linux/arch/arm/vdso/vgettimeofday.c

47 lines
883 B
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
ARM: 8330/1: add VDSO user-space code Place VDSO-related user-space code in arch/arm/kernel/vdso/. It is almost completely written in C with some assembly helpers to load the data page address, sample the counter, and fall back to system calls when necessary. The VDSO can service gettimeofday and clock_gettime when CONFIG_ARM_ARCH_TIMER is enabled and the architected timer is present (and correctly configured). It reads the CP15-based virtual counter to compute high-resolution timestamps. Of particular note is that a post-processing step ("vdsomunge") is necessary to produce a shared object which is architecturally allowed to be used by both soft- and hard-float EABI programs. The 2012 edition of the ARM ABI defines Tag_ABI_VFP_args = 3 "Code is compatible with both the base and VFP variants; the user did not permit non-variadic functions to pass FP parameters/results." Unfortunately current toolchains do not support this tag, which is ideally what we would use. The best available option is to ensure that both EF_ARM_ABI_FLOAT_SOFT and EF_ARM_ABI_FLOAT_HARD are unset in the ELF header's e_flags, indicating that the shared object is "old" and should be accepted for backward compatibility's sake. While binutils < 2.24 appear to produce a vdso.so with both flags clear, 2.24 always sets EF_ARM_ABI_FLOAT_SOFT, with no way to inhibit this behavior. So we have to fix things up with a custom post-processing step. In fact, the VDSO code in glibc does much less validation (including checking these flags) than the code for handling conventional file-backed shared libraries, so this is a bit moot unless glibc's VDSO code becomes more strict. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-25 19:14:22 +01:00
/*
* ARM userspace implementations of gettimeofday() and similar.
*
ARM: 8330/1: add VDSO user-space code Place VDSO-related user-space code in arch/arm/kernel/vdso/. It is almost completely written in C with some assembly helpers to load the data page address, sample the counter, and fall back to system calls when necessary. The VDSO can service gettimeofday and clock_gettime when CONFIG_ARM_ARCH_TIMER is enabled and the architected timer is present (and correctly configured). It reads the CP15-based virtual counter to compute high-resolution timestamps. Of particular note is that a post-processing step ("vdsomunge") is necessary to produce a shared object which is architecturally allowed to be used by both soft- and hard-float EABI programs. The 2012 edition of the ARM ABI defines Tag_ABI_VFP_args = 3 "Code is compatible with both the base and VFP variants; the user did not permit non-variadic functions to pass FP parameters/results." Unfortunately current toolchains do not support this tag, which is ideally what we would use. The best available option is to ensure that both EF_ARM_ABI_FLOAT_SOFT and EF_ARM_ABI_FLOAT_HARD are unset in the ELF header's e_flags, indicating that the shared object is "old" and should be accepted for backward compatibility's sake. While binutils < 2.24 appear to produce a vdso.so with both flags clear, 2.24 always sets EF_ARM_ABI_FLOAT_SOFT, with no way to inhibit this behavior. So we have to fix things up with a custom post-processing step. In fact, the VDSO code in glibc does much less validation (including checking these flags) than the code for handling conventional file-backed shared libraries, so this is a bit moot unless glibc's VDSO code becomes more strict. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-25 19:14:22 +01:00
* Copyright 2015 Mentor Graphics Corporation.
*/
#include <linux/time.h>
#include <linux/types.h>
ARM: 8330/1: add VDSO user-space code Place VDSO-related user-space code in arch/arm/kernel/vdso/. It is almost completely written in C with some assembly helpers to load the data page address, sample the counter, and fall back to system calls when necessary. The VDSO can service gettimeofday and clock_gettime when CONFIG_ARM_ARCH_TIMER is enabled and the architected timer is present (and correctly configured). It reads the CP15-based virtual counter to compute high-resolution timestamps. Of particular note is that a post-processing step ("vdsomunge") is necessary to produce a shared object which is architecturally allowed to be used by both soft- and hard-float EABI programs. The 2012 edition of the ARM ABI defines Tag_ABI_VFP_args = 3 "Code is compatible with both the base and VFP variants; the user did not permit non-variadic functions to pass FP parameters/results." Unfortunately current toolchains do not support this tag, which is ideally what we would use. The best available option is to ensure that both EF_ARM_ABI_FLOAT_SOFT and EF_ARM_ABI_FLOAT_HARD are unset in the ELF header's e_flags, indicating that the shared object is "old" and should be accepted for backward compatibility's sake. While binutils < 2.24 appear to produce a vdso.so with both flags clear, 2.24 always sets EF_ARM_ABI_FLOAT_SOFT, with no way to inhibit this behavior. So we have to fix things up with a custom post-processing step. In fact, the VDSO code in glibc does much less validation (including checking these flags) than the code for handling conventional file-backed shared libraries, so this is a bit moot unless glibc's VDSO code becomes more strict. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-25 19:14:22 +01:00
int __vdso_clock_gettime(clockid_t clock,
struct old_timespec32 *ts)
ARM: 8330/1: add VDSO user-space code Place VDSO-related user-space code in arch/arm/kernel/vdso/. It is almost completely written in C with some assembly helpers to load the data page address, sample the counter, and fall back to system calls when necessary. The VDSO can service gettimeofday and clock_gettime when CONFIG_ARM_ARCH_TIMER is enabled and the architected timer is present (and correctly configured). It reads the CP15-based virtual counter to compute high-resolution timestamps. Of particular note is that a post-processing step ("vdsomunge") is necessary to produce a shared object which is architecturally allowed to be used by both soft- and hard-float EABI programs. The 2012 edition of the ARM ABI defines Tag_ABI_VFP_args = 3 "Code is compatible with both the base and VFP variants; the user did not permit non-variadic functions to pass FP parameters/results." Unfortunately current toolchains do not support this tag, which is ideally what we would use. The best available option is to ensure that both EF_ARM_ABI_FLOAT_SOFT and EF_ARM_ABI_FLOAT_HARD are unset in the ELF header's e_flags, indicating that the shared object is "old" and should be accepted for backward compatibility's sake. While binutils < 2.24 appear to produce a vdso.so with both flags clear, 2.24 always sets EF_ARM_ABI_FLOAT_SOFT, with no way to inhibit this behavior. So we have to fix things up with a custom post-processing step. In fact, the VDSO code in glibc does much less validation (including checking these flags) than the code for handling conventional file-backed shared libraries, so this is a bit moot unless glibc's VDSO code becomes more strict. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-25 19:14:22 +01:00
{
return __cvdso_clock_gettime32(clock, ts);
ARM: 8330/1: add VDSO user-space code Place VDSO-related user-space code in arch/arm/kernel/vdso/. It is almost completely written in C with some assembly helpers to load the data page address, sample the counter, and fall back to system calls when necessary. The VDSO can service gettimeofday and clock_gettime when CONFIG_ARM_ARCH_TIMER is enabled and the architected timer is present (and correctly configured). It reads the CP15-based virtual counter to compute high-resolution timestamps. Of particular note is that a post-processing step ("vdsomunge") is necessary to produce a shared object which is architecturally allowed to be used by both soft- and hard-float EABI programs. The 2012 edition of the ARM ABI defines Tag_ABI_VFP_args = 3 "Code is compatible with both the base and VFP variants; the user did not permit non-variadic functions to pass FP parameters/results." Unfortunately current toolchains do not support this tag, which is ideally what we would use. The best available option is to ensure that both EF_ARM_ABI_FLOAT_SOFT and EF_ARM_ABI_FLOAT_HARD are unset in the ELF header's e_flags, indicating that the shared object is "old" and should be accepted for backward compatibility's sake. While binutils < 2.24 appear to produce a vdso.so with both flags clear, 2.24 always sets EF_ARM_ABI_FLOAT_SOFT, with no way to inhibit this behavior. So we have to fix things up with a custom post-processing step. In fact, the VDSO code in glibc does much less validation (including checking these flags) than the code for handling conventional file-backed shared libraries, so this is a bit moot unless glibc's VDSO code becomes more strict. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-25 19:14:22 +01:00
}
int __vdso_clock_gettime64(clockid_t clock,
struct __kernel_timespec *ts)
{
return __cvdso_clock_gettime(clock, ts);
}
int __vdso_gettimeofday(struct __kernel_old_timeval *tv,
struct timezone *tz)
ARM: 8330/1: add VDSO user-space code Place VDSO-related user-space code in arch/arm/kernel/vdso/. It is almost completely written in C with some assembly helpers to load the data page address, sample the counter, and fall back to system calls when necessary. The VDSO can service gettimeofday and clock_gettime when CONFIG_ARM_ARCH_TIMER is enabled and the architected timer is present (and correctly configured). It reads the CP15-based virtual counter to compute high-resolution timestamps. Of particular note is that a post-processing step ("vdsomunge") is necessary to produce a shared object which is architecturally allowed to be used by both soft- and hard-float EABI programs. The 2012 edition of the ARM ABI defines Tag_ABI_VFP_args = 3 "Code is compatible with both the base and VFP variants; the user did not permit non-variadic functions to pass FP parameters/results." Unfortunately current toolchains do not support this tag, which is ideally what we would use. The best available option is to ensure that both EF_ARM_ABI_FLOAT_SOFT and EF_ARM_ABI_FLOAT_HARD are unset in the ELF header's e_flags, indicating that the shared object is "old" and should be accepted for backward compatibility's sake. While binutils < 2.24 appear to produce a vdso.so with both flags clear, 2.24 always sets EF_ARM_ABI_FLOAT_SOFT, with no way to inhibit this behavior. So we have to fix things up with a custom post-processing step. In fact, the VDSO code in glibc does much less validation (including checking these flags) than the code for handling conventional file-backed shared libraries, so this is a bit moot unless glibc's VDSO code becomes more strict. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-25 19:14:22 +01:00
{
return __cvdso_gettimeofday(tv, tz);
ARM: 8330/1: add VDSO user-space code Place VDSO-related user-space code in arch/arm/kernel/vdso/. It is almost completely written in C with some assembly helpers to load the data page address, sample the counter, and fall back to system calls when necessary. The VDSO can service gettimeofday and clock_gettime when CONFIG_ARM_ARCH_TIMER is enabled and the architected timer is present (and correctly configured). It reads the CP15-based virtual counter to compute high-resolution timestamps. Of particular note is that a post-processing step ("vdsomunge") is necessary to produce a shared object which is architecturally allowed to be used by both soft- and hard-float EABI programs. The 2012 edition of the ARM ABI defines Tag_ABI_VFP_args = 3 "Code is compatible with both the base and VFP variants; the user did not permit non-variadic functions to pass FP parameters/results." Unfortunately current toolchains do not support this tag, which is ideally what we would use. The best available option is to ensure that both EF_ARM_ABI_FLOAT_SOFT and EF_ARM_ABI_FLOAT_HARD are unset in the ELF header's e_flags, indicating that the shared object is "old" and should be accepted for backward compatibility's sake. While binutils < 2.24 appear to produce a vdso.so with both flags clear, 2.24 always sets EF_ARM_ABI_FLOAT_SOFT, with no way to inhibit this behavior. So we have to fix things up with a custom post-processing step. In fact, the VDSO code in glibc does much less validation (including checking these flags) than the code for handling conventional file-backed shared libraries, so this is a bit moot unless glibc's VDSO code becomes more strict. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-25 19:14:22 +01:00
}
int __vdso_clock_getres(clockid_t clock_id,
struct old_timespec32 *res)
{
return __cvdso_clock_getres_time32(clock_id, res);
}
ARM: 8330/1: add VDSO user-space code Place VDSO-related user-space code in arch/arm/kernel/vdso/. It is almost completely written in C with some assembly helpers to load the data page address, sample the counter, and fall back to system calls when necessary. The VDSO can service gettimeofday and clock_gettime when CONFIG_ARM_ARCH_TIMER is enabled and the architected timer is present (and correctly configured). It reads the CP15-based virtual counter to compute high-resolution timestamps. Of particular note is that a post-processing step ("vdsomunge") is necessary to produce a shared object which is architecturally allowed to be used by both soft- and hard-float EABI programs. The 2012 edition of the ARM ABI defines Tag_ABI_VFP_args = 3 "Code is compatible with both the base and VFP variants; the user did not permit non-variadic functions to pass FP parameters/results." Unfortunately current toolchains do not support this tag, which is ideally what we would use. The best available option is to ensure that both EF_ARM_ABI_FLOAT_SOFT and EF_ARM_ABI_FLOAT_HARD are unset in the ELF header's e_flags, indicating that the shared object is "old" and should be accepted for backward compatibility's sake. While binutils < 2.24 appear to produce a vdso.so with both flags clear, 2.24 always sets EF_ARM_ABI_FLOAT_SOFT, with no way to inhibit this behavior. So we have to fix things up with a custom post-processing step. In fact, the VDSO code in glibc does much less validation (including checking these flags) than the code for handling conventional file-backed shared libraries, so this is a bit moot unless glibc's VDSO code becomes more strict. Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-03-25 19:14:22 +01:00
/* Avoid unresolved references emitted by GCC */
void __aeabi_unwind_cpp_pr0(void)
{
}
void __aeabi_unwind_cpp_pr1(void)
{
}
void __aeabi_unwind_cpp_pr2(void)
{
}