linux/kernel/auditsc.c

1399 lines
36 KiB
C
Raw Normal View History

/* auditsc.c -- System-call auditing support
* Handles all system-call specific auditing features.
*
* Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
* Copyright 2005 Hewlett-Packard Development Company, L.P.
* Copyright (C) 2005 IBM Corporation
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Written by Rickard E. (Rik) Faith <faith@redhat.com>
*
* Many of the ideas implemented here are from Stephen C. Tweedie,
* especially the idea of avoiding a copy by using getname.
*
* The method for actual interception of syscall entry and exit (not in
* this file -- see entry.S) is based on a GPL'd patch written by
* okir@suse.de and Copyright 2003 SuSE Linux AG.
*
* The support of additional filter rules compares (>, <, >=, <=) was
* added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
*
* Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
* filesystem information.
*
* Subject and object context labeling support added by <danjones@us.ibm.com>
* and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
*/
#include <linux/init.h>
#include <asm/types.h>
#include <asm/atomic.h>
#include <asm/types.h>
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/socket.h>
#include <linux/audit.h>
#include <linux/personality.h>
#include <linux/time.h>
#include <linux/netlink.h>
#include <linux/compiler.h>
#include <asm/unistd.h>
#include <linux/security.h>
#include <linux/list.h>
#include <linux/tty.h>
#include <linux/selinux.h>
#include <linux/binfmts.h>
#include <linux/syscalls.h>
#include "audit.h"
extern struct list_head audit_filter_list[];
/* No syscall auditing will take place unless audit_enabled != 0. */
extern int audit_enabled;
/* AUDIT_NAMES is the number of slots we reserve in the audit_context
* for saving names from getname(). */
#define AUDIT_NAMES 20
/* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
* audit_context from being used for nameless inodes from
* path_lookup. */
#define AUDIT_NAMES_RESERVED 7
/* When fs/namei.c:getname() is called, we store the pointer in name and
* we don't let putname() free it (instead we free all of the saved
* pointers at syscall exit time).
*
* Further, in fs/namei.c:path_lookup() we store the inode and device. */
struct audit_names {
const char *name;
unsigned long ino;
unsigned long pino;
dev_t dev;
umode_t mode;
uid_t uid;
gid_t gid;
dev_t rdev;
u32 osid;
};
struct audit_aux_data {
struct audit_aux_data *next;
int type;
};
#define AUDIT_AUX_IPCPERM 0
struct audit_aux_data_ipcctl {
struct audit_aux_data d;
struct ipc_perm p;
unsigned long qbytes;
uid_t uid;
gid_t gid;
mode_t mode;
u32 osid;
};
struct audit_aux_data_execve {
struct audit_aux_data d;
int argc;
int envc;
char mem[0];
};
struct audit_aux_data_socketcall {
struct audit_aux_data d;
int nargs;
unsigned long args[0];
};
struct audit_aux_data_sockaddr {
struct audit_aux_data d;
int len;
char a[0];
};
struct audit_aux_data_path {
struct audit_aux_data d;
struct dentry *dentry;
struct vfsmount *mnt;
};
/* The per-task audit context. */
struct audit_context {
int in_syscall; /* 1 if task is in a syscall */
enum audit_state state;
unsigned int serial; /* serial number for record */
struct timespec ctime; /* time of syscall entry */
uid_t loginuid; /* login uid (identity) */
int major; /* syscall number */
unsigned long argv[4]; /* syscall arguments */
int return_valid; /* return code is valid */
long return_code;/* syscall return code */
int auditable; /* 1 if record should be written */
int name_count;
struct audit_names names[AUDIT_NAMES];
struct dentry * pwd;
struct vfsmount * pwdmnt;
struct audit_context *previous; /* For nested syscalls */
struct audit_aux_data *aux;
/* Save things to print about task_struct */
pid_t pid, ppid;
uid_t uid, euid, suid, fsuid;
gid_t gid, egid, sgid, fsgid;
unsigned long personality;
int arch;
#if AUDIT_DEBUG
int put_count;
int ino_count;
#endif
};
/* Compare a task_struct with an audit_rule. Return 1 on match, 0
* otherwise. */
static int audit_filter_rules(struct task_struct *tsk,
struct audit_krule *rule,
struct audit_context *ctx,
enum audit_state *state)
{
int i, j, need_sid = 1;
u32 sid;
for (i = 0; i < rule->field_count; i++) {
struct audit_field *f = &rule->fields[i];
int result = 0;
switch (f->type) {
case AUDIT_PID:
result = audit_comparator(tsk->pid, f->op, f->val);
break;
case AUDIT_UID:
result = audit_comparator(tsk->uid, f->op, f->val);
break;
case AUDIT_EUID:
result = audit_comparator(tsk->euid, f->op, f->val);
break;
case AUDIT_SUID:
result = audit_comparator(tsk->suid, f->op, f->val);
break;
case AUDIT_FSUID:
result = audit_comparator(tsk->fsuid, f->op, f->val);
break;
case AUDIT_GID:
result = audit_comparator(tsk->gid, f->op, f->val);
break;
case AUDIT_EGID:
result = audit_comparator(tsk->egid, f->op, f->val);
break;
case AUDIT_SGID:
result = audit_comparator(tsk->sgid, f->op, f->val);
break;
case AUDIT_FSGID:
result = audit_comparator(tsk->fsgid, f->op, f->val);
break;
case AUDIT_PERS:
result = audit_comparator(tsk->personality, f->op, f->val);
break;
case AUDIT_ARCH:
if (ctx)
result = audit_comparator(ctx->arch, f->op, f->val);
break;
case AUDIT_EXIT:
if (ctx && ctx->return_valid)
result = audit_comparator(ctx->return_code, f->op, f->val);
break;
case AUDIT_SUCCESS:
if (ctx && ctx->return_valid) {
if (f->val)
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
else
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
}
break;
case AUDIT_DEVMAJOR:
if (ctx) {
for (j = 0; j < ctx->name_count; j++) {
if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
++result;
break;
}
}
}
break;
case AUDIT_DEVMINOR:
if (ctx) {
for (j = 0; j < ctx->name_count; j++) {
if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
++result;
break;
}
}
}
break;
case AUDIT_INODE:
if (ctx) {
for (j = 0; j < ctx->name_count; j++) {
if (audit_comparator(ctx->names[j].ino, f->op, f->val) ||
audit_comparator(ctx->names[j].pino, f->op, f->val)) {
++result;
break;
}
}
}
break;
case AUDIT_LOGINUID:
result = 0;
if (ctx)
result = audit_comparator(ctx->loginuid, f->op, f->val);
break;
case AUDIT_SE_USER:
case AUDIT_SE_ROLE:
case AUDIT_SE_TYPE:
case AUDIT_SE_SEN:
case AUDIT_SE_CLR:
/* NOTE: this may return negative values indicating
a temporary error. We simply treat this as a
match for now to avoid losing information that
may be wanted. An error message will also be
logged upon error */
if (f->se_rule) {
if (need_sid) {
selinux_task_ctxid(tsk, &sid);
need_sid = 0;
}
result = selinux_audit_rule_match(sid, f->type,
f->op,
f->se_rule,
ctx);
}
break;
case AUDIT_ARG0:
case AUDIT_ARG1:
case AUDIT_ARG2:
case AUDIT_ARG3:
if (ctx)
result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
break;
}
if (!result)
return 0;
}
switch (rule->action) {
case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
case AUDIT_POSSIBLE: *state = AUDIT_BUILD_CONTEXT; break;
case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
}
return 1;
}
/* At process creation time, we can determine if system-call auditing is
* completely disabled for this task. Since we only have the task
* structure at this point, we can only check uid and gid.
*/
static enum audit_state audit_filter_task(struct task_struct *tsk)
{
struct audit_entry *e;
enum audit_state state;
rcu_read_lock();
list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
rcu_read_unlock();
return state;
}
}
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;
}
/* At syscall entry and exit time, this filter is called if the
* audit_state is not low enough that auditing cannot take place, but is
* also not high enough that we already know we have to write an audit
* record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
*/
static enum audit_state audit_filter_syscall(struct task_struct *tsk,
struct audit_context *ctx,
struct list_head *list)
{
struct audit_entry *e;
enum audit_state state;
if (audit_pid && tsk->tgid == audit_pid)
return AUDIT_DISABLED;
rcu_read_lock();
if (!list_empty(list)) {
int word = AUDIT_WORD(ctx->major);
int bit = AUDIT_BIT(ctx->major);
list_for_each_entry_rcu(e, list, list) {
if ((e->rule.mask[word] & bit) == bit
&& audit_filter_rules(tsk, &e->rule, ctx, &state)) {
rcu_read_unlock();
return state;
}
}
}
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;
}
static inline struct audit_context *audit_get_context(struct task_struct *tsk,
int return_valid,
int return_code)
{
struct audit_context *context = tsk->audit_context;
if (likely(!context))
return NULL;
context->return_valid = return_valid;
context->return_code = return_code;
if (context->in_syscall && !context->auditable) {
enum audit_state state;
state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
if (state == AUDIT_RECORD_CONTEXT)
context->auditable = 1;
}
context->pid = tsk->pid;
context->ppid = sys_getppid(); /* sic. tsk == current in all cases */
context->uid = tsk->uid;
context->gid = tsk->gid;
context->euid = tsk->euid;
context->suid = tsk->suid;
context->fsuid = tsk->fsuid;
context->egid = tsk->egid;
context->sgid = tsk->sgid;
context->fsgid = tsk->fsgid;
context->personality = tsk->personality;
tsk->audit_context = NULL;
return context;
}
static inline void audit_free_names(struct audit_context *context)
{
int i;
#if AUDIT_DEBUG == 2
if (context->auditable
||context->put_count + context->ino_count != context->name_count) {
printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
" name_count=%d put_count=%d"
" ino_count=%d [NOT freeing]\n",
__FILE__, __LINE__,
context->serial, context->major, context->in_syscall,
context->name_count, context->put_count,
context->ino_count);
for (i = 0; i < context->name_count; i++) {
printk(KERN_ERR "names[%d] = %p = %s\n", i,
context->names[i].name,
context->names[i].name ?: "(null)");
}
dump_stack();
return;
}
#endif
#if AUDIT_DEBUG
context->put_count = 0;
context->ino_count = 0;
#endif
for (i = 0; i < context->name_count; i++) {
if (context->names[i].name)
__putname(context->names[i].name);
}
context->name_count = 0;
if (context->pwd)
dput(context->pwd);
if (context->pwdmnt)
mntput(context->pwdmnt);
context->pwd = NULL;
context->pwdmnt = NULL;
}
static inline void audit_free_aux(struct audit_context *context)
{
struct audit_aux_data *aux;
while ((aux = context->aux)) {
if (aux->type == AUDIT_AVC_PATH) {
struct audit_aux_data_path *axi = (void *)aux;
dput(axi->dentry);
mntput(axi->mnt);
}
context->aux = aux->next;
kfree(aux);
}
}
static inline void audit_zero_context(struct audit_context *context,
enum audit_state state)
{
uid_t loginuid = context->loginuid;
memset(context, 0, sizeof(*context));
context->state = state;
context->loginuid = loginuid;
}
static inline struct audit_context *audit_alloc_context(enum audit_state state)
{
struct audit_context *context;
if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
return NULL;
audit_zero_context(context, state);
return context;
}
/**
* audit_alloc - allocate an audit context block for a task
* @tsk: task
*
* Filter on the task information and allocate a per-task audit context
* if necessary. Doing so turns on system call auditing for the
* specified task. This is called from copy_process, so no lock is
* needed.
*/
int audit_alloc(struct task_struct *tsk)
{
struct audit_context *context;
enum audit_state state;
if (likely(!audit_enabled))
return 0; /* Return if not auditing. */
state = audit_filter_task(tsk);
if (likely(state == AUDIT_DISABLED))
return 0;
if (!(context = audit_alloc_context(state))) {
audit_log_lost("out of memory in audit_alloc");
return -ENOMEM;
}
/* Preserve login uid */
context->loginuid = -1;
if (current->audit_context)
context->loginuid = current->audit_context->loginuid;
tsk->audit_context = context;
set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
return 0;
}
static inline void audit_free_context(struct audit_context *context)
{
struct audit_context *previous;
int count = 0;
do {
previous = context->previous;
if (previous || (count && count < 10)) {
++count;
printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
" freeing multiple contexts (%d)\n",
context->serial, context->major,
context->name_count, count);
}
audit_free_names(context);
audit_free_aux(context);
kfree(context);
context = previous;
} while (context);
if (count >= 10)
printk(KERN_ERR "audit: freed %d contexts\n", count);
}
static void audit_log_task_context(struct audit_buffer *ab)
{
char *ctx = NULL;
ssize_t len = 0;
len = security_getprocattr(current, "current", NULL, 0);
if (len < 0) {
if (len != -EINVAL)
goto error_path;
return;
}
ctx = kmalloc(len, GFP_KERNEL);
if (!ctx)
goto error_path;
len = security_getprocattr(current, "current", ctx, len);
if (len < 0 )
goto error_path;
audit_log_format(ab, " subj=%s", ctx);
return;
error_path:
if (ctx)
kfree(ctx);
audit_panic("error in audit_log_task_context");
return;
}
static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
{
char name[sizeof(tsk->comm)];
struct mm_struct *mm = tsk->mm;
struct vm_area_struct *vma;
/* tsk == current */
get_task_comm(name, tsk);
audit_log_format(ab, " comm=");
audit_log_untrustedstring(ab, name);
if (mm) {
down_read(&mm->mmap_sem);
vma = mm->mmap;
while (vma) {
if ((vma->vm_flags & VM_EXECUTABLE) &&
vma->vm_file) {
audit_log_d_path(ab, "exe=",
vma->vm_file->f_dentry,
vma->vm_file->f_vfsmnt);
break;
}
vma = vma->vm_next;
}
up_read(&mm->mmap_sem);
}
audit_log_task_context(ab);
}
static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
{
int i, call_panic = 0;
struct audit_buffer *ab;
struct audit_aux_data *aux;
const char *tty;
/* tsk == current */
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
if (!ab)
return; /* audit_panic has been called */
audit_log_format(ab, "arch=%x syscall=%d",
context->arch, context->major);
if (context->personality != PER_LINUX)
audit_log_format(ab, " per=%lx", context->personality);
if (context->return_valid)
audit_log_format(ab, " success=%s exit=%ld",
(context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
context->return_code);
if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
tty = tsk->signal->tty->name;
else
tty = "(none)";
audit_log_format(ab,
" a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
" ppid=%d pid=%d auid=%u uid=%u gid=%u"
" euid=%u suid=%u fsuid=%u"
" egid=%u sgid=%u fsgid=%u tty=%s",
context->argv[0],
context->argv[1],
context->argv[2],
context->argv[3],
context->name_count,
context->ppid,
context->pid,
context->loginuid,
context->uid,
context->gid,
context->euid, context->suid, context->fsuid,
context->egid, context->sgid, context->fsgid, tty);
audit_log_task_info(ab, tsk);
audit_log_end(ab);
for (aux = context->aux; aux; aux = aux->next) {
ab = audit_log_start(context, GFP_KERNEL, aux->type);
if (!ab)
continue; /* audit_panic has been called */
switch (aux->type) {
case AUDIT_IPC: {
struct audit_aux_data_ipcctl *axi = (void *)aux;
audit_log_format(ab,
" qbytes=%lx iuid=%u igid=%u mode=%x",
axi->qbytes, axi->uid, axi->gid, axi->mode);
if (axi->osid != 0) {
char *ctx = NULL;
u32 len;
if (selinux_ctxid_to_string(
axi->osid, &ctx, &len)) {
audit_log_format(ab, " osid=%u",
axi->osid);
call_panic = 1;
} else
audit_log_format(ab, " obj=%s", ctx);
kfree(ctx);
}
break; }
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-03 01:07:33 +04:00
case AUDIT_IPC_SET_PERM: {
struct audit_aux_data_ipcctl *axi = (void *)aux;
audit_log_format(ab,
" new qbytes=%lx new iuid=%u new igid=%u new mode=%x",
axi->qbytes, axi->uid, axi->gid, axi->mode);
if (axi->osid != 0) {
char *ctx = NULL;
u32 len;
if (selinux_ctxid_to_string(
axi->osid, &ctx, &len)) {
audit_log_format(ab, " osid=%u",
axi->osid);
call_panic = 1;
} else
audit_log_format(ab, " obj=%s", ctx);
kfree(ctx);
}
break; }
case AUDIT_EXECVE: {
struct audit_aux_data_execve *axi = (void *)aux;
int i;
const char *p;
for (i = 0, p = axi->mem; i < axi->argc; i++) {
audit_log_format(ab, "a%d=", i);
p = audit_log_untrustedstring(ab, p);
audit_log_format(ab, "\n");
}
break; }
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-03 01:07:33 +04:00
case AUDIT_SOCKETCALL: {
int i;
struct audit_aux_data_socketcall *axs = (void *)aux;
audit_log_format(ab, "nargs=%d", axs->nargs);
for (i=0; i<axs->nargs; i++)
audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
break; }
case AUDIT_SOCKADDR: {
struct audit_aux_data_sockaddr *axs = (void *)aux;
audit_log_format(ab, "saddr=");
audit_log_hex(ab, axs->a, axs->len);
break; }
case AUDIT_AVC_PATH: {
struct audit_aux_data_path *axi = (void *)aux;
audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
break; }
}
audit_log_end(ab);
}
if (context->pwd && context->pwdmnt) {
ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
if (ab) {
audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
audit_log_end(ab);
}
}
for (i = 0; i < context->name_count; i++) {
unsigned long ino = context->names[i].ino;
unsigned long pino = context->names[i].pino;
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
if (!ab)
continue; /* audit_panic has been called */
audit_log_format(ab, "item=%d", i);
audit_log_format(ab, " name=");
if (context->names[i].name)
audit_log_untrustedstring(ab, context->names[i].name);
else
audit_log_format(ab, "(null)");
if (pino != (unsigned long)-1)
audit_log_format(ab, " parent=%lu", pino);
if (ino != (unsigned long)-1)
audit_log_format(ab, " inode=%lu", ino);
if ((pino != (unsigned long)-1) || (ino != (unsigned long)-1))
audit_log_format(ab, " dev=%02x:%02x mode=%#o"
" ouid=%u ogid=%u rdev=%02x:%02x",
MAJOR(context->names[i].dev),
MINOR(context->names[i].dev),
context->names[i].mode,
context->names[i].uid,
context->names[i].gid,
MAJOR(context->names[i].rdev),
MINOR(context->names[i].rdev));
if (context->names[i].osid != 0) {
char *ctx = NULL;
u32 len;
if (selinux_ctxid_to_string(
context->names[i].osid, &ctx, &len)) {
audit_log_format(ab, " osid=%u",
context->names[i].osid);
call_panic = 2;
} else
audit_log_format(ab, " obj=%s", ctx);
kfree(ctx);
}
audit_log_end(ab);
}
if (call_panic)
audit_panic("error converting sid to string");
}
/**
* audit_free - free a per-task audit context
* @tsk: task whose audit context block to free
*
* Called from copy_process and do_exit
*/
void audit_free(struct task_struct *tsk)
{
struct audit_context *context;
context = audit_get_context(tsk, 0, 0);
if (likely(!context))
return;
/* Check for system calls that do not go through the exit
* function (e.g., exit_group), then free context block.
* We use GFP_ATOMIC here because we might be doing this
* in the context of the idle thread */
/* that can happen only if we are called from do_exit() */
if (context->in_syscall && context->auditable)
audit_log_exit(context, tsk);
audit_free_context(context);
}
/**
* audit_syscall_entry - fill in an audit record at syscall entry
* @tsk: task being audited
* @arch: architecture type
* @major: major syscall type (function)
* @a1: additional syscall register 1
* @a2: additional syscall register 2
* @a3: additional syscall register 3
* @a4: additional syscall register 4
*
* Fill in audit context at syscall entry. This only happens if the
* audit context was created when the task was created and the state or
* filters demand the audit context be built. If the state from the
* per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
* then the record will be written at syscall exit time (otherwise, it
* will only be written if another part of the kernel requests that it
* be written).
*/
void audit_syscall_entry(int arch, int major,
unsigned long a1, unsigned long a2,
unsigned long a3, unsigned long a4)
{
struct task_struct *tsk = current;
struct audit_context *context = tsk->audit_context;
enum audit_state state;
BUG_ON(!context);
/*
* This happens only on certain architectures that make system
* calls in kernel_thread via the entry.S interface, instead of
* with direct calls. (If you are porting to a new
* architecture, hitting this condition can indicate that you
* got the _exit/_leave calls backward in entry.S.)
*
* i386 no
* x86_64 no
* ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
*
* This also happens with vm86 emulation in a non-nested manner
* (entries without exits), so this case must be caught.
*/
if (context->in_syscall) {
struct audit_context *newctx;
#if AUDIT_DEBUG
printk(KERN_ERR
"audit(:%d) pid=%d in syscall=%d;"
" entering syscall=%d\n",
context->serial, tsk->pid, context->major, major);
#endif
newctx = audit_alloc_context(context->state);
if (newctx) {
newctx->previous = context;
context = newctx;
tsk->audit_context = newctx;
} else {
/* If we can't alloc a new context, the best we
* can do is to leak memory (any pending putname
* will be lost). The only other alternative is
* to abandon auditing. */
audit_zero_context(context, context->state);
}
}
BUG_ON(context->in_syscall || context->name_count);
if (!audit_enabled)
return;
context->arch = arch;
context->major = major;
context->argv[0] = a1;
context->argv[1] = a2;
context->argv[2] = a3;
context->argv[3] = a4;
state = context->state;
if (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT)
state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
if (likely(state == AUDIT_DISABLED))
return;
context->serial = 0;
context->ctime = CURRENT_TIME;
context->in_syscall = 1;
context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
}
/**
* audit_syscall_exit - deallocate audit context after a system call
* @tsk: task being audited
* @valid: success/failure flag
* @return_code: syscall return value
*
* Tear down after system call. If the audit context has been marked as
* auditable (either because of the AUDIT_RECORD_CONTEXT state from
* filtering, or because some other part of the kernel write an audit
* message), then write out the syscall information. In call cases,
* free the names stored from getname().
*/
void audit_syscall_exit(int valid, long return_code)
{
struct task_struct *tsk = current;
struct audit_context *context;
context = audit_get_context(tsk, valid, return_code);
if (likely(!context))
return;
if (context->in_syscall && context->auditable)
audit_log_exit(context, tsk);
context->in_syscall = 0;
context->auditable = 0;
if (context->previous) {
struct audit_context *new_context = context->previous;
context->previous = NULL;
audit_free_context(context);
tsk->audit_context = new_context;
} else {
audit_free_names(context);
audit_free_aux(context);
tsk->audit_context = context;
}
}
/**
* audit_getname - add a name to the list
* @name: name to add
*
* Add a name to the list of audit names for this context.
* Called from fs/namei.c:getname().
*/
void audit_getname(const char *name)
{
struct audit_context *context = current->audit_context;
if (!context || IS_ERR(name) || !name)
return;
if (!context->in_syscall) {
#if AUDIT_DEBUG == 2
printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
__FILE__, __LINE__, context->serial, name);
dump_stack();
#endif
return;
}
BUG_ON(context->name_count >= AUDIT_NAMES);
context->names[context->name_count].name = name;
context->names[context->name_count].ino = (unsigned long)-1;
++context->name_count;
if (!context->pwd) {
read_lock(&current->fs->lock);
context->pwd = dget(current->fs->pwd);
context->pwdmnt = mntget(current->fs->pwdmnt);
read_unlock(&current->fs->lock);
}
}
/* audit_putname - intercept a putname request
* @name: name to intercept and delay for putname
*
* If we have stored the name from getname in the audit context,
* then we delay the putname until syscall exit.
* Called from include/linux/fs.h:putname().
*/
void audit_putname(const char *name)
{
struct audit_context *context = current->audit_context;
BUG_ON(!context);
if (!context->in_syscall) {
#if AUDIT_DEBUG == 2
printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
__FILE__, __LINE__, context->serial, name);
if (context->name_count) {
int i;
for (i = 0; i < context->name_count; i++)
printk(KERN_ERR "name[%d] = %p = %s\n", i,
context->names[i].name,
context->names[i].name ?: "(null)");
}
#endif
__putname(name);
}
#if AUDIT_DEBUG
else {
++context->put_count;
if (context->put_count > context->name_count) {
printk(KERN_ERR "%s:%d(:%d): major=%d"
" in_syscall=%d putname(%p) name_count=%d"
" put_count=%d\n",
__FILE__, __LINE__,
context->serial, context->major,
context->in_syscall, name, context->name_count,
context->put_count);
dump_stack();
}
}
#endif
}
static void audit_inode_context(int idx, const struct inode *inode)
{
struct audit_context *context = current->audit_context;
selinux_get_inode_sid(inode, &context->names[idx].osid);
}
/**
* audit_inode - store the inode and device from a lookup
* @name: name being audited
* @inode: inode being audited
* @flags: lookup flags (as used in path_lookup())
*
* Called from fs/namei.c:path_lookup().
*/
void __audit_inode(const char *name, const struct inode *inode, unsigned flags)
{
int idx;
struct audit_context *context = current->audit_context;
if (!context->in_syscall)
return;
if (context->name_count
&& context->names[context->name_count-1].name
&& context->names[context->name_count-1].name == name)
idx = context->name_count - 1;
else if (context->name_count > 1
&& context->names[context->name_count-2].name
&& context->names[context->name_count-2].name == name)
idx = context->name_count - 2;
else {
/* FIXME: how much do we care about inodes that have no
* associated name? */
if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
return;
idx = context->name_count++;
context->names[idx].name = NULL;
#if AUDIT_DEBUG
++context->ino_count;
#endif
}
context->names[idx].dev = inode->i_sb->s_dev;
context->names[idx].mode = inode->i_mode;
context->names[idx].uid = inode->i_uid;
context->names[idx].gid = inode->i_gid;
context->names[idx].rdev = inode->i_rdev;
audit_inode_context(idx, inode);
if ((flags & LOOKUP_PARENT) && (strcmp(name, "/") != 0) &&
(strcmp(name, ".") != 0)) {
context->names[idx].ino = (unsigned long)-1;
context->names[idx].pino = inode->i_ino;
} else {
context->names[idx].ino = inode->i_ino;
context->names[idx].pino = (unsigned long)-1;
}
}
/**
* audit_inode_child - collect inode info for created/removed objects
* @dname: inode's dentry name
* @inode: inode being audited
* @pino: inode number of dentry parent
*
* For syscalls that create or remove filesystem objects, audit_inode
* can only collect information for the filesystem object's parent.
* This call updates the audit context with the child's information.
* Syscalls that create a new filesystem object must be hooked after
* the object is created. Syscalls that remove a filesystem object
* must be hooked prior, in order to capture the target inode during
* unsuccessful attempts.
*/
void __audit_inode_child(const char *dname, const struct inode *inode,
unsigned long pino)
{
int idx;
struct audit_context *context = current->audit_context;
if (!context->in_syscall)
return;
/* determine matching parent */
if (dname)
for (idx = 0; idx < context->name_count; idx++)
if (context->names[idx].pino == pino) {
const char *n;
const char *name = context->names[idx].name;
int dlen = strlen(dname);
int nlen = name ? strlen(name) : 0;
if (nlen < dlen)
continue;
/* disregard trailing slashes */
n = name + nlen - 1;
while ((*n == '/') && (n > name))
n--;
/* find last path component */
n = n - dlen + 1;
if (n < name)
continue;
else if (n > name) {
if (*--n != '/')
continue;
else
n++;
}
if (strncmp(n, dname, dlen) == 0)
goto update_context;
}
/* catch-all in case match not found */
idx = context->name_count++;
context->names[idx].name = NULL;
context->names[idx].pino = pino;
#if AUDIT_DEBUG
context->ino_count++;
#endif
update_context:
if (inode) {
context->names[idx].ino = inode->i_ino;
context->names[idx].dev = inode->i_sb->s_dev;
context->names[idx].mode = inode->i_mode;
context->names[idx].uid = inode->i_uid;
context->names[idx].gid = inode->i_gid;
context->names[idx].rdev = inode->i_rdev;
audit_inode_context(idx, inode);
}
}
/**
* auditsc_get_stamp - get local copies of audit_context values
* @ctx: audit_context for the task
* @t: timespec to store time recorded in the audit_context
* @serial: serial value that is recorded in the audit_context
*
* Also sets the context as auditable.
*/
void auditsc_get_stamp(struct audit_context *ctx,
struct timespec *t, unsigned int *serial)
{
if (!ctx->serial)
ctx->serial = audit_serial();
t->tv_sec = ctx->ctime.tv_sec;
t->tv_nsec = ctx->ctime.tv_nsec;
*serial = ctx->serial;
ctx->auditable = 1;
}
/**
* audit_set_loginuid - set a task's audit_context loginuid
* @task: task whose audit context is being modified
* @loginuid: loginuid value
*
* Returns 0.
*
* Called (set) from fs/proc/base.c::proc_loginuid_write().
*/
int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
{
if (task->audit_context) {
struct audit_buffer *ab;
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
if (ab) {
audit_log_format(ab, "login pid=%d uid=%u "
"old auid=%u new auid=%u",
task->pid, task->uid,
task->audit_context->loginuid, loginuid);
audit_log_end(ab);
}
task->audit_context->loginuid = loginuid;
}
return 0;
}
/**
* audit_get_loginuid - get the loginuid for an audit_context
* @ctx: the audit_context
*
* Returns the context's loginuid or -1 if @ctx is NULL.
*/
uid_t audit_get_loginuid(struct audit_context *ctx)
{
return ctx ? ctx->loginuid : -1;
}
/**
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-03 01:07:33 +04:00
* audit_ipc_obj - record audit data for ipc object
* @ipcp: ipc permissions
*
* Returns 0 for success or NULL context or < 0 on error.
*/
int audit_ipc_obj(struct kern_ipc_perm *ipcp)
{
struct audit_aux_data_ipcctl *ax;
struct audit_context *context = current->audit_context;
if (likely(!context))
return 0;
ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
if (!ax)
return -ENOMEM;
ax->uid = ipcp->uid;
ax->gid = ipcp->gid;
ax->mode = ipcp->mode;
selinux_get_ipc_sid(ipcp, &ax->osid);
ax->d.type = AUDIT_IPC;
ax->d.next = context->aux;
context->aux = (void *)ax;
return 0;
}
/**
* audit_ipc_set_perm - record audit data for new ipc permissions
* @qbytes: msgq bytes
* @uid: msgq user id
* @gid: msgq group id
* @mode: msgq mode (permissions)
*
* Returns 0 for success or NULL context or < 0 on error.
*/
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-03 01:07:33 +04:00
int audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode, struct kern_ipc_perm *ipcp)
{
struct audit_aux_data_ipcctl *ax;
struct audit_context *context = current->audit_context;
if (likely(!context))
return 0;
ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
if (!ax)
return -ENOMEM;
ax->qbytes = qbytes;
ax->uid = uid;
ax->gid = gid;
ax->mode = mode;
selinux_get_ipc_sid(ipcp, &ax->osid);
[PATCH] Rework of IPC auditing 1) The audit_ipc_perms() function has been split into two different functions: - audit_ipc_obj() - audit_ipc_set_perm() There's a key shift here... The audit_ipc_obj() collects the uid, gid, mode, and SElinux context label of the current ipc object. This audit_ipc_obj() hook is now found in several places. Most notably, it is hooked in ipcperms(), which is called in various places around the ipc code permforming a MAC check. Additionally there are several places where *checkid() is used to validate that an operation is being performed on a valid object while not necessarily having a nearby ipcperms() call. In these locations, audit_ipc_obj() is called to ensure that the information is captured by the audit system. The audit_set_new_perm() function is called any time the permissions on the ipc object changes. In this case, the NEW permissions are recorded (and note that an audit_ipc_obj() call exists just a few lines before each instance). 2) Support for an AUDIT_IPC_SET_PERM audit message type. This allows for separate auxiliary audit records for normal operations on an IPC object and permissions changes. Note that the same struct audit_aux_data_ipcctl is used and populated, however there are separate audit_log_format statements based on the type of the message. Finally, the AUDIT_IPC block of code in audit_free_aux() was extended to handle aux messages of this new type. No more mem leaks I hope ;-) Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-04-03 01:07:33 +04:00
ax->d.type = AUDIT_IPC_SET_PERM;
ax->d.next = context->aux;
context->aux = (void *)ax;
return 0;
}
int audit_bprm(struct linux_binprm *bprm)
{
struct audit_aux_data_execve *ax;
struct audit_context *context = current->audit_context;
unsigned long p, next;
void *to;
if (likely(!audit_enabled || !context))
return 0;
ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p,
GFP_KERNEL);
if (!ax)
return -ENOMEM;
ax->argc = bprm->argc;
ax->envc = bprm->envc;
for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) {
struct page *page = bprm->page[p / PAGE_SIZE];
void *kaddr = kmap(page);
next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1);
memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p);
to += next - p;
kunmap(page);
}
ax->d.type = AUDIT_EXECVE;
ax->d.next = context->aux;
context->aux = (void *)ax;
return 0;
}
/**
* audit_socketcall - record audit data for sys_socketcall
* @nargs: number of args
* @args: args array
*
* Returns 0 for success or NULL context or < 0 on error.
*/
int audit_socketcall(int nargs, unsigned long *args)
{
struct audit_aux_data_socketcall *ax;
struct audit_context *context = current->audit_context;
if (likely(!context))
return 0;
ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
if (!ax)
return -ENOMEM;
ax->nargs = nargs;
memcpy(ax->args, args, nargs * sizeof(unsigned long));
ax->d.type = AUDIT_SOCKETCALL;
ax->d.next = context->aux;
context->aux = (void *)ax;
return 0;
}
/**
* audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
* @len: data length in user space
* @a: data address in kernel space
*
* Returns 0 for success or NULL context or < 0 on error.
*/
int audit_sockaddr(int len, void *a)
{
struct audit_aux_data_sockaddr *ax;
struct audit_context *context = current->audit_context;
if (likely(!context))
return 0;
ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
if (!ax)
return -ENOMEM;
ax->len = len;
memcpy(ax->a, a, len);
ax->d.type = AUDIT_SOCKADDR;
ax->d.next = context->aux;
context->aux = (void *)ax;
return 0;
}
/**
* audit_avc_path - record the granting or denial of permissions
* @dentry: dentry to record
* @mnt: mnt to record
*
* Returns 0 for success or NULL context or < 0 on error.
*
* Called from security/selinux/avc.c::avc_audit()
*/
int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
{
struct audit_aux_data_path *ax;
struct audit_context *context = current->audit_context;
if (likely(!context))
return 0;
ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
if (!ax)
return -ENOMEM;
ax->dentry = dget(dentry);
ax->mnt = mntget(mnt);
ax->d.type = AUDIT_AVC_PATH;
ax->d.next = context->aux;
context->aux = (void *)ax;
return 0;
}
/**
* audit_signal_info - record signal info for shutting down audit subsystem
* @sig: signal value
* @t: task being signaled
*
* If the audit subsystem is being terminated, record the task (pid)
* and uid that is doing that.
*/
void __audit_signal_info(int sig, struct task_struct *t)
{
extern pid_t audit_sig_pid;
extern uid_t audit_sig_uid;
extern u32 audit_sig_sid;
if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
struct task_struct *tsk = current;
struct audit_context *ctx = tsk->audit_context;
audit_sig_pid = tsk->pid;
if (ctx)
audit_sig_uid = ctx->loginuid;
else
audit_sig_uid = tsk->uid;
selinux_get_task_sid(tsk, &audit_sig_sid);
}
}