linux/arch/powerpc/include/asm/lppaca.h

158 lines
4.7 KiB
C
Raw Normal View History

/*
* lppaca.h
* Copyright (C) 2001 Mike Corrigan IBM Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef _ASM_POWERPC_LPPACA_H
#define _ASM_POWERPC_LPPACA_H
#ifdef __KERNEL__
/*
* These definitions relate to hypervisors that only exist when using
* a server type processor
*/
#ifdef CONFIG_PPC_BOOK3S
/*
* This control block contains the data that is shared between the
* hypervisor and the OS.
*/
#include <linux/cache.h>
#include <linux/threads.h>
#include <asm/types.h>
#include <asm/mmu.h>
/*
* We only have to have statically allocated lppaca structs on
* legacy iSeries, which supports at most 64 cpus.
*/
#define NR_LPPACAS 1
/*
* The Hypervisor barfs if the lppaca crosses a page boundary. A 1k
* alignment is sufficient to prevent this
*/
struct lppaca {
/* cacheline 1 contains read-only data */
u32 desc; /* Eye catcher 0xD397D781 */
u16 size; /* Size of this struct */
u16 reserved1;
u16 reserved2:14;
u8 shared_proc:1; /* Shared processor indicator */
u8 secondary_thread:1; /* Secondary thread indicator */
u8 reserved3[14];
volatile u32 dyn_hw_node_id; /* Dynamic hardware node id */
volatile u32 dyn_hw_proc_id; /* Dynamic hardware proc id */
u8 reserved4[56];
volatile u8 vphn_assoc_counts[8]; /* Virtual processor home node */
/* associativity change counters */
u8 reserved5[32];
/* cacheline 2 contains local read-write data */
u8 reserved6[48];
u8 cede_latency_hint;
u8 reserved7[7];
u8 dtl_enable_mask; /* Dispatch Trace Log mask */
u8 donate_dedicated_cpu; /* Donate dedicated CPU cycles */
u8 fpregs_in_use;
u8 pmcregs_in_use;
u8 reserved8[28];
u64 wait_state_cycles; /* Wait cycles for this proc */
u8 reserved9[28];
u16 slb_count; /* # of SLBs to maintain */
u8 idle; /* Indicate OS is idle */
u8 vmxregs_in_use;
/* cacheline 3 is shared with other processors */
/*
* This is the yield_count. An "odd" value (low bit on) means that
* the processor is yielded (either because of an OS yield or a
* hypervisor preempt). An even value implies that the processor is
* currently executing.
* NOTE: This value will ALWAYS be zero for dedicated processors and
* will NEVER be zero for shared processors (ie, initialized to a 1).
*/
volatile u32 yield_count;
volatile u32 dispersion_count; /* dispatch changed physical cpu */
volatile u64 cmo_faults; /* CMO page fault count */
volatile u64 cmo_fault_time; /* CMO page fault time */
u8 reserved10[104];
/* cacheline 4-5 */
u32 page_ins; /* CMO Hint - # page ins by OS */
u8 reserved11[148];
volatile u64 dtl_idx; /* Dispatch Trace Log head index */
u8 reserved12[96];
} __attribute__((__aligned__(0x400)));
extern struct lppaca lppaca[];
#define lppaca_of(cpu) (*paca[cpu].lppaca_ptr)
/*
* SLB shadow buffer structure as defined in the PAPR. The save_area
* contains adjacent ESID and VSID pairs for each shadowed SLB. The
* ESID is stored in the lower 64bits, then the VSID.
*/
struct slb_shadow {
u32 persistent; /* Number of persistent SLBs */
u32 buffer_length; /* Total shadow buffer length */
u64 reserved;
struct {
u64 esid;
u64 vsid;
} save_area[SLB_NUM_BOLTED];
} ____cacheline_aligned;
extern struct slb_shadow slb_shadow[];
powerpc: Account time using timebase rather than PURR Currently, when CONFIG_VIRT_CPU_ACCOUNTING is enabled, we use the PURR register for measuring the user and system time used by processes, as well as other related times such as hardirq and softirq times. This turns out to be quite confusing for users because it means that a program will often be measured as taking less time when run on a multi-threaded processor (SMT2 or SMT4 mode) than it does when run on a single-threaded processor (ST mode), even though the program takes longer to finish. The discrepancy is accounted for as stolen time, which is also confusing, particularly when there are no other partitions running. This changes the accounting to use the timebase instead, meaning that the reported user and system times are the actual number of real-time seconds that the program was executing on the processor thread, regardless of which SMT mode the processor is in. Thus a program will generally show greater user and system times when run on a multi-threaded processor than on a single-threaded processor. On pSeries systems on POWER5 or later processors, we measure the stolen time (time when this partition wasn't running) using the hypervisor dispatch trace log. We check for new entries in the log on every entry from user mode and on every transition from kernel process context to soft or hard IRQ context (i.e. when account_system_vtime() gets called). So that we can correctly distinguish time stolen from user time and time stolen from system time, without having to check the log on every exit to user mode, we store separate timestamps for exit to user mode and entry from user mode. On systems that have a SPURR (POWER6 and POWER7), we read the SPURR in account_system_vtime() (as before), and then apportion the SPURR ticks since the last time we read it between scaled user time and scaled system time according to the relative proportions of user time and system time over the same interval. This avoids having to read the SPURR on every kernel entry and exit. On systems that have PURR but not SPURR (i.e., POWER5), we do the same using the PURR rather than the SPURR. This disables the DTL user interface in /sys/debug/kernel/powerpc/dtl for now since it conflicts with the use of the dispatch trace log by the time accounting code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-08-26 23:56:43 +04:00
/*
* Layout of entries in the hypervisor's dispatch trace log buffer.
*/
struct dtl_entry {
u8 dispatch_reason;
u8 preempt_reason;
u16 processor_id;
u32 enqueue_to_dispatch_time;
u32 ready_to_enqueue_time;
u32 waiting_to_ready_time;
u64 timebase;
u64 fault_addr;
u64 srr0;
u64 srr1;
};
#define DISPATCH_LOG_BYTES 4096 /* bytes per cpu */
#define N_DISPATCH_LOG (DISPATCH_LOG_BYTES / sizeof(struct dtl_entry))
extern struct kmem_cache *dtl_cache;
/*
* When CONFIG_VIRT_CPU_ACCOUNTING = y, the cpu accounting code controls
* reading from the dispatch trace log. If other code wants to consume
* DTL entries, it can set this pointer to a function that will get
* called once for each DTL entry that gets processed.
*/
extern void (*dtl_consumer)(struct dtl_entry *entry, u64 index);
#endif /* CONFIG_PPC_BOOK3S */
#endif /* __KERNEL__ */
#endif /* _ASM_POWERPC_LPPACA_H */