linux/drivers/hwmon/adm1025.c

580 lines
17 KiB
C
Raw Normal View History

/*
* adm1025.c
*
* Copyright (C) 2000 Chen-Yuan Wu <gwu@esoft.com>
* Copyright (C) 2003-2009 Jean Delvare <jdelvare@suse.de>
*
* The ADM1025 is a sensor chip made by Analog Devices. It reports up to 6
* voltages (including its own power source) and up to two temperatures
* (its own plus up to one external one). Voltages are scaled internally
* (which is not the common way) with ratios such that the nominal value
* of each voltage correspond to a register value of 192 (which means a
* resolution of about 0.5% of the nominal value). Temperature values are
* reported with a 1 deg resolution and a 3 deg accuracy. Complete
* datasheet can be obtained from Analog's website at:
* http://www.onsemi.com/PowerSolutions/product.do?id=ADM1025
*
* This driver also supports the ADM1025A, which differs from the ADM1025
* only in that it has "open-drain VID inputs while the ADM1025 has
* on-chip 100k pull-ups on the VID inputs". It doesn't make any
* difference for us.
*
* This driver also supports the NE1619, a sensor chip made by Philips.
* That chip is similar to the ADM1025A, with a few differences. The only
* difference that matters to us is that the NE1619 has only two possible
* addresses while the ADM1025A has a third one. Complete datasheet can be
* obtained from Philips's website at:
* http://www.semiconductors.philips.com/pip/NE1619DS.html
*
* Since the ADM1025 was the first chipset supported by this driver, most
* comments will refer to this chipset, but are actually general and
* concern all supported chipsets, unless mentioned otherwise.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
/*
* Addresses to scan
* ADM1025 and ADM1025A have three possible addresses: 0x2c, 0x2d and 0x2e.
* NE1619 has two possible addresses: 0x2c and 0x2d.
*/
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
enum chips { adm1025, ne1619 };
/*
* The ADM1025 registers
*/
#define ADM1025_REG_MAN_ID 0x3E
#define ADM1025_REG_CHIP_ID 0x3F
#define ADM1025_REG_CONFIG 0x40
#define ADM1025_REG_STATUS1 0x41
#define ADM1025_REG_STATUS2 0x42
#define ADM1025_REG_IN(nr) (0x20 + (nr))
#define ADM1025_REG_IN_MAX(nr) (0x2B + (nr) * 2)
#define ADM1025_REG_IN_MIN(nr) (0x2C + (nr) * 2)
#define ADM1025_REG_TEMP(nr) (0x26 + (nr))
#define ADM1025_REG_TEMP_HIGH(nr) (0x37 + (nr) * 2)
#define ADM1025_REG_TEMP_LOW(nr) (0x38 + (nr) * 2)
#define ADM1025_REG_VID 0x47
#define ADM1025_REG_VID4 0x49
/*
* Conversions and various macros
* The ADM1025 uses signed 8-bit values for temperatures.
*/
static const int in_scale[6] = { 2500, 2250, 3300, 5000, 12000, 3300 };
#define IN_FROM_REG(reg, scale) (((reg) * (scale) + 96) / 192)
#define IN_TO_REG(val, scale) ((val) <= 0 ? 0 : \
(val) * 192 >= (scale) * 255 ? 255 : \
((val) * 192 + (scale) / 2) / (scale))
#define TEMP_FROM_REG(reg) ((reg) * 1000)
#define TEMP_TO_REG(val) ((val) <= -127500 ? -128 : \
(val) >= 126500 ? 127 : \
(((val) < 0 ? (val) - 500 : \
(val) + 500) / 1000))
/*
* Client data (each client gets its own)
*/
struct adm1025_data {
struct i2c_client *client;
const struct attribute_group *groups[3];
struct mutex update_lock;
char valid; /* zero until following fields are valid */
unsigned long last_updated; /* in jiffies */
u8 in[6]; /* register value */
u8 in_max[6]; /* register value */
u8 in_min[6]; /* register value */
s8 temp[2]; /* register value */
s8 temp_min[2]; /* register value */
s8 temp_max[2]; /* register value */
u16 alarms; /* register values, combined */
u8 vid; /* register values, combined */
u8 vrm;
};
static struct adm1025_data *adm1025_update_device(struct device *dev)
{
struct adm1025_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) {
int i;
dev_dbg(&client->dev, "Updating data.\n");
for (i = 0; i < 6; i++) {
data->in[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_IN(i));
data->in_min[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_IN_MIN(i));
data->in_max[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_IN_MAX(i));
}
for (i = 0; i < 2; i++) {
data->temp[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_TEMP(i));
data->temp_min[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_TEMP_LOW(i));
data->temp_max[i] = i2c_smbus_read_byte_data(client,
ADM1025_REG_TEMP_HIGH(i));
}
data->alarms = i2c_smbus_read_byte_data(client,
ADM1025_REG_STATUS1)
| (i2c_smbus_read_byte_data(client,
ADM1025_REG_STATUS2) << 8);
data->vid = (i2c_smbus_read_byte_data(client,
ADM1025_REG_VID) & 0x0f)
| ((i2c_smbus_read_byte_data(client,
ADM1025_REG_VID4) & 0x01) << 4);
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
/*
* Sysfs stuff
*/
static ssize_t
show_in(struct device *dev, struct device_attribute *attr, char *buf)
{
int index = to_sensor_dev_attr(attr)->index;
struct adm1025_data *data = adm1025_update_device(dev);
return sprintf(buf, "%u\n", IN_FROM_REG(data->in[index],
in_scale[index]));
}
static ssize_t
show_in_min(struct device *dev, struct device_attribute *attr, char *buf)
{
int index = to_sensor_dev_attr(attr)->index;
struct adm1025_data *data = adm1025_update_device(dev);
return sprintf(buf, "%u\n", IN_FROM_REG(data->in_min[index],
in_scale[index]));
}
static ssize_t
show_in_max(struct device *dev, struct device_attribute *attr, char *buf)
{
int index = to_sensor_dev_attr(attr)->index;
struct adm1025_data *data = adm1025_update_device(dev);
return sprintf(buf, "%u\n", IN_FROM_REG(data->in_max[index],
in_scale[index]));
}
static ssize_t
show_temp(struct device *dev, struct device_attribute *attr, char *buf)
{
int index = to_sensor_dev_attr(attr)->index;
struct adm1025_data *data = adm1025_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[index]));
}
static ssize_t
show_temp_min(struct device *dev, struct device_attribute *attr, char *buf)
{
int index = to_sensor_dev_attr(attr)->index;
struct adm1025_data *data = adm1025_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[index]));
}
static ssize_t
show_temp_max(struct device *dev, struct device_attribute *attr, char *buf)
{
int index = to_sensor_dev_attr(attr)->index;
struct adm1025_data *data = adm1025_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
}
static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int index = to_sensor_dev_attr(attr)->index;
struct adm1025_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_min[index] = IN_TO_REG(val, in_scale[index]);
i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MIN(index),
data->in_min[index]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int index = to_sensor_dev_attr(attr)->index;
struct adm1025_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_max[index] = IN_TO_REG(val, in_scale[index]);
i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(index),
data->in_max[index]);
mutex_unlock(&data->update_lock);
return count;
}
#define set_in(offset) \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
show_in, NULL, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IWUSR | S_IRUGO, \
show_in_min, set_in_min, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IWUSR | S_IRUGO, \
show_in_max, set_in_max, offset)
set_in(0);
set_in(1);
set_in(2);
set_in(3);
set_in(4);
set_in(5);
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int index = to_sensor_dev_attr(attr)->index;
struct adm1025_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_min[index] = TEMP_TO_REG(val);
i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_LOW(index),
data->temp_min[index]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int index = to_sensor_dev_attr(attr)->index;
struct adm1025_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_max[index] = TEMP_TO_REG(val);
i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(index),
data->temp_max[index]);
mutex_unlock(&data->update_lock);
return count;
}
#define set_temp(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
show_temp, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IWUSR | S_IRUGO, \
show_temp_min, set_temp_min, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IWUSR | S_IRUGO, \
show_temp_max, set_temp_max, offset - 1)
set_temp(1);
set_temp(2);
static ssize_t
show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1025_data *data = adm1025_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static ssize_t
show_alarm(struct device *dev, struct device_attribute *attr, char *buf)
{
int bitnr = to_sensor_dev_attr(attr)->index;
struct adm1025_data *data = adm1025_update_device(dev);
return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
static ssize_t
show_vid(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1025_data *data = adm1025_update_device(dev);
return sprintf(buf, "%u\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
static ssize_t
show_vrm(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1025_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", data->vrm);
}
static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct adm1025_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
data->vrm = val;
return count;
}
static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
/*
* Real code
*/
static struct attribute *adm1025_attributes[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_fault.dev_attr.attr,
&dev_attr_alarms.attr,
&dev_attr_cpu0_vid.attr,
&dev_attr_vrm.attr,
NULL
};
static const struct attribute_group adm1025_group = {
.attrs = adm1025_attributes,
};
static struct attribute *adm1025_attributes_in4[] = {
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group adm1025_group_in4 = {
.attrs = adm1025_attributes_in4,
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int adm1025_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
const char *name;
u8 man_id, chip_id;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/* Check for unused bits */
if ((i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG) & 0x80)
|| (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS1) & 0xC0)
|| (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS2) & 0xBC)) {
dev_dbg(&adapter->dev, "ADM1025 detection failed at 0x%02x\n",
client->addr);
return -ENODEV;
}
/* Identification */
chip_id = i2c_smbus_read_byte_data(client, ADM1025_REG_CHIP_ID);
if ((chip_id & 0xF0) != 0x20)
return -ENODEV;
man_id = i2c_smbus_read_byte_data(client, ADM1025_REG_MAN_ID);
if (man_id == 0x41)
name = "adm1025";
else if (man_id == 0xA1 && client->addr != 0x2E)
name = "ne1619";
else
return -ENODEV;
strlcpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static void adm1025_init_client(struct i2c_client *client)
{
u8 reg;
struct adm1025_data *data = i2c_get_clientdata(client);
int i;
data->vrm = vid_which_vrm();
/*
* Set high limits
* Usually we avoid setting limits on driver init, but it happens
* that the ADM1025 comes with stupid default limits (all registers
* set to 0). In case the chip has not gone through any limit
* setting yet, we better set the high limits to the max so that
* no alarm triggers.
*/
for (i = 0; i < 6; i++) {
reg = i2c_smbus_read_byte_data(client,
ADM1025_REG_IN_MAX(i));
if (reg == 0)
i2c_smbus_write_byte_data(client,
ADM1025_REG_IN_MAX(i),
0xFF);
}
for (i = 0; i < 2; i++) {
reg = i2c_smbus_read_byte_data(client,
ADM1025_REG_TEMP_HIGH(i));
if (reg == 0)
i2c_smbus_write_byte_data(client,
ADM1025_REG_TEMP_HIGH(i),
0x7F);
}
/*
* Start the conversions
*/
reg = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
if (!(reg & 0x01))
i2c_smbus_write_byte_data(client, ADM1025_REG_CONFIG,
(reg&0x7E)|0x01);
}
static int adm1025_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct device *hwmon_dev;
struct adm1025_data *data;
u8 config;
data = devm_kzalloc(dev, sizeof(struct adm1025_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
data->client = client;
mutex_init(&data->update_lock);
/* Initialize the ADM1025 chip */
adm1025_init_client(client);
/* sysfs hooks */
data->groups[0] = &adm1025_group;
/* Pin 11 is either in4 (+12V) or VID4 */
config = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
if (!(config & 0x20))
data->groups[1] = &adm1025_group_in4;
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data, data->groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct i2c_device_id adm1025_id[] = {
{ "adm1025", adm1025 },
{ "ne1619", ne1619 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adm1025_id);
static struct i2c_driver adm1025_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adm1025",
},
.probe = adm1025_probe,
.id_table = adm1025_id,
.detect = adm1025_detect,
.address_list = normal_i2c,
};
module_i2c_driver(adm1025_driver);
MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
MODULE_DESCRIPTION("ADM1025 driver");
MODULE_LICENSE("GPL");