linux/arch/sparc/lib/NG4memcpy.S

534 lines
14 KiB
ArmAsm
Raw Normal View History

/* NG4memcpy.S: Niagara-4 optimized memcpy.
*
* Copyright (C) 2012 David S. Miller (davem@davemloft.net)
*/
#ifdef __KERNEL__
#include <linux/linkage.h>
#include <asm/visasm.h>
#include <asm/asi.h>
#define GLOBAL_SPARE %g7
#else
#define ASI_BLK_INIT_QUAD_LDD_P 0xe2
#define FPRS_FEF 0x04
/* On T4 it is very expensive to access ASRs like %fprs and
* %asi, avoiding a read or a write can save ~50 cycles.
*/
#define FPU_ENTER \
rd %fprs, %o5; \
andcc %o5, FPRS_FEF, %g0; \
be,a,pn %icc, 999f; \
wr %g0, FPRS_FEF, %fprs; \
999:
#ifdef MEMCPY_DEBUG
#define VISEntryHalf FPU_ENTER; \
clr %g1; clr %g2; clr %g3; clr %g5; subcc %g0, %g0, %g0;
#define VISExitHalf and %o5, FPRS_FEF, %o5; wr %o5, 0x0, %fprs
#else
#define VISEntryHalf FPU_ENTER
#define VISExitHalf and %o5, FPRS_FEF, %o5; wr %o5, 0x0, %fprs
#endif
#define GLOBAL_SPARE %g5
#endif
#ifndef STORE_ASI
#ifndef SIMULATE_NIAGARA_ON_NON_NIAGARA
#define STORE_ASI ASI_BLK_INIT_QUAD_LDD_P
#else
#define STORE_ASI 0x80 /* ASI_P */
#endif
#endif
sparc64: Fix FPU register corruption with AES crypto offload. The AES loops in arch/sparc/crypto/aes_glue.c use a scheme where the key material is preloaded into the FPU registers, and then we loop over and over doing the crypt operation, reusing those pre-cooked key registers. There are intervening blkcipher*() calls between the crypt operation calls. And those might perform memcpy() and thus also try to use the FPU. The sparc64 kernel FPU usage mechanism is designed to allow such recursive uses, but with a catch. There has to be a trap between the two FPU using threads of control. The mechanism works by, when the FPU is already in use by the kernel, allocating a slot for FPU saving at trap time. Then if, within the trap handler, we try to use the FPU registers, the pre-trap FPU register state is saved into the slot. Then at trap return time we notice this and restore the pre-trap FPU state. Over the long term there are various more involved ways we can make this work, but for a quick fix let's take advantage of the fact that the situation where this happens is very limited. All sparc64 chips that support the crypto instructiosn also are using the Niagara4 memcpy routine, and that routine only uses the FPU for large copies where we can't get the source aligned properly to a multiple of 8 bytes. We look to see if the FPU is already in use in this context, and if so we use the non-large copy path which only uses integer registers. Furthermore, we also limit this special logic to when we are doing kernel copy, rather than a user copy. Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-14 19:37:58 -07:00
#if !defined(EX_LD) && !defined(EX_ST)
#define NON_USER_COPY
#endif
#ifndef EX_LD
#define EX_LD(x,y) x
#endif
sparc64: fix FP corruption in user copy functions Short story: Exception handlers used by some copy_to_user() and copy_from_user() functions do not diligently clean up floating point register usage, and this can result in a user process seeing invalid values in floating point registers. This sometimes makes the process fail. Long story: Several cpu-specific (NG4, NG2, U1, U3) memcpy functions use floating point registers and VIS alignaddr/faligndata to accelerate data copying when source and dest addresses don't align well. Linux uses a lazy scheme for saving floating point registers; It is not done upon entering the kernel since it's a very expensive operation. Rather, it is done only when needed. If the kernel ends up not using FP regs during the course of some trap or system call, then it can return to user space without saving or restoring them. The various memcpy functions begin their FP code with VISEntry (or a variation thereof), which saves the FP regs. They conclude their FP code with VISExit (or a variation) which essentially marks the FP regs "clean", ie, they contain no unsaved values. fprs.FPRS_FEF is turned off so that a lazy restore will be triggered when/if the user process accesses floating point regs again. The bug is that the user copy variants of memcpy, copy_from_user() and copy_to_user(), employ an exception handling mechanism to detect faults when accessing user space addresses, and when this handler is invoked, an immediate return from the function is forced, and VISExit is not executed, thus leaving the fprs register in an indeterminate state, but often with fprs.FPRS_FEF set and one or more dirty bits. This results in a return to user space with invalid values in the FP regs, and since fprs.FPRS_FEF is on, no lazy restore occurs. This bug affects copy_to_user() and copy_from_user() for NG4, NG2, U3, and U1. All are fixed by using a new exception handler for those loads and stores that are done during the time between VISEnter and VISExit. n.b. In NG4memcpy, the problematic code can be triggered by a copy size greater than 128 bytes and an unaligned source address. This bug is known to be the cause of random user process memory corruptions while perf is running with the callgraph option (ie, perf record -g). This occurs because perf uses copy_from_user() to read user stacks, and may fault when it follows a stack frame pointer off to an invalid page. Validation checks on the stack address just obscure the underlying problem. Signed-off-by: Rob Gardner <rob.gardner@oracle.com> Signed-off-by: Dave Aldridge <david.j.aldridge@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-22 23:24:49 -07:00
#ifndef EX_LD_FP
#define EX_LD_FP(x,y) x
sparc64: fix FP corruption in user copy functions Short story: Exception handlers used by some copy_to_user() and copy_from_user() functions do not diligently clean up floating point register usage, and this can result in a user process seeing invalid values in floating point registers. This sometimes makes the process fail. Long story: Several cpu-specific (NG4, NG2, U1, U3) memcpy functions use floating point registers and VIS alignaddr/faligndata to accelerate data copying when source and dest addresses don't align well. Linux uses a lazy scheme for saving floating point registers; It is not done upon entering the kernel since it's a very expensive operation. Rather, it is done only when needed. If the kernel ends up not using FP regs during the course of some trap or system call, then it can return to user space without saving or restoring them. The various memcpy functions begin their FP code with VISEntry (or a variation thereof), which saves the FP regs. They conclude their FP code with VISExit (or a variation) which essentially marks the FP regs "clean", ie, they contain no unsaved values. fprs.FPRS_FEF is turned off so that a lazy restore will be triggered when/if the user process accesses floating point regs again. The bug is that the user copy variants of memcpy, copy_from_user() and copy_to_user(), employ an exception handling mechanism to detect faults when accessing user space addresses, and when this handler is invoked, an immediate return from the function is forced, and VISExit is not executed, thus leaving the fprs register in an indeterminate state, but often with fprs.FPRS_FEF set and one or more dirty bits. This results in a return to user space with invalid values in the FP regs, and since fprs.FPRS_FEF is on, no lazy restore occurs. This bug affects copy_to_user() and copy_from_user() for NG4, NG2, U3, and U1. All are fixed by using a new exception handler for those loads and stores that are done during the time between VISEnter and VISExit. n.b. In NG4memcpy, the problematic code can be triggered by a copy size greater than 128 bytes and an unaligned source address. This bug is known to be the cause of random user process memory corruptions while perf is running with the callgraph option (ie, perf record -g). This occurs because perf uses copy_from_user() to read user stacks, and may fault when it follows a stack frame pointer off to an invalid page. Validation checks on the stack address just obscure the underlying problem. Signed-off-by: Rob Gardner <rob.gardner@oracle.com> Signed-off-by: Dave Aldridge <david.j.aldridge@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-22 23:24:49 -07:00
#endif
#ifndef EX_ST
#define EX_ST(x,y) x
#endif
sparc64: fix FP corruption in user copy functions Short story: Exception handlers used by some copy_to_user() and copy_from_user() functions do not diligently clean up floating point register usage, and this can result in a user process seeing invalid values in floating point registers. This sometimes makes the process fail. Long story: Several cpu-specific (NG4, NG2, U1, U3) memcpy functions use floating point registers and VIS alignaddr/faligndata to accelerate data copying when source and dest addresses don't align well. Linux uses a lazy scheme for saving floating point registers; It is not done upon entering the kernel since it's a very expensive operation. Rather, it is done only when needed. If the kernel ends up not using FP regs during the course of some trap or system call, then it can return to user space without saving or restoring them. The various memcpy functions begin their FP code with VISEntry (or a variation thereof), which saves the FP regs. They conclude their FP code with VISExit (or a variation) which essentially marks the FP regs "clean", ie, they contain no unsaved values. fprs.FPRS_FEF is turned off so that a lazy restore will be triggered when/if the user process accesses floating point regs again. The bug is that the user copy variants of memcpy, copy_from_user() and copy_to_user(), employ an exception handling mechanism to detect faults when accessing user space addresses, and when this handler is invoked, an immediate return from the function is forced, and VISExit is not executed, thus leaving the fprs register in an indeterminate state, but often with fprs.FPRS_FEF set and one or more dirty bits. This results in a return to user space with invalid values in the FP regs, and since fprs.FPRS_FEF is on, no lazy restore occurs. This bug affects copy_to_user() and copy_from_user() for NG4, NG2, U3, and U1. All are fixed by using a new exception handler for those loads and stores that are done during the time between VISEnter and VISExit. n.b. In NG4memcpy, the problematic code can be triggered by a copy size greater than 128 bytes and an unaligned source address. This bug is known to be the cause of random user process memory corruptions while perf is running with the callgraph option (ie, perf record -g). This occurs because perf uses copy_from_user() to read user stacks, and may fault when it follows a stack frame pointer off to an invalid page. Validation checks on the stack address just obscure the underlying problem. Signed-off-by: Rob Gardner <rob.gardner@oracle.com> Signed-off-by: Dave Aldridge <david.j.aldridge@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-22 23:24:49 -07:00
#ifndef EX_ST_FP
#define EX_ST_FP(x,y) x
sparc64: fix FP corruption in user copy functions Short story: Exception handlers used by some copy_to_user() and copy_from_user() functions do not diligently clean up floating point register usage, and this can result in a user process seeing invalid values in floating point registers. This sometimes makes the process fail. Long story: Several cpu-specific (NG4, NG2, U1, U3) memcpy functions use floating point registers and VIS alignaddr/faligndata to accelerate data copying when source and dest addresses don't align well. Linux uses a lazy scheme for saving floating point registers; It is not done upon entering the kernel since it's a very expensive operation. Rather, it is done only when needed. If the kernel ends up not using FP regs during the course of some trap or system call, then it can return to user space without saving or restoring them. The various memcpy functions begin their FP code with VISEntry (or a variation thereof), which saves the FP regs. They conclude their FP code with VISExit (or a variation) which essentially marks the FP regs "clean", ie, they contain no unsaved values. fprs.FPRS_FEF is turned off so that a lazy restore will be triggered when/if the user process accesses floating point regs again. The bug is that the user copy variants of memcpy, copy_from_user() and copy_to_user(), employ an exception handling mechanism to detect faults when accessing user space addresses, and when this handler is invoked, an immediate return from the function is forced, and VISExit is not executed, thus leaving the fprs register in an indeterminate state, but often with fprs.FPRS_FEF set and one or more dirty bits. This results in a return to user space with invalid values in the FP regs, and since fprs.FPRS_FEF is on, no lazy restore occurs. This bug affects copy_to_user() and copy_from_user() for NG4, NG2, U3, and U1. All are fixed by using a new exception handler for those loads and stores that are done during the time between VISEnter and VISExit. n.b. In NG4memcpy, the problematic code can be triggered by a copy size greater than 128 bytes and an unaligned source address. This bug is known to be the cause of random user process memory corruptions while perf is running with the callgraph option (ie, perf record -g). This occurs because perf uses copy_from_user() to read user stacks, and may fault when it follows a stack frame pointer off to an invalid page. Validation checks on the stack address just obscure the underlying problem. Signed-off-by: Rob Gardner <rob.gardner@oracle.com> Signed-off-by: Dave Aldridge <david.j.aldridge@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-22 23:24:49 -07:00
#endif
#ifndef LOAD
#define LOAD(type,addr,dest) type [addr], dest
#endif
#ifndef STORE
#ifndef MEMCPY_DEBUG
#define STORE(type,src,addr) type src, [addr]
#else
#define STORE(type,src,addr) type##a src, [addr] %asi
#endif
#endif
#ifndef STORE_INIT
#define STORE_INIT(src,addr) stxa src, [addr] STORE_ASI
#endif
#ifndef FUNC_NAME
#define FUNC_NAME NG4memcpy
#endif
#ifndef PREAMBLE
#define PREAMBLE
#endif
#ifndef XCC
#define XCC xcc
#endif
.register %g2,#scratch
.register %g3,#scratch
.text
#ifndef EX_RETVAL
#define EX_RETVAL(x) x
__restore_asi_fp:
VISExitHalf
__restore_asi:
retl
wr %g0, ASI_AIUS, %asi
ENTRY(NG4_retl_o2)
ba,pt %xcc, __restore_asi
mov %o2, %o0
ENDPROC(NG4_retl_o2)
ENTRY(NG4_retl_o2_plus_1)
ba,pt %xcc, __restore_asi
add %o2, 1, %o0
ENDPROC(NG4_retl_o2_plus_1)
ENTRY(NG4_retl_o2_plus_4)
ba,pt %xcc, __restore_asi
add %o2, 4, %o0
ENDPROC(NG4_retl_o2_plus_4)
ENTRY(NG4_retl_o2_plus_o5)
ba,pt %xcc, __restore_asi
add %o2, %o5, %o0
ENDPROC(NG4_retl_o2_plus_o5)
ENTRY(NG4_retl_o2_plus_o5_plus_4)
add %o5, 4, %o5
ba,pt %xcc, __restore_asi
add %o2, %o5, %o0
ENDPROC(NG4_retl_o2_plus_o5_plus_4)
ENTRY(NG4_retl_o2_plus_o5_plus_8)
add %o5, 8, %o5
ba,pt %xcc, __restore_asi
add %o2, %o5, %o0
ENDPROC(NG4_retl_o2_plus_o5_plus_8)
ENTRY(NG4_retl_o2_plus_o5_plus_16)
add %o5, 16, %o5
ba,pt %xcc, __restore_asi
add %o2, %o5, %o0
ENDPROC(NG4_retl_o2_plus_o5_plus_16)
ENTRY(NG4_retl_o2_plus_o5_plus_24)
add %o5, 24, %o5
ba,pt %xcc, __restore_asi
add %o2, %o5, %o0
ENDPROC(NG4_retl_o2_plus_o5_plus_24)
ENTRY(NG4_retl_o2_plus_o5_plus_32)
add %o5, 32, %o5
ba,pt %xcc, __restore_asi
add %o2, %o5, %o0
ENDPROC(NG4_retl_o2_plus_o5_plus_32)
ENTRY(NG4_retl_o2_plus_g1)
ba,pt %xcc, __restore_asi
add %o2, %g1, %o0
ENDPROC(NG4_retl_o2_plus_g1)
ENTRY(NG4_retl_o2_plus_g1_plus_1)
add %g1, 1, %g1
ba,pt %xcc, __restore_asi
add %o2, %g1, %o0
ENDPROC(NG4_retl_o2_plus_g1_plus_1)
ENTRY(NG4_retl_o2_plus_g1_plus_8)
add %g1, 8, %g1
ba,pt %xcc, __restore_asi
add %o2, %g1, %o0
ENDPROC(NG4_retl_o2_plus_g1_plus_8)
ENTRY(NG4_retl_o2_plus_o4)
ba,pt %xcc, __restore_asi
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4)
ENTRY(NG4_retl_o2_plus_o4_plus_8)
add %o4, 8, %o4
ba,pt %xcc, __restore_asi
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_8)
ENTRY(NG4_retl_o2_plus_o4_plus_16)
add %o4, 16, %o4
ba,pt %xcc, __restore_asi
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_16)
ENTRY(NG4_retl_o2_plus_o4_plus_24)
add %o4, 24, %o4
ba,pt %xcc, __restore_asi
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_24)
ENTRY(NG4_retl_o2_plus_o4_plus_32)
add %o4, 32, %o4
ba,pt %xcc, __restore_asi
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_32)
ENTRY(NG4_retl_o2_plus_o4_plus_40)
add %o4, 40, %o4
ba,pt %xcc, __restore_asi
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_40)
ENTRY(NG4_retl_o2_plus_o4_plus_48)
add %o4, 48, %o4
ba,pt %xcc, __restore_asi
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_48)
ENTRY(NG4_retl_o2_plus_o4_plus_56)
add %o4, 56, %o4
ba,pt %xcc, __restore_asi
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_56)
ENTRY(NG4_retl_o2_plus_o4_plus_64)
add %o4, 64, %o4
ba,pt %xcc, __restore_asi
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_64)
ENTRY(NG4_retl_o2_plus_o4_fp)
ba,pt %xcc, __restore_asi_fp
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_fp)
ENTRY(NG4_retl_o2_plus_o4_plus_8_fp)
add %o4, 8, %o4
ba,pt %xcc, __restore_asi_fp
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_8_fp)
ENTRY(NG4_retl_o2_plus_o4_plus_16_fp)
add %o4, 16, %o4
ba,pt %xcc, __restore_asi_fp
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_16_fp)
ENTRY(NG4_retl_o2_plus_o4_plus_24_fp)
add %o4, 24, %o4
ba,pt %xcc, __restore_asi_fp
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_24_fp)
ENTRY(NG4_retl_o2_plus_o4_plus_32_fp)
add %o4, 32, %o4
ba,pt %xcc, __restore_asi_fp
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_32_fp)
ENTRY(NG4_retl_o2_plus_o4_plus_40_fp)
add %o4, 40, %o4
ba,pt %xcc, __restore_asi_fp
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_40_fp)
ENTRY(NG4_retl_o2_plus_o4_plus_48_fp)
add %o4, 48, %o4
ba,pt %xcc, __restore_asi_fp
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_48_fp)
ENTRY(NG4_retl_o2_plus_o4_plus_56_fp)
add %o4, 56, %o4
ba,pt %xcc, __restore_asi_fp
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_56_fp)
ENTRY(NG4_retl_o2_plus_o4_plus_64_fp)
add %o4, 64, %o4
ba,pt %xcc, __restore_asi_fp
add %o2, %o4, %o0
ENDPROC(NG4_retl_o2_plus_o4_plus_64_fp)
#endif
.align 64
.globl FUNC_NAME
.type FUNC_NAME,#function
FUNC_NAME: /* %o0=dst, %o1=src, %o2=len */
#ifdef MEMCPY_DEBUG
wr %g0, 0x80, %asi
#endif
srlx %o2, 31, %g2
cmp %g2, 0
tne %XCC, 5
PREAMBLE
mov %o0, %o3
brz,pn %o2, .Lexit
cmp %o2, 3
ble,pn %icc, .Ltiny
cmp %o2, 19
ble,pn %icc, .Lsmall
or %o0, %o1, %g2
cmp %o2, 128
bl,pn %icc, .Lmedium
nop
.Llarge:/* len >= 0x80 */
/* First get dest 8 byte aligned. */
sub %g0, %o0, %g1
and %g1, 0x7, %g1
brz,pt %g1, 51f
sub %o2, %g1, %o2
1: EX_LD(LOAD(ldub, %o1 + 0x00, %g2), NG4_retl_o2_plus_g1)
add %o1, 1, %o1
subcc %g1, 1, %g1
add %o0, 1, %o0
bne,pt %icc, 1b
EX_ST(STORE(stb, %g2, %o0 - 0x01), NG4_retl_o2_plus_g1_plus_1)
51: LOAD(prefetch, %o1 + 0x040, #n_reads_strong)
LOAD(prefetch, %o1 + 0x080, #n_reads_strong)
LOAD(prefetch, %o1 + 0x0c0, #n_reads_strong)
LOAD(prefetch, %o1 + 0x100, #n_reads_strong)
LOAD(prefetch, %o1 + 0x140, #n_reads_strong)
LOAD(prefetch, %o1 + 0x180, #n_reads_strong)
LOAD(prefetch, %o1 + 0x1c0, #n_reads_strong)
LOAD(prefetch, %o1 + 0x200, #n_reads_strong)
/* Check if we can use the straight fully aligned
* loop, or we require the alignaddr/faligndata variant.
*/
andcc %o1, 0x7, %o5
bne,pn %icc, .Llarge_src_unaligned
sub %g0, %o0, %g1
/* Legitimize the use of initializing stores by getting dest
* to be 64-byte aligned.
*/
and %g1, 0x3f, %g1
brz,pt %g1, .Llarge_aligned
sub %o2, %g1, %o2
1: EX_LD(LOAD(ldx, %o1 + 0x00, %g2), NG4_retl_o2_plus_g1)
add %o1, 8, %o1
subcc %g1, 8, %g1
add %o0, 8, %o0
bne,pt %icc, 1b
EX_ST(STORE(stx, %g2, %o0 - 0x08), NG4_retl_o2_plus_g1_plus_8)
.Llarge_aligned:
/* len >= 0x80 && src 8-byte aligned && dest 8-byte aligned */
andn %o2, 0x3f, %o4
sub %o2, %o4, %o2
1: EX_LD(LOAD(ldx, %o1 + 0x00, %g1), NG4_retl_o2_plus_o4)
add %o1, 0x40, %o1
EX_LD(LOAD(ldx, %o1 - 0x38, %g2), NG4_retl_o2_plus_o4)
subcc %o4, 0x40, %o4
EX_LD(LOAD(ldx, %o1 - 0x30, %g3), NG4_retl_o2_plus_o4_plus_64)
EX_LD(LOAD(ldx, %o1 - 0x28, GLOBAL_SPARE), NG4_retl_o2_plus_o4_plus_64)
EX_LD(LOAD(ldx, %o1 - 0x20, %o5), NG4_retl_o2_plus_o4_plus_64)
EX_ST(STORE_INIT(%g1, %o0), NG4_retl_o2_plus_o4_plus_64)
add %o0, 0x08, %o0
EX_ST(STORE_INIT(%g2, %o0), NG4_retl_o2_plus_o4_plus_56)
add %o0, 0x08, %o0
EX_LD(LOAD(ldx, %o1 - 0x18, %g2), NG4_retl_o2_plus_o4_plus_48)
EX_ST(STORE_INIT(%g3, %o0), NG4_retl_o2_plus_o4_plus_48)
add %o0, 0x08, %o0
EX_LD(LOAD(ldx, %o1 - 0x10, %g3), NG4_retl_o2_plus_o4_plus_40)
EX_ST(STORE_INIT(GLOBAL_SPARE, %o0), NG4_retl_o2_plus_o4_plus_40)
add %o0, 0x08, %o0
EX_LD(LOAD(ldx, %o1 - 0x08, GLOBAL_SPARE), NG4_retl_o2_plus_o4_plus_32)
EX_ST(STORE_INIT(%o5, %o0), NG4_retl_o2_plus_o4_plus_32)
add %o0, 0x08, %o0
EX_ST(STORE_INIT(%g2, %o0), NG4_retl_o2_plus_o4_plus_24)
add %o0, 0x08, %o0
EX_ST(STORE_INIT(%g3, %o0), NG4_retl_o2_plus_o4_plus_16)
add %o0, 0x08, %o0
EX_ST(STORE_INIT(GLOBAL_SPARE, %o0), NG4_retl_o2_plus_o4_plus_8)
add %o0, 0x08, %o0
bne,pt %icc, 1b
LOAD(prefetch, %o1 + 0x200, #n_reads_strong)
membar #StoreLoad | #StoreStore
brz,pn %o2, .Lexit
cmp %o2, 19
ble,pn %icc, .Lsmall_unaligned
nop
ba,a,pt %icc, .Lmedium_noprefetch
.Lexit: retl
mov EX_RETVAL(%o3), %o0
.Llarge_src_unaligned:
sparc64: Fix FPU register corruption with AES crypto offload. The AES loops in arch/sparc/crypto/aes_glue.c use a scheme where the key material is preloaded into the FPU registers, and then we loop over and over doing the crypt operation, reusing those pre-cooked key registers. There are intervening blkcipher*() calls between the crypt operation calls. And those might perform memcpy() and thus also try to use the FPU. The sparc64 kernel FPU usage mechanism is designed to allow such recursive uses, but with a catch. There has to be a trap between the two FPU using threads of control. The mechanism works by, when the FPU is already in use by the kernel, allocating a slot for FPU saving at trap time. Then if, within the trap handler, we try to use the FPU registers, the pre-trap FPU register state is saved into the slot. Then at trap return time we notice this and restore the pre-trap FPU state. Over the long term there are various more involved ways we can make this work, but for a quick fix let's take advantage of the fact that the situation where this happens is very limited. All sparc64 chips that support the crypto instructiosn also are using the Niagara4 memcpy routine, and that routine only uses the FPU for large copies where we can't get the source aligned properly to a multiple of 8 bytes. We look to see if the FPU is already in use in this context, and if so we use the non-large copy path which only uses integer registers. Furthermore, we also limit this special logic to when we are doing kernel copy, rather than a user copy. Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-14 19:37:58 -07:00
#ifdef NON_USER_COPY
VISEntryHalfFast(.Lmedium_vis_entry_fail)
#else
VISEntryHalf
#endif
andn %o2, 0x3f, %o4
sub %o2, %o4, %o2
alignaddr %o1, %g0, %g1
add %o1, %o4, %o1
EX_LD_FP(LOAD(ldd, %g1 + 0x00, %f0), NG4_retl_o2_plus_o4)
1: EX_LD_FP(LOAD(ldd, %g1 + 0x08, %f2), NG4_retl_o2_plus_o4)
subcc %o4, 0x40, %o4
EX_LD_FP(LOAD(ldd, %g1 + 0x10, %f4), NG4_retl_o2_plus_o4_plus_64)
EX_LD_FP(LOAD(ldd, %g1 + 0x18, %f6), NG4_retl_o2_plus_o4_plus_64)
EX_LD_FP(LOAD(ldd, %g1 + 0x20, %f8), NG4_retl_o2_plus_o4_plus_64)
EX_LD_FP(LOAD(ldd, %g1 + 0x28, %f10), NG4_retl_o2_plus_o4_plus_64)
EX_LD_FP(LOAD(ldd, %g1 + 0x30, %f12), NG4_retl_o2_plus_o4_plus_64)
EX_LD_FP(LOAD(ldd, %g1 + 0x38, %f14), NG4_retl_o2_plus_o4_plus_64)
faligndata %f0, %f2, %f16
EX_LD_FP(LOAD(ldd, %g1 + 0x40, %f0), NG4_retl_o2_plus_o4_plus_64)
faligndata %f2, %f4, %f18
add %g1, 0x40, %g1
faligndata %f4, %f6, %f20
faligndata %f6, %f8, %f22
faligndata %f8, %f10, %f24
faligndata %f10, %f12, %f26
faligndata %f12, %f14, %f28
faligndata %f14, %f0, %f30
EX_ST_FP(STORE(std, %f16, %o0 + 0x00), NG4_retl_o2_plus_o4_plus_64)
EX_ST_FP(STORE(std, %f18, %o0 + 0x08), NG4_retl_o2_plus_o4_plus_56)
EX_ST_FP(STORE(std, %f20, %o0 + 0x10), NG4_retl_o2_plus_o4_plus_48)
EX_ST_FP(STORE(std, %f22, %o0 + 0x18), NG4_retl_o2_plus_o4_plus_40)
EX_ST_FP(STORE(std, %f24, %o0 + 0x20), NG4_retl_o2_plus_o4_plus_32)
EX_ST_FP(STORE(std, %f26, %o0 + 0x28), NG4_retl_o2_plus_o4_plus_24)
EX_ST_FP(STORE(std, %f28, %o0 + 0x30), NG4_retl_o2_plus_o4_plus_16)
EX_ST_FP(STORE(std, %f30, %o0 + 0x38), NG4_retl_o2_plus_o4_plus_8)
add %o0, 0x40, %o0
bne,pt %icc, 1b
LOAD(prefetch, %g1 + 0x200, #n_reads_strong)
#ifdef NON_USER_COPY
VISExitHalfFast
#else
VISExitHalf
#endif
brz,pn %o2, .Lexit
cmp %o2, 19
ble,pn %icc, .Lsmall_unaligned
nop
ba,a,pt %icc, .Lmedium_unaligned
sparc64: Fix FPU register corruption with AES crypto offload. The AES loops in arch/sparc/crypto/aes_glue.c use a scheme where the key material is preloaded into the FPU registers, and then we loop over and over doing the crypt operation, reusing those pre-cooked key registers. There are intervening blkcipher*() calls between the crypt operation calls. And those might perform memcpy() and thus also try to use the FPU. The sparc64 kernel FPU usage mechanism is designed to allow such recursive uses, but with a catch. There has to be a trap between the two FPU using threads of control. The mechanism works by, when the FPU is already in use by the kernel, allocating a slot for FPU saving at trap time. Then if, within the trap handler, we try to use the FPU registers, the pre-trap FPU register state is saved into the slot. Then at trap return time we notice this and restore the pre-trap FPU state. Over the long term there are various more involved ways we can make this work, but for a quick fix let's take advantage of the fact that the situation where this happens is very limited. All sparc64 chips that support the crypto instructiosn also are using the Niagara4 memcpy routine, and that routine only uses the FPU for large copies where we can't get the source aligned properly to a multiple of 8 bytes. We look to see if the FPU is already in use in this context, and if so we use the non-large copy path which only uses integer registers. Furthermore, we also limit this special logic to when we are doing kernel copy, rather than a user copy. Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-14 19:37:58 -07:00
#ifdef NON_USER_COPY
.Lmedium_vis_entry_fail:
or %o0, %o1, %g2
#endif
.Lmedium:
LOAD(prefetch, %o1 + 0x40, #n_reads_strong)
andcc %g2, 0x7, %g0
bne,pn %icc, .Lmedium_unaligned
nop
.Lmedium_noprefetch:
andncc %o2, 0x20 - 1, %o5
be,pn %icc, 2f
sub %o2, %o5, %o2
1: EX_LD(LOAD(ldx, %o1 + 0x00, %g1), NG4_retl_o2_plus_o5)
EX_LD(LOAD(ldx, %o1 + 0x08, %g2), NG4_retl_o2_plus_o5)
EX_LD(LOAD(ldx, %o1 + 0x10, GLOBAL_SPARE), NG4_retl_o2_plus_o5)
EX_LD(LOAD(ldx, %o1 + 0x18, %o4), NG4_retl_o2_plus_o5)
add %o1, 0x20, %o1
subcc %o5, 0x20, %o5
EX_ST(STORE(stx, %g1, %o0 + 0x00), NG4_retl_o2_plus_o5_plus_32)
EX_ST(STORE(stx, %g2, %o0 + 0x08), NG4_retl_o2_plus_o5_plus_24)
EX_ST(STORE(stx, GLOBAL_SPARE, %o0 + 0x10), NG4_retl_o2_plus_o5_plus_24)
EX_ST(STORE(stx, %o4, %o0 + 0x18), NG4_retl_o2_plus_o5_plus_8)
bne,pt %icc, 1b
add %o0, 0x20, %o0
2: andcc %o2, 0x18, %o5
be,pt %icc, 3f
sub %o2, %o5, %o2
1: EX_LD(LOAD(ldx, %o1 + 0x00, %g1), NG4_retl_o2_plus_o5)
add %o1, 0x08, %o1
add %o0, 0x08, %o0
subcc %o5, 0x08, %o5
bne,pt %icc, 1b
EX_ST(STORE(stx, %g1, %o0 - 0x08), NG4_retl_o2_plus_o5_plus_8)
3: brz,pt %o2, .Lexit
cmp %o2, 0x04
bl,pn %icc, .Ltiny
nop
EX_LD(LOAD(lduw, %o1 + 0x00, %g1), NG4_retl_o2)
add %o1, 0x04, %o1
add %o0, 0x04, %o0
subcc %o2, 0x04, %o2
bne,pn %icc, .Ltiny
EX_ST(STORE(stw, %g1, %o0 - 0x04), NG4_retl_o2_plus_4)
ba,a,pt %icc, .Lexit
.Lmedium_unaligned:
/* First get dest 8 byte aligned. */
sub %g0, %o0, %g1
and %g1, 0x7, %g1
brz,pt %g1, 2f
sub %o2, %g1, %o2
1: EX_LD(LOAD(ldub, %o1 + 0x00, %g2), NG4_retl_o2_plus_g1)
add %o1, 1, %o1
subcc %g1, 1, %g1
add %o0, 1, %o0
bne,pt %icc, 1b
EX_ST(STORE(stb, %g2, %o0 - 0x01), NG4_retl_o2_plus_g1_plus_1)
2:
and %o1, 0x7, %g1
brz,pn %g1, .Lmedium_noprefetch
sll %g1, 3, %g1
mov 64, %g2
sub %g2, %g1, %g2
andn %o1, 0x7, %o1
EX_LD(LOAD(ldx, %o1 + 0x00, %o4), NG4_retl_o2)
sllx %o4, %g1, %o4
andn %o2, 0x08 - 1, %o5
sub %o2, %o5, %o2
1: EX_LD(LOAD(ldx, %o1 + 0x08, %g3), NG4_retl_o2_plus_o5)
add %o1, 0x08, %o1
subcc %o5, 0x08, %o5
srlx %g3, %g2, GLOBAL_SPARE
or GLOBAL_SPARE, %o4, GLOBAL_SPARE
EX_ST(STORE(stx, GLOBAL_SPARE, %o0 + 0x00), NG4_retl_o2_plus_o5_plus_8)
add %o0, 0x08, %o0
bne,pt %icc, 1b
sllx %g3, %g1, %o4
srl %g1, 3, %g1
add %o1, %g1, %o1
brz,pn %o2, .Lexit
nop
ba,pt %icc, .Lsmall_unaligned
.Ltiny:
EX_LD(LOAD(ldub, %o1 + 0x00, %g1), NG4_retl_o2)
subcc %o2, 1, %o2
be,pn %icc, .Lexit
EX_ST(STORE(stb, %g1, %o0 + 0x00), NG4_retl_o2_plus_1)
EX_LD(LOAD(ldub, %o1 + 0x01, %g1), NG4_retl_o2)
subcc %o2, 1, %o2
be,pn %icc, .Lexit
EX_ST(STORE(stb, %g1, %o0 + 0x01), NG4_retl_o2_plus_1)
EX_LD(LOAD(ldub, %o1 + 0x02, %g1), NG4_retl_o2)
ba,pt %icc, .Lexit
EX_ST(STORE(stb, %g1, %o0 + 0x02), NG4_retl_o2)
.Lsmall:
andcc %g2, 0x3, %g0
bne,pn %icc, .Lsmall_unaligned
andn %o2, 0x4 - 1, %o5
sub %o2, %o5, %o2
1:
EX_LD(LOAD(lduw, %o1 + 0x00, %g1), NG4_retl_o2_plus_o5)
add %o1, 0x04, %o1
subcc %o5, 0x04, %o5
add %o0, 0x04, %o0
bne,pt %icc, 1b
EX_ST(STORE(stw, %g1, %o0 - 0x04), NG4_retl_o2_plus_o5_plus_4)
brz,pt %o2, .Lexit
nop
ba,a,pt %icc, .Ltiny
.Lsmall_unaligned:
1: EX_LD(LOAD(ldub, %o1 + 0x00, %g1), NG4_retl_o2)
add %o1, 1, %o1
add %o0, 1, %o0
subcc %o2, 1, %o2
bne,pt %icc, 1b
EX_ST(STORE(stb, %g1, %o0 - 0x01), NG4_retl_o2_plus_1)
ba,a,pt %icc, .Lexit
.size FUNC_NAME, .-FUNC_NAME