linux/drivers/net/ethernet/ti/cpsw_priv.h

484 lines
16 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Texas Instruments Ethernet Switch Driver
*/
#ifndef DRIVERS_NET_ETHERNET_TI_CPSW_PRIV_H_
#define DRIVERS_NET_ETHERNET_TI_CPSW_PRIV_H_
#include "davinci_cpdma.h"
#define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
NETIF_MSG_DRV | NETIF_MSG_LINK | \
NETIF_MSG_IFUP | NETIF_MSG_INTR | \
NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
NETIF_MSG_RX_STATUS)
#define cpsw_info(priv, type, format, ...) \
do { \
if (netif_msg_##type(priv) && net_ratelimit()) \
dev_info(priv->dev, format, ## __VA_ARGS__); \
} while (0)
#define cpsw_err(priv, type, format, ...) \
do { \
if (netif_msg_##type(priv) && net_ratelimit()) \
dev_err(priv->dev, format, ## __VA_ARGS__); \
} while (0)
#define cpsw_dbg(priv, type, format, ...) \
do { \
if (netif_msg_##type(priv) && net_ratelimit()) \
dev_dbg(priv->dev, format, ## __VA_ARGS__); \
} while (0)
#define cpsw_notice(priv, type, format, ...) \
do { \
if (netif_msg_##type(priv) && net_ratelimit()) \
dev_notice(priv->dev, format, ## __VA_ARGS__); \
} while (0)
#define ALE_ALL_PORTS 0x7
#define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg) (reg & 0xff)
#define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
#define CPSW_VERSION_1 0x19010a
#define CPSW_VERSION_2 0x19010c
#define CPSW_VERSION_3 0x19010f
#define CPSW_VERSION_4 0x190112
#define HOST_PORT_NUM 0
#define CPSW_ALE_PORTS_NUM 3
#define SLIVER_SIZE 0x40
#define CPSW1_HOST_PORT_OFFSET 0x028
#define CPSW1_SLAVE_OFFSET 0x050
#define CPSW1_SLAVE_SIZE 0x040
#define CPSW1_CPDMA_OFFSET 0x100
#define CPSW1_STATERAM_OFFSET 0x200
#define CPSW1_HW_STATS 0x400
#define CPSW1_CPTS_OFFSET 0x500
#define CPSW1_ALE_OFFSET 0x600
#define CPSW1_SLIVER_OFFSET 0x700
#define CPSW2_HOST_PORT_OFFSET 0x108
#define CPSW2_SLAVE_OFFSET 0x200
#define CPSW2_SLAVE_SIZE 0x100
#define CPSW2_CPDMA_OFFSET 0x800
#define CPSW2_HW_STATS 0x900
#define CPSW2_STATERAM_OFFSET 0xa00
#define CPSW2_CPTS_OFFSET 0xc00
#define CPSW2_ALE_OFFSET 0xd00
#define CPSW2_SLIVER_OFFSET 0xd80
#define CPSW2_BD_OFFSET 0x2000
#define CPDMA_RXTHRESH 0x0c0
#define CPDMA_RXFREE 0x0e0
#define CPDMA_TXHDP 0x00
#define CPDMA_RXHDP 0x20
#define CPDMA_TXCP 0x40
#define CPDMA_RXCP 0x60
#define CPSW_POLL_WEIGHT 64
#define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4
#define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN)
#define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\
ETH_FCS_LEN +\
CPSW_RX_VLAN_ENCAP_HDR_SIZE)
#define RX_PRIORITY_MAPPING 0x76543210
#define TX_PRIORITY_MAPPING 0x33221100
#define CPDMA_TX_PRIORITY_MAP 0x76543210
#define CPSW_VLAN_AWARE BIT(1)
#define CPSW_RX_VLAN_ENCAP BIT(2)
#define CPSW_ALE_VLAN_AWARE 1
#define CPSW_FIFO_NORMAL_MODE (0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
#define CPSW_INTPACEEN (0x3f << 16)
#define CPSW_INTPRESCALE_MASK (0x7FF << 0)
#define CPSW_CMINTMAX_CNT 63
#define CPSW_CMINTMIN_CNT 2
#define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
#define IRQ_NUM 2
#define CPSW_MAX_QUEUES 8
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
#define CPSW_FIFO_QUEUE_TYPE_SHIFT 16
#define CPSW_FIFO_SHAPE_EN_SHIFT 16
#define CPSW_FIFO_RATE_EN_SHIFT 20
#define CPSW_TC_NUM 4
#define CPSW_FIFO_SHAPERS_NUM (CPSW_TC_NUM - 1)
#define CPSW_PCT_MASK 0x7f
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29
#define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0)
#define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8
#define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0)
enum {
CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
};
struct cpsw_wr_regs {
u32 id_ver;
u32 soft_reset;
u32 control;
u32 int_control;
u32 rx_thresh_en;
u32 rx_en;
u32 tx_en;
u32 misc_en;
u32 mem_allign1[8];
u32 rx_thresh_stat;
u32 rx_stat;
u32 tx_stat;
u32 misc_stat;
u32 mem_allign2[8];
u32 rx_imax;
u32 tx_imax;
};
struct cpsw_ss_regs {
u32 id_ver;
u32 control;
u32 soft_reset;
u32 stat_port_en;
u32 ptype;
u32 soft_idle;
u32 thru_rate;
u32 gap_thresh;
u32 tx_start_wds;
u32 flow_control;
u32 vlan_ltype;
u32 ts_ltype;
u32 dlr_ltype;
};
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL 0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
/* CPSW_PORT_V2 */
#define CPSW2_CONTROL 0x00 /* Control Register */
#define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
/* CPSW_PORT_V1 and V2 */
#define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI 0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED BIT(24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN BIT(21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN BIT(20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN BIT(16) /* DSCP Priority Enable */
#define TS_107 BIT(15) /* Tyme Sync Dest IP Address 107 */
#define TS_320 BIT(14) /* Time Sync Dest Port 320 enable */
#define TS_319 BIT(13) /* Time Sync Dest Port 319 enable */
#define TS_132 BIT(12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131 BIT(11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130 BIT(10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129 BIT(9) /* Time Sync Dest IP Addr 129 enable */
#define TS_TTL_NONZERO BIT(8) /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN BIT(6) /* Time Sync Annex F enable */
#define TS_ANNEX_D_EN BIT(4) /* Time Sync Annex D enable */
#define TS_LTYPE2_EN BIT(3) /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN BIT(2) /* Time Sync LTYPE 1 enable */
#define TS_TX_EN BIT(1) /* Time Sync Transmit Enable */
#define TS_RX_EN BIT(0) /* Time Sync Receive Enable */
#define CTRL_V2_TS_BITS \
(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN | VLAN_LTYPE1_EN)
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
#define CTRL_V3_TS_BITS \
(TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
TS_LTYPE1_EN | VLAN_LTYPE1_EN)
#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK (0x3f)
#define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK (0xffff)
/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN BIT(0)
#define CPSW_V1_TS_TX_EN BIT(4)
#define CPSW_V1_MSG_TYPE_OFS 16
/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT 16
#define CPSW_MAX_BLKS_TX 15
#define CPSW_MAX_BLKS_TX_SHIFT 4
#define CPSW_MAX_BLKS_RX 5
struct cpsw_host_regs {
u32 max_blks;
u32 blk_cnt;
u32 tx_in_ctl;
u32 port_vlan;
u32 tx_pri_map;
u32 cpdma_tx_pri_map;
u32 cpdma_rx_chan_map;
};
struct cpsw_slave_data {
struct device_node *slave_node;
struct device_node *phy_node;
char phy_id[MII_BUS_ID_SIZE];
phy_interface_t phy_if;
u8 mac_addr[ETH_ALEN];
u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */
struct phy *ifphy;
};
struct cpsw_platform_data {
struct cpsw_slave_data *slave_data;
u32 ss_reg_ofs; /* Subsystem control register offset */
u32 channels; /* number of cpdma channels (symmetric) */
u32 slaves; /* number of slave cpgmac ports */
u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
u32 ale_entries; /* ale table size */
u32 bd_ram_size; /*buffer descriptor ram size */
u32 mac_control; /* Mac control register */
u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/
bool dual_emac; /* Enable Dual EMAC mode */
};
struct cpsw_slave {
void __iomem *regs;
int slave_num;
u32 mac_control;
struct cpsw_slave_data *data;
struct phy_device *phy;
struct net_device *ndev;
u32 port_vlan;
struct cpsw_sl *mac_sl;
};
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
return readl_relaxed(slave->regs + offset);
}
static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
writel_relaxed(val, slave->regs + offset);
}
struct cpsw_vector {
struct cpdma_chan *ch;
int budget;
};
struct cpsw_common {
struct device *dev;
struct cpsw_platform_data data;
struct napi_struct napi_rx;
struct napi_struct napi_tx;
struct cpsw_ss_regs __iomem *regs;
struct cpsw_wr_regs __iomem *wr_regs;
u8 __iomem *hw_stats;
struct cpsw_host_regs __iomem *host_port_regs;
u32 version;
u32 coal_intvl;
u32 bus_freq_mhz;
int rx_packet_max;
int descs_pool_size;
struct cpsw_slave *slaves;
struct cpdma_ctlr *dma;
struct cpsw_vector txv[CPSW_MAX_QUEUES];
struct cpsw_vector rxv[CPSW_MAX_QUEUES];
struct cpsw_ale *ale;
bool quirk_irq;
bool rx_irq_disabled;
bool tx_irq_disabled;
u32 irqs_table[IRQ_NUM];
struct cpts *cpts;
int rx_ch_num, tx_ch_num;
int speed;
int usage_count;
net: ethernet: ti: cpsw: add XDP support Add XDP support based on rx page_pool allocator, one frame per page. Page pool allocator is used with assumption that only one rx_handler is running simultaneously. DMA map/unmap is reused from page pool despite there is no need to map whole page. Due to specific of cpsw, the same TX/RX handler can be used by 2 network devices, so special fields in buffer are added to identify an interface the frame is destined to. Thus XDP works for both interfaces, that allows to test xdp redirect between two interfaces easily. Also, each rx queue have own page pools, but common for both netdevs. XDP prog is common for all channels till appropriate changes are added in XDP infrastructure. Also, once page_pool recycling becomes part of skb netstack some simplifications can be added, like removing page_pool_release_page() before skb receive. In order to keep rx_dev while redirect, that can be somehow used in future, do flush in rx_handler, that allows to keep rx dev the same while redirect. It allows to conform with tracing rx_dev pointed by Jesper. Also, there is probability, that XDP generic code can be extended to support multi ndev drivers like this one, using same rx queue for several ndevs, based on switchdev for instance or else. In this case, driver can be modified like exposed here: https://lkml.org/lkml/2019/7/3/243 Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-07-09 00:34:32 +03:00
struct page_pool *page_pool[CPSW_MAX_QUEUES];
};
struct cpsw_priv {
struct net_device *ndev;
struct device *dev;
u32 msg_enable;
u8 mac_addr[ETH_ALEN];
bool rx_pause;
bool tx_pause;
bool mqprio_hw;
int fifo_bw[CPSW_TC_NUM];
int shp_cfg_speed;
int tx_ts_enabled;
int rx_ts_enabled;
net: ethernet: ti: cpsw: add XDP support Add XDP support based on rx page_pool allocator, one frame per page. Page pool allocator is used with assumption that only one rx_handler is running simultaneously. DMA map/unmap is reused from page pool despite there is no need to map whole page. Due to specific of cpsw, the same TX/RX handler can be used by 2 network devices, so special fields in buffer are added to identify an interface the frame is destined to. Thus XDP works for both interfaces, that allows to test xdp redirect between two interfaces easily. Also, each rx queue have own page pools, but common for both netdevs. XDP prog is common for all channels till appropriate changes are added in XDP infrastructure. Also, once page_pool recycling becomes part of skb netstack some simplifications can be added, like removing page_pool_release_page() before skb receive. In order to keep rx_dev while redirect, that can be somehow used in future, do flush in rx_handler, that allows to keep rx dev the same while redirect. It allows to conform with tracing rx_dev pointed by Jesper. Also, there is probability, that XDP generic code can be extended to support multi ndev drivers like this one, using same rx queue for several ndevs, based on switchdev for instance or else. In this case, driver can be modified like exposed here: https://lkml.org/lkml/2019/7/3/243 Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-07-09 00:34:32 +03:00
struct bpf_prog *xdp_prog;
struct xdp_rxq_info xdp_rxq[CPSW_MAX_QUEUES];
struct xdp_attachment_info xdpi;
u32 emac_port;
struct cpsw_common *cpsw;
};
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
#define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi)
extern int (*cpsw_slave_index)(struct cpsw_common *cpsw,
struct cpsw_priv *priv);
struct addr_sync_ctx {
struct net_device *ndev;
const u8 *addr; /* address to be synched */
int consumed; /* number of address instances */
int flush; /* flush flag */
};
#define CPSW_XMETA_OFFSET ALIGN(sizeof(struct xdp_frame), sizeof(long))
#define CPSW_XDP_CONSUMED 1
#define CPSW_XDP_PASS 0
struct __aligned(sizeof(long)) cpsw_meta_xdp {
struct net_device *ndev;
int ch;
};
/* The buf includes headroom compatible with both skb and xdpf */
#define CPSW_HEADROOM_NA (max(XDP_PACKET_HEADROOM, NET_SKB_PAD) + NET_IP_ALIGN)
#define CPSW_HEADROOM ALIGN(CPSW_HEADROOM_NA, sizeof(long))
static inline int cpsw_is_xdpf_handle(void *handle)
{
return (unsigned long)handle & BIT(0);
}
static inline void *cpsw_xdpf_to_handle(struct xdp_frame *xdpf)
{
return (void *)((unsigned long)xdpf | BIT(0));
}
static inline struct xdp_frame *cpsw_handle_to_xdpf(void *handle)
{
return (struct xdp_frame *)((unsigned long)handle & ~BIT(0));
}
int cpsw_init_common(struct cpsw_common *cpsw, void __iomem *ss_regs,
int ale_ageout, phys_addr_t desc_mem_phys,
int descs_pool_size);
void cpsw_split_res(struct cpsw_common *cpsw);
int cpsw_fill_rx_channels(struct cpsw_priv *priv);
void cpsw_intr_enable(struct cpsw_common *cpsw);
void cpsw_intr_disable(struct cpsw_common *cpsw);
void cpsw_tx_handler(void *token, int len, int status);
net: ethernet: ti: cpsw: add XDP support Add XDP support based on rx page_pool allocator, one frame per page. Page pool allocator is used with assumption that only one rx_handler is running simultaneously. DMA map/unmap is reused from page pool despite there is no need to map whole page. Due to specific of cpsw, the same TX/RX handler can be used by 2 network devices, so special fields in buffer are added to identify an interface the frame is destined to. Thus XDP works for both interfaces, that allows to test xdp redirect between two interfaces easily. Also, each rx queue have own page pools, but common for both netdevs. XDP prog is common for all channels till appropriate changes are added in XDP infrastructure. Also, once page_pool recycling becomes part of skb netstack some simplifications can be added, like removing page_pool_release_page() before skb receive. In order to keep rx_dev while redirect, that can be somehow used in future, do flush in rx_handler, that allows to keep rx dev the same while redirect. It allows to conform with tracing rx_dev pointed by Jesper. Also, there is probability, that XDP generic code can be extended to support multi ndev drivers like this one, using same rx queue for several ndevs, based on switchdev for instance or else. In this case, driver can be modified like exposed here: https://lkml.org/lkml/2019/7/3/243 Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-07-09 00:34:32 +03:00
int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw);
void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw);
int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf);
int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf,
struct page *page, int port);
int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp,
struct page *page, int port);
irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id);
irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id);
int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget);
int cpsw_tx_poll(struct napi_struct *napi_tx, int budget);
int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget);
int cpsw_rx_poll(struct napi_struct *napi_rx, int budget);
void cpsw_rx_vlan_encap(struct sk_buff *skb);
void soft_reset(const char *module, void __iomem *reg);
void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv);
void cpsw_ndo_tx_timeout(struct net_device *ndev);
int cpsw_need_resplit(struct cpsw_common *cpsw);
int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd);
int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate);
int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
void *type_data);
bool cpsw_shp_is_off(struct cpsw_priv *priv);
void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv);
void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv);
/* ethtool */
u32 cpsw_get_msglevel(struct net_device *ndev);
void cpsw_set_msglevel(struct net_device *ndev, u32 value);
int cpsw_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *coal);
int cpsw_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *coal);
int cpsw_get_sset_count(struct net_device *ndev, int sset);
void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data);
void cpsw_get_ethtool_stats(struct net_device *ndev,
struct ethtool_stats *stats, u64 *data);
void cpsw_get_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause);
void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol);
int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol);
int cpsw_get_regs_len(struct net_device *ndev);
void cpsw_get_regs(struct net_device *ndev, struct ethtool_regs *regs, void *p);
int cpsw_ethtool_op_begin(struct net_device *ndev);
void cpsw_ethtool_op_complete(struct net_device *ndev);
void cpsw_get_channels(struct net_device *ndev, struct ethtool_channels *ch);
int cpsw_get_link_ksettings(struct net_device *ndev,
struct ethtool_link_ksettings *ecmd);
int cpsw_set_link_ksettings(struct net_device *ndev,
const struct ethtool_link_ksettings *ecmd);
int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata);
int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata);
int cpsw_nway_reset(struct net_device *ndev);
void cpsw_get_ringparam(struct net_device *ndev,
struct ethtool_ringparam *ering);
int cpsw_set_ringparam(struct net_device *ndev,
struct ethtool_ringparam *ering);
int cpsw_set_channels_common(struct net_device *ndev,
struct ethtool_channels *chs,
cpdma_handler_fn rx_handler);
int cpsw_get_ts_info(struct net_device *ndev, struct ethtool_ts_info *info);
#endif /* DRIVERS_NET_ETHERNET_TI_CPSW_PRIV_H_ */