linux/drivers/usb/host/fhci-sched.c

892 lines
23 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale QUICC Engine USB Host Controller Driver
*
* Copyright (c) Freescale Semicondutor, Inc. 2006, 2011.
* Shlomi Gridish <gridish@freescale.com>
* Jerry Huang <Chang-Ming.Huang@freescale.com>
* Copyright (c) Logic Product Development, Inc. 2007
* Peter Barada <peterb@logicpd.com>
* Copyright (c) MontaVista Software, Inc. 2008.
* Anton Vorontsov <avorontsov@ru.mvista.com>
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <soc/fsl/qe/qe.h>
#include <asm/fsl_gtm.h>
#include "fhci.h"
static void recycle_frame(struct fhci_usb *usb, struct packet *pkt)
{
pkt->data = NULL;
pkt->len = 0;
pkt->status = USB_TD_OK;
pkt->info = 0;
pkt->priv_data = NULL;
kfifo: move struct kfifo in place This is a new generic kernel FIFO implementation. The current kernel fifo API is not very widely used, because it has to many constrains. Only 17 files in the current 2.6.31-rc5 used it. FIFO's are like list's a very basic thing and a kfifo API which handles the most use case would save a lot of development time and memory resources. I think this are the reasons why kfifo is not in use: - The API is to simple, important functions are missing - A fifo can be only allocated dynamically - There is a requirement of a spinlock whether you need it or not - There is no support for data records inside a fifo So I decided to extend the kfifo in a more generic way without blowing up the API to much. The new API has the following benefits: - Generic usage: For kernel internal use and/or device driver. - Provide an API for the most use case. - Slim API: The whole API provides 25 functions. - Linux style habit. - DECLARE_KFIFO, DEFINE_KFIFO and INIT_KFIFO Macros - Direct copy_to_user from the fifo and copy_from_user into the fifo. - The kfifo itself is an in place member of the using data structure, this save an indirection access and does not waste the kernel allocator. - Lockless access: if only one reader and one writer is active on the fifo, which is the common use case, no additional locking is necessary. - Remove spinlock - give the user the freedom of choice what kind of locking to use if one is required. - Ability to handle records. Three type of records are supported: - Variable length records between 0-255 bytes, with a record size field of 1 bytes. - Variable length records between 0-65535 bytes, with a record size field of 2 bytes. - Fixed size records, which no record size field. - Preserve memory resource. - Performance! - Easy to use! This patch: Since most users want to have the kfifo as part of another object, reorganize the code to allow including struct kfifo in another data structure. This requires changing the kfifo_alloc and kfifo_init prototypes so that we pass an existing kfifo pointer into them. This patch changes the implementation and all existing users. [akpm@linux-foundation.org: fix warning] Signed-off-by: Stefani Seibold <stefani@seibold.net> Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-21 14:37:26 -08:00
cq_put(&usb->ep0->empty_frame_Q, pkt);
}
/* confirm submitted packet */
void fhci_transaction_confirm(struct fhci_usb *usb, struct packet *pkt)
{
struct td *td;
struct packet *td_pkt;
struct ed *ed;
u32 trans_len;
bool td_done = false;
td = fhci_remove_td_from_frame(usb->actual_frame);
td_pkt = td->pkt;
trans_len = pkt->len;
td->status = pkt->status;
if (td->type == FHCI_TA_IN && td_pkt->info & PKT_DUMMY_PACKET) {
if ((td->data + td->actual_len) && trans_len)
memcpy(td->data + td->actual_len, pkt->data,
trans_len);
kfifo: move struct kfifo in place This is a new generic kernel FIFO implementation. The current kernel fifo API is not very widely used, because it has to many constrains. Only 17 files in the current 2.6.31-rc5 used it. FIFO's are like list's a very basic thing and a kfifo API which handles the most use case would save a lot of development time and memory resources. I think this are the reasons why kfifo is not in use: - The API is to simple, important functions are missing - A fifo can be only allocated dynamically - There is a requirement of a spinlock whether you need it or not - There is no support for data records inside a fifo So I decided to extend the kfifo in a more generic way without blowing up the API to much. The new API has the following benefits: - Generic usage: For kernel internal use and/or device driver. - Provide an API for the most use case. - Slim API: The whole API provides 25 functions. - Linux style habit. - DECLARE_KFIFO, DEFINE_KFIFO and INIT_KFIFO Macros - Direct copy_to_user from the fifo and copy_from_user into the fifo. - The kfifo itself is an in place member of the using data structure, this save an indirection access and does not waste the kernel allocator. - Lockless access: if only one reader and one writer is active on the fifo, which is the common use case, no additional locking is necessary. - Remove spinlock - give the user the freedom of choice what kind of locking to use if one is required. - Ability to handle records. Three type of records are supported: - Variable length records between 0-255 bytes, with a record size field of 1 bytes. - Variable length records between 0-65535 bytes, with a record size field of 2 bytes. - Fixed size records, which no record size field. - Preserve memory resource. - Performance! - Easy to use! This patch: Since most users want to have the kfifo as part of another object, reorganize the code to allow including struct kfifo in another data structure. This requires changing the kfifo_alloc and kfifo_init prototypes so that we pass an existing kfifo pointer into them. This patch changes the implementation and all existing users. [akpm@linux-foundation.org: fix warning] Signed-off-by: Stefani Seibold <stefani@seibold.net> Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-21 14:37:26 -08:00
cq_put(&usb->ep0->dummy_packets_Q, pkt->data);
}
recycle_frame(usb, pkt);
ed = td->ed;
if (ed->mode == FHCI_TF_ISO) {
if (ed->td_list.next->next != &ed->td_list) {
struct td *td_next =
list_entry(ed->td_list.next->next, struct td,
node);
td_next->start_frame = usb->actual_frame->frame_num;
}
td->actual_len = trans_len;
td_done = true;
} else if ((td->status & USB_TD_ERROR) &&
!(td->status & USB_TD_TX_ER_NAK)) {
/*
* There was an error on the transaction (but not NAK).
* If it is fatal error (data underrun, stall, bad pid or 3
* errors exceeded), mark this TD as done.
*/
if ((td->status & USB_TD_RX_DATA_UNDERUN) ||
(td->status & USB_TD_TX_ER_STALL) ||
(td->status & USB_TD_RX_ER_PID) ||
(++td->error_cnt >= 3)) {
ed->state = FHCI_ED_HALTED;
td_done = true;
if (td->status & USB_TD_RX_DATA_UNDERUN) {
fhci_dbg(usb->fhci, "td err fu\n");
td->toggle = !td->toggle;
td->actual_len += trans_len;
} else {
fhci_dbg(usb->fhci, "td err f!u\n");
}
} else {
fhci_dbg(usb->fhci, "td err !f\n");
/* it is not a fatal error -retry this transaction */
td->nak_cnt = 0;
td->error_cnt++;
td->status = USB_TD_OK;
}
} else if (td->status & USB_TD_TX_ER_NAK) {
/* there was a NAK response */
fhci_vdbg(usb->fhci, "td nack\n");
td->nak_cnt++;
td->error_cnt = 0;
td->status = USB_TD_OK;
} else {
/* there was no error on transaction */
td->error_cnt = 0;
td->nak_cnt = 0;
td->toggle = !td->toggle;
td->actual_len += trans_len;
if (td->len == td->actual_len)
td_done = true;
}
if (td_done)
fhci_move_td_from_ed_to_done_list(usb, ed);
}
/*
* Flush all transmitted packets from BDs
* This routine is called when disabling the USB port to flush all
* transmissions that are already scheduled in the BDs
*/
void fhci_flush_all_transmissions(struct fhci_usb *usb)
{
u8 mode;
struct td *td;
mode = in_8(&usb->fhci->regs->usb_usmod);
clrbits8(&usb->fhci->regs->usb_usmod, USB_MODE_EN);
fhci_flush_bds(usb);
while ((td = fhci_peek_td_from_frame(usb->actual_frame)) != NULL) {
struct packet *pkt = td->pkt;
pkt->status = USB_TD_TX_ER_TIMEOUT;
fhci_transaction_confirm(usb, pkt);
}
usb->actual_frame->frame_status = FRAME_END_TRANSMISSION;
/* reset the event register */
out_be16(&usb->fhci->regs->usb_usber, 0xffff);
/* enable the USB controller */
out_8(&usb->fhci->regs->usb_usmod, mode | USB_MODE_EN);
}
/*
* This function forms the packet and transmit the packet. This function
* will handle all endpoint type:ISO,interrupt,control and bulk
*/
static int add_packet(struct fhci_usb *usb, struct ed *ed, struct td *td)
{
u32 fw_transaction_time, len = 0;
struct packet *pkt;
u8 *data = NULL;
/* calcalate data address,len and toggle and then add the transaction */
if (td->toggle == USB_TD_TOGGLE_CARRY)
td->toggle = ed->toggle_carry;
switch (ed->mode) {
case FHCI_TF_ISO:
len = td->len;
if (td->type != FHCI_TA_IN)
data = td->data;
break;
case FHCI_TF_CTRL:
case FHCI_TF_BULK:
len = min(td->len - td->actual_len, ed->max_pkt_size);
if (!((td->type == FHCI_TA_IN) &&
((len + td->actual_len) == td->len)))
data = td->data + td->actual_len;
break;
case FHCI_TF_INTR:
len = min(td->len, ed->max_pkt_size);
if (!((td->type == FHCI_TA_IN) &&
((td->len + CRC_SIZE) >= ed->max_pkt_size)))
data = td->data;
break;
default:
break;
}
if (usb->port_status == FHCI_PORT_FULL)
fw_transaction_time = (((len + PROTOCOL_OVERHEAD) * 11) >> 4);
else
fw_transaction_time = ((len + PROTOCOL_OVERHEAD) * 6);
/* check if there's enough space in this frame to submit this TD */
if (usb->actual_frame->total_bytes + len + PROTOCOL_OVERHEAD >=
usb->max_bytes_per_frame) {
fhci_vdbg(usb->fhci, "not enough space in this frame: "
"%d %d %d\n", usb->actual_frame->total_bytes, len,
usb->max_bytes_per_frame);
return -1;
}
/* check if there's enough time in this frame to submit this TD */
if (usb->actual_frame->frame_status != FRAME_IS_PREPARED &&
(usb->actual_frame->frame_status & FRAME_END_TRANSMISSION ||
(fw_transaction_time + usb->sw_transaction_time >=
1000 - fhci_get_sof_timer_count(usb)))) {
fhci_dbg(usb->fhci, "not enough time in this frame\n");
return -1;
}
/* update frame object fields before transmitting */
kfifo: move struct kfifo in place This is a new generic kernel FIFO implementation. The current kernel fifo API is not very widely used, because it has to many constrains. Only 17 files in the current 2.6.31-rc5 used it. FIFO's are like list's a very basic thing and a kfifo API which handles the most use case would save a lot of development time and memory resources. I think this are the reasons why kfifo is not in use: - The API is to simple, important functions are missing - A fifo can be only allocated dynamically - There is a requirement of a spinlock whether you need it or not - There is no support for data records inside a fifo So I decided to extend the kfifo in a more generic way without blowing up the API to much. The new API has the following benefits: - Generic usage: For kernel internal use and/or device driver. - Provide an API for the most use case. - Slim API: The whole API provides 25 functions. - Linux style habit. - DECLARE_KFIFO, DEFINE_KFIFO and INIT_KFIFO Macros - Direct copy_to_user from the fifo and copy_from_user into the fifo. - The kfifo itself is an in place member of the using data structure, this save an indirection access and does not waste the kernel allocator. - Lockless access: if only one reader and one writer is active on the fifo, which is the common use case, no additional locking is necessary. - Remove spinlock - give the user the freedom of choice what kind of locking to use if one is required. - Ability to handle records. Three type of records are supported: - Variable length records between 0-255 bytes, with a record size field of 1 bytes. - Variable length records between 0-65535 bytes, with a record size field of 2 bytes. - Fixed size records, which no record size field. - Preserve memory resource. - Performance! - Easy to use! This patch: Since most users want to have the kfifo as part of another object, reorganize the code to allow including struct kfifo in another data structure. This requires changing the kfifo_alloc and kfifo_init prototypes so that we pass an existing kfifo pointer into them. This patch changes the implementation and all existing users. [akpm@linux-foundation.org: fix warning] Signed-off-by: Stefani Seibold <stefani@seibold.net> Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-21 14:37:26 -08:00
pkt = cq_get(&usb->ep0->empty_frame_Q);
if (!pkt) {
fhci_dbg(usb->fhci, "there is no empty frame\n");
return -1;
}
td->pkt = pkt;
pkt->info = 0;
if (data == NULL) {
kfifo: move struct kfifo in place This is a new generic kernel FIFO implementation. The current kernel fifo API is not very widely used, because it has to many constrains. Only 17 files in the current 2.6.31-rc5 used it. FIFO's are like list's a very basic thing and a kfifo API which handles the most use case would save a lot of development time and memory resources. I think this are the reasons why kfifo is not in use: - The API is to simple, important functions are missing - A fifo can be only allocated dynamically - There is a requirement of a spinlock whether you need it or not - There is no support for data records inside a fifo So I decided to extend the kfifo in a more generic way without blowing up the API to much. The new API has the following benefits: - Generic usage: For kernel internal use and/or device driver. - Provide an API for the most use case. - Slim API: The whole API provides 25 functions. - Linux style habit. - DECLARE_KFIFO, DEFINE_KFIFO and INIT_KFIFO Macros - Direct copy_to_user from the fifo and copy_from_user into the fifo. - The kfifo itself is an in place member of the using data structure, this save an indirection access and does not waste the kernel allocator. - Lockless access: if only one reader and one writer is active on the fifo, which is the common use case, no additional locking is necessary. - Remove spinlock - give the user the freedom of choice what kind of locking to use if one is required. - Ability to handle records. Three type of records are supported: - Variable length records between 0-255 bytes, with a record size field of 1 bytes. - Variable length records between 0-65535 bytes, with a record size field of 2 bytes. - Fixed size records, which no record size field. - Preserve memory resource. - Performance! - Easy to use! This patch: Since most users want to have the kfifo as part of another object, reorganize the code to allow including struct kfifo in another data structure. This requires changing the kfifo_alloc and kfifo_init prototypes so that we pass an existing kfifo pointer into them. This patch changes the implementation and all existing users. [akpm@linux-foundation.org: fix warning] Signed-off-by: Stefani Seibold <stefani@seibold.net> Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-21 14:37:26 -08:00
data = cq_get(&usb->ep0->dummy_packets_Q);
BUG_ON(!data);
pkt->info = PKT_DUMMY_PACKET;
}
pkt->data = data;
pkt->len = len;
pkt->status = USB_TD_OK;
/* update TD status field before transmitting */
td->status = USB_TD_INPROGRESS;
/* update actual frame time object with the actual transmission */
usb->actual_frame->total_bytes += (len + PROTOCOL_OVERHEAD);
fhci_add_td_to_frame(usb->actual_frame, td);
if (usb->port_status != FHCI_PORT_FULL &&
usb->port_status != FHCI_PORT_LOW) {
pkt->status = USB_TD_TX_ER_TIMEOUT;
pkt->len = 0;
fhci_transaction_confirm(usb, pkt);
} else if (fhci_host_transaction(usb, pkt, td->type, ed->dev_addr,
ed->ep_addr, ed->mode, ed->speed, td->toggle)) {
/* remove TD from actual frame */
list_del_init(&td->frame_lh);
td->status = USB_TD_OK;
if (pkt->info & PKT_DUMMY_PACKET)
kfifo: move struct kfifo in place This is a new generic kernel FIFO implementation. The current kernel fifo API is not very widely used, because it has to many constrains. Only 17 files in the current 2.6.31-rc5 used it. FIFO's are like list's a very basic thing and a kfifo API which handles the most use case would save a lot of development time and memory resources. I think this are the reasons why kfifo is not in use: - The API is to simple, important functions are missing - A fifo can be only allocated dynamically - There is a requirement of a spinlock whether you need it or not - There is no support for data records inside a fifo So I decided to extend the kfifo in a more generic way without blowing up the API to much. The new API has the following benefits: - Generic usage: For kernel internal use and/or device driver. - Provide an API for the most use case. - Slim API: The whole API provides 25 functions. - Linux style habit. - DECLARE_KFIFO, DEFINE_KFIFO and INIT_KFIFO Macros - Direct copy_to_user from the fifo and copy_from_user into the fifo. - The kfifo itself is an in place member of the using data structure, this save an indirection access and does not waste the kernel allocator. - Lockless access: if only one reader and one writer is active on the fifo, which is the common use case, no additional locking is necessary. - Remove spinlock - give the user the freedom of choice what kind of locking to use if one is required. - Ability to handle records. Three type of records are supported: - Variable length records between 0-255 bytes, with a record size field of 1 bytes. - Variable length records between 0-65535 bytes, with a record size field of 2 bytes. - Fixed size records, which no record size field. - Preserve memory resource. - Performance! - Easy to use! This patch: Since most users want to have the kfifo as part of another object, reorganize the code to allow including struct kfifo in another data structure. This requires changing the kfifo_alloc and kfifo_init prototypes so that we pass an existing kfifo pointer into them. This patch changes the implementation and all existing users. [akpm@linux-foundation.org: fix warning] Signed-off-by: Stefani Seibold <stefani@seibold.net> Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-21 14:37:26 -08:00
cq_put(&usb->ep0->dummy_packets_Q, pkt->data);
recycle_frame(usb, pkt);
usb->actual_frame->total_bytes -= (len + PROTOCOL_OVERHEAD);
fhci_err(usb->fhci, "host transaction failed\n");
return -1;
}
return len;
}
static void move_head_to_tail(struct list_head *list)
{
struct list_head *node = list->next;
if (!list_empty(list)) {
list_move_tail(node, list);
}
}
/*
* This function goes through the endpoint list and schedules the
* transactions within this list
*/
static int scan_ed_list(struct fhci_usb *usb,
struct list_head *list, enum fhci_tf_mode list_type)
{
static const int frame_part[4] = {
[FHCI_TF_CTRL] = MAX_BYTES_PER_FRAME,
[FHCI_TF_ISO] = (MAX_BYTES_PER_FRAME *
MAX_PERIODIC_FRAME_USAGE) / 100,
[FHCI_TF_BULK] = MAX_BYTES_PER_FRAME,
[FHCI_TF_INTR] = (MAX_BYTES_PER_FRAME *
MAX_PERIODIC_FRAME_USAGE) / 100
};
struct ed *ed;
struct td *td;
int ans = 1;
u32 save_transaction_time = usb->sw_transaction_time;
list_for_each_entry(ed, list, node) {
td = ed->td_head;
if (!td || td->status == USB_TD_INPROGRESS)
continue;
if (ed->state != FHCI_ED_OPER) {
if (ed->state == FHCI_ED_URB_DEL) {
td->status = USB_TD_OK;
fhci_move_td_from_ed_to_done_list(usb, ed);
ed->state = FHCI_ED_SKIP;
}
continue;
}
/*
* if it isn't interrupt pipe or it is not iso pipe and the
* interval time passed
*/
if ((list_type == FHCI_TF_INTR || list_type == FHCI_TF_ISO) &&
(((usb->actual_frame->frame_num -
td->start_frame) & 0x7ff) < td->interval))
continue;
if (add_packet(usb, ed, td) < 0)
continue;
/* update time stamps in the TD */
td->start_frame = usb->actual_frame->frame_num;
usb->sw_transaction_time += save_transaction_time;
if (usb->actual_frame->total_bytes >=
usb->max_bytes_per_frame) {
usb->actual_frame->frame_status =
FRAME_DATA_END_TRANSMISSION;
fhci_push_dummy_bd(usb->ep0);
ans = 0;
break;
}
if (usb->actual_frame->total_bytes >= frame_part[list_type])
break;
}
/* be fair to each ED(move list head around) */
move_head_to_tail(list);
usb->sw_transaction_time = save_transaction_time;
return ans;
}
static u32 rotate_frames(struct fhci_usb *usb)
{
struct fhci_hcd *fhci = usb->fhci;
if (!list_empty(&usb->actual_frame->tds_list)) {
if ((((in_be16(&fhci->pram->frame_num) & 0x07ff) -
usb->actual_frame->frame_num) & 0x7ff) > 5)
fhci_flush_actual_frame(usb);
else
return -EINVAL;
}
usb->actual_frame->frame_status = FRAME_IS_PREPARED;
usb->actual_frame->frame_num = in_be16(&fhci->pram->frame_num) & 0x7ff;
usb->actual_frame->total_bytes = 0;
return 0;
}
/*
* This function schedule the USB transaction and will process the
* endpoint in the following order: iso, interrupt, control and bulk.
*/
void fhci_schedule_transactions(struct fhci_usb *usb)
{
int left = 1;
if (usb->actual_frame->frame_status & FRAME_END_TRANSMISSION)
if (rotate_frames(usb) != 0)
return;
if (usb->actual_frame->frame_status & FRAME_END_TRANSMISSION)
return;
if (usb->actual_frame->total_bytes == 0) {
/*
* schedule the next available ISO transfer
*or next stage of the ISO transfer
*/
scan_ed_list(usb, &usb->hc_list->iso_list, FHCI_TF_ISO);
/*
* schedule the next available interrupt transfer or
* the next stage of the interrupt transfer
*/
scan_ed_list(usb, &usb->hc_list->intr_list, FHCI_TF_INTR);
/*
* schedule the next available control transfer
* or the next stage of the control transfer
*/
left = scan_ed_list(usb, &usb->hc_list->ctrl_list,
FHCI_TF_CTRL);
}
/*
* schedule the next available bulk transfer or the next stage of the
* bulk transfer
*/
if (left > 0)
scan_ed_list(usb, &usb->hc_list->bulk_list, FHCI_TF_BULK);
}
/* Handles SOF interrupt */
static void sof_interrupt(struct fhci_hcd *fhci)
{
struct fhci_usb *usb = fhci->usb_lld;
if ((usb->port_status == FHCI_PORT_DISABLED) &&
(usb->vroot_hub->port.wPortStatus & USB_PORT_STAT_CONNECTION) &&
!(usb->vroot_hub->port.wPortChange & USB_PORT_STAT_C_CONNECTION)) {
if (usb->vroot_hub->port.wPortStatus & USB_PORT_STAT_LOW_SPEED)
usb->port_status = FHCI_PORT_LOW;
else
usb->port_status = FHCI_PORT_FULL;
/* Disable IDLE */
usb->saved_msk &= ~USB_E_IDLE_MASK;
out_be16(&usb->fhci->regs->usb_usbmr, usb->saved_msk);
}
gtm_set_exact_timer16(fhci->timer, usb->max_frame_usage, false);
fhci_host_transmit_actual_frame(usb);
usb->actual_frame->frame_status = FRAME_IS_TRANSMITTED;
fhci_schedule_transactions(usb);
}
/* Handles device disconnected interrupt on port */
void fhci_device_disconnected_interrupt(struct fhci_hcd *fhci)
{
struct fhci_usb *usb = fhci->usb_lld;
fhci_dbg(fhci, "-> %s\n", __func__);
fhci_usb_disable_interrupt(usb);
clrbits8(&usb->fhci->regs->usb_usmod, USB_MODE_LSS);
usb->port_status = FHCI_PORT_DISABLED;
fhci_stop_sof_timer(fhci);
/* Enable IDLE since we want to know if something comes along */
usb->saved_msk |= USB_E_IDLE_MASK;
out_be16(&usb->fhci->regs->usb_usbmr, usb->saved_msk);
usb->vroot_hub->port.wPortStatus &= ~USB_PORT_STAT_CONNECTION;
usb->vroot_hub->port.wPortChange |= USB_PORT_STAT_C_CONNECTION;
usb->max_bytes_per_frame = 0;
fhci_usb_enable_interrupt(usb);
fhci_dbg(fhci, "<- %s\n", __func__);
}
/* detect a new device connected on the USB port */
void fhci_device_connected_interrupt(struct fhci_hcd *fhci)
{
struct fhci_usb *usb = fhci->usb_lld;
int state;
int ret;
fhci_dbg(fhci, "-> %s\n", __func__);
fhci_usb_disable_interrupt(usb);
state = fhci_ioports_check_bus_state(fhci);
/* low-speed device was connected to the USB port */
if (state == 1) {
ret = qe_usb_clock_set(fhci->lowspeed_clk, USB_CLOCK >> 3);
if (ret) {
fhci_warn(fhci, "Low-Speed device is not supported, "
"try use BRGx\n");
goto out;
}
usb->port_status = FHCI_PORT_LOW;
setbits8(&usb->fhci->regs->usb_usmod, USB_MODE_LSS);
usb->vroot_hub->port.wPortStatus |=
(USB_PORT_STAT_LOW_SPEED |
USB_PORT_STAT_CONNECTION);
usb->vroot_hub->port.wPortChange |=
USB_PORT_STAT_C_CONNECTION;
usb->max_bytes_per_frame =
(MAX_BYTES_PER_FRAME >> 3) - 7;
fhci_port_enable(usb);
} else if (state == 2) {
ret = qe_usb_clock_set(fhci->fullspeed_clk, USB_CLOCK);
if (ret) {
fhci_warn(fhci, "Full-Speed device is not supported, "
"try use CLKx\n");
goto out;
}
usb->port_status = FHCI_PORT_FULL;
clrbits8(&usb->fhci->regs->usb_usmod, USB_MODE_LSS);
usb->vroot_hub->port.wPortStatus &=
~USB_PORT_STAT_LOW_SPEED;
usb->vroot_hub->port.wPortStatus |=
USB_PORT_STAT_CONNECTION;
usb->vroot_hub->port.wPortChange |=
USB_PORT_STAT_C_CONNECTION;
usb->max_bytes_per_frame = (MAX_BYTES_PER_FRAME - 15);
fhci_port_enable(usb);
}
out:
fhci_usb_enable_interrupt(usb);
fhci_dbg(fhci, "<- %s\n", __func__);
}
irqreturn_t fhci_frame_limit_timer_irq(int irq, void *_hcd)
{
struct usb_hcd *hcd = _hcd;
struct fhci_hcd *fhci = hcd_to_fhci(hcd);
struct fhci_usb *usb = fhci->usb_lld;
spin_lock(&fhci->lock);
gtm_set_exact_timer16(fhci->timer, 1000, false);
if (usb->actual_frame->frame_status == FRAME_IS_TRANSMITTED) {
usb->actual_frame->frame_status = FRAME_TIMER_END_TRANSMISSION;
fhci_push_dummy_bd(usb->ep0);
}
fhci_schedule_transactions(usb);
spin_unlock(&fhci->lock);
return IRQ_HANDLED;
}
/* Cancel transmission on the USB endpoint */
static void abort_transmission(struct fhci_usb *usb)
{
fhci_dbg(usb->fhci, "-> %s\n", __func__);
/* issue stop Tx command */
qe_issue_cmd(QE_USB_STOP_TX, QE_CR_SUBBLOCK_USB, EP_ZERO, 0);
/* flush Tx FIFOs */
out_8(&usb->fhci->regs->usb_uscom, USB_CMD_FLUSH_FIFO | EP_ZERO);
udelay(1000);
/* reset Tx BDs */
fhci_flush_bds(usb);
/* issue restart Tx command */
qe_issue_cmd(QE_USB_RESTART_TX, QE_CR_SUBBLOCK_USB, EP_ZERO, 0);
fhci_dbg(usb->fhci, "<- %s\n", __func__);
}
irqreturn_t fhci_irq(struct usb_hcd *hcd)
{
struct fhci_hcd *fhci = hcd_to_fhci(hcd);
struct fhci_usb *usb;
u16 usb_er = 0;
unsigned long flags;
spin_lock_irqsave(&fhci->lock, flags);
usb = fhci->usb_lld;
usb_er |= in_be16(&usb->fhci->regs->usb_usber) &
in_be16(&usb->fhci->regs->usb_usbmr);
/* clear event bits for next time */
out_be16(&usb->fhci->regs->usb_usber, usb_er);
fhci_dbg_isr(fhci, usb_er);
if (usb_er & USB_E_RESET_MASK) {
if ((usb->port_status == FHCI_PORT_FULL) ||
(usb->port_status == FHCI_PORT_LOW)) {
fhci_device_disconnected_interrupt(fhci);
usb_er &= ~USB_E_IDLE_MASK;
} else if (usb->port_status == FHCI_PORT_WAITING) {
usb->port_status = FHCI_PORT_DISCONNECTING;
/* Turn on IDLE since we want to disconnect */
usb->saved_msk |= USB_E_IDLE_MASK;
out_be16(&usb->fhci->regs->usb_usber,
usb->saved_msk);
} else if (usb->port_status == FHCI_PORT_DISABLED) {
if (fhci_ioports_check_bus_state(fhci) == 1)
fhci_device_connected_interrupt(fhci);
}
usb_er &= ~USB_E_RESET_MASK;
}
if (usb_er & USB_E_MSF_MASK) {
abort_transmission(fhci->usb_lld);
usb_er &= ~USB_E_MSF_MASK;
}
if (usb_er & (USB_E_SOF_MASK | USB_E_SFT_MASK)) {
sof_interrupt(fhci);
usb_er &= ~(USB_E_SOF_MASK | USB_E_SFT_MASK);
}
if (usb_er & USB_E_TXB_MASK) {
fhci_tx_conf_interrupt(fhci->usb_lld);
usb_er &= ~USB_E_TXB_MASK;
}
if (usb_er & USB_E_TXE1_MASK) {
fhci_tx_conf_interrupt(fhci->usb_lld);
usb_er &= ~USB_E_TXE1_MASK;
}
if (usb_er & USB_E_IDLE_MASK) {
if (usb->port_status == FHCI_PORT_DISABLED) {
usb_er &= ~USB_E_RESET_MASK;
fhci_device_connected_interrupt(fhci);
} else if (usb->port_status ==
FHCI_PORT_DISCONNECTING) {
/* XXX usb->port_status = FHCI_PORT_WAITING; */
/* Disable IDLE */
usb->saved_msk &= ~USB_E_IDLE_MASK;
out_be16(&usb->fhci->regs->usb_usbmr,
usb->saved_msk);
} else {
fhci_dbg_isr(fhci, -1);
}
usb_er &= ~USB_E_IDLE_MASK;
}
spin_unlock_irqrestore(&fhci->lock, flags);
return IRQ_HANDLED;
}
/*
* Process normal completions(error or success) and clean the schedule.
*
* This is the main path for handing urbs back to drivers. The only other patth
* is process_del_list(),which unlinks URBs by scanning EDs,instead of scanning
* the (re-reversed) done list as this does.
*/
static void process_done_list(unsigned long data)
{
struct urb *urb;
struct ed *ed;
struct td *td;
struct urb_priv *urb_priv;
struct fhci_hcd *fhci = (struct fhci_hcd *)data;
disable_irq(fhci->timer->irq);
disable_irq(fhci_to_hcd(fhci)->irq);
spin_lock(&fhci->lock);
td = fhci_remove_td_from_done_list(fhci->hc_list);
while (td != NULL) {
urb = td->urb;
urb_priv = urb->hcpriv;
ed = td->ed;
/* update URB's length and status from TD */
fhci_done_td(urb, td);
urb_priv->tds_cnt++;
/*
* if all this urb's TDs are done, call complete()
* Interrupt transfers are the onley special case:
* they are reissued,until "deleted" by usb_unlink_urb
* (real work done in a SOF intr, by process_del_list)
*/
if (urb_priv->tds_cnt == urb_priv->num_of_tds) {
fhci_urb_complete_free(fhci, urb);
} else if (urb_priv->state == URB_DEL &&
ed->state == FHCI_ED_SKIP) {
fhci_del_ed_list(fhci, ed);
ed->state = FHCI_ED_OPER;
} else if (ed->state == FHCI_ED_HALTED) {
urb_priv->state = URB_DEL;
ed->state = FHCI_ED_URB_DEL;
fhci_del_ed_list(fhci, ed);
ed->state = FHCI_ED_OPER;
}
td = fhci_remove_td_from_done_list(fhci->hc_list);
}
spin_unlock(&fhci->lock);
enable_irq(fhci->timer->irq);
enable_irq(fhci_to_hcd(fhci)->irq);
}
DECLARE_TASKLET_OLD(fhci_tasklet, process_done_list);
/* transfer complted callback */
u32 fhci_transfer_confirm_callback(struct fhci_hcd *fhci)
{
if (!fhci->process_done_task->state)
tasklet_schedule(fhci->process_done_task);
return 0;
}
/*
* adds urb to the endpoint descriptor list
* arguments:
* fhci data structure for the Low level host controller
* ep USB Host endpoint data structure
* urb USB request block data structure
*/
void fhci_queue_urb(struct fhci_hcd *fhci, struct urb *urb)
{
struct ed *ed = urb->ep->hcpriv;
struct urb_priv *urb_priv = urb->hcpriv;
u32 data_len = urb->transfer_buffer_length;
int urb_state = 0;
int toggle = 0;
u8 *data;
u16 cnt = 0;
if (ed == NULL) {
ed = fhci_get_empty_ed(fhci);
ed->dev_addr = usb_pipedevice(urb->pipe);
ed->ep_addr = usb_pipeendpoint(urb->pipe);
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
ed->mode = FHCI_TF_CTRL;
break;
case PIPE_BULK:
ed->mode = FHCI_TF_BULK;
break;
case PIPE_INTERRUPT:
ed->mode = FHCI_TF_INTR;
break;
case PIPE_ISOCHRONOUS:
ed->mode = FHCI_TF_ISO;
break;
default:
break;
}
ed->speed = (urb->dev->speed == USB_SPEED_LOW) ?
FHCI_LOW_SPEED : FHCI_FULL_SPEED;
ed->max_pkt_size = usb_endpoint_maxp(&urb->ep->desc);
urb->ep->hcpriv = ed;
fhci_dbg(fhci, "new ep speed=%d max_pkt_size=%d\n",
ed->speed, ed->max_pkt_size);
}
/* for ISO transfer calculate start frame index */
if (ed->mode == FHCI_TF_ISO) {
/* Ignore the possibility of underruns */
urb->start_frame = ed->td_head ? ed->next_iso :
get_frame_num(fhci);
ed->next_iso = (urb->start_frame + urb->interval *
urb->number_of_packets) & 0x07ff;
}
/*
* OHCI handles the DATA toggle itself,we just use the USB
* toggle bits
*/
if (usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe)))
toggle = USB_TD_TOGGLE_CARRY;
else {
toggle = USB_TD_TOGGLE_DATA0;
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
usb_pipeout(urb->pipe), 1);
}
urb_priv->tds_cnt = 0;
urb_priv->ed = ed;
if (data_len > 0)
data = urb->transfer_buffer;
else
data = NULL;
switch (ed->mode) {
case FHCI_TF_BULK:
if (urb->transfer_flags & URB_ZERO_PACKET &&
urb->transfer_buffer_length > 0 &&
((urb->transfer_buffer_length %
usb_endpoint_maxp(&urb->ep->desc)) == 0))
urb_state = US_BULK0;
while (data_len > 4096) {
fhci_td_fill(fhci, urb, urb_priv, ed, cnt,
usb_pipeout(urb->pipe) ? FHCI_TA_OUT :
FHCI_TA_IN,
cnt ? USB_TD_TOGGLE_CARRY :
toggle,
data, 4096, 0, 0, true);
data += 4096;
data_len -= 4096;
cnt++;
}
fhci_td_fill(fhci, urb, urb_priv, ed, cnt,
usb_pipeout(urb->pipe) ? FHCI_TA_OUT : FHCI_TA_IN,
cnt ? USB_TD_TOGGLE_CARRY : toggle,
data, data_len, 0, 0, true);
cnt++;
if (urb->transfer_flags & URB_ZERO_PACKET &&
cnt < urb_priv->num_of_tds) {
fhci_td_fill(fhci, urb, urb_priv, ed, cnt,
usb_pipeout(urb->pipe) ? FHCI_TA_OUT :
FHCI_TA_IN,
USB_TD_TOGGLE_CARRY, NULL, 0, 0, 0, true);
cnt++;
}
break;
case FHCI_TF_INTR:
urb->start_frame = get_frame_num(fhci) + 1;
fhci_td_fill(fhci, urb, urb_priv, ed, cnt++,
usb_pipeout(urb->pipe) ? FHCI_TA_OUT : FHCI_TA_IN,
USB_TD_TOGGLE_DATA0, data, data_len,
urb->interval, urb->start_frame, true);
break;
case FHCI_TF_CTRL:
ed->dev_addr = usb_pipedevice(urb->pipe);
ed->max_pkt_size = usb_endpoint_maxp(&urb->ep->desc);
/* setup stage */
fhci_td_fill(fhci, urb, urb_priv, ed, cnt++, FHCI_TA_SETUP,
USB_TD_TOGGLE_DATA0, urb->setup_packet, 8, 0, 0, true);
/* data stage */
if (data_len > 0) {
fhci_td_fill(fhci, urb, urb_priv, ed, cnt++,
usb_pipeout(urb->pipe) ? FHCI_TA_OUT :
FHCI_TA_IN,
USB_TD_TOGGLE_DATA1, data, data_len, 0, 0,
true);
}
/* status stage */
if (data_len > 0)
fhci_td_fill(fhci, urb, urb_priv, ed, cnt++,
(usb_pipeout(urb->pipe) ? FHCI_TA_IN :
FHCI_TA_OUT),
USB_TD_TOGGLE_DATA1, data, 0, 0, 0, true);
else
fhci_td_fill(fhci, urb, urb_priv, ed, cnt++,
FHCI_TA_IN,
USB_TD_TOGGLE_DATA1, data, 0, 0, 0, true);
urb_state = US_CTRL_SETUP;
break;
case FHCI_TF_ISO:
for (cnt = 0; cnt < urb->number_of_packets; cnt++) {
u16 frame = urb->start_frame;
/*
* FIXME scheduling should handle frame counter
* roll-around ... exotic case (and OHCI has
* a 2^16 iso range, vs other HCs max of 2^10)
*/
frame += cnt * urb->interval;
frame &= 0x07ff;
fhci_td_fill(fhci, urb, urb_priv, ed, cnt,
usb_pipeout(urb->pipe) ? FHCI_TA_OUT :
FHCI_TA_IN,
USB_TD_TOGGLE_DATA0,
data + urb->iso_frame_desc[cnt].offset,
urb->iso_frame_desc[cnt].length,
urb->interval, frame, true);
}
break;
default:
break;
}
/*
* set the state of URB
* control pipe:3 states -- setup,data,status
* interrupt and bulk pipe:1 state -- data
*/
urb->pipe &= ~0x1f;
urb->pipe |= urb_state & 0x1f;
urb_priv->state = URB_INPROGRESS;
if (!ed->td_head) {
ed->state = FHCI_ED_OPER;
switch (ed->mode) {
case FHCI_TF_CTRL:
list_add(&ed->node, &fhci->hc_list->ctrl_list);
break;
case FHCI_TF_BULK:
list_add(&ed->node, &fhci->hc_list->bulk_list);
break;
case FHCI_TF_INTR:
list_add(&ed->node, &fhci->hc_list->intr_list);
break;
case FHCI_TF_ISO:
list_add(&ed->node, &fhci->hc_list->iso_list);
break;
default:
break;
}
}
fhci_add_tds_to_ed(ed, urb_priv->tds, urb_priv->num_of_tds);
fhci->active_urbs++;
}