2006-11-29 10:59:44 +03:00
/* gf128mul.c - GF(2^128) multiplication functions
*
* Copyright ( c ) 2003 , Dr Brian Gladman , Worcester , UK .
* Copyright ( c ) 2006 , Rik Snel < rsnel @ cube . dyndns . org >
*
* Based on Dr Brian Gladman ' s ( GPL ' d ) work published at
2009-03-04 09:43:52 +03:00
* http : //gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
2006-11-29 10:59:44 +03:00
* See the original copyright notice below .
*
* This program is free software ; you can redistribute it and / or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation ; either version 2 of the License , or ( at your option )
* any later version .
*/
/*
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Copyright ( c ) 2003 , Dr Brian Gladman , Worcester , UK . All rights reserved .
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed ( with or without changes ) provided that :
1. distributions of this source code include the above copyright
notice , this list of conditions and the following disclaimer ;
2. distributions in binary form include the above copyright
notice , this list of conditions and the following disclaimer
in the documentation and / or other associated materials ;
3. the copyright holder ' s name is not used to endorse products
built using this software without specific written permission .
ALTERNATIVELY , provided that this notice is retained in full , this product
may be distributed under the terms of the GNU General Public License ( GPL ) ,
in which case the provisions of the GPL apply INSTEAD OF those given above .
DISCLAIMER
This software is provided ' as is ' with no explicit or implied warranties
in respect of its properties , including , but not limited to , correctness
and / or fitness for purpose .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Issue 31 / 01 / 2006
2017-02-15 00:43:27 +03:00
This file provides fast multiplication in GF ( 2 ^ 128 ) as required by several
2006-11-29 10:59:44 +03:00
cryptographic authentication modes
*/
# include <crypto/gf128mul.h>
# include <linux/kernel.h>
# include <linux/module.h>
# include <linux/slab.h>
# define gf128mul_dat(q) { \
q ( 0x00 ) , q ( 0x01 ) , q ( 0x02 ) , q ( 0x03 ) , q ( 0x04 ) , q ( 0x05 ) , q ( 0x06 ) , q ( 0x07 ) , \
q ( 0x08 ) , q ( 0x09 ) , q ( 0x0a ) , q ( 0x0b ) , q ( 0x0c ) , q ( 0x0d ) , q ( 0x0e ) , q ( 0x0f ) , \
q ( 0x10 ) , q ( 0x11 ) , q ( 0x12 ) , q ( 0x13 ) , q ( 0x14 ) , q ( 0x15 ) , q ( 0x16 ) , q ( 0x17 ) , \
q ( 0x18 ) , q ( 0x19 ) , q ( 0x1a ) , q ( 0x1b ) , q ( 0x1c ) , q ( 0x1d ) , q ( 0x1e ) , q ( 0x1f ) , \
q ( 0x20 ) , q ( 0x21 ) , q ( 0x22 ) , q ( 0x23 ) , q ( 0x24 ) , q ( 0x25 ) , q ( 0x26 ) , q ( 0x27 ) , \
q ( 0x28 ) , q ( 0x29 ) , q ( 0x2a ) , q ( 0x2b ) , q ( 0x2c ) , q ( 0x2d ) , q ( 0x2e ) , q ( 0x2f ) , \
q ( 0x30 ) , q ( 0x31 ) , q ( 0x32 ) , q ( 0x33 ) , q ( 0x34 ) , q ( 0x35 ) , q ( 0x36 ) , q ( 0x37 ) , \
q ( 0x38 ) , q ( 0x39 ) , q ( 0x3a ) , q ( 0x3b ) , q ( 0x3c ) , q ( 0x3d ) , q ( 0x3e ) , q ( 0x3f ) , \
q ( 0x40 ) , q ( 0x41 ) , q ( 0x42 ) , q ( 0x43 ) , q ( 0x44 ) , q ( 0x45 ) , q ( 0x46 ) , q ( 0x47 ) , \
q ( 0x48 ) , q ( 0x49 ) , q ( 0x4a ) , q ( 0x4b ) , q ( 0x4c ) , q ( 0x4d ) , q ( 0x4e ) , q ( 0x4f ) , \
q ( 0x50 ) , q ( 0x51 ) , q ( 0x52 ) , q ( 0x53 ) , q ( 0x54 ) , q ( 0x55 ) , q ( 0x56 ) , q ( 0x57 ) , \
q ( 0x58 ) , q ( 0x59 ) , q ( 0x5a ) , q ( 0x5b ) , q ( 0x5c ) , q ( 0x5d ) , q ( 0x5e ) , q ( 0x5f ) , \
q ( 0x60 ) , q ( 0x61 ) , q ( 0x62 ) , q ( 0x63 ) , q ( 0x64 ) , q ( 0x65 ) , q ( 0x66 ) , q ( 0x67 ) , \
q ( 0x68 ) , q ( 0x69 ) , q ( 0x6a ) , q ( 0x6b ) , q ( 0x6c ) , q ( 0x6d ) , q ( 0x6e ) , q ( 0x6f ) , \
q ( 0x70 ) , q ( 0x71 ) , q ( 0x72 ) , q ( 0x73 ) , q ( 0x74 ) , q ( 0x75 ) , q ( 0x76 ) , q ( 0x77 ) , \
q ( 0x78 ) , q ( 0x79 ) , q ( 0x7a ) , q ( 0x7b ) , q ( 0x7c ) , q ( 0x7d ) , q ( 0x7e ) , q ( 0x7f ) , \
q ( 0x80 ) , q ( 0x81 ) , q ( 0x82 ) , q ( 0x83 ) , q ( 0x84 ) , q ( 0x85 ) , q ( 0x86 ) , q ( 0x87 ) , \
q ( 0x88 ) , q ( 0x89 ) , q ( 0x8a ) , q ( 0x8b ) , q ( 0x8c ) , q ( 0x8d ) , q ( 0x8e ) , q ( 0x8f ) , \
q ( 0x90 ) , q ( 0x91 ) , q ( 0x92 ) , q ( 0x93 ) , q ( 0x94 ) , q ( 0x95 ) , q ( 0x96 ) , q ( 0x97 ) , \
q ( 0x98 ) , q ( 0x99 ) , q ( 0x9a ) , q ( 0x9b ) , q ( 0x9c ) , q ( 0x9d ) , q ( 0x9e ) , q ( 0x9f ) , \
q ( 0xa0 ) , q ( 0xa1 ) , q ( 0xa2 ) , q ( 0xa3 ) , q ( 0xa4 ) , q ( 0xa5 ) , q ( 0xa6 ) , q ( 0xa7 ) , \
q ( 0xa8 ) , q ( 0xa9 ) , q ( 0xaa ) , q ( 0xab ) , q ( 0xac ) , q ( 0xad ) , q ( 0xae ) , q ( 0xaf ) , \
q ( 0xb0 ) , q ( 0xb1 ) , q ( 0xb2 ) , q ( 0xb3 ) , q ( 0xb4 ) , q ( 0xb5 ) , q ( 0xb6 ) , q ( 0xb7 ) , \
q ( 0xb8 ) , q ( 0xb9 ) , q ( 0xba ) , q ( 0xbb ) , q ( 0xbc ) , q ( 0xbd ) , q ( 0xbe ) , q ( 0xbf ) , \
q ( 0xc0 ) , q ( 0xc1 ) , q ( 0xc2 ) , q ( 0xc3 ) , q ( 0xc4 ) , q ( 0xc5 ) , q ( 0xc6 ) , q ( 0xc7 ) , \
q ( 0xc8 ) , q ( 0xc9 ) , q ( 0xca ) , q ( 0xcb ) , q ( 0xcc ) , q ( 0xcd ) , q ( 0xce ) , q ( 0xcf ) , \
q ( 0xd0 ) , q ( 0xd1 ) , q ( 0xd2 ) , q ( 0xd3 ) , q ( 0xd4 ) , q ( 0xd5 ) , q ( 0xd6 ) , q ( 0xd7 ) , \
q ( 0xd8 ) , q ( 0xd9 ) , q ( 0xda ) , q ( 0xdb ) , q ( 0xdc ) , q ( 0xdd ) , q ( 0xde ) , q ( 0xdf ) , \
q ( 0xe0 ) , q ( 0xe1 ) , q ( 0xe2 ) , q ( 0xe3 ) , q ( 0xe4 ) , q ( 0xe5 ) , q ( 0xe6 ) , q ( 0xe7 ) , \
q ( 0xe8 ) , q ( 0xe9 ) , q ( 0xea ) , q ( 0xeb ) , q ( 0xec ) , q ( 0xed ) , q ( 0xee ) , q ( 0xef ) , \
q ( 0xf0 ) , q ( 0xf1 ) , q ( 0xf2 ) , q ( 0xf3 ) , q ( 0xf4 ) , q ( 0xf5 ) , q ( 0xf6 ) , q ( 0xf7 ) , \
q ( 0xf8 ) , q ( 0xf9 ) , q ( 0xfa ) , q ( 0xfb ) , q ( 0xfc ) , q ( 0xfd ) , q ( 0xfe ) , q ( 0xff ) \
}
2017-02-15 00:43:29 +03:00
/*
* Given a value i in 0. .255 as the byte overflow when a field element
* in GF ( 2 ^ 128 ) is multiplied by x ^ 8 , the following macro returns the
* 16 - bit value that must be XOR - ed into the low - degree end of the
* product to reduce it modulo the polynomial x ^ 128 + x ^ 7 + x ^ 2 + x + 1.
*
* There are two versions of the macro , and hence two tables : one for
* the " be " convention where the highest - order bit is the coefficient of
* the highest - degree polynomial term , and one for the " le " convention
* where the highest - order bit is the coefficient of the lowest - degree
* polynomial term . In both cases the values are stored in CPU byte
* endianness such that the coefficients are ordered consistently across
* bytes , i . e . in the " be " table bits 15. .0 of the stored value
* correspond to the coefficients of x ^ 15. . x ^ 0 , and in the " le " table
* bits 15. .0 correspond to the coefficients of x ^ 0. . x ^ 15.
*
* Therefore , provided that the appropriate byte endianness conversions
* are done by the multiplication functions ( and these must be in place
* anyway to support both little endian and big endian CPUs ) , the " be "
* table can be used for multiplications of both " bbe " and " ble "
* elements , and the " le " table can be used for multiplications of both
* " lle " and " lbe " elements .
*/
2006-11-29 10:59:44 +03:00
2017-02-15 00:43:29 +03:00
# define xda_be(i) ( \
2017-02-15 00:43:28 +03:00
( i & 0x80 ? 0x4380 : 0 ) ^ ( i & 0x40 ? 0x21c0 : 0 ) ^ \
( i & 0x20 ? 0x10e0 : 0 ) ^ ( i & 0x10 ? 0x0870 : 0 ) ^ \
( i & 0x08 ? 0x0438 : 0 ) ^ ( i & 0x04 ? 0x021c : 0 ) ^ \
( i & 0x02 ? 0x010e : 0 ) ^ ( i & 0x01 ? 0x0087 : 0 ) \
2006-11-29 10:59:44 +03:00
)
2017-02-15 00:43:29 +03:00
# define xda_le(i) ( \
2017-02-15 00:43:28 +03:00
( i & 0x80 ? 0xe100 : 0 ) ^ ( i & 0x40 ? 0x7080 : 0 ) ^ \
( i & 0x20 ? 0x3840 : 0 ) ^ ( i & 0x10 ? 0x1c20 : 0 ) ^ \
( i & 0x08 ? 0x0e10 : 0 ) ^ ( i & 0x04 ? 0x0708 : 0 ) ^ \
( i & 0x02 ? 0x0384 : 0 ) ^ ( i & 0x01 ? 0x01c2 : 0 ) \
2006-11-29 10:59:44 +03:00
)
2017-02-15 00:43:29 +03:00
static const u16 gf128mul_table_le [ 256 ] = gf128mul_dat ( xda_le ) ;
static const u16 gf128mul_table_be [ 256 ] = gf128mul_dat ( xda_be ) ;
2006-11-29 10:59:44 +03:00
2017-02-15 00:43:27 +03:00
/*
2017-04-02 22:19:13 +03:00
* The following functions multiply a field element by x ^ 8 in
2017-02-15 00:43:27 +03:00
* the polynomial field representation . They use 64 - bit word operations
* to gain speed but compensate for machine endianness and hence work
2006-11-29 10:59:44 +03:00
* correctly on both styles of machine .
*/
static void gf128mul_x8_lle ( be128 * x )
{
u64 a = be64_to_cpu ( x - > a ) ;
u64 b = be64_to_cpu ( x - > b ) ;
2017-02-15 00:43:29 +03:00
u64 _tt = gf128mul_table_le [ b & 0xff ] ;
2006-11-29 10:59:44 +03:00
x - > b = cpu_to_be64 ( ( b > > 8 ) | ( a < < 56 ) ) ;
x - > a = cpu_to_be64 ( ( a > > 8 ) ^ ( _tt < < 48 ) ) ;
}
static void gf128mul_x8_bbe ( be128 * x )
{
u64 a = be64_to_cpu ( x - > a ) ;
u64 b = be64_to_cpu ( x - > b ) ;
2017-02-15 00:43:29 +03:00
u64 _tt = gf128mul_table_be [ a > > 56 ] ;
2006-11-29 10:59:44 +03:00
x - > a = cpu_to_be64 ( ( a < < 8 ) | ( b > > 56 ) ) ;
x - > b = cpu_to_be64 ( ( b < < 8 ) ^ _tt ) ;
}
2017-10-08 11:07:20 +03:00
void gf128mul_x8_ble ( le128 * r , const le128 * x )
{
u64 a = le64_to_cpu ( x - > a ) ;
u64 b = le64_to_cpu ( x - > b ) ;
u64 _tt = gf128mul_table_be [ a > > 56 ] ;
r - > a = cpu_to_le64 ( ( a < < 8 ) | ( b > > 56 ) ) ;
r - > b = cpu_to_le64 ( ( b < < 8 ) ^ _tt ) ;
}
EXPORT_SYMBOL ( gf128mul_x8_ble ) ;
2006-11-29 10:59:44 +03:00
void gf128mul_lle ( be128 * r , const be128 * b )
{
be128 p [ 8 ] ;
int i ;
p [ 0 ] = * r ;
for ( i = 0 ; i < 7 ; + + i )
gf128mul_x_lle ( & p [ i + 1 ] , & p [ i ] ) ;
2011-07-08 13:21:21 +04:00
memset ( r , 0 , sizeof ( * r ) ) ;
2006-11-29 10:59:44 +03:00
for ( i = 0 ; ; ) {
u8 ch = ( ( u8 * ) b ) [ 15 - i ] ;
if ( ch & 0x80 )
be128_xor ( r , r , & p [ 0 ] ) ;
if ( ch & 0x40 )
be128_xor ( r , r , & p [ 1 ] ) ;
if ( ch & 0x20 )
be128_xor ( r , r , & p [ 2 ] ) ;
if ( ch & 0x10 )
be128_xor ( r , r , & p [ 3 ] ) ;
if ( ch & 0x08 )
be128_xor ( r , r , & p [ 4 ] ) ;
if ( ch & 0x04 )
be128_xor ( r , r , & p [ 5 ] ) ;
if ( ch & 0x02 )
be128_xor ( r , r , & p [ 6 ] ) ;
if ( ch & 0x01 )
be128_xor ( r , r , & p [ 7 ] ) ;
if ( + + i > = 16 )
break ;
gf128mul_x8_lle ( r ) ;
}
}
EXPORT_SYMBOL ( gf128mul_lle ) ;
void gf128mul_bbe ( be128 * r , const be128 * b )
{
be128 p [ 8 ] ;
int i ;
p [ 0 ] = * r ;
for ( i = 0 ; i < 7 ; + + i )
gf128mul_x_bbe ( & p [ i + 1 ] , & p [ i ] ) ;
2011-07-08 13:21:21 +04:00
memset ( r , 0 , sizeof ( * r ) ) ;
2006-11-29 10:59:44 +03:00
for ( i = 0 ; ; ) {
u8 ch = ( ( u8 * ) b ) [ i ] ;
if ( ch & 0x80 )
be128_xor ( r , r , & p [ 7 ] ) ;
if ( ch & 0x40 )
be128_xor ( r , r , & p [ 6 ] ) ;
if ( ch & 0x20 )
be128_xor ( r , r , & p [ 5 ] ) ;
if ( ch & 0x10 )
be128_xor ( r , r , & p [ 4 ] ) ;
if ( ch & 0x08 )
be128_xor ( r , r , & p [ 3 ] ) ;
if ( ch & 0x04 )
be128_xor ( r , r , & p [ 2 ] ) ;
if ( ch & 0x02 )
be128_xor ( r , r , & p [ 1 ] ) ;
if ( ch & 0x01 )
be128_xor ( r , r , & p [ 0 ] ) ;
if ( + + i > = 16 )
break ;
gf128mul_x8_bbe ( r ) ;
}
}
EXPORT_SYMBOL ( gf128mul_bbe ) ;
/* This version uses 64k bytes of table space.
A 16 byte buffer has to be multiplied by a 16 byte key
2017-02-15 00:43:27 +03:00
value in GF ( 2 ^ 128 ) . If we consider a GF ( 2 ^ 128 ) value in
2006-11-29 10:59:44 +03:00
the buffer ' s lowest byte , we can construct a table of
the 256 16 byte values that result from the 256 values
of this byte . This requires 4096 bytes . But we also
need tables for each of the 16 higher bytes in the
buffer as well , which makes 64 kbytes in total .
*/
/* additional explanation
* t [ 0 ] [ BYTE ] contains g * BYTE
* t [ 1 ] [ BYTE ] contains g * x ^ 8 * BYTE
* . .
* t [ 15 ] [ BYTE ] contains g * x ^ 120 * BYTE */
struct gf128mul_64k * gf128mul_init_64k_bbe ( const be128 * g )
{
struct gf128mul_64k * t ;
int i , j , k ;
t = kzalloc ( sizeof ( * t ) , GFP_KERNEL ) ;
if ( ! t )
goto out ;
for ( i = 0 ; i < 16 ; i + + ) {
t - > t [ i ] = kzalloc ( sizeof ( * t - > t [ i ] ) , GFP_KERNEL ) ;
if ( ! t - > t [ i ] ) {
gf128mul_free_64k ( t ) ;
t = NULL ;
goto out ;
}
}
t - > t [ 0 ] - > t [ 1 ] = * g ;
for ( j = 1 ; j < = 64 ; j < < = 1 )
gf128mul_x_bbe ( & t - > t [ 0 ] - > t [ j + j ] , & t - > t [ 0 ] - > t [ j ] ) ;
for ( i = 0 ; ; ) {
for ( j = 2 ; j < 256 ; j + = j )
for ( k = 1 ; k < j ; + + k )
be128_xor ( & t - > t [ i ] - > t [ j + k ] ,
& t - > t [ i ] - > t [ j ] , & t - > t [ i ] - > t [ k ] ) ;
if ( + + i > = 16 )
break ;
for ( j = 128 ; j > 0 ; j > > = 1 ) {
t - > t [ i ] - > t [ j ] = t - > t [ i - 1 ] - > t [ j ] ;
gf128mul_x8_bbe ( & t - > t [ i ] - > t [ j ] ) ;
}
}
out :
return t ;
}
EXPORT_SYMBOL ( gf128mul_init_64k_bbe ) ;
void gf128mul_free_64k ( struct gf128mul_64k * t )
{
int i ;
for ( i = 0 ; i < 16 ; i + + )
2016-11-14 22:02:54 +03:00
kzfree ( t - > t [ i ] ) ;
kzfree ( t ) ;
2006-11-29 10:59:44 +03:00
}
EXPORT_SYMBOL ( gf128mul_free_64k ) ;
2017-02-15 00:43:30 +03:00
void gf128mul_64k_bbe ( be128 * a , const struct gf128mul_64k * t )
2006-11-29 10:59:44 +03:00
{
u8 * ap = ( u8 * ) a ;
be128 r [ 1 ] ;
int i ;
* r = t - > t [ 0 ] - > t [ ap [ 15 ] ] ;
for ( i = 1 ; i < 16 ; + + i )
be128_xor ( r , r , & t - > t [ i ] - > t [ ap [ 15 - i ] ] ) ;
* a = * r ;
}
EXPORT_SYMBOL ( gf128mul_64k_bbe ) ;
/* This version uses 4k bytes of table space.
A 16 byte buffer has to be multiplied by a 16 byte key
2017-02-15 00:43:27 +03:00
value in GF ( 2 ^ 128 ) . If we consider a GF ( 2 ^ 128 ) value in a
2006-11-29 10:59:44 +03:00
single byte , we can construct a table of the 256 16 byte
values that result from the 256 values of this byte .
This requires 4096 bytes . If we take the highest byte in
the buffer and use this table to get the result , we then
have to multiply by x ^ 120 to get the final value . For the
next highest byte the result has to be multiplied by x ^ 112
and so on . But we can do this by accumulating the result
in an accumulator starting with the result for the top
byte . We repeatedly multiply the accumulator value by
x ^ 8 and then add in ( i . e . xor ) the 16 bytes of the next
lower byte in the buffer , stopping when we reach the
lowest byte . This requires a 4096 byte table .
*/
struct gf128mul_4k * gf128mul_init_4k_lle ( const be128 * g )
{
struct gf128mul_4k * t ;
int j , k ;
t = kzalloc ( sizeof ( * t ) , GFP_KERNEL ) ;
if ( ! t )
goto out ;
t - > t [ 128 ] = * g ;
for ( j = 64 ; j > 0 ; j > > = 1 )
gf128mul_x_lle ( & t - > t [ j ] , & t - > t [ j + j ] ) ;
for ( j = 2 ; j < 256 ; j + = j )
for ( k = 1 ; k < j ; + + k )
be128_xor ( & t - > t [ j + k ] , & t - > t [ j ] , & t - > t [ k ] ) ;
out :
return t ;
}
EXPORT_SYMBOL ( gf128mul_init_4k_lle ) ;
struct gf128mul_4k * gf128mul_init_4k_bbe ( const be128 * g )
{
struct gf128mul_4k * t ;
int j , k ;
t = kzalloc ( sizeof ( * t ) , GFP_KERNEL ) ;
if ( ! t )
goto out ;
t - > t [ 1 ] = * g ;
for ( j = 1 ; j < = 64 ; j < < = 1 )
gf128mul_x_bbe ( & t - > t [ j + j ] , & t - > t [ j ] ) ;
for ( j = 2 ; j < 256 ; j + = j )
for ( k = 1 ; k < j ; + + k )
be128_xor ( & t - > t [ j + k ] , & t - > t [ j ] , & t - > t [ k ] ) ;
out :
return t ;
}
EXPORT_SYMBOL ( gf128mul_init_4k_bbe ) ;
2017-02-15 00:43:30 +03:00
void gf128mul_4k_lle ( be128 * a , const struct gf128mul_4k * t )
2006-11-29 10:59:44 +03:00
{
u8 * ap = ( u8 * ) a ;
be128 r [ 1 ] ;
int i = 15 ;
* r = t - > t [ ap [ 15 ] ] ;
while ( i - - ) {
gf128mul_x8_lle ( r ) ;
be128_xor ( r , r , & t - > t [ ap [ i ] ] ) ;
}
* a = * r ;
}
EXPORT_SYMBOL ( gf128mul_4k_lle ) ;
2017-02-15 00:43:30 +03:00
void gf128mul_4k_bbe ( be128 * a , const struct gf128mul_4k * t )
2006-11-29 10:59:44 +03:00
{
u8 * ap = ( u8 * ) a ;
be128 r [ 1 ] ;
int i = 0 ;
* r = t - > t [ ap [ 0 ] ] ;
while ( + + i < 16 ) {
gf128mul_x8_bbe ( r ) ;
be128_xor ( r , r , & t - > t [ ap [ i ] ] ) ;
}
* a = * r ;
}
EXPORT_SYMBOL ( gf128mul_4k_bbe ) ;
MODULE_LICENSE ( " GPL " ) ;
MODULE_DESCRIPTION ( " Functions for multiplying elements of GF(2^128) " ) ;