KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel - based Virtual Machine driver for Linux
*
* This module enables kernel and guest - mode vCPU access to guest physical
* memory with suitable invalidation mechanisms .
*
* Copyright © 2021 Amazon . com , Inc . or its affiliates .
*
* Authors :
* David Woodhouse < dwmw2 @ infradead . org >
*/
# include <linux/kvm_host.h>
# include <linux/kvm.h>
# include <linux/highmem.h>
# include <linux/module.h>
# include <linux/errno.h>
# include "kvm_mm.h"
/*
* MMU notifier ' invalidate_range_start ' hook .
*/
void gfn_to_pfn_cache_invalidate_start ( struct kvm * kvm , unsigned long start ,
unsigned long end , bool may_block )
{
DECLARE_BITMAP ( vcpu_bitmap , KVM_MAX_VCPUS ) ;
struct gfn_to_pfn_cache * gpc ;
2022-02-23 19:53:02 +03:00
bool evict_vcpus = false ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
spin_lock ( & kvm - > gpc_lock ) ;
list_for_each_entry ( gpc , & kvm - > gpc_list , list ) {
write_lock_irq ( & gpc - > lock ) ;
/* Only a single page so no need to care about length */
if ( gpc - > valid & & ! is_error_noslot_pfn ( gpc - > pfn ) & &
gpc - > uhva > = start & & gpc - > uhva < end ) {
gpc - > valid = false ;
/*
* If a guest vCPU could be using the physical address ,
2022-02-23 19:53:02 +03:00
* it needs to be forced out of guest mode .
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
*/
2022-03-03 18:41:11 +03:00
if ( gpc - > usage & KVM_GUEST_USES_PFN ) {
2022-02-23 19:53:02 +03:00
if ( ! evict_vcpus ) {
evict_vcpus = true ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
bitmap_zero ( vcpu_bitmap , KVM_MAX_VCPUS ) ;
}
__set_bit ( gpc - > vcpu - > vcpu_idx , vcpu_bitmap ) ;
}
}
write_unlock_irq ( & gpc - > lock ) ;
}
spin_unlock ( & kvm - > gpc_lock ) ;
2022-02-23 19:53:02 +03:00
if ( evict_vcpus ) {
/*
* KVM needs to ensure the vCPU is fully out of guest context
* before allowing the invalidation to continue .
*/
unsigned int req = KVM_REQ_OUTSIDE_GUEST_MODE ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
bool called ;
/*
* If the OOM reaper is active , then all vCPUs should have
* been stopped already , so perform the request without
2022-02-23 19:53:02 +03:00
* KVM_REQUEST_WAIT and be sad if any needed to be IPI ' d .
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
*/
if ( ! may_block )
req & = ~ KVM_REQUEST_WAIT ;
called = kvm_make_vcpus_request_mask ( kvm , req , vcpu_bitmap ) ;
WARN_ON_ONCE ( called & & ! may_block ) ;
}
}
bool kvm_gfn_to_pfn_cache_check ( struct kvm * kvm , struct gfn_to_pfn_cache * gpc ,
gpa_t gpa , unsigned long len )
{
struct kvm_memslots * slots = kvm_memslots ( kvm ) ;
if ( ( gpa & ~ PAGE_MASK ) + len > PAGE_SIZE )
return false ;
if ( gpc - > gpa ! = gpa | | gpc - > generation ! = slots - > generation | |
kvm_is_error_hva ( gpc - > uhva ) )
return false ;
if ( ! gpc - > valid )
return false ;
return true ;
}
EXPORT_SYMBOL_GPL ( kvm_gfn_to_pfn_cache_check ) ;
2022-04-30 00:00:25 +03:00
static void gpc_unmap_khva ( struct kvm * kvm , kvm_pfn_t pfn , void * khva )
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
{
2022-04-30 00:00:25 +03:00
/* Unmap the old pfn/page if it was mapped before. */
if ( ! is_error_noslot_pfn ( pfn ) & & khva ) {
if ( pfn_valid ( pfn ) )
kunmap ( pfn_to_page ( pfn ) ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
# ifdef CONFIG_HAS_IOMEM
2022-04-30 00:00:25 +03:00
else
memunmap ( khva ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
# endif
}
}
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
static inline bool mmu_notifier_retry_cache ( struct kvm * kvm , unsigned long mmu_seq )
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
{
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
/*
* mn_active_invalidate_count acts for all intents and purposes
* like mmu_notifier_count here ; but the latter cannot be used
* here because the invalidation of caches in the mmu_notifier
* event occurs _before_ mmu_notifier_count is elevated .
*
* Note , it does not matter that mn_active_invalidate_count
* is not protected by gpc - > lock . It is guaranteed to
* be elevated before the mmu_notifier acquires gpc - > lock , and
* isn ' t dropped until after mmu_notifier_seq is updated .
*/
if ( kvm - > mn_active_invalidate_count )
return true ;
/*
* Ensure mn_active_invalidate_count is read before
* mmu_notifier_seq . This pairs with the smp_wmb ( ) in
* mmu_notifier_invalidate_range_end ( ) to guarantee either the
* old ( non - zero ) value of mn_active_invalidate_count or the
* new ( incremented ) value of mmu_notifier_seq is observed .
*/
smp_rmb ( ) ;
return kvm - > mmu_notifier_seq ! = mmu_seq ;
}
static kvm_pfn_t hva_to_pfn_retry ( struct kvm * kvm , struct gfn_to_pfn_cache * gpc )
{
/* Note, the new page offset may be different than the old! */
void * old_khva = gpc - > khva - offset_in_page ( gpc - > khva ) ;
kvm_pfn_t new_pfn = KVM_PFN_ERR_FAULT ;
void * new_khva = NULL ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
unsigned long mmu_seq ;
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
lockdep_assert_held ( & gpc - > refresh_lock ) ;
lockdep_assert_held_write ( & gpc - > lock ) ;
/*
* Invalidate the cache prior to dropping gpc - > lock , the gpa = > uhva
* assets have already been updated and so a concurrent check ( ) from a
* different task may not fail the gpa / uhva / generation checks .
*/
gpc - > valid = false ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
do {
mmu_seq = kvm - > mmu_notifier_seq ;
smp_rmb ( ) ;
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
write_unlock_irq ( & gpc - > lock ) ;
/*
* If the previous iteration " failed " due to an mmu_notifier
* event , release the pfn and unmap the kernel virtual address
* from the previous attempt . Unmapping might sleep , so this
* needs to be done after dropping the lock . Opportunistically
* check for resched while the lock isn ' t held .
*/
if ( new_pfn ! = KVM_PFN_ERR_FAULT ) {
/*
* Keep the mapping if the previous iteration reused
* the existing mapping and didn ' t create a new one .
*/
2022-04-30 00:00:25 +03:00
if ( new_khva ! = old_khva )
gpc_unmap_khva ( kvm , new_pfn , new_khva ) ;
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
2022-04-30 00:00:25 +03:00
kvm_release_pfn_clean ( new_pfn ) ;
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
cond_resched ( ) ;
}
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
/* We always request a writeable mapping */
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
new_pfn = hva_to_pfn ( gpc - > uhva , false , NULL , true , NULL ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
if ( is_error_noslot_pfn ( new_pfn ) )
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
goto out_error ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
/*
* Obtain a new kernel mapping if KVM itself will access the
* pfn . Note , kmap ( ) and memremap ( ) can both sleep , so this
* too must be done outside of gpc - > lock !
*/
if ( gpc - > usage & KVM_HOST_USES_PFN ) {
if ( new_pfn = = gpc - > pfn ) {
new_khva = old_khva ;
} else if ( pfn_valid ( new_pfn ) ) {
new_khva = kmap ( pfn_to_page ( new_pfn ) ) ;
# ifdef CONFIG_HAS_IOMEM
} else {
new_khva = memremap ( pfn_to_hpa ( new_pfn ) , PAGE_SIZE , MEMREMAP_WB ) ;
# endif
}
if ( ! new_khva ) {
kvm_release_pfn_clean ( new_pfn ) ;
goto out_error ;
}
}
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
write_lock_irq ( & gpc - > lock ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
/*
* Other tasks must wait for _this_ refresh to complete before
* attempting to refresh .
*/
WARN_ON_ONCE ( gpc - > valid ) ;
} while ( mmu_notifier_retry_cache ( kvm , mmu_seq ) ) ;
gpc - > valid = true ;
gpc - > pfn = new_pfn ;
gpc - > khva = new_khva + ( gpc - > gpa & ~ PAGE_MASK ) ;
2022-04-30 00:00:25 +03:00
/*
* Put the reference to the _new_ pfn . The pfn is now tracked by the
* cache and can be safely migrated , swapped , etc . . . as the cache will
* invalidate any mappings in response to relevant mmu_notifier events .
*/
kvm_release_pfn_clean ( new_pfn ) ;
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
return 0 ;
out_error :
write_lock_irq ( & gpc - > lock ) ;
return - EFAULT ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
}
int kvm_gfn_to_pfn_cache_refresh ( struct kvm * kvm , struct gfn_to_pfn_cache * gpc ,
2022-03-03 18:41:12 +03:00
gpa_t gpa , unsigned long len )
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
{
struct kvm_memslots * slots = kvm_memslots ( kvm ) ;
unsigned long page_offset = gpa & ~ PAGE_MASK ;
kvm_pfn_t old_pfn , new_pfn ;
unsigned long old_uhva ;
void * old_khva ;
int ret = 0 ;
/*
* If must fit within a single page . The ' len ' argument is
* only to enforce that .
*/
if ( page_offset + len > PAGE_SIZE )
return - EINVAL ;
2022-04-30 00:00:23 +03:00
/*
* If another task is refreshing the cache , wait for it to complete .
* There is no guarantee that concurrent refreshes will see the same
* gpa , memslots generation , etc . . . , so they must be fully serialized .
*/
mutex_lock ( & gpc - > refresh_lock ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
write_lock_irq ( & gpc - > lock ) ;
old_pfn = gpc - > pfn ;
old_khva = gpc - > khva - offset_in_page ( gpc - > khva ) ;
old_uhva = gpc - > uhva ;
/* If the userspace HVA is invalid, refresh that first */
if ( gpc - > gpa ! = gpa | | gpc - > generation ! = slots - > generation | |
kvm_is_error_hva ( gpc - > uhva ) ) {
gfn_t gfn = gpa_to_gfn ( gpa ) ;
gpc - > gpa = gpa ;
gpc - > generation = slots - > generation ;
gpc - > memslot = __gfn_to_memslot ( slots , gfn ) ;
gpc - > uhva = gfn_to_hva_memslot ( gpc - > memslot , gfn ) ;
if ( kvm_is_error_hva ( gpc - > uhva ) ) {
ret = - EFAULT ;
goto out ;
}
}
/*
* If the userspace HVA changed or the PFN was already invalid ,
* drop the lock and do the HVA to PFN lookup again .
*/
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
if ( ! gpc - > valid | | old_uhva ! = gpc - > uhva ) {
ret = hva_to_pfn_retry ( kvm , gpc ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
} else {
/* If the HVA→PFN mapping was already valid, don't unmap it. */
old_pfn = KVM_PFN_ERR_FAULT ;
old_khva = NULL ;
}
out :
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
/*
* Invalidate the cache and purge the pfn / khva if the refresh failed .
* Some / all of the uhva , gpa , and memslot generation info may still be
* valid , leave it as is .
*/
if ( ret ) {
gpc - > valid = false ;
gpc - > pfn = KVM_PFN_ERR_FAULT ;
gpc - > khva = NULL ;
}
/* Snapshot the new pfn before dropping the lock! */
new_pfn = gpc - > pfn ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
write_unlock_irq ( & gpc - > lock ) ;
2022-04-30 00:00:23 +03:00
mutex_unlock ( & gpc - > refresh_lock ) ;
KVM: Fix multiple races in gfn=>pfn cache refresh
Rework the gfn=>pfn cache (gpc) refresh logic to address multiple races
between the cache itself, and between the cache and mmu_notifier events.
The existing refresh code attempts to guard against races with the
mmu_notifier by speculatively marking the cache valid, and then marking
it invalid if a mmu_notifier invalidation occurs. That handles the case
where an invalidation occurs between dropping and re-acquiring gpc->lock,
but it doesn't handle the scenario where the cache is refreshed after the
cache was invalidated by the notifier, but before the notifier elevates
mmu_notifier_count. The gpc refresh can't use the "retry" helper as its
invalidation occurs _before_ mmu_notifier_count is elevated and before
mmu_notifier_range_start is set/updated.
CPU0 CPU1
---- ----
gfn_to_pfn_cache_invalidate_start()
|
-> gpc->valid = false;
kvm_gfn_to_pfn_cache_refresh()
|
|-> gpc->valid = true;
hva_to_pfn_retry()
|
-> acquire kvm->mmu_lock
kvm->mmu_notifier_count == 0
mmu_seq == kvm->mmu_notifier_seq
drop kvm->mmu_lock
return pfn 'X'
acquire kvm->mmu_lock
kvm_inc_notifier_count()
drop kvm->mmu_lock()
kernel frees pfn 'X'
kvm_gfn_to_pfn_cache_check()
|
|-> gpc->valid == true
caller accesses freed pfn 'X'
Key off of mn_active_invalidate_count to detect that a pfncache refresh
needs to wait for an in-progress mmu_notifier invalidation. While
mn_active_invalidate_count is not guaranteed to be stable, it is
guaranteed to be elevated prior to an invalidation acquiring gpc->lock,
so either the refresh will see an active invalidation and wait, or the
invalidation will run after the refresh completes.
Speculatively marking the cache valid is itself flawed, as a concurrent
kvm_gfn_to_pfn_cache_check() would see a valid cache with stale pfn/khva
values. The KVM Xen use case explicitly allows/wants multiple users;
even though the caches are allocated per vCPU, __kvm_xen_has_interrupt()
can read a different vCPU (or vCPUs). Address this race by invalidating
the cache prior to dropping gpc->lock (this is made possible by fixing
the above mmu_notifier race).
Complicating all of this is the fact that both the hva=>pfn resolution
and mapping of the kernel address can sleep, i.e. must be done outside
of gpc->lock.
Fix the above races in one fell swoop, trying to fix each individual race
is largely pointless and essentially impossible to test, e.g. closing one
hole just shifts the focus to the other hole.
Fixes: 982ed0de4753 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429210025.3293691-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-30 00:00:24 +03:00
if ( old_pfn ! = new_pfn )
2022-04-30 00:00:25 +03:00
gpc_unmap_khva ( kvm , old_pfn , old_khva ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
return ret ;
}
EXPORT_SYMBOL_GPL ( kvm_gfn_to_pfn_cache_refresh ) ;
void kvm_gfn_to_pfn_cache_unmap ( struct kvm * kvm , struct gfn_to_pfn_cache * gpc )
{
void * old_khva ;
kvm_pfn_t old_pfn ;
2022-04-30 00:00:23 +03:00
mutex_lock ( & gpc - > refresh_lock ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
write_lock_irq ( & gpc - > lock ) ;
gpc - > valid = false ;
old_khva = gpc - > khva - offset_in_page ( gpc - > khva ) ;
old_pfn = gpc - > pfn ;
/*
* We can leave the GPA → uHVA map cache intact but the PFN
* lookup will need to be redone even for the same page .
*/
gpc - > khva = NULL ;
gpc - > pfn = KVM_PFN_ERR_FAULT ;
write_unlock_irq ( & gpc - > lock ) ;
2022-04-30 00:00:23 +03:00
mutex_unlock ( & gpc - > refresh_lock ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
2022-04-30 00:00:25 +03:00
gpc_unmap_khva ( kvm , old_pfn , old_khva ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
}
EXPORT_SYMBOL_GPL ( kvm_gfn_to_pfn_cache_unmap ) ;
int kvm_gfn_to_pfn_cache_init ( struct kvm * kvm , struct gfn_to_pfn_cache * gpc ,
2022-03-03 18:41:11 +03:00
struct kvm_vcpu * vcpu , enum pfn_cache_usage usage ,
2022-03-03 18:41:12 +03:00
gpa_t gpa , unsigned long len )
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
{
2022-03-03 18:41:11 +03:00
WARN_ON_ONCE ( ! usage | | ( usage & KVM_GUEST_AND_HOST_USE_PFN ) ! = usage ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
if ( ! gpc - > active ) {
rwlock_init ( & gpc - > lock ) ;
2022-04-30 00:00:23 +03:00
mutex_init ( & gpc - > refresh_lock ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
gpc - > khva = NULL ;
gpc - > pfn = KVM_PFN_ERR_FAULT ;
gpc - > uhva = KVM_HVA_ERR_BAD ;
gpc - > vcpu = vcpu ;
2022-03-03 18:41:11 +03:00
gpc - > usage = usage ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
gpc - > valid = false ;
gpc - > active = true ;
spin_lock ( & kvm - > gpc_lock ) ;
list_add ( & gpc - > list , & kvm - > gpc_list ) ;
spin_unlock ( & kvm - > gpc_lock ) ;
}
2022-03-03 18:41:12 +03:00
return kvm_gfn_to_pfn_cache_refresh ( kvm , gpc , gpa , len ) ;
KVM: Reinstate gfn_to_pfn_cache with invalidation support
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-10 19:36:21 +03:00
}
EXPORT_SYMBOL_GPL ( kvm_gfn_to_pfn_cache_init ) ;
void kvm_gfn_to_pfn_cache_destroy ( struct kvm * kvm , struct gfn_to_pfn_cache * gpc )
{
if ( gpc - > active ) {
spin_lock ( & kvm - > gpc_lock ) ;
list_del ( & gpc - > list ) ;
spin_unlock ( & kvm - > gpc_lock ) ;
kvm_gfn_to_pfn_cache_unmap ( kvm , gpc ) ;
gpc - > active = false ;
}
}
EXPORT_SYMBOL_GPL ( kvm_gfn_to_pfn_cache_destroy ) ;