linux/mm/bootmem.c

1016 lines
24 KiB
C
Raw Normal View History

/*
* bootmem - A boot-time physical memory allocator and configurator
*
* Copyright (C) 1999 Ingo Molnar
* 1999 Kanoj Sarcar, SGI
* 2008 Johannes Weiner
*
* Access to this subsystem has to be serialized externally (which is true
* for the boot process anyway).
*/
#include <linux/init.h>
#include <linux/pfn.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/kmemleak.h>
#include <linux/range.h>
x86: Use memblock to replace early_res 1. replace find_e820_area with memblock_find_in_range 2. replace reserve_early with memblock_x86_reserve_range 3. replace free_early with memblock_x86_free_range. 4. NO_BOOTMEM will switch to use memblock too. 5. use _e820, _early wrap in the patch, in following patch, will replace them all 6. because memblock_x86_free_range support partial free, we can remove some special care 7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill() so adjust some calling later in setup.c::setup_arch() -- corruption_check and mptable_update -v2: Move reserve_brk() early Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range() that could happen We have more then 128 RAM entry in E820 tables, and memblock_x86_fill() could use memblock_find_in_range() to find a new place for memblock.memory.region array. and We don't need to use extend_brk() after fill_memblock_area() So move reserve_brk() early before fill_memblock_area(). -v3: Move find_smp_config early To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable in right place. -v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in memblock.reserved already.. use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later. -v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit active_region for 32bit does include high pages need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped() -v6: Use current_limit instead -v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L -v8: Set memblock_can_resize early to handle EFI with more RAM entries -v9: update after kmemleak changes in mainline Suggested-by: David S. Miller <davem@davemloft.net> Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-25 13:39:17 -07:00
#include <linux/memblock.h>
#include <asm/bug.h>
#include <asm/io.h>
#include <asm/processor.h>
#include "internal.h"
unsigned long max_low_pfn;
unsigned long min_low_pfn;
unsigned long max_pfn;
#ifdef CONFIG_CRASH_DUMP
/*
* If we have booted due to a crash, max_pfn will be a very low value. We need
* to know the amount of memory that the previous kernel used.
*/
unsigned long saved_max_pfn;
#endif
#ifndef CONFIG_NO_BOOTMEM
bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
static int bootmem_debug;
static int __init bootmem_debug_setup(char *buf)
{
bootmem_debug = 1;
return 0;
}
early_param("bootmem_debug", bootmem_debug_setup);
#define bdebug(fmt, args...) ({ \
if (unlikely(bootmem_debug)) \
printk(KERN_INFO \
"bootmem::%s " fmt, \
__func__, ## args); \
})
static unsigned long __init bootmap_bytes(unsigned long pages)
{
unsigned long bytes = (pages + 7) / 8;
return ALIGN(bytes, sizeof(long));
}
/**
* bootmem_bootmap_pages - calculate bitmap size in pages
* @pages: number of pages the bitmap has to represent
*/
unsigned long __init bootmem_bootmap_pages(unsigned long pages)
{
unsigned long bytes = bootmap_bytes(pages);
return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
}
/*
* link bdata in order
*/
static void __init link_bootmem(bootmem_data_t *bdata)
{
struct list_head *iter;
list_for_each(iter, &bdata_list) {
bootmem_data_t *ent;
ent = list_entry(iter, bootmem_data_t, list);
if (bdata->node_min_pfn < ent->node_min_pfn)
break;
}
list_add_tail(&bdata->list, iter);
}
/*
* Called once to set up the allocator itself.
*/
static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
unsigned long mapstart, unsigned long start, unsigned long end)
{
unsigned long mapsize;
mminit_validate_memmodel_limits(&start, &end);
bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
bdata->node_min_pfn = start;
bdata->node_low_pfn = end;
link_bootmem(bdata);
/*
* Initially all pages are reserved - setup_arch() has to
* register free RAM areas explicitly.
*/
mapsize = bootmap_bytes(end - start);
memset(bdata->node_bootmem_map, 0xff, mapsize);
bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
bdata - bootmem_node_data, start, mapstart, end, mapsize);
return mapsize;
}
/**
* init_bootmem_node - register a node as boot memory
* @pgdat: node to register
* @freepfn: pfn where the bitmap for this node is to be placed
* @startpfn: first pfn on the node
* @endpfn: first pfn after the node
*
* Returns the number of bytes needed to hold the bitmap for this node.
*/
unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
unsigned long startpfn, unsigned long endpfn)
{
return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
}
/**
* init_bootmem - register boot memory
* @start: pfn where the bitmap is to be placed
* @pages: number of available physical pages
*
* Returns the number of bytes needed to hold the bitmap.
*/
unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
{
max_low_pfn = pages;
min_low_pfn = start;
return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
}
#endif
/*
* free_bootmem_late - free bootmem pages directly to page allocator
* @addr: starting address of the range
* @size: size of the range in bytes
*
* This is only useful when the bootmem allocator has already been torn
* down, but we are still initializing the system. Pages are given directly
* to the page allocator, no bootmem metadata is updated because it is gone.
*/
void __init free_bootmem_late(unsigned long addr, unsigned long size)
{
unsigned long cursor, end;
kmemleak_free_part(__va(addr), size);
cursor = PFN_UP(addr);
end = PFN_DOWN(addr + size);
for (; cursor < end; cursor++) {
__free_pages_bootmem(pfn_to_page(cursor), 0);
totalram_pages++;
}
}
#ifdef CONFIG_NO_BOOTMEM
static void __init __free_pages_memory(unsigned long start, unsigned long end)
{
int i;
unsigned long start_aligned, end_aligned;
int order = ilog2(BITS_PER_LONG);
start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
end_aligned = end & ~(BITS_PER_LONG - 1);
if (end_aligned <= start_aligned) {
for (i = start; i < end; i++)
__free_pages_bootmem(pfn_to_page(i), 0);
return;
}
for (i = start; i < start_aligned; i++)
__free_pages_bootmem(pfn_to_page(i), 0);
for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
__free_pages_bootmem(pfn_to_page(i), order);
for (i = end_aligned; i < end; i++)
__free_pages_bootmem(pfn_to_page(i), 0);
}
unsigned long __init free_all_memory_core_early(int nodeid)
{
int i;
u64 start, end;
unsigned long count = 0;
struct range *range = NULL;
int nr_range;
nr_range = get_free_all_memory_range(&range, nodeid);
for (i = 0; i < nr_range; i++) {
start = range[i].start;
end = range[i].end;
count += end - start;
__free_pages_memory(start, end);
}
return count;
}
#else
static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
{
int aligned;
struct page *page;
unsigned long start, end, pages, count = 0;
if (!bdata->node_bootmem_map)
return 0;
start = bdata->node_min_pfn;
end = bdata->node_low_pfn;
/*
* If the start is aligned to the machines wordsize, we might
* be able to free pages in bulks of that order.
*/
aligned = !(start & (BITS_PER_LONG - 1));
bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
bdata - bootmem_node_data, start, end, aligned);
while (start < end) {
unsigned long *map, idx, vec;
map = bdata->node_bootmem_map;
idx = start - bdata->node_min_pfn;
vec = ~map[idx / BITS_PER_LONG];
if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
int order = ilog2(BITS_PER_LONG);
__free_pages_bootmem(pfn_to_page(start), order);
count += BITS_PER_LONG;
} else {
unsigned long off = 0;
while (vec && off < BITS_PER_LONG) {
if (vec & 1) {
page = pfn_to_page(start + off);
__free_pages_bootmem(page, 0);
count++;
}
vec >>= 1;
off++;
}
}
start += BITS_PER_LONG;
}
page = virt_to_page(bdata->node_bootmem_map);
pages = bdata->node_low_pfn - bdata->node_min_pfn;
pages = bootmem_bootmap_pages(pages);
count += pages;
while (pages--)
__free_pages_bootmem(page++, 0);
bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
return count;
}
#endif
/**
* free_all_bootmem_node - release a node's free pages to the buddy allocator
* @pgdat: node to be released
*
* Returns the number of pages actually released.
*/
unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
{
register_page_bootmem_info_node(pgdat);
#ifdef CONFIG_NO_BOOTMEM
/* free_all_memory_core_early(MAX_NUMNODES) will be called later */
return 0;
#else
return free_all_bootmem_core(pgdat->bdata);
#endif
}
/**
* free_all_bootmem - release free pages to the buddy allocator
*
* Returns the number of pages actually released.
*/
unsigned long __init free_all_bootmem(void)
{
#ifdef CONFIG_NO_BOOTMEM
nobootmem, x86: Fix 32bit numa system without RAM on node 0 On one system without RAM on node0, got following boot dump with a 32 bit NUMA kernel: early_node_map[4] active PFN ranges 1: 0x00000010 -> 0x00000099 1: 0x00000100 -> 0x0007da00 1: 0x0007e800 -> 0x0007ffa0 1: 0x0007ffae -> 0x0007ffb0 ... Subtract (29 early reservations) #000 [0000001000 - 0000002000] #001 [0000089000 - 000008f000] #002 [0000091000 - 0000093500] ... #027 [007cbfef40 - 007e800000] #028 [007e9ca000 - 007ff95000] (0 free memory ranges) Initializing HighMem for node 0 (00000000:00000000) Initializing HighMem for node 1 (00000000:00000000) Memory: 0k/2096832k available (6662k kernel code, 2096300k reserved, 4829k data, 484k init, 0k highmem) ... Checking if this processor honours the WP bit even in supervisor mode...Ok. swapper: page allocation failure. order:0, mode:0x0 Pid: 0, comm: swapper Not tainted 2.6.34-rc3-tip-03818-g4b1ea6c-dirty #35 Call Trace: [<4087a5dc>] ? printk+0xf/0x11 [<40286728>] __alloc_pages_nodemask+0x417/0x487 [<402a9ce1>] new_slab+0xe2/0x1fe [<402aa5b2>] kmem_cache_open+0x185/0x358 [<402abbc0>] T.954+0x1c/0x60 [<40d52a29>] kmem_cache_init+0x24/0x113 [<40d39738>] start_kernel+0x166/0x2e4 [<40d3940e>] ? unknown_bootoption+0x0/0x18e [<40d390ce>] i386_start_kernel+0xce/0xd5 Mem-Info: Node 1 DMA per-cpu: CPU 0: hi: 0, btch: 1 usd: 0 Node 1 Normal per-cpu: CPU 0: hi: 0, btch: 1 usd: 0 active_anon:0 inactive_anon:0 isolated_anon:0 active_file:0 inactive_file:0 isolated_file:0 unevictable:0 dirty:0 writeback:0 unstable:0 free:0 slab_reclaimable:0 slab_unreclaimable:0 mapped:0 shmem:0 pagetables:0 bounce:0 When 32bit NUMA is used, free_all_bootmem() will still only go over with node id 0. If node 0 doesn't have RAM installed, We need to go with node1 because early_node_map still use 1 for all ranges, and ram from node1 become low ram. Use MAX_NUMNODES like 64-bit NUMA does. Note: BOOTMEM path has the same problem. this bug exist before We have NO_BOOTMEM support. -v3: add more comments, and fix bootmem path too. -v4: seperate bootmem path fix Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <4BB41689.9090502@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-03-31 20:44:09 -07:00
/*
* We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id
* because in some case like Node0 doesnt have RAM installed
* low ram will be on Node1
* Use MAX_NUMNODES will make sure all ranges in early_node_map[]
* will be used instead of only Node0 related
*/
return free_all_memory_core_early(MAX_NUMNODES);
#else
unsigned long total_pages = 0;
bootmem_data_t *bdata;
list_for_each_entry(bdata, &bdata_list, list)
total_pages += free_all_bootmem_core(bdata);
return total_pages;
#endif
}
#ifndef CONFIG_NO_BOOTMEM
static void __init __free(bootmem_data_t *bdata,
unsigned long sidx, unsigned long eidx)
{
unsigned long idx;
bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
sidx + bdata->node_min_pfn,
eidx + bdata->node_min_pfn);
if (bdata->hint_idx > sidx)
bdata->hint_idx = sidx;
for (idx = sidx; idx < eidx; idx++)
if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
BUG();
}
static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
unsigned long eidx, int flags)
{
unsigned long idx;
int exclusive = flags & BOOTMEM_EXCLUSIVE;
bdebug("nid=%td start=%lx end=%lx flags=%x\n",
bdata - bootmem_node_data,
sidx + bdata->node_min_pfn,
eidx + bdata->node_min_pfn,
flags);
for (idx = sidx; idx < eidx; idx++)
if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
if (exclusive) {
__free(bdata, sidx, idx);
return -EBUSY;
}
bdebug("silent double reserve of PFN %lx\n",
idx + bdata->node_min_pfn);
}
return 0;
}
static int __init mark_bootmem_node(bootmem_data_t *bdata,
unsigned long start, unsigned long end,
int reserve, int flags)
{
unsigned long sidx, eidx;
bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
bdata - bootmem_node_data, start, end, reserve, flags);
BUG_ON(start < bdata->node_min_pfn);
BUG_ON(end > bdata->node_low_pfn);
sidx = start - bdata->node_min_pfn;
eidx = end - bdata->node_min_pfn;
if (reserve)
return __reserve(bdata, sidx, eidx, flags);
else
__free(bdata, sidx, eidx);
return 0;
}
static int __init mark_bootmem(unsigned long start, unsigned long end,
int reserve, int flags)
{
unsigned long pos;
bootmem_data_t *bdata;
pos = start;
list_for_each_entry(bdata, &bdata_list, list) {
int err;
unsigned long max;
if (pos < bdata->node_min_pfn ||
pos >= bdata->node_low_pfn) {
BUG_ON(pos != start);
continue;
}
max = min(bdata->node_low_pfn, end);
err = mark_bootmem_node(bdata, pos, max, reserve, flags);
if (reserve && err) {
mark_bootmem(start, pos, 0, 0);
return err;
}
if (max == end)
return 0;
pos = bdata->node_low_pfn;
}
BUG();
}
#endif
/**
* free_bootmem_node - mark a page range as usable
* @pgdat: node the range resides on
* @physaddr: starting address of the range
* @size: size of the range in bytes
*
* Partial pages will be considered reserved and left as they are.
*
* The range must reside completely on the specified node.
*/
void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
unsigned long size)
{
#ifdef CONFIG_NO_BOOTMEM
x86: Use memblock to replace early_res 1. replace find_e820_area with memblock_find_in_range 2. replace reserve_early with memblock_x86_reserve_range 3. replace free_early with memblock_x86_free_range. 4. NO_BOOTMEM will switch to use memblock too. 5. use _e820, _early wrap in the patch, in following patch, will replace them all 6. because memblock_x86_free_range support partial free, we can remove some special care 7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill() so adjust some calling later in setup.c::setup_arch() -- corruption_check and mptable_update -v2: Move reserve_brk() early Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range() that could happen We have more then 128 RAM entry in E820 tables, and memblock_x86_fill() could use memblock_find_in_range() to find a new place for memblock.memory.region array. and We don't need to use extend_brk() after fill_memblock_area() So move reserve_brk() early before fill_memblock_area(). -v3: Move find_smp_config early To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable in right place. -v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in memblock.reserved already.. use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later. -v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit active_region for 32bit does include high pages need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped() -v6: Use current_limit instead -v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L -v8: Set memblock_can_resize early to handle EFI with more RAM entries -v9: update after kmemleak changes in mainline Suggested-by: David S. Miller <davem@davemloft.net> Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-25 13:39:17 -07:00
kmemleak_free_part(__va(physaddr), size);
memblock_x86_free_range(physaddr, physaddr + size);
#else
unsigned long start, end;
kmemleak_free_part(__va(physaddr), size);
start = PFN_UP(physaddr);
end = PFN_DOWN(physaddr + size);
mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
#endif
}
/**
* free_bootmem - mark a page range as usable
* @addr: starting address of the range
* @size: size of the range in bytes
*
* Partial pages will be considered reserved and left as they are.
*
* The range must be contiguous but may span node boundaries.
*/
void __init free_bootmem(unsigned long addr, unsigned long size)
{
#ifdef CONFIG_NO_BOOTMEM
x86: Use memblock to replace early_res 1. replace find_e820_area with memblock_find_in_range 2. replace reserve_early with memblock_x86_reserve_range 3. replace free_early with memblock_x86_free_range. 4. NO_BOOTMEM will switch to use memblock too. 5. use _e820, _early wrap in the patch, in following patch, will replace them all 6. because memblock_x86_free_range support partial free, we can remove some special care 7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill() so adjust some calling later in setup.c::setup_arch() -- corruption_check and mptable_update -v2: Move reserve_brk() early Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range() that could happen We have more then 128 RAM entry in E820 tables, and memblock_x86_fill() could use memblock_find_in_range() to find a new place for memblock.memory.region array. and We don't need to use extend_brk() after fill_memblock_area() So move reserve_brk() early before fill_memblock_area(). -v3: Move find_smp_config early To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable in right place. -v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in memblock.reserved already.. use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later. -v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit active_region for 32bit does include high pages need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped() -v6: Use current_limit instead -v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L -v8: Set memblock_can_resize early to handle EFI with more RAM entries -v9: update after kmemleak changes in mainline Suggested-by: David S. Miller <davem@davemloft.net> Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-25 13:39:17 -07:00
kmemleak_free_part(__va(addr), size);
memblock_x86_free_range(addr, addr + size);
#else
unsigned long start, end;
kmemleak_free_part(__va(addr), size);
start = PFN_UP(addr);
end = PFN_DOWN(addr + size);
mark_bootmem(start, end, 0, 0);
#endif
}
/**
* reserve_bootmem_node - mark a page range as reserved
* @pgdat: node the range resides on
* @physaddr: starting address of the range
* @size: size of the range in bytes
* @flags: reservation flags (see linux/bootmem.h)
*
* Partial pages will be reserved.
*
* The range must reside completely on the specified node.
*/
int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
unsigned long size, int flags)
{
#ifdef CONFIG_NO_BOOTMEM
panic("no bootmem");
return 0;
#else
unsigned long start, end;
start = PFN_DOWN(physaddr);
end = PFN_UP(physaddr + size);
return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
#endif
}
/**
* reserve_bootmem - mark a page range as usable
* @addr: starting address of the range
* @size: size of the range in bytes
* @flags: reservation flags (see linux/bootmem.h)
*
* Partial pages will be reserved.
*
* The range must be contiguous but may span node boundaries.
*/
int __init reserve_bootmem(unsigned long addr, unsigned long size,
int flags)
{
#ifdef CONFIG_NO_BOOTMEM
panic("no bootmem");
return 0;
#else
unsigned long start, end;
start = PFN_DOWN(addr);
end = PFN_UP(addr + size);
return mark_bootmem(start, end, 1, flags);
#endif
}
#ifndef CONFIG_NO_BOOTMEM
int __weak __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
int flags)
{
return reserve_bootmem(phys, len, flags);
}
static unsigned long __init align_idx(struct bootmem_data *bdata,
unsigned long idx, unsigned long step)
{
unsigned long base = bdata->node_min_pfn;
/*
* Align the index with respect to the node start so that the
* combination of both satisfies the requested alignment.
*/
return ALIGN(base + idx, step) - base;
}
static unsigned long __init align_off(struct bootmem_data *bdata,
unsigned long off, unsigned long align)
{
unsigned long base = PFN_PHYS(bdata->node_min_pfn);
/* Same as align_idx for byte offsets */
return ALIGN(base + off, align) - base;
}
static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
unsigned long size, unsigned long align,
unsigned long goal, unsigned long limit)
{
unsigned long fallback = 0;
unsigned long min, max, start, sidx, midx, step;
bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
align, goal, limit);
BUG_ON(!size);
BUG_ON(align & (align - 1));
BUG_ON(limit && goal + size > limit);
if (!bdata->node_bootmem_map)
return NULL;
min = bdata->node_min_pfn;
max = bdata->node_low_pfn;
goal >>= PAGE_SHIFT;
limit >>= PAGE_SHIFT;
if (limit && max > limit)
max = limit;
if (max <= min)
return NULL;
step = max(align >> PAGE_SHIFT, 1UL);
if (goal && min < goal && goal < max)
start = ALIGN(goal, step);
else
start = ALIGN(min, step);
sidx = start - bdata->node_min_pfn;
midx = max - bdata->node_min_pfn;
if (bdata->hint_idx > sidx) {
/*
* Handle the valid case of sidx being zero and still
* catch the fallback below.
*/
fallback = sidx + 1;
sidx = align_idx(bdata, bdata->hint_idx, step);
}
while (1) {
int merge;
void *region;
unsigned long eidx, i, start_off, end_off;
find_block:
sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
sidx = align_idx(bdata, sidx, step);
eidx = sidx + PFN_UP(size);
if (sidx >= midx || eidx > midx)
break;
for (i = sidx; i < eidx; i++)
if (test_bit(i, bdata->node_bootmem_map)) {
sidx = align_idx(bdata, i, step);
if (sidx == i)
sidx += step;
goto find_block;
}
bootmem allocator: alloc_bootmem_core(): page-align the end offset This is the minimal sequence that jams the allocator: void *p, *q, *r; p = alloc_bootmem(PAGE_SIZE); q = alloc_bootmem(64); free_bootmem(p, PAGE_SIZE); p = alloc_bootmem(PAGE_SIZE); r = alloc_bootmem(64); after this sequence (assuming that the allocator was empty or page-aligned before), pointer "q" will be equal to pointer "r". What's hapenning inside the allocator: p = alloc_bootmem(PAGE_SIZE); in allocator: last_end_off == PAGE_SIZE, bitmap contains bits 10000... q = alloc_bootmem(64); in allocator: last_end_off == PAGE_SIZE + 64, bitmap contains 11000... free_bootmem(p, PAGE_SIZE); in allocator: last_end_off == PAGE_SIZE + 64, bitmap contains 01000... p = alloc_bootmem(PAGE_SIZE); in allocator: last_end_off == PAGE_SIZE, bitmap contains 11000... r = alloc_bootmem(64); and now: it finds bit "2", as a place where to allocate (sidx) it hits the condition if (bdata->last_end_off && PFN_DOWN(bdata->last_end_off) + 1 == sidx)) start_off = ALIGN(bdata->last_end_off, align); -you can see that the condition is true, so it assigns start_off = ALIGN(bdata->last_end_off, align); (that is PAGE_SIZE) and allocates over already allocated block. With the patch it tries to continue at the end of previous allocation only if the previous allocation ended in the middle of the page. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Johannes Weiner <hannes@saeurebad.de> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-15 00:40:17 -07:00
if (bdata->last_end_off & (PAGE_SIZE - 1) &&
PFN_DOWN(bdata->last_end_off) + 1 == sidx)
start_off = align_off(bdata, bdata->last_end_off, align);
else
start_off = PFN_PHYS(sidx);
merge = PFN_DOWN(start_off) < sidx;
end_off = start_off + size;
bdata->last_end_off = end_off;
bdata->hint_idx = PFN_UP(end_off);
/*
* Reserve the area now:
*/
if (__reserve(bdata, PFN_DOWN(start_off) + merge,
PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
BUG();
region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
start_off);
memset(region, 0, size);
/*
* The min_count is set to 0 so that bootmem allocated blocks
* are never reported as leaks.
*/
kmemleak_alloc(region, size, 0, 0);
return region;
}
if (fallback) {
sidx = align_idx(bdata, fallback - 1, step);
fallback = 0;
goto find_block;
}
return NULL;
}
static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
unsigned long size, unsigned long align,
unsigned long goal, unsigned long limit)
{
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc(size, GFP_NOWAIT);
#ifdef CONFIG_HAVE_ARCH_BOOTMEM
{
bootmem_data_t *p_bdata;
p_bdata = bootmem_arch_preferred_node(bdata, size, align,
goal, limit);
if (p_bdata)
return alloc_bootmem_core(p_bdata, size, align,
goal, limit);
}
#endif
return NULL;
}
#endif
static void * __init ___alloc_bootmem_nopanic(unsigned long size,
unsigned long align,
unsigned long goal,
unsigned long limit)
{
#ifdef CONFIG_NO_BOOTMEM
void *ptr;
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc(size, GFP_NOWAIT);
restart:
ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit);
if (ptr)
return ptr;
if (goal != 0) {
goal = 0;
goto restart;
}
return NULL;
#else
bootmem_data_t *bdata;
void *region;
restart:
region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
if (region)
return region;
list_for_each_entry(bdata, &bdata_list, list) {
if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
continue;
if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
break;
region = alloc_bootmem_core(bdata, size, align, goal, limit);
if (region)
return region;
}
if (goal) {
goal = 0;
goto restart;
}
return NULL;
#endif
}
/**
* __alloc_bootmem_nopanic - allocate boot memory without panicking
* @size: size of the request in bytes
* @align: alignment of the region
* @goal: preferred starting address of the region
*
* The goal is dropped if it can not be satisfied and the allocation will
* fall back to memory below @goal.
*
* Allocation may happen on any node in the system.
*
* Returns NULL on failure.
*/
void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
unsigned long goal)
{
unsigned long limit = 0;
#ifdef CONFIG_NO_BOOTMEM
limit = -1UL;
#endif
return ___alloc_bootmem_nopanic(size, align, goal, limit);
}
static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
unsigned long goal, unsigned long limit)
{
void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
if (mem)
return mem;
/*
* Whoops, we cannot satisfy the allocation request.
*/
printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
panic("Out of memory");
return NULL;
}
/**
* __alloc_bootmem - allocate boot memory
* @size: size of the request in bytes
* @align: alignment of the region
* @goal: preferred starting address of the region
*
* The goal is dropped if it can not be satisfied and the allocation will
* fall back to memory below @goal.
*
* Allocation may happen on any node in the system.
*
* The function panics if the request can not be satisfied.
*/
void * __init __alloc_bootmem(unsigned long size, unsigned long align,
unsigned long goal)
{
unsigned long limit = 0;
#ifdef CONFIG_NO_BOOTMEM
limit = -1UL;
#endif
return ___alloc_bootmem(size, align, goal, limit);
}
#ifndef CONFIG_NO_BOOTMEM
static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
unsigned long size, unsigned long align,
unsigned long goal, unsigned long limit)
{
void *ptr;
ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
if (ptr)
return ptr;
ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
if (ptr)
return ptr;
return ___alloc_bootmem(size, align, goal, limit);
}
#endif
/**
* __alloc_bootmem_node - allocate boot memory from a specific node
* @pgdat: node to allocate from
* @size: size of the request in bytes
* @align: alignment of the region
* @goal: preferred starting address of the region
*
* The goal is dropped if it can not be satisfied and the allocation will
* fall back to memory below @goal.
*
* Allocation may fall back to any node in the system if the specified node
* can not hold the requested memory.
*
* The function panics if the request can not be satisfied.
*/
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit numa is used Borislav Petkov reported his 32bit numa system has problem: [ 0.000000] Reserving total of 4c00 pages for numa KVA remap [ 0.000000] kva_start_pfn ~ 32800 max_low_pfn ~ 375fe [ 0.000000] max_pfn = 238000 [ 0.000000] 8202MB HIGHMEM available. [ 0.000000] 885MB LOWMEM available. [ 0.000000] mapped low ram: 0 - 375fe000 [ 0.000000] low ram: 0 - 375fe000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 1000 1000 => 34e7000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 200 40 => 34c9d80 [ 0.000000] alloc (nid=0 100000 - 7ee00000) (1000000 - ffffffffffffffff) 180 40 => 34e6140 [ 0.000000] alloc (nid=1 80000000 - c7e60000) (1000000 - ffffffffffffffff) 240 40 => 80000000 [ 0.000000] BUG: unable to handle kernel paging request at 40000000 [ 0.000000] IP: [<c2c8cff1>] __alloc_memory_core_early+0x147/0x1d6 [ 0.000000] *pdpt = 0000000000000000 *pde = f000ff53f000ff00 ... [ 0.000000] Call Trace: [ 0.000000] [<c2c8b4f8>] ? __alloc_bootmem_node+0x216/0x22f [ 0.000000] [<c2c90c9b>] ? sparse_early_usemaps_alloc_node+0x5a/0x10b [ 0.000000] [<c2c9149e>] ? sparse_init+0x1dc/0x499 [ 0.000000] [<c2c79118>] ? paging_init+0x168/0x1df [ 0.000000] [<c2c780ff>] ? native_pagetable_setup_start+0xef/0x1bb looks like it allocates too much high address for bootmem. Try to cut limit with get_max_mapped() Reported-by: Borislav Petkov <borislav.petkov@amd.com> Tested-by: Conny Seidel <conny.seidel@amd.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: <stable@kernel.org> [2.6.34.x] Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20 13:24:31 -07:00
void *ptr;
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
#ifdef CONFIG_NO_BOOTMEM
x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit numa is used Borislav Petkov reported his 32bit numa system has problem: [ 0.000000] Reserving total of 4c00 pages for numa KVA remap [ 0.000000] kva_start_pfn ~ 32800 max_low_pfn ~ 375fe [ 0.000000] max_pfn = 238000 [ 0.000000] 8202MB HIGHMEM available. [ 0.000000] 885MB LOWMEM available. [ 0.000000] mapped low ram: 0 - 375fe000 [ 0.000000] low ram: 0 - 375fe000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 1000 1000 => 34e7000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 200 40 => 34c9d80 [ 0.000000] alloc (nid=0 100000 - 7ee00000) (1000000 - ffffffffffffffff) 180 40 => 34e6140 [ 0.000000] alloc (nid=1 80000000 - c7e60000) (1000000 - ffffffffffffffff) 240 40 => 80000000 [ 0.000000] BUG: unable to handle kernel paging request at 40000000 [ 0.000000] IP: [<c2c8cff1>] __alloc_memory_core_early+0x147/0x1d6 [ 0.000000] *pdpt = 0000000000000000 *pde = f000ff53f000ff00 ... [ 0.000000] Call Trace: [ 0.000000] [<c2c8b4f8>] ? __alloc_bootmem_node+0x216/0x22f [ 0.000000] [<c2c90c9b>] ? sparse_early_usemaps_alloc_node+0x5a/0x10b [ 0.000000] [<c2c9149e>] ? sparse_init+0x1dc/0x499 [ 0.000000] [<c2c79118>] ? paging_init+0x168/0x1df [ 0.000000] [<c2c780ff>] ? native_pagetable_setup_start+0xef/0x1bb looks like it allocates too much high address for bootmem. Try to cut limit with get_max_mapped() Reported-by: Borislav Petkov <borislav.petkov@amd.com> Tested-by: Conny Seidel <conny.seidel@amd.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: <stable@kernel.org> [2.6.34.x] Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20 13:24:31 -07:00
ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
goal, -1ULL);
if (ptr)
return ptr;
ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align,
goal, -1ULL);
#else
x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit numa is used Borislav Petkov reported his 32bit numa system has problem: [ 0.000000] Reserving total of 4c00 pages for numa KVA remap [ 0.000000] kva_start_pfn ~ 32800 max_low_pfn ~ 375fe [ 0.000000] max_pfn = 238000 [ 0.000000] 8202MB HIGHMEM available. [ 0.000000] 885MB LOWMEM available. [ 0.000000] mapped low ram: 0 - 375fe000 [ 0.000000] low ram: 0 - 375fe000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 1000 1000 => 34e7000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 200 40 => 34c9d80 [ 0.000000] alloc (nid=0 100000 - 7ee00000) (1000000 - ffffffffffffffff) 180 40 => 34e6140 [ 0.000000] alloc (nid=1 80000000 - c7e60000) (1000000 - ffffffffffffffff) 240 40 => 80000000 [ 0.000000] BUG: unable to handle kernel paging request at 40000000 [ 0.000000] IP: [<c2c8cff1>] __alloc_memory_core_early+0x147/0x1d6 [ 0.000000] *pdpt = 0000000000000000 *pde = f000ff53f000ff00 ... [ 0.000000] Call Trace: [ 0.000000] [<c2c8b4f8>] ? __alloc_bootmem_node+0x216/0x22f [ 0.000000] [<c2c90c9b>] ? sparse_early_usemaps_alloc_node+0x5a/0x10b [ 0.000000] [<c2c9149e>] ? sparse_init+0x1dc/0x499 [ 0.000000] [<c2c79118>] ? paging_init+0x168/0x1df [ 0.000000] [<c2c780ff>] ? native_pagetable_setup_start+0xef/0x1bb looks like it allocates too much high address for bootmem. Try to cut limit with get_max_mapped() Reported-by: Borislav Petkov <borislav.petkov@amd.com> Tested-by: Conny Seidel <conny.seidel@amd.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: <stable@kernel.org> [2.6.34.x] Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20 13:24:31 -07:00
ptr = ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
#endif
x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit numa is used Borislav Petkov reported his 32bit numa system has problem: [ 0.000000] Reserving total of 4c00 pages for numa KVA remap [ 0.000000] kva_start_pfn ~ 32800 max_low_pfn ~ 375fe [ 0.000000] max_pfn = 238000 [ 0.000000] 8202MB HIGHMEM available. [ 0.000000] 885MB LOWMEM available. [ 0.000000] mapped low ram: 0 - 375fe000 [ 0.000000] low ram: 0 - 375fe000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 1000 1000 => 34e7000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 200 40 => 34c9d80 [ 0.000000] alloc (nid=0 100000 - 7ee00000) (1000000 - ffffffffffffffff) 180 40 => 34e6140 [ 0.000000] alloc (nid=1 80000000 - c7e60000) (1000000 - ffffffffffffffff) 240 40 => 80000000 [ 0.000000] BUG: unable to handle kernel paging request at 40000000 [ 0.000000] IP: [<c2c8cff1>] __alloc_memory_core_early+0x147/0x1d6 [ 0.000000] *pdpt = 0000000000000000 *pde = f000ff53f000ff00 ... [ 0.000000] Call Trace: [ 0.000000] [<c2c8b4f8>] ? __alloc_bootmem_node+0x216/0x22f [ 0.000000] [<c2c90c9b>] ? sparse_early_usemaps_alloc_node+0x5a/0x10b [ 0.000000] [<c2c9149e>] ? sparse_init+0x1dc/0x499 [ 0.000000] [<c2c79118>] ? paging_init+0x168/0x1df [ 0.000000] [<c2c780ff>] ? native_pagetable_setup_start+0xef/0x1bb looks like it allocates too much high address for bootmem. Try to cut limit with get_max_mapped() Reported-by: Borislav Petkov <borislav.petkov@amd.com> Tested-by: Conny Seidel <conny.seidel@amd.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: <stable@kernel.org> [2.6.34.x] Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20 13:24:31 -07:00
return ptr;
}
void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
#ifdef MAX_DMA32_PFN
unsigned long end_pfn;
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
/* update goal according ...MAX_DMA32_PFN */
end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
(goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
void *ptr;
unsigned long new_goal;
new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
#ifdef CONFIG_NO_BOOTMEM
ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
new_goal, -1ULL);
#else
ptr = alloc_bootmem_core(pgdat->bdata, size, align,
new_goal, 0);
#endif
if (ptr)
return ptr;
}
#endif
return __alloc_bootmem_node(pgdat, size, align, goal);
}
#ifdef CONFIG_SPARSEMEM
/**
* alloc_bootmem_section - allocate boot memory from a specific section
* @size: size of the request in bytes
* @section_nr: sparse map section to allocate from
*
* Return NULL on failure.
*/
void * __init alloc_bootmem_section(unsigned long size,
unsigned long section_nr)
{
#ifdef CONFIG_NO_BOOTMEM
unsigned long pfn, goal, limit;
pfn = section_nr_to_pfn(section_nr);
goal = pfn << PAGE_SHIFT;
limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
return __alloc_memory_core_early(early_pfn_to_nid(pfn), size,
SMP_CACHE_BYTES, goal, limit);
#else
bootmem_data_t *bdata;
unsigned long pfn, goal, limit;
pfn = section_nr_to_pfn(section_nr);
goal = pfn << PAGE_SHIFT;
limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
#endif
}
#endif
void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
void *ptr;
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
#ifdef CONFIG_NO_BOOTMEM
ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
goal, -1ULL);
#else
ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
if (ptr)
return ptr;
ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
#endif
if (ptr)
return ptr;
return __alloc_bootmem_nopanic(size, align, goal);
}
#ifndef ARCH_LOW_ADDRESS_LIMIT
#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
#endif
/**
* __alloc_bootmem_low - allocate low boot memory
* @size: size of the request in bytes
* @align: alignment of the region
* @goal: preferred starting address of the region
*
* The goal is dropped if it can not be satisfied and the allocation will
* fall back to memory below @goal.
*
* Allocation may happen on any node in the system.
*
* The function panics if the request can not be satisfied.
*/
void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
unsigned long goal)
{
return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
}
/**
* __alloc_bootmem_low_node - allocate low boot memory from a specific node
* @pgdat: node to allocate from
* @size: size of the request in bytes
* @align: alignment of the region
* @goal: preferred starting address of the region
*
* The goal is dropped if it can not be satisfied and the allocation will
* fall back to memory below @goal.
*
* Allocation may fall back to any node in the system if the specified node
* can not hold the requested memory.
*
* The function panics if the request can not be satisfied.
*/
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit numa is used Borislav Petkov reported his 32bit numa system has problem: [ 0.000000] Reserving total of 4c00 pages for numa KVA remap [ 0.000000] kva_start_pfn ~ 32800 max_low_pfn ~ 375fe [ 0.000000] max_pfn = 238000 [ 0.000000] 8202MB HIGHMEM available. [ 0.000000] 885MB LOWMEM available. [ 0.000000] mapped low ram: 0 - 375fe000 [ 0.000000] low ram: 0 - 375fe000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 1000 1000 => 34e7000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 200 40 => 34c9d80 [ 0.000000] alloc (nid=0 100000 - 7ee00000) (1000000 - ffffffffffffffff) 180 40 => 34e6140 [ 0.000000] alloc (nid=1 80000000 - c7e60000) (1000000 - ffffffffffffffff) 240 40 => 80000000 [ 0.000000] BUG: unable to handle kernel paging request at 40000000 [ 0.000000] IP: [<c2c8cff1>] __alloc_memory_core_early+0x147/0x1d6 [ 0.000000] *pdpt = 0000000000000000 *pde = f000ff53f000ff00 ... [ 0.000000] Call Trace: [ 0.000000] [<c2c8b4f8>] ? __alloc_bootmem_node+0x216/0x22f [ 0.000000] [<c2c90c9b>] ? sparse_early_usemaps_alloc_node+0x5a/0x10b [ 0.000000] [<c2c9149e>] ? sparse_init+0x1dc/0x499 [ 0.000000] [<c2c79118>] ? paging_init+0x168/0x1df [ 0.000000] [<c2c780ff>] ? native_pagetable_setup_start+0xef/0x1bb looks like it allocates too much high address for bootmem. Try to cut limit with get_max_mapped() Reported-by: Borislav Petkov <borislav.petkov@amd.com> Tested-by: Conny Seidel <conny.seidel@amd.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: <stable@kernel.org> [2.6.34.x] Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20 13:24:31 -07:00
void *ptr;
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
#ifdef CONFIG_NO_BOOTMEM
x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit numa is used Borislav Petkov reported his 32bit numa system has problem: [ 0.000000] Reserving total of 4c00 pages for numa KVA remap [ 0.000000] kva_start_pfn ~ 32800 max_low_pfn ~ 375fe [ 0.000000] max_pfn = 238000 [ 0.000000] 8202MB HIGHMEM available. [ 0.000000] 885MB LOWMEM available. [ 0.000000] mapped low ram: 0 - 375fe000 [ 0.000000] low ram: 0 - 375fe000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 1000 1000 => 34e7000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 200 40 => 34c9d80 [ 0.000000] alloc (nid=0 100000 - 7ee00000) (1000000 - ffffffffffffffff) 180 40 => 34e6140 [ 0.000000] alloc (nid=1 80000000 - c7e60000) (1000000 - ffffffffffffffff) 240 40 => 80000000 [ 0.000000] BUG: unable to handle kernel paging request at 40000000 [ 0.000000] IP: [<c2c8cff1>] __alloc_memory_core_early+0x147/0x1d6 [ 0.000000] *pdpt = 0000000000000000 *pde = f000ff53f000ff00 ... [ 0.000000] Call Trace: [ 0.000000] [<c2c8b4f8>] ? __alloc_bootmem_node+0x216/0x22f [ 0.000000] [<c2c90c9b>] ? sparse_early_usemaps_alloc_node+0x5a/0x10b [ 0.000000] [<c2c9149e>] ? sparse_init+0x1dc/0x499 [ 0.000000] [<c2c79118>] ? paging_init+0x168/0x1df [ 0.000000] [<c2c780ff>] ? native_pagetable_setup_start+0xef/0x1bb looks like it allocates too much high address for bootmem. Try to cut limit with get_max_mapped() Reported-by: Borislav Petkov <borislav.petkov@amd.com> Tested-by: Conny Seidel <conny.seidel@amd.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: <stable@kernel.org> [2.6.34.x] Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20 13:24:31 -07:00
ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
goal, ARCH_LOW_ADDRESS_LIMIT);
if (ptr)
return ptr;
ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align,
goal, ARCH_LOW_ADDRESS_LIMIT);
#else
x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit numa is used Borislav Petkov reported his 32bit numa system has problem: [ 0.000000] Reserving total of 4c00 pages for numa KVA remap [ 0.000000] kva_start_pfn ~ 32800 max_low_pfn ~ 375fe [ 0.000000] max_pfn = 238000 [ 0.000000] 8202MB HIGHMEM available. [ 0.000000] 885MB LOWMEM available. [ 0.000000] mapped low ram: 0 - 375fe000 [ 0.000000] low ram: 0 - 375fe000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 1000 1000 => 34e7000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 200 40 => 34c9d80 [ 0.000000] alloc (nid=0 100000 - 7ee00000) (1000000 - ffffffffffffffff) 180 40 => 34e6140 [ 0.000000] alloc (nid=1 80000000 - c7e60000) (1000000 - ffffffffffffffff) 240 40 => 80000000 [ 0.000000] BUG: unable to handle kernel paging request at 40000000 [ 0.000000] IP: [<c2c8cff1>] __alloc_memory_core_early+0x147/0x1d6 [ 0.000000] *pdpt = 0000000000000000 *pde = f000ff53f000ff00 ... [ 0.000000] Call Trace: [ 0.000000] [<c2c8b4f8>] ? __alloc_bootmem_node+0x216/0x22f [ 0.000000] [<c2c90c9b>] ? sparse_early_usemaps_alloc_node+0x5a/0x10b [ 0.000000] [<c2c9149e>] ? sparse_init+0x1dc/0x499 [ 0.000000] [<c2c79118>] ? paging_init+0x168/0x1df [ 0.000000] [<c2c780ff>] ? native_pagetable_setup_start+0xef/0x1bb looks like it allocates too much high address for bootmem. Try to cut limit with get_max_mapped() Reported-by: Borislav Petkov <borislav.petkov@amd.com> Tested-by: Conny Seidel <conny.seidel@amd.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: <stable@kernel.org> [2.6.34.x] Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20 13:24:31 -07:00
ptr = ___alloc_bootmem_node(pgdat->bdata, size, align,
goal, ARCH_LOW_ADDRESS_LIMIT);
#endif
x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit numa is used Borislav Petkov reported his 32bit numa system has problem: [ 0.000000] Reserving total of 4c00 pages for numa KVA remap [ 0.000000] kva_start_pfn ~ 32800 max_low_pfn ~ 375fe [ 0.000000] max_pfn = 238000 [ 0.000000] 8202MB HIGHMEM available. [ 0.000000] 885MB LOWMEM available. [ 0.000000] mapped low ram: 0 - 375fe000 [ 0.000000] low ram: 0 - 375fe000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 1000 1000 => 34e7000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 200 40 => 34c9d80 [ 0.000000] alloc (nid=0 100000 - 7ee00000) (1000000 - ffffffffffffffff) 180 40 => 34e6140 [ 0.000000] alloc (nid=1 80000000 - c7e60000) (1000000 - ffffffffffffffff) 240 40 => 80000000 [ 0.000000] BUG: unable to handle kernel paging request at 40000000 [ 0.000000] IP: [<c2c8cff1>] __alloc_memory_core_early+0x147/0x1d6 [ 0.000000] *pdpt = 0000000000000000 *pde = f000ff53f000ff00 ... [ 0.000000] Call Trace: [ 0.000000] [<c2c8b4f8>] ? __alloc_bootmem_node+0x216/0x22f [ 0.000000] [<c2c90c9b>] ? sparse_early_usemaps_alloc_node+0x5a/0x10b [ 0.000000] [<c2c9149e>] ? sparse_init+0x1dc/0x499 [ 0.000000] [<c2c79118>] ? paging_init+0x168/0x1df [ 0.000000] [<c2c780ff>] ? native_pagetable_setup_start+0xef/0x1bb looks like it allocates too much high address for bootmem. Try to cut limit with get_max_mapped() Reported-by: Borislav Petkov <borislav.petkov@amd.com> Tested-by: Conny Seidel <conny.seidel@amd.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: <stable@kernel.org> [2.6.34.x] Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20 13:24:31 -07:00
return ptr;
}