rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
/*
* Read - Copy Update mechanism for mutual exclusion ( tree - based version )
* Internal non - public definitions that provide either classic
* or preemptable semantics .
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 59 Temple Place - Suite 330 , Boston , MA 02111 - 1307 , USA .
*
* Copyright Red Hat , 2009
* Copyright IBM Corporation , 2009
*
* Author : Ingo Molnar < mingo @ elte . hu >
* Paul E . McKenney < paulmck @ linux . vnet . ibm . com >
*/
# ifdef CONFIG_TREE_PREEMPT_RCU
struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER ( rcu_preempt_state ) ;
DEFINE_PER_CPU ( struct rcu_data , rcu_preempt_data ) ;
/*
* Tell them what RCU they are running .
*/
static inline void rcu_bootup_announce ( void )
{
printk ( KERN_INFO
" Experimental preemptable hierarchical RCU implementation. \n " ) ;
}
/*
* Return the number of RCU - preempt batches processed thus far
* for debug and statistics .
*/
long rcu_batches_completed_preempt ( void )
{
return rcu_preempt_state . completed ;
}
EXPORT_SYMBOL_GPL ( rcu_batches_completed_preempt ) ;
/*
* Return the number of RCU batches processed thus far for debug & stats .
*/
long rcu_batches_completed ( void )
{
return rcu_batches_completed_preempt ( ) ;
}
EXPORT_SYMBOL_GPL ( rcu_batches_completed ) ;
/*
* Record a preemptable - RCU quiescent state for the specified CPU . Note
* that this just means that the task currently running on the CPU is
* not in a quiescent state . There might be any number of tasks blocked
* while in an RCU read - side critical section .
*/
2009-09-13 09:15:10 -07:00
static void rcu_preempt_qs ( int cpu )
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
{
struct rcu_data * rdp = & per_cpu ( rcu_preempt_data , cpu ) ;
rdp - > passed_quiesc_completed = rdp - > completed ;
2009-09-13 09:15:10 -07:00
barrier ( ) ;
rdp - > passed_quiesc = 1 ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
}
/*
2009-09-13 09:15:10 -07:00
* We have entered the scheduler , and the current task might soon be
* context - switched away from . If this task is in an RCU read - side
* critical section , we will no longer be able to rely on the CPU to
* record that fact , so we enqueue the task on the appropriate entry
* of the blocked_tasks [ ] array . The task will dequeue itself when
* it exits the outermost enclosing RCU read - side critical section .
* Therefore , the current grace period cannot be permitted to complete
* until the blocked_tasks [ ] entry indexed by the low - order bit of
* rnp - > gpnum empties .
*
* Caller must disable preemption .
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
*/
2009-09-13 09:15:10 -07:00
static void rcu_preempt_note_context_switch ( int cpu )
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
{
struct task_struct * t = current ;
2009-09-13 09:15:10 -07:00
unsigned long flags ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
int phase ;
struct rcu_data * rdp ;
struct rcu_node * rnp ;
if ( t - > rcu_read_lock_nesting & &
( t - > rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED ) = = 0 ) {
/* Possibly blocking in an RCU read-side critical section. */
rdp = rcu_preempt_state . rda [ cpu ] ;
rnp = rdp - > mynode ;
2009-09-13 09:15:10 -07:00
spin_lock_irqsave ( & rnp - > lock , flags ) ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
t - > rcu_read_unlock_special | = RCU_READ_UNLOCK_BLOCKED ;
2009-08-27 15:00:12 -07:00
t - > rcu_blocked_node = rnp ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
/*
* If this CPU has already checked in , then this task
* will hold up the next grace period rather than the
* current grace period . Queue the task accordingly .
* If the task is queued for the current grace period
* ( i . e . , this CPU has not yet passed through a quiescent
* state for the current grace period ) , then as long
* as that task remains queued , the current grace period
* cannot end .
2009-09-13 09:15:09 -07:00
*
* But first , note that the current CPU must still be
* on line !
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
*/
2009-09-13 09:15:09 -07:00
WARN_ON_ONCE ( ( rdp - > grpmask & rnp - > qsmaskinit ) = = 0 ) ;
2009-09-18 09:50:18 -07:00
WARN_ON_ONCE ( ! list_empty ( & t - > rcu_node_entry ) ) ;
phase = ( rnp - > gpnum + ! ( rnp - > qsmask & rdp - > grpmask ) ) & 0x1 ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
list_add ( & t - > rcu_node_entry , & rnp - > blocked_tasks [ phase ] ) ;
2009-09-13 09:15:10 -07:00
spin_unlock_irqrestore ( & rnp - > lock , flags ) ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
}
/*
* Either we were not in an RCU read - side critical section to
* begin with , or we have now recorded that critical section
* globally . Either way , we can now note a quiescent state
* for this CPU . Again , if we were in an RCU read - side critical
* section , and if that critical section was blocking the current
* grace period , then the fact that the task has been enqueued
* means that we continue to block the current grace period .
*/
2009-09-13 09:15:10 -07:00
rcu_preempt_qs ( cpu ) ;
2009-09-18 09:50:18 -07:00
local_irq_save ( flags ) ;
2009-09-13 09:15:10 -07:00
t - > rcu_read_unlock_special & = ~ RCU_READ_UNLOCK_NEED_QS ;
2009-09-18 09:50:18 -07:00
local_irq_restore ( flags ) ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
}
/*
* Tree - preemptable RCU implementation for rcu_read_lock ( ) .
* Just increment - > rcu_read_lock_nesting , shared state will be updated
* if we block .
*/
void __rcu_read_lock ( void )
{
ACCESS_ONCE ( current - > rcu_read_lock_nesting ) + + ;
barrier ( ) ; /* needed if we ever invoke rcu_read_lock in rcutree.c */
}
EXPORT_SYMBOL_GPL ( __rcu_read_lock ) ;
static void rcu_read_unlock_special ( struct task_struct * t )
{
int empty ;
unsigned long flags ;
unsigned long mask ;
struct rcu_node * rnp ;
int special ;
/* NMI handlers cannot block and cannot safely manipulate state. */
if ( in_nmi ( ) )
return ;
local_irq_save ( flags ) ;
/*
* If RCU core is waiting for this CPU to exit critical section ,
* let it know that we have done so .
*/
special = t - > rcu_read_unlock_special ;
if ( special & RCU_READ_UNLOCK_NEED_QS ) {
t - > rcu_read_unlock_special & = ~ RCU_READ_UNLOCK_NEED_QS ;
2009-09-13 09:15:10 -07:00
rcu_preempt_qs ( smp_processor_id ( ) ) ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
}
/* Hardware IRQ handlers cannot block. */
if ( in_irq ( ) ) {
local_irq_restore ( flags ) ;
return ;
}
/* Clean up if blocked during RCU read-side critical section. */
if ( special & RCU_READ_UNLOCK_BLOCKED ) {
t - > rcu_read_unlock_special & = ~ RCU_READ_UNLOCK_BLOCKED ;
2009-08-27 14:58:16 -07:00
/*
* Remove this task from the list it blocked on . The
* task can migrate while we acquire the lock , but at
* most one time . So at most two passes through loop .
*/
for ( ; ; ) {
2009-08-27 15:00:12 -07:00
rnp = t - > rcu_blocked_node ;
2009-09-18 09:50:18 -07:00
spin_lock ( & rnp - > lock ) ; /* irqs already disabled. */
2009-08-27 15:00:12 -07:00
if ( rnp = = t - > rcu_blocked_node )
2009-08-27 14:58:16 -07:00
break ;
2009-09-18 09:50:18 -07:00
spin_unlock ( & rnp - > lock ) ; /* irqs remain disabled. */
2009-08-27 14:58:16 -07:00
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
empty = list_empty ( & rnp - > blocked_tasks [ rnp - > gpnum & 0x1 ] ) ;
list_del_init ( & t - > rcu_node_entry ) ;
2009-08-27 14:58:16 -07:00
t - > rcu_blocked_node = NULL ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
/*
* If this was the last task on the current list , and if
* we aren ' t waiting on any CPUs , report the quiescent state .
* Note that both cpu_quiet_msk_finish ( ) and cpu_quiet_msk ( )
* drop rnp - > lock and restore irq .
*/
if ( ! empty & & rnp - > qsmask = = 0 & &
list_empty ( & rnp - > blocked_tasks [ rnp - > gpnum & 0x1 ] ) ) {
2009-09-18 09:50:17 -07:00
struct rcu_node * rnp_p ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
if ( rnp - > parent = = NULL ) {
/* Only one rcu_node in the tree. */
cpu_quiet_msk_finish ( & rcu_preempt_state , flags ) ;
return ;
}
/* Report up the rest of the hierarchy. */
mask = rnp - > grpmask ;
spin_unlock_irqrestore ( & rnp - > lock , flags ) ;
2009-09-18 09:50:17 -07:00
rnp_p = rnp - > parent ;
spin_lock_irqsave ( & rnp_p - > lock , flags ) ;
WARN_ON_ONCE ( rnp - > qsmask ) ;
cpu_quiet_msk ( mask , & rcu_preempt_state , rnp_p , flags ) ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
return ;
}
spin_unlock ( & rnp - > lock ) ;
}
local_irq_restore ( flags ) ;
}
/*
* Tree - preemptable RCU implementation for rcu_read_unlock ( ) .
* Decrement - > rcu_read_lock_nesting . If the result is zero ( outermost
* rcu_read_unlock ( ) ) and - > rcu_read_unlock_special is non - zero , then
* invoke rcu_read_unlock_special ( ) to clean up after a context switch
* in an RCU read - side critical section and other special cases .
*/
void __rcu_read_unlock ( void )
{
struct task_struct * t = current ;
barrier ( ) ; /* needed if we ever invoke rcu_read_unlock in rcutree.c */
if ( - - ACCESS_ONCE ( t - > rcu_read_lock_nesting ) = = 0 & &
unlikely ( ACCESS_ONCE ( t - > rcu_read_unlock_special ) ) )
rcu_read_unlock_special ( t ) ;
}
EXPORT_SYMBOL_GPL ( __rcu_read_unlock ) ;
# ifdef CONFIG_RCU_CPU_STALL_DETECTOR
/*
* Scan the current list of tasks blocked within RCU read - side critical
* sections , printing out the tid of each .
*/
static void rcu_print_task_stall ( struct rcu_node * rnp )
{
unsigned long flags ;
struct list_head * lp ;
int phase = rnp - > gpnum & 0x1 ;
struct task_struct * t ;
if ( ! list_empty ( & rnp - > blocked_tasks [ phase ] ) ) {
spin_lock_irqsave ( & rnp - > lock , flags ) ;
phase = rnp - > gpnum & 0x1 ; /* re-read under lock. */
lp = & rnp - > blocked_tasks [ phase ] ;
list_for_each_entry ( t , lp , rcu_node_entry )
printk ( " P%d " , t - > pid ) ;
spin_unlock_irqrestore ( & rnp - > lock , flags ) ;
}
}
# endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
2009-09-13 09:15:09 -07:00
/*
* Check that the list of blocked tasks for the newly completed grace
* period is in fact empty . It is a serious bug to complete a grace
* period that still has RCU readers blocked ! This function must be
* invoked - before - updating this rnp ' s - > gpnum , and the rnp ' s - > lock
* must be held by the caller .
*/
static void rcu_preempt_check_blocked_tasks ( struct rcu_node * rnp )
{
WARN_ON_ONCE ( ! list_empty ( & rnp - > blocked_tasks [ rnp - > gpnum & 0x1 ] ) ) ;
2009-09-18 09:50:17 -07:00
WARN_ON_ONCE ( rnp - > qsmask ) ;
2009-09-13 09:15:09 -07:00
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
/*
* Check for preempted RCU readers for the specified rcu_node structure .
* If the caller needs a reliable answer , it must hold the rcu_node ' s
* > lock .
*/
static int rcu_preempted_readers ( struct rcu_node * rnp )
{
return ! list_empty ( & rnp - > blocked_tasks [ rnp - > gpnum & 0x1 ] ) ;
}
2009-08-24 09:42:01 -07:00
# ifdef CONFIG_HOTPLUG_CPU
2009-08-27 14:58:16 -07:00
/*
* Handle tasklist migration for case in which all CPUs covered by the
* specified rcu_node have gone offline . Move them up to the root
* rcu_node . The reason for not just moving them to the immediate
* parent is to remove the need for rcu_read_unlock_special ( ) to
* make more than two attempts to acquire the target rcu_node ' s lock .
*
* The caller must hold rnp - > lock with irqs disabled .
*/
static void rcu_preempt_offline_tasks ( struct rcu_state * rsp ,
2009-09-18 09:50:17 -07:00
struct rcu_node * rnp ,
struct rcu_data * rdp )
2009-08-27 14:58:16 -07:00
{
int i ;
struct list_head * lp ;
struct list_head * lp_root ;
struct rcu_node * rnp_root = rcu_get_root ( rsp ) ;
struct task_struct * tp ;
2009-08-27 15:00:12 -07:00
if ( rnp = = rnp_root ) {
WARN_ONCE ( 1 , " Last CPU thought to be offlined? " ) ;
2009-08-27 14:58:16 -07:00
return ; /* Shouldn't happen: at least one CPU online. */
2009-08-27 15:00:12 -07:00
}
2009-09-18 09:50:17 -07:00
WARN_ON_ONCE ( rnp ! = rdp - > mynode & &
( ! list_empty ( & rnp - > blocked_tasks [ 0 ] ) | |
! list_empty ( & rnp - > blocked_tasks [ 1 ] ) ) ) ;
2009-08-27 14:58:16 -07:00
/*
* Move tasks up to root rcu_node . Rely on the fact that the
* root rcu_node can be at most one ahead of the rest of the
* rcu_nodes in terms of gp_num value . This fact allows us to
* move the blocked_tasks [ ] array directly , element by element .
*/
for ( i = 0 ; i < 2 ; i + + ) {
lp = & rnp - > blocked_tasks [ i ] ;
lp_root = & rnp_root - > blocked_tasks [ i ] ;
while ( ! list_empty ( lp ) ) {
tp = list_entry ( lp - > next , typeof ( * tp ) , rcu_node_entry ) ;
spin_lock ( & rnp_root - > lock ) ; /* irqs already disabled */
list_del ( & tp - > rcu_node_entry ) ;
tp - > rcu_blocked_node = rnp_root ;
list_add ( & tp - > rcu_node_entry , lp_root ) ;
spin_unlock ( & rnp_root - > lock ) ; /* irqs remain disabled */
}
}
}
2009-08-24 09:42:01 -07:00
/*
* Do CPU - offline processing for preemptable RCU .
*/
static void rcu_preempt_offline_cpu ( int cpu )
{
__rcu_offline_cpu ( cpu , & rcu_preempt_state ) ;
}
# endif /* #ifdef CONFIG_HOTPLUG_CPU */
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
/*
* Check for a quiescent state from the current CPU . When a task blocks ,
* the task is recorded in the corresponding CPU ' s rcu_node structure ,
* which is checked elsewhere .
*
* Caller must disable hard irqs .
*/
static void rcu_preempt_check_callbacks ( int cpu )
{
struct task_struct * t = current ;
if ( t - > rcu_read_lock_nesting = = 0 ) {
2009-09-13 09:15:10 -07:00
t - > rcu_read_unlock_special & = ~ RCU_READ_UNLOCK_NEED_QS ;
rcu_preempt_qs ( cpu ) ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
return ;
}
2009-09-18 10:28:19 -07:00
if ( per_cpu ( rcu_preempt_data , cpu ) . qs_pending )
2009-09-13 09:15:10 -07:00
t - > rcu_read_unlock_special | = RCU_READ_UNLOCK_NEED_QS ;
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
}
/*
* Process callbacks for preemptable RCU .
*/
static void rcu_preempt_process_callbacks ( void )
{
__rcu_process_callbacks ( & rcu_preempt_state ,
& __get_cpu_var ( rcu_preempt_data ) ) ;
}
/*
* Queue a preemptable - RCU callback for invocation after a grace period .
*/
void call_rcu ( struct rcu_head * head , void ( * func ) ( struct rcu_head * rcu ) )
{
__call_rcu ( head , func , & rcu_preempt_state ) ;
}
EXPORT_SYMBOL_GPL ( call_rcu ) ;
/*
* Check to see if there is any immediate preemptable - RCU - related work
* to be done .
*/
static int rcu_preempt_pending ( int cpu )
{
return __rcu_pending ( & rcu_preempt_state ,
& per_cpu ( rcu_preempt_data , cpu ) ) ;
}
/*
* Does preemptable RCU need the CPU to stay out of dynticks mode ?
*/
static int rcu_preempt_needs_cpu ( int cpu )
{
return ! ! per_cpu ( rcu_preempt_data , cpu ) . nxtlist ;
}
/*
* Initialize preemptable RCU ' s per - CPU data .
*/
static void __cpuinit rcu_preempt_init_percpu_data ( int cpu )
{
rcu_init_percpu_data ( cpu , & rcu_preempt_state , 1 ) ;
}
/*
* Check for a task exiting while in a preemptable - RCU read - side
* critical section , clean up if so . No need to issue warnings ,
* as debug_check_no_locks_held ( ) already does this if lockdep
* is enabled .
*/
void exit_rcu ( void )
{
struct task_struct * t = current ;
if ( t - > rcu_read_lock_nesting = = 0 )
return ;
t - > rcu_read_lock_nesting = 1 ;
rcu_read_unlock ( ) ;
}
# else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
/*
* Tell them what RCU they are running .
*/
static inline void rcu_bootup_announce ( void )
{
printk ( KERN_INFO " Hierarchical RCU implementation. \n " ) ;
}
/*
* Return the number of RCU batches processed thus far for debug & stats .
*/
long rcu_batches_completed ( void )
{
return rcu_batches_completed_sched ( ) ;
}
EXPORT_SYMBOL_GPL ( rcu_batches_completed ) ;
/*
* Because preemptable RCU does not exist , we never have to check for
* CPUs being in quiescent states .
*/
2009-09-13 09:15:10 -07:00
static void rcu_preempt_note_context_switch ( int cpu )
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
{
}
# ifdef CONFIG_RCU_CPU_STALL_DETECTOR
/*
* Because preemptable RCU does not exist , we never have to check for
* tasks blocked within RCU read - side critical sections .
*/
static void rcu_print_task_stall ( struct rcu_node * rnp )
{
}
# endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
2009-09-13 09:15:09 -07:00
/*
* Because there is no preemptable RCU , there can be no readers blocked ,
2009-09-18 09:50:19 -07:00
* so there is no need to check for blocked tasks . So check only for
* bogus qsmask values .
2009-09-13 09:15:09 -07:00
*/
static void rcu_preempt_check_blocked_tasks ( struct rcu_node * rnp )
{
2009-09-18 09:50:19 -07:00
WARN_ON_ONCE ( rnp - > qsmask ) ;
2009-09-13 09:15:09 -07:00
}
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
/*
* Because preemptable RCU does not exist , there are never any preempted
* RCU readers .
*/
static int rcu_preempted_readers ( struct rcu_node * rnp )
{
return 0 ;
}
2009-08-24 09:42:01 -07:00
# ifdef CONFIG_HOTPLUG_CPU
2009-08-27 14:58:16 -07:00
/*
* Because preemptable RCU does not exist , it never needs to migrate
* tasks that were blocked within RCU read - side critical sections .
*/
static void rcu_preempt_offline_tasks ( struct rcu_state * rsp ,
2009-09-18 09:50:17 -07:00
struct rcu_node * rnp ,
struct rcu_data * rdp )
2009-08-27 14:58:16 -07:00
{
}
2009-08-24 09:42:01 -07:00
/*
* Because preemptable RCU does not exist , it never needs CPU - offline
* processing .
*/
static void rcu_preempt_offline_cpu ( int cpu )
{
}
# endif /* #ifdef CONFIG_HOTPLUG_CPU */
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 13:56:52 -07:00
/*
* Because preemptable RCU does not exist , it never has any callbacks
* to check .
*/
void rcu_preempt_check_callbacks ( int cpu )
{
}
/*
* Because preemptable RCU does not exist , it never has any callbacks
* to process .
*/
void rcu_preempt_process_callbacks ( void )
{
}
/*
* In classic RCU , call_rcu ( ) is just call_rcu_sched ( ) .
*/
void call_rcu ( struct rcu_head * head , void ( * func ) ( struct rcu_head * rcu ) )
{
call_rcu_sched ( head , func ) ;
}
EXPORT_SYMBOL_GPL ( call_rcu ) ;
/*
* Because preemptable RCU does not exist , it never has any work to do .
*/
static int rcu_preempt_pending ( int cpu )
{
return 0 ;
}
/*
* Because preemptable RCU does not exist , it never needs any CPU .
*/
static int rcu_preempt_needs_cpu ( int cpu )
{
return 0 ;
}
/*
* Because preemptable RCU does not exist , there is no per - CPU
* data to initialize .
*/
static void __cpuinit rcu_preempt_init_percpu_data ( int cpu )
{
}
# endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */