2009-06-11 14:51:15 +01:00
/*
* rational fractions
*
2012-05-16 09:41:19 +00:00
* Copyright ( C ) 2009 emlix GmbH , Oskar Schirmer < oskar @ scara . com >
2009-06-11 14:51:15 +01:00
*
* helper functions when coping with rational numbers
*/
# include <linux/rational.h>
2011-11-16 21:29:17 -05:00
# include <linux/compiler.h>
# include <linux/export.h>
2009-06-11 14:51:15 +01:00
/*
* calculate best rational approximation for a given fraction
* taking into account restricted register size , e . g . to find
* appropriate values for a pll with 5 bit denominator and
* 8 bit numerator register fields , trying to set up with a
* frequency ratio of 3.1415 , one would say :
*
* rational_best_approximation ( 31415 , 10000 ,
* ( 1 < < 8 ) - 1 , ( 1 < < 5 ) - 1 , & n , & d ) ;
*
* you may look at given_numerator as a fixed point number ,
* with the fractional part size described in given_denominator .
*
* for theoretical background , see :
* http : //en.wikipedia.org/wiki/Continued_fraction
*/
void rational_best_approximation (
unsigned long given_numerator , unsigned long given_denominator ,
unsigned long max_numerator , unsigned long max_denominator ,
unsigned long * best_numerator , unsigned long * best_denominator )
{
unsigned long n , d , n0 , d0 , n1 , d1 ;
n = given_numerator ;
d = given_denominator ;
n0 = d1 = 0 ;
n1 = d0 = 1 ;
for ( ; ; ) {
unsigned long t , a ;
if ( ( n1 > max_numerator ) | | ( d1 > max_denominator ) ) {
n1 = n0 ;
d1 = d0 ;
break ;
}
if ( d = = 0 )
break ;
t = d ;
a = n / d ;
d = n % d ;
n = t ;
t = n0 + a * n1 ;
n0 = n1 ;
n1 = t ;
t = d0 + a * d1 ;
d0 = d1 ;
d1 = t ;
}
* best_numerator = n1 ;
* best_denominator = d1 ;
}
EXPORT_SYMBOL ( rational_best_approximation ) ;