2020-10-05 17:27:46 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright ( C ) 2020 MaxLinear , Inc .
*
* This driver is a hardware monitoring driver for PVT controller
* ( MR75203 ) which is used to configure & control Moortec embedded
* analog IP to enable multiple embedded temperature sensor ( TS ) ,
* voltage monitor ( VM ) & process detector ( PD ) modules .
*/
# include <linux/bits.h>
# include <linux/clk.h>
# include <linux/hwmon.h>
# include <linux/module.h>
# include <linux/mod_devicetable.h>
# include <linux/mutex.h>
# include <linux/platform_device.h>
# include <linux/property.h>
# include <linux/regmap.h>
# include <linux/reset.h>
2021-09-07 19:58:01 -07:00
# include <linux/units.h>
2020-10-05 17:27:46 +08:00
/* PVT Common register */
# define PVT_IP_CONFIG 0x04
# define TS_NUM_MSK GENMASK(4, 0)
# define TS_NUM_SFT 0
# define PD_NUM_MSK GENMASK(12, 8)
# define PD_NUM_SFT 8
# define VM_NUM_MSK GENMASK(20, 16)
# define VM_NUM_SFT 16
# define CH_NUM_MSK GENMASK(31, 24)
# define CH_NUM_SFT 24
/* Macro Common Register */
# define CLK_SYNTH 0x00
# define CLK_SYNTH_LO_SFT 0
# define CLK_SYNTH_HI_SFT 8
# define CLK_SYNTH_HOLD_SFT 16
# define CLK_SYNTH_EN BIT(24)
# define CLK_SYS_CYCLES_MAX 514
# define CLK_SYS_CYCLES_MIN 2
# define SDIF_DISABLE 0x04
# define SDIF_STAT 0x08
# define SDIF_BUSY BIT(0)
# define SDIF_LOCK BIT(1)
# define SDIF_W 0x0c
# define SDIF_PROG BIT(31)
# define SDIF_WRN_W BIT(27)
# define SDIF_WRN_R 0x00
# define SDIF_ADDR_SFT 24
# define SDIF_HALT 0x10
# define SDIF_CTRL 0x14
# define SDIF_SMPL_CTRL 0x20
/* TS & PD Individual Macro Register */
# define COM_REG_SIZE 0x40
# define SDIF_DONE(n) (COM_REG_SIZE + 0x14 + 0x40 * (n))
# define SDIF_SMPL_DONE BIT(0)
# define SDIF_DATA(n) (COM_REG_SIZE + 0x18 + 0x40 * (n))
# define SAMPLE_DATA_MSK GENMASK(15, 0)
# define HILO_RESET(n) (COM_REG_SIZE + 0x2c + 0x40 * (n))
/* VM Individual Macro Register */
# define VM_COM_REG_SIZE 0x200
# define VM_SDIF_DONE(n) (VM_COM_REG_SIZE + 0x34 + 0x200 * (n))
# define VM_SDIF_DATA(n) (VM_COM_REG_SIZE + 0x40 + 0x200 * (n))
/* SDA Slave Register */
# define IP_CTRL 0x00
# define IP_RST_REL BIT(1)
# define IP_RUN_CONT BIT(3)
# define IP_AUTO BIT(8)
# define IP_VM_MODE BIT(10)
# define IP_CFG 0x01
# define CFG0_MODE_2 BIT(0)
# define CFG0_PARALLEL_OUT 0
# define CFG0_12_BIT 0
# define CFG1_VOL_MEAS_MODE 0
# define CFG1_PARALLEL_OUT 0
# define CFG1_14_BIT 0
# define IP_DATA 0x03
# define IP_POLL 0x04
# define VM_CH_INIT BIT(20)
# define VM_CH_REQ BIT(21)
# define IP_TMR 0x05
2021-12-19 13:22:39 +03:00
# define POWER_DELAY_CYCLE_256 0x100
2020-10-05 17:27:46 +08:00
# define POWER_DELAY_CYCLE_64 0x40
# define PVT_POLL_DELAY_US 20
# define PVT_POLL_TIMEOUT_US 20000
# define PVT_H_CONST 100000
# define PVT_CAL5_CONST 2047
# define PVT_G_CONST 40000
# define PVT_CONV_BITS 10
# define PVT_N_CONST 90
# define PVT_R_CONST 245805
struct pvt_device {
struct regmap * c_map ;
struct regmap * t_map ;
struct regmap * p_map ;
struct regmap * v_map ;
struct clk * clk ;
struct reset_control * rst ;
u32 t_num ;
u32 p_num ;
u32 v_num ;
u32 ip_freq ;
u8 * vm_idx ;
} ;
static umode_t pvt_is_visible ( const void * data , enum hwmon_sensor_types type ,
u32 attr , int channel )
{
switch ( type ) {
case hwmon_temp :
if ( attr = = hwmon_temp_input )
return 0444 ;
break ;
case hwmon_in :
if ( attr = = hwmon_in_input )
return 0444 ;
break ;
default :
break ;
}
return 0 ;
}
static int pvt_read_temp ( struct device * dev , u32 attr , int channel , long * val )
{
struct pvt_device * pvt = dev_get_drvdata ( dev ) ;
struct regmap * t_map = pvt - > t_map ;
u32 stat , nbs ;
int ret ;
u64 tmp ;
switch ( attr ) {
case hwmon_temp_input :
ret = regmap_read_poll_timeout ( t_map , SDIF_DONE ( channel ) ,
stat , stat & SDIF_SMPL_DONE ,
PVT_POLL_DELAY_US ,
PVT_POLL_TIMEOUT_US ) ;
if ( ret )
return ret ;
ret = regmap_read ( t_map , SDIF_DATA ( channel ) , & nbs ) ;
if ( ret < 0 )
return ret ;
nbs & = SAMPLE_DATA_MSK ;
/*
* Convert the register value to
* degrees centigrade temperature
*/
tmp = nbs * PVT_H_CONST ;
do_div ( tmp , PVT_CAL5_CONST ) ;
* val = tmp - PVT_G_CONST - pvt - > ip_freq ;
return 0 ;
default :
return - EOPNOTSUPP ;
}
}
static int pvt_read_in ( struct device * dev , u32 attr , int channel , long * val )
{
struct pvt_device * pvt = dev_get_drvdata ( dev ) ;
struct regmap * v_map = pvt - > v_map ;
u32 n , stat ;
u8 vm_idx ;
int ret ;
if ( channel > = pvt - > v_num )
return - EINVAL ;
vm_idx = pvt - > vm_idx [ channel ] ;
switch ( attr ) {
case hwmon_in_input :
ret = regmap_read_poll_timeout ( v_map , VM_SDIF_DONE ( vm_idx ) ,
stat , stat & SDIF_SMPL_DONE ,
PVT_POLL_DELAY_US ,
PVT_POLL_TIMEOUT_US ) ;
if ( ret )
return ret ;
ret = regmap_read ( v_map , VM_SDIF_DATA ( vm_idx ) , & n ) ;
if ( ret < 0 )
return ret ;
n & = SAMPLE_DATA_MSK ;
/* Convert the N bitstream count into voltage */
* val = ( PVT_N_CONST * n - PVT_R_CONST ) > > PVT_CONV_BITS ;
return 0 ;
default :
return - EOPNOTSUPP ;
}
}
static int pvt_read ( struct device * dev , enum hwmon_sensor_types type ,
u32 attr , int channel , long * val )
{
switch ( type ) {
case hwmon_temp :
return pvt_read_temp ( dev , attr , channel , val ) ;
case hwmon_in :
return pvt_read_in ( dev , attr , channel , val ) ;
default :
return - EOPNOTSUPP ;
}
}
static struct hwmon_channel_info pvt_temp = {
. type = hwmon_temp ,
} ;
static struct hwmon_channel_info pvt_in = {
. type = hwmon_in ,
} ;
static const struct hwmon_ops pvt_hwmon_ops = {
. is_visible = pvt_is_visible ,
. read = pvt_read ,
} ;
static struct hwmon_chip_info pvt_chip_info = {
. ops = & pvt_hwmon_ops ,
} ;
static int pvt_init ( struct pvt_device * pvt )
{
u16 sys_freq , key , middle , low = 4 , high = 8 ;
struct regmap * t_map = pvt - > t_map ;
struct regmap * p_map = pvt - > p_map ;
struct regmap * v_map = pvt - > v_map ;
u32 t_num = pvt - > t_num ;
u32 p_num = pvt - > p_num ;
u32 v_num = pvt - > v_num ;
u32 clk_synth , val ;
int ret ;
sys_freq = clk_get_rate ( pvt - > clk ) / HZ_PER_MHZ ;
while ( high > = low ) {
middle = ( low + high + 1 ) / 2 ;
key = DIV_ROUND_CLOSEST ( sys_freq , middle ) ;
if ( key > CLK_SYS_CYCLES_MAX ) {
low = middle + 1 ;
continue ;
} else if ( key < CLK_SYS_CYCLES_MIN ) {
high = middle - 1 ;
continue ;
} else {
break ;
}
}
/*
* The system supports ' clk_sys ' to ' clk_ip ' frequency ratios
* from 2 : 1 to 512 : 1
*/
key = clamp_val ( key , CLK_SYS_CYCLES_MIN , CLK_SYS_CYCLES_MAX ) - 2 ;
clk_synth = ( ( key + 1 ) > > 1 ) < < CLK_SYNTH_LO_SFT |
( key > > 1 ) < < CLK_SYNTH_HI_SFT |
( key > > 1 ) < < CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN ;
pvt - > ip_freq = sys_freq * 100 / ( key + 2 ) ;
if ( t_num ) {
ret = regmap_write ( t_map , SDIF_SMPL_CTRL , 0x0 ) ;
if ( ret < 0 )
return ret ;
ret = regmap_write ( t_map , SDIF_HALT , 0x0 ) ;
if ( ret < 0 )
return ret ;
ret = regmap_write ( t_map , CLK_SYNTH , clk_synth ) ;
if ( ret < 0 )
return ret ;
ret = regmap_write ( t_map , SDIF_DISABLE , 0x0 ) ;
if ( ret < 0 )
return ret ;
ret = regmap_read_poll_timeout ( t_map , SDIF_STAT ,
val , ! ( val & SDIF_BUSY ) ,
PVT_POLL_DELAY_US ,
PVT_POLL_TIMEOUT_US ) ;
if ( ret )
return ret ;
val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
IP_CFG < < SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG ;
ret = regmap_write ( t_map , SDIF_W , val ) ;
if ( ret < 0 )
return ret ;
ret = regmap_read_poll_timeout ( t_map , SDIF_STAT ,
val , ! ( val & SDIF_BUSY ) ,
PVT_POLL_DELAY_US ,
PVT_POLL_TIMEOUT_US ) ;
if ( ret )
return ret ;
val = POWER_DELAY_CYCLE_256 | IP_TMR < < SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG ;
ret = regmap_write ( t_map , SDIF_W , val ) ;
if ( ret < 0 )
return ret ;
ret = regmap_read_poll_timeout ( t_map , SDIF_STAT ,
val , ! ( val & SDIF_BUSY ) ,
PVT_POLL_DELAY_US ,
PVT_POLL_TIMEOUT_US ) ;
if ( ret )
return ret ;
val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
IP_CTRL < < SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG ;
ret = regmap_write ( t_map , SDIF_W , val ) ;
if ( ret < 0 )
return ret ;
}
if ( p_num ) {
ret = regmap_write ( p_map , SDIF_HALT , 0x0 ) ;
if ( ret < 0 )
return ret ;
ret = regmap_write ( p_map , SDIF_DISABLE , BIT ( p_num ) - 1 ) ;
if ( ret < 0 )
return ret ;
ret = regmap_write ( p_map , CLK_SYNTH , clk_synth ) ;
if ( ret < 0 )
return ret ;
}
if ( v_num ) {
ret = regmap_write ( v_map , SDIF_SMPL_CTRL , 0x0 ) ;
if ( ret < 0 )
return ret ;
ret = regmap_write ( v_map , SDIF_HALT , 0x0 ) ;
if ( ret < 0 )
return ret ;
ret = regmap_write ( v_map , CLK_SYNTH , clk_synth ) ;
if ( ret < 0 )
return ret ;
ret = regmap_write ( v_map , SDIF_DISABLE , 0x0 ) ;
if ( ret < 0 )
return ret ;
ret = regmap_read_poll_timeout ( v_map , SDIF_STAT ,
val , ! ( val & SDIF_BUSY ) ,
PVT_POLL_DELAY_US ,
PVT_POLL_TIMEOUT_US ) ;
if ( ret )
return ret ;
val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
CFG1_14_BIT | IP_CFG < < SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG ;
ret = regmap_write ( v_map , SDIF_W , val ) ;
if ( ret < 0 )
return ret ;
ret = regmap_read_poll_timeout ( v_map , SDIF_STAT ,
val , ! ( val & SDIF_BUSY ) ,
PVT_POLL_DELAY_US ,
PVT_POLL_TIMEOUT_US ) ;
if ( ret )
return ret ;
val = POWER_DELAY_CYCLE_64 | IP_TMR < < SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG ;
ret = regmap_write ( v_map , SDIF_W , val ) ;
if ( ret < 0 )
return ret ;
ret = regmap_read_poll_timeout ( v_map , SDIF_STAT ,
val , ! ( val & SDIF_BUSY ) ,
PVT_POLL_DELAY_US ,
PVT_POLL_TIMEOUT_US ) ;
if ( ret )
return ret ;
val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
IP_CTRL < < SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG ;
ret = regmap_write ( v_map , SDIF_W , val ) ;
if ( ret < 0 )
return ret ;
}
return 0 ;
}
static struct regmap_config pvt_regmap_config = {
. reg_bits = 32 ,
. reg_stride = 4 ,
. val_bits = 32 ,
} ;
static int pvt_get_regmap ( struct platform_device * pdev , char * reg_name ,
struct pvt_device * pvt )
{
struct device * dev = & pdev - > dev ;
struct regmap * * reg_map ;
void __iomem * io_base ;
if ( ! strcmp ( reg_name , " common " ) )
reg_map = & pvt - > c_map ;
else if ( ! strcmp ( reg_name , " ts " ) )
reg_map = & pvt - > t_map ;
else if ( ! strcmp ( reg_name , " pd " ) )
reg_map = & pvt - > p_map ;
else if ( ! strcmp ( reg_name , " vm " ) )
reg_map = & pvt - > v_map ;
else
return - EINVAL ;
io_base = devm_platform_ioremap_resource_byname ( pdev , reg_name ) ;
if ( IS_ERR ( io_base ) )
return PTR_ERR ( io_base ) ;
pvt_regmap_config . name = reg_name ;
* reg_map = devm_regmap_init_mmio ( dev , io_base , & pvt_regmap_config ) ;
if ( IS_ERR ( * reg_map ) ) {
dev_err ( dev , " failed to init register map \n " ) ;
return PTR_ERR ( * reg_map ) ;
}
return 0 ;
}
static void pvt_clk_disable ( void * data )
{
struct pvt_device * pvt = data ;
clk_disable_unprepare ( pvt - > clk ) ;
}
static int pvt_clk_enable ( struct device * dev , struct pvt_device * pvt )
{
int ret ;
ret = clk_prepare_enable ( pvt - > clk ) ;
if ( ret )
return ret ;
return devm_add_action_or_reset ( dev , pvt_clk_disable , pvt ) ;
}
static void pvt_reset_control_assert ( void * data )
{
struct pvt_device * pvt = data ;
reset_control_assert ( pvt - > rst ) ;
}
static int pvt_reset_control_deassert ( struct device * dev , struct pvt_device * pvt )
{
int ret ;
ret = reset_control_deassert ( pvt - > rst ) ;
if ( ret )
return ret ;
return devm_add_action_or_reset ( dev , pvt_reset_control_assert , pvt ) ;
}
static int mr75203_probe ( struct platform_device * pdev )
{
const struct hwmon_channel_info * * pvt_info ;
u32 ts_num , vm_num , pd_num , val , index , i ;
struct device * dev = & pdev - > dev ;
u32 * temp_config , * in_config ;
struct device * hwmon_dev ;
struct pvt_device * pvt ;
int ret ;
pvt = devm_kzalloc ( dev , sizeof ( * pvt ) , GFP_KERNEL ) ;
if ( ! pvt )
return - ENOMEM ;
ret = pvt_get_regmap ( pdev , " common " , pvt ) ;
if ( ret )
return ret ;
pvt - > clk = devm_clk_get ( dev , NULL ) ;
if ( IS_ERR ( pvt - > clk ) )
return dev_err_probe ( dev , PTR_ERR ( pvt - > clk ) , " failed to get clock \n " ) ;
ret = pvt_clk_enable ( dev , pvt ) ;
if ( ret ) {
dev_err ( dev , " failed to enable clock \n " ) ;
return ret ;
}
pvt - > rst = devm_reset_control_get_exclusive ( dev , NULL ) ;
if ( IS_ERR ( pvt - > rst ) )
return dev_err_probe ( dev , PTR_ERR ( pvt - > rst ) ,
" failed to get reset control \n " ) ;
ret = pvt_reset_control_deassert ( dev , pvt ) ;
if ( ret )
return dev_err_probe ( dev , ret , " cannot deassert reset control \n " ) ;
ret = regmap_read ( pvt - > c_map , PVT_IP_CONFIG , & val ) ;
if ( ret < 0 )
return ret ;
ts_num = ( val & TS_NUM_MSK ) > > TS_NUM_SFT ;
pd_num = ( val & PD_NUM_MSK ) > > PD_NUM_SFT ;
vm_num = ( val & VM_NUM_MSK ) > > VM_NUM_SFT ;
pvt - > t_num = ts_num ;
pvt - > p_num = pd_num ;
pvt - > v_num = vm_num ;
val = 0 ;
if ( ts_num )
val + + ;
if ( vm_num )
val + + ;
if ( ! val )
return - ENODEV ;
pvt_info = devm_kcalloc ( dev , val + 2 , sizeof ( * pvt_info ) , GFP_KERNEL ) ;
if ( ! pvt_info )
return - ENOMEM ;
hwmon: (mr75203) Use HWMON_CHANNEL_INFO macro
The HWMON_CHANNEL_INFO macro simplifies the code, reduces the likelihood
of errors, and makes the code easier to read.
The conversion was done automatically with coccinelle. The semantic patch
used to make this change is as follows.
@s@
identifier i,j,ty;
@@
-struct hwmon_channel_info j = {
- .type = ty,
- .config = i,
-};
@r@
initializer list elements;
identifier s.i;
@@
-u32 i[] = {
- elements,
- 0
-};
@script:ocaml t@
ty << s.ty;
elements << r.elements;
shorter;
elems;
@@
shorter :=
make_ident (List.hd(List.rev (Str.split (Str.regexp "_") ty)));
elems :=
make_ident
(String.concat ","
(List.map (fun x -> Printf.sprintf "\n\t\t\t %s" x)
(Str.split (Str.regexp " , ") elements)))
@@
identifier s.j,t.shorter;
identifier t.elems;
@@
- &j
+ HWMON_CHANNEL_INFO(shorter,elems)
This patch does not introduce functional changes. Many thanks to
Julia Lawall for providing the coccinelle script.
Cc: Philipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2022-05-12 12:05:58 -07:00
pvt_info [ 0 ] = HWMON_CHANNEL_INFO ( chip , HWMON_C_REGISTER_TZ ) ;
2020-10-05 17:27:46 +08:00
index = 1 ;
if ( ts_num ) {
ret = pvt_get_regmap ( pdev , " ts " , pvt ) ;
if ( ret )
return ret ;
temp_config = devm_kcalloc ( dev , ts_num + 1 ,
sizeof ( * temp_config ) , GFP_KERNEL ) ;
if ( ! temp_config )
return - ENOMEM ;
memset32 ( temp_config , HWMON_T_INPUT , ts_num ) ;
pvt_temp . config = temp_config ;
pvt_info [ index + + ] = & pvt_temp ;
}
if ( pd_num ) {
ret = pvt_get_regmap ( pdev , " pd " , pvt ) ;
if ( ret )
return ret ;
}
if ( vm_num ) {
u32 num = vm_num ;
ret = pvt_get_regmap ( pdev , " vm " , pvt ) ;
if ( ret )
return ret ;
pvt - > vm_idx = devm_kcalloc ( dev , vm_num , sizeof ( * pvt - > vm_idx ) ,
GFP_KERNEL ) ;
if ( ! pvt - > vm_idx )
return - ENOMEM ;
ret = device_property_read_u8_array ( dev , " intel,vm-map " ,
pvt - > vm_idx , vm_num ) ;
if ( ret ) {
num = 0 ;
} else {
for ( i = 0 ; i < vm_num ; i + + )
if ( pvt - > vm_idx [ i ] > = vm_num | |
pvt - > vm_idx [ i ] = = 0xff ) {
num = i ;
break ;
}
}
/*
* Incase intel , vm - map property is not defined , we assume
* incremental channel numbers .
*/
for ( i = num ; i < vm_num ; i + + )
pvt - > vm_idx [ i ] = i ;
in_config = devm_kcalloc ( dev , num + 1 ,
sizeof ( * in_config ) , GFP_KERNEL ) ;
if ( ! in_config )
return - ENOMEM ;
memset32 ( in_config , HWMON_I_INPUT , num ) ;
in_config [ num ] = 0 ;
pvt_in . config = in_config ;
pvt_info [ index + + ] = & pvt_in ;
}
ret = pvt_init ( pvt ) ;
if ( ret ) {
dev_err ( dev , " failed to init pvt: %d \n " , ret ) ;
return ret ;
}
pvt_chip_info . info = pvt_info ;
hwmon_dev = devm_hwmon_device_register_with_info ( dev , " pvt " ,
pvt ,
& pvt_chip_info ,
NULL ) ;
return PTR_ERR_OR_ZERO ( hwmon_dev ) ;
}
static const struct of_device_id moortec_pvt_of_match [ ] = {
{ . compatible = " moortec,mr75203 " } ,
{ }
} ;
MODULE_DEVICE_TABLE ( of , moortec_pvt_of_match ) ;
static struct platform_driver moortec_pvt_driver = {
. driver = {
. name = " moortec-pvt " ,
. of_match_table = moortec_pvt_of_match ,
} ,
. probe = mr75203_probe ,
} ;
module_platform_driver ( moortec_pvt_driver ) ;
MODULE_LICENSE ( " GPL v2 " ) ;