.com: reuse the storage of /sys/firmware/memmap/X/ allocated by bootmem] [tangchen@cn.fujitsu.com: fix section mismatch problem] [tangchen@cn.fujitsu.com: fix the doc format in drivers/firmware/memmap.c] Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Julian Calaby <julian.calaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 04:32:56 +04:00
arch_remove_memory(nid, start, size, NULL);
mm/memory_hotplug: release memory resource after arch_remove_memory() Patch series "mm/memory_hotplug: Better error handling when removing memory", v1. Error handling when removing memory is somewhat messed up right now. Some errors result in warnings, others are completely ignored. Memory unplug code can essentially not deal with errors properly as of now. remove_memory() will never fail. We have basically two choices: 1. Allow arch_remov_memory() and friends to fail, propagating errors via remove_memory(). Might be problematic (e.g. DIMMs consisting of multiple pieces added/removed separately). 2. Don't allow the functions to fail, handling errors in a nicer way. It seems like most errors that can theoretically happen are really corner cases and mostly theoretical (e.g. "section not valid"). However e.g. aborting removal of sections while all callers simply continue in case of errors is not nice. If we can gurantee that removal of memory always works (and WARN/skip in case of theoretical errors so we can figure out what is going on), we can go ahead and implement better error handling when adding memory. E.g. via add_memory(): arch_add_memory() ret = do_stuff() if (ret) { arch_remove_memory(); goto error; } Handling here that arch_remove_memory() might fail is basically impossible. So I suggest, let's avoid reporting errors while removing memory, warning on theoretical errors instead and continuing instead of aborting. This patch (of 4): __add_pages() doesn't add the memory resource, so __remove_pages() shouldn't remove it. Let's factor it out. Especially as it is a special case for memory used as system memory, added via add_memory() and friends. We now remove the resource after removing the sections instead of doing it the other way around. I don't think this change is problematic. add_memory() register memory resource arch_add_memory() remove_memory arch_remove_memory() release memory resource While at it, explain why we ignore errors and that it only happeny if we remove memory in a different granularity as we added it. [david@redhat.com: fix printk warning] Link: http://lkml.kernel.org/r/20190417120204.6997-1-david@redhat.com Link: http://lkml.kernel.org/r/20190409100148.24703-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Qian Cai <cai@lca.pw> Cc: Arun KS <arunks@codeaurora.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh@kernel.org> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 03:21:33 +03:00
__release_memory_resource(start, size);
try_offline_node(nid);
mm/hotplug: make remove_memory() interface usable Presently the remove_memory() interface is inherently broken. It tries to remove memory but panics if some memory is not offline. The problem is that it is impossible to ensure that all memory blocks are offline as this function also takes lock_device_hotplug that is required to change memory state via sysfs. So, between calling this function and offlining all memory blocks there is always a window when lock_device_hotplug is released, and therefore, there is always a chance for a panic during this window. Make this interface to return an error if memory removal fails. This way it is safe to call this function without panicking machine, and also makes it symmetric to add_memory() which already returns an error. Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Takashi Iwai <tiwai@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 02:30:31 +03:00
done:
mem-hotplug: implement get/put_online_mems kmem_cache_{create,destroy,shrink} need to get a stable value of cpu/node online mask, because they init/destroy/access per-cpu/node kmem_cache parts, which can be allocated or destroyed on cpu/mem hotplug. To protect against cpu hotplug, these functions use {get,put}_online_cpus. However, they do nothing to synchronize with memory hotplug - taking the slab_mutex does not eliminate the possibility of race as described in patch 2. What we need there is something like get_online_cpus, but for memory. We already have lock_memory_hotplug, which serves for the purpose, but it's a bit of a hammer right now, because it's backed by a mutex. As a result, it imposes some limitations to locking order, which are not desirable, and can't be used just like get_online_cpus. That's why in patch 1 I substitute it with get/put_online_mems, which work exactly like get/put_online_cpus except they block not cpu, but memory hotplug. [ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by myself, because it used an rw semaphore for get/put_online_mems, making them dead lock prune. ] This patch (of 2): {un}lock_memory_hotplug, which is used to synchronize against memory hotplug, is currently backed by a mutex, which makes it a bit of a hammer - threads that only want to get a stable value of online nodes mask won't be able to proceed concurrently. Also, it imposes some strong locking ordering rules on it, which narrows down the set of its usage scenarios. This patch introduces get/put_online_mems, which are the same as get/put_online_cpus, but for memory hotplug, i.e. executing a code inside a get/put_online_mems section will guarantee a stable value of online nodes, present pages, etc. lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 03:07:18 +04:00
mem_hotplug_done();
mm/hotplug: make remove_memory() interface usable Presently the remove_memory() interface is inherently broken. It tries to remove memory but panics if some memory is not offline. The problem is that it is impossible to ensure that all memory blocks are offline as this function also takes lock_device_hotplug that is required to change memory state via sysfs. So, between calling this function and offlining all memory blocks there is always a window when lock_device_hotplug is released, and therefore, there is always a chance for a panic during this window. Make this interface to return an error if memory removal fails. This way it is safe to call this function without panicking machine, and also makes it symmetric to add_memory() which already returns an error. Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Takashi Iwai <tiwai@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 02:30:31 +03:00
return rc;
}
mm/memory_hotplug: make remove_memory() take the device_hotplug_lock Patch series "mm: online/offline_pages called w.o. mem_hotplug_lock", v3. Reading through the code and studying how mem_hotplug_lock is to be used, I noticed that there are two places where we can end up calling device_online()/device_offline() - online_pages()/offline_pages() without the mem_hotplug_lock. And there are other places where we call device_online()/device_offline() without the device_hotplug_lock. While e.g. echo "online" > /sys/devices/system/memory/memory9/state is fine, e.g. echo 1 > /sys/devices/system/memory/memory9/online Will not take the mem_hotplug_lock. However the device_lock() and device_hotplug_lock. E.g. via memory_probe_store(), we can end up calling add_memory()->online_pages() without the device_hotplug_lock. So we can have concurrent callers in online_pages(). We e.g. touch in online_pages() basically unprotected zone->present_pages then. Looks like there is a longer history to that (see Patch #2 for details), and fixing it to work the way it was intended is not really possible. We would e.g. have to take the mem_hotplug_lock in device/base/core.c, which sounds wrong. Summary: We had a lock inversion on mem_hotplug_lock and device_lock(). More details can be found in patch 3 and patch 6. I propose the general rules (documentation added in patch 6): 1. add_memory/add_memory_resource() must only be called with device_hotplug_lock. 2. remove_memory() must only be called with device_hotplug_lock. This is already documented and holds for all callers. 3. device_online()/device_offline() must only be called with device_hotplug_lock. This is already documented and true for now in core code. Other callers (related to memory hotplug) have to be fixed up. 4. mem_hotplug_lock is taken inside of add_memory/remove_memory/ online_pages/offline_pages. To me, this looks way cleaner than what we have right now (and easier to verify). And looking at the documentation of remove_memory, using lock_device_hotplug also for add_memory() feels natural. This patch (of 6): remove_memory() is exported right now but requires the device_hotplug_lock, which is not exported. So let's provide a variant that takes the lock and only export that one. The lock is already held in arch/powerpc/platforms/pseries/hotplug-memory.c drivers/acpi/acpi_memhotplug.c arch/powerpc/platforms/powernv/memtrace.c Apart from that, there are not other users in the tree. Link: http://lkml.kernel.org/r/20180925091457.28651-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Juergen Gross <jgross@suse.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:18 +03:00
mm/hotplug: make remove_memory() interface usable Presently the remove_memory() interface is inherently broken. It tries to remove memory but panics if some memory is not offline. The problem is that it is impossible to ensure that all memory blocks are offline as this function also takes lock_device_hotplug that is required to change memory state via sysfs. So, between calling this function and offlining all memory blocks there is always a window when lock_device_hotplug is released, and therefore, there is always a chance for a panic during this window. Make this interface to return an error if memory removal fails. This way it is safe to call this function without panicking machine, and also makes it symmetric to add_memory() which already returns an error. Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Takashi Iwai <tiwai@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 02:30:31 +03:00
/**
* remove_memory
* @nid: the node ID
* @start: physical address of the region to remove
* @size: size of the region to remove
*
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
* and online/offline operations before this call, as required by
* try_offline_node().
*/
void __remove_memory(int nid, u64 start, u64 size)
{
/*
* trigger BUG() is some memory is not offlined prior to calling this
* function
*/
if (try_remove_memory(nid, start, size))
BUG();
}
/*
* Remove memory if every memory block is offline, otherwise return -EBUSY is
* some memory is not offline
*/
int remove_memory(int nid, u64 start, u64 size)
mm/memory_hotplug: make remove_memory() take the device_hotplug_lock Patch series "mm: online/offline_pages called w.o. mem_hotplug_lock", v3. Reading through the code and studying how mem_hotplug_lock is to be used, I noticed that there are two places where we can end up calling device_online()/device_offline() - online_pages()/offline_pages() without the mem_hotplug_lock. And there are other places where we call device_online()/device_offline() without the device_hotplug_lock. While e.g. echo "online" > /sys/devices/system/memory/memory9/state is fine, e.g. echo 1 > /sys/devices/system/memory/memory9/online Will not take the mem_hotplug_lock. However the device_lock() and device_hotplug_lock. E.g. via memory_probe_store(), we can end up calling add_memory()->online_pages() without the device_hotplug_lock. So we can have concurrent callers in online_pages(). We e.g. touch in online_pages() basically unprotected zone->present_pages then. Looks like there is a longer history to that (see Patch #2 for details), and fixing it to work the way it was intended is not really possible. We would e.g. have to take the mem_hotplug_lock in device/base/core.c, which sounds wrong. Summary: We had a lock inversion on mem_hotplug_lock and device_lock(). More details can be found in patch 3 and patch 6. I propose the general rules (documentation added in patch 6): 1. add_memory/add_memory_resource() must only be called with device_hotplug_lock. 2. remove_memory() must only be called with device_hotplug_lock. This is already documented and holds for all callers. 3. device_online()/device_offline() must only be called with device_hotplug_lock. This is already documented and true for now in core code. Other callers (related to memory hotplug) have to be fixed up. 4. mem_hotplug_lock is taken inside of add_memory/remove_memory/ online_pages/offline_pages. To me, this looks way cleaner than what we have right now (and easier to verify). And looking at the documentation of remove_memory, using lock_device_hotplug also for add_memory() feels natural. This patch (of 6): remove_memory() is exported right now but requires the device_hotplug_lock, which is not exported. So let's provide a variant that takes the lock and only export that one. The lock is already held in arch/powerpc/platforms/pseries/hotplug-memory.c drivers/acpi/acpi_memhotplug.c arch/powerpc/platforms/powernv/memtrace.c Apart from that, there are not other users in the tree. Link: http://lkml.kernel.org/r/20180925091457.28651-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Juergen Gross <jgross@suse.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:18 +03:00
{
mm/hotplug: make remove_memory() interface usable Presently the remove_memory() interface is inherently broken. It tries to remove memory but panics if some memory is not offline. The problem is that it is impossible to ensure that all memory blocks are offline as this function also takes lock_device_hotplug that is required to change memory state via sysfs. So, between calling this function and offlining all memory blocks there is always a window when lock_device_hotplug is released, and therefore, there is always a chance for a panic during this window. Make this interface to return an error if memory removal fails. This way it is safe to call this function without panicking machine, and also makes it symmetric to add_memory() which already returns an error. Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Takashi Iwai <tiwai@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 02:30:31 +03:00
int rc;
mm/memory_hotplug: make remove_memory() take the device_hotplug_lock Patch series "mm: online/offline_pages called w.o. mem_hotplug_lock", v3. Reading through the code and studying how mem_hotplug_lock is to be used, I noticed that there are two places where we can end up calling device_online()/device_offline() - online_pages()/offline_pages() without the mem_hotplug_lock. And there are other places where we call device_online()/device_offline() without the device_hotplug_lock. While e.g. echo "online" > /sys/devices/system/memory/memory9/state is fine, e.g. echo 1 > /sys/devices/system/memory/memory9/online Will not take the mem_hotplug_lock. However the device_lock() and device_hotplug_lock. E.g. via memory_probe_store(), we can end up calling add_memory()->online_pages() without the device_hotplug_lock. So we can have concurrent callers in online_pages(). We e.g. touch in online_pages() basically unprotected zone->present_pages then. Looks like there is a longer history to that (see Patch #2 for details), and fixing it to work the way it was intended is not really possible. We would e.g. have to take the mem_hotplug_lock in device/base/core.c, which sounds wrong. Summary: We had a lock inversion on mem_hotplug_lock and device_lock(). More details can be found in patch 3 and patch 6. I propose the general rules (documentation added in patch 6): 1. add_memory/add_memory_resource() must only be called with device_hotplug_lock. 2. remove_memory() must only be called with device_hotplug_lock. This is already documented and holds for all callers. 3. device_online()/device_offline() must only be called with device_hotplug_lock. This is already documented and true for now in core code. Other callers (related to memory hotplug) have to be fixed up. 4. mem_hotplug_lock is taken inside of add_memory/remove_memory/ online_pages/offline_pages. To me, this looks way cleaner than what we have right now (and easier to verify). And looking at the documentation of remove_memory, using lock_device_hotplug also for add_memory() feels natural. This patch (of 6): remove_memory() is exported right now but requires the device_hotplug_lock, which is not exported. So let's provide a variant that takes the lock and only export that one. The lock is already held in arch/powerpc/platforms/pseries/hotplug-memory.c drivers/acpi/acpi_memhotplug.c arch/powerpc/platforms/powernv/memtrace.c Apart from that, there are not other users in the tree. Link: http://lkml.kernel.org/r/20180925091457.28651-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Juergen Gross <jgross@suse.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:18 +03:00
lock_device_hotplug();
mm/hotplug: make remove_memory() interface usable Presently the remove_memory() interface is inherently broken. It tries to remove memory but panics if some memory is not offline. The problem is that it is impossible to ensure that all memory blocks are offline as this function also takes lock_device_hotplug that is required to change memory state via sysfs. So, between calling this function and offlining all memory blocks there is always a window when lock_device_hotplug is released, and therefore, there is always a chance for a panic during this window. Make this interface to return an error if memory removal fails. This way it is safe to call this function without panicking machine, and also makes it symmetric to add_memory() which already returns an error. Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Takashi Iwai <tiwai@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 02:30:31 +03:00
rc = try_remove_memory(nid, start, size);
mm/memory_hotplug: make remove_memory() take the device_hotplug_lock Patch series "mm: online/offline_pages called w.o. mem_hotplug_lock", v3. Reading through the code and studying how mem_hotplug_lock is to be used, I noticed that there are two places where we can end up calling device_online()/device_offline() - online_pages()/offline_pages() without the mem_hotplug_lock. And there are other places where we call device_online()/device_offline() without the device_hotplug_lock. While e.g. echo "online" > /sys/devices/system/memory/memory9/state is fine, e.g. echo 1 > /sys/devices/system/memory/memory9/online Will not take the mem_hotplug_lock. However the device_lock() and device_hotplug_lock. E.g. via memory_probe_store(), we can end up calling add_memory()->online_pages() without the device_hotplug_lock. So we can have concurrent callers in online_pages(). We e.g. touch in online_pages() basically unprotected zone->present_pages then. Looks like there is a longer history to that (see Patch #2 for details), and fixing it to work the way it was intended is not really possible. We would e.g. have to take the mem_hotplug_lock in device/base/core.c, which sounds wrong. Summary: We had a lock inversion on mem_hotplug_lock and device_lock(). More details can be found in patch 3 and patch 6. I propose the general rules (documentation added in patch 6): 1. add_memory/add_memory_resource() must only be called with device_hotplug_lock. 2. remove_memory() must only be called with device_hotplug_lock. This is already documented and holds for all callers. 3. device_online()/device_offline() must only be called with device_hotplug_lock. This is already documented and true for now in core code. Other callers (related to memory hotplug) have to be fixed up. 4. mem_hotplug_lock is taken inside of add_memory/remove_memory/ online_pages/offline_pages. To me, this looks way cleaner than what we have right now (and easier to verify). And looking at the documentation of remove_memory, using lock_device_hotplug also for add_memory() feels natural. This patch (of 6): remove_memory() is exported right now but requires the device_hotplug_lock, which is not exported. So let's provide a variant that takes the lock and only export that one. The lock is already held in arch/powerpc/platforms/pseries/hotplug-memory.c drivers/acpi/acpi_memhotplug.c arch/powerpc/platforms/powernv/memtrace.c Apart from that, there are not other users in the tree. Link: http://lkml.kernel.org/r/20180925091457.28651-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Juergen Gross <jgross@suse.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:18 +03:00
unlock_device_hotplug();
mm/hotplug: make remove_memory() interface usable Presently the remove_memory() interface is inherently broken. It tries to remove memory but panics if some memory is not offline. The problem is that it is impossible to ensure that all memory blocks are offline as this function also takes lock_device_hotplug that is required to change memory state via sysfs. So, between calling this function and offlining all memory blocks there is always a window when lock_device_hotplug is released, and therefore, there is always a chance for a panic during this window. Make this interface to return an error if memory removal fails. This way it is safe to call this function without panicking machine, and also makes it symmetric to add_memory() which already returns an error. Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: James Morris <jmorris@namei.org> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Takashi Iwai <tiwai@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-17 02:30:31 +03:00
return rc;
mm/memory_hotplug: make remove_memory() take the device_hotplug_lock Patch series "mm: online/offline_pages called w.o. mem_hotplug_lock", v3. Reading through the code and studying how mem_hotplug_lock is to be used, I noticed that there are two places where we can end up calling device_online()/device_offline() - online_pages()/offline_pages() without the mem_hotplug_lock. And there are other places where we call device_online()/device_offline() without the device_hotplug_lock. While e.g. echo "online" > /sys/devices/system/memory/memory9/state is fine, e.g. echo 1 > /sys/devices/system/memory/memory9/online Will not take the mem_hotplug_lock. However the device_lock() and device_hotplug_lock. E.g. via memory_probe_store(), we can end up calling add_memory()->online_pages() without the device_hotplug_lock. So we can have concurrent callers in online_pages(). We e.g. touch in online_pages() basically unprotected zone->present_pages then. Looks like there is a longer history to that (see Patch #2 for details), and fixing it to work the way it was intended is not really possible. We would e.g. have to take the mem_hotplug_lock in device/base/core.c, which sounds wrong. Summary: We had a lock inversion on mem_hotplug_lock and device_lock(). More details can be found in patch 3 and patch 6. I propose the general rules (documentation added in patch 6): 1. add_memory/add_memory_resource() must only be called with device_hotplug_lock. 2. remove_memory() must only be called with device_hotplug_lock. This is already documented and holds for all callers. 3. device_online()/device_offline() must only be called with device_hotplug_lock. This is already documented and true for now in core code. Other callers (related to memory hotplug) have to be fixed up. 4. mem_hotplug_lock is taken inside of add_memory/remove_memory/ online_pages/offline_pages. To me, this looks way cleaner than what we have right now (and easier to verify). And looking at the documentation of remove_memory, using lock_device_hotplug also for add_memory() feels natural. This patch (of 6): remove_memory() is exported right now but requires the device_hotplug_lock, which is not exported. So let's provide a variant that takes the lock and only export that one. The lock is already held in arch/powerpc/platforms/pseries/hotplug-memory.c drivers/acpi/acpi_memhotplug.c arch/powerpc/platforms/powernv/memtrace.c Apart from that, there are not other users in the tree. Link: http://lkml.kernel.org/r/20180925091457.28651-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Juergen Gross <jgross@suse.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 01:10:18 +03:00
}
EXPORT_SYMBOL_GPL(remove_memory);
#endif /* CONFIG_MEMORY_HOTREMOVE */