linux/drivers/gpu/drm/i915/gem/i915_gem_shmem.c

712 lines
18 KiB
C
Raw Normal View History

/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2014-2016 Intel Corporation
*/
#include <linux/pagevec.h>
#include <linux/shmem_fs.h>
#include <linux/swap.h>
#include <drm/drm_cache.h>
#include "gem/i915_gem_region.h"
#include "i915_drv.h"
#include "i915_gem_object.h"
#include "i915_gem_tiling.h"
#include "i915_gemfs.h"
#include "i915_scatterlist.h"
#include "i915_trace.h"
/*
* Move pages to appropriate lru and release the pagevec, decrementing the
* ref count of those pages.
*/
static void check_release_pagevec(struct pagevec *pvec)
{
check_move_unevictable_pages(pvec);
__pagevec_release(pvec);
cond_resched();
}
drm/i915: Introduce refcounted sg-tables As we start to introduce asynchronous failsafe object migration, where we update the object state and then submit asynchronous commands we need to record what memory resources are actually used by various part of the command stream. Initially for three purposes: 1) Error capture. 2) Asynchronous migration error recovery. 3) Asynchronous vma bind. At the time where these happens, the object state may have been updated to be several migrations ahead and object sg-tables discarded. In order to make it possible to keep sg-tables with memory resource information for these operations, introduce refcounted sg-tables that aren't freed until the last user is done with them. The alternative would be to reference information sitting on the corresponding ttm_resources which typically have the same lifetime as these refcountes sg_tables, but that leads to other awkward constructs: Due to the design direction chosen for ttm resource managers that would lead to diamond-style inheritance, the LMEM resources may sometimes be prematurely freed, and finally the subclassed struct ttm_resource would have to bleed into the asynchronous vma bind code. v3: - Address a number of style issues (Matthew Auld) v4: - Dont check for st->sgl being NULL in i915_ttm_tt__shmem_unpopulate(), that should never happen. (Matthew Auld) v5: - Fix a Potential double-free (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211101122444.114607-1-thomas.hellstrom@linux.intel.com
2021-11-01 13:24:44 +01:00
void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping,
bool dirty, bool backup)
{
struct sgt_iter sgt_iter;
struct pagevec pvec;
struct page *page;
mapping_clear_unevictable(mapping);
pagevec_init(&pvec);
for_each_sgt_page(page, sgt_iter, st) {
if (dirty)
set_page_dirty(page);
if (backup)
mark_page_accessed(page);
if (!pagevec_add(&pvec, page))
check_release_pagevec(&pvec);
}
if (pagevec_count(&pvec))
check_release_pagevec(&pvec);
sg_free_table(st);
}
drm/i915: Introduce refcounted sg-tables As we start to introduce asynchronous failsafe object migration, where we update the object state and then submit asynchronous commands we need to record what memory resources are actually used by various part of the command stream. Initially for three purposes: 1) Error capture. 2) Asynchronous migration error recovery. 3) Asynchronous vma bind. At the time where these happens, the object state may have been updated to be several migrations ahead and object sg-tables discarded. In order to make it possible to keep sg-tables with memory resource information for these operations, introduce refcounted sg-tables that aren't freed until the last user is done with them. The alternative would be to reference information sitting on the corresponding ttm_resources which typically have the same lifetime as these refcountes sg_tables, but that leads to other awkward constructs: Due to the design direction chosen for ttm resource managers that would lead to diamond-style inheritance, the LMEM resources may sometimes be prematurely freed, and finally the subclassed struct ttm_resource would have to bleed into the asynchronous vma bind code. v3: - Address a number of style issues (Matthew Auld) v4: - Dont check for st->sgl being NULL in i915_ttm_tt__shmem_unpopulate(), that should never happen. (Matthew Auld) v5: - Fix a Potential double-free (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211101122444.114607-1-thomas.hellstrom@linux.intel.com
2021-11-01 13:24:44 +01:00
int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st,
size_t size, struct intel_memory_region *mr,
struct address_space *mapping,
unsigned int max_segment)
{
const unsigned long page_count = size / PAGE_SIZE;
unsigned long i;
struct scatterlist *sg;
struct page *page;
unsigned long last_pfn = 0; /* suppress gcc warning */
gfp_t noreclaim;
int ret;
/*
* If there's no chance of allocating enough pages for the whole
* object, bail early.
*/
if (size > resource_size(&mr->region))
drm/i915: Introduce refcounted sg-tables As we start to introduce asynchronous failsafe object migration, where we update the object state and then submit asynchronous commands we need to record what memory resources are actually used by various part of the command stream. Initially for three purposes: 1) Error capture. 2) Asynchronous migration error recovery. 3) Asynchronous vma bind. At the time where these happens, the object state may have been updated to be several migrations ahead and object sg-tables discarded. In order to make it possible to keep sg-tables with memory resource information for these operations, introduce refcounted sg-tables that aren't freed until the last user is done with them. The alternative would be to reference information sitting on the corresponding ttm_resources which typically have the same lifetime as these refcountes sg_tables, but that leads to other awkward constructs: Due to the design direction chosen for ttm resource managers that would lead to diamond-style inheritance, the LMEM resources may sometimes be prematurely freed, and finally the subclassed struct ttm_resource would have to bleed into the asynchronous vma bind code. v3: - Address a number of style issues (Matthew Auld) v4: - Dont check for st->sgl being NULL in i915_ttm_tt__shmem_unpopulate(), that should never happen. (Matthew Auld) v5: - Fix a Potential double-free (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211101122444.114607-1-thomas.hellstrom@linux.intel.com
2021-11-01 13:24:44 +01:00
return -ENOMEM;
drm/i915: Introduce refcounted sg-tables As we start to introduce asynchronous failsafe object migration, where we update the object state and then submit asynchronous commands we need to record what memory resources are actually used by various part of the command stream. Initially for three purposes: 1) Error capture. 2) Asynchronous migration error recovery. 3) Asynchronous vma bind. At the time where these happens, the object state may have been updated to be several migrations ahead and object sg-tables discarded. In order to make it possible to keep sg-tables with memory resource information for these operations, introduce refcounted sg-tables that aren't freed until the last user is done with them. The alternative would be to reference information sitting on the corresponding ttm_resources which typically have the same lifetime as these refcountes sg_tables, but that leads to other awkward constructs: Due to the design direction chosen for ttm resource managers that would lead to diamond-style inheritance, the LMEM resources may sometimes be prematurely freed, and finally the subclassed struct ttm_resource would have to bleed into the asynchronous vma bind code. v3: - Address a number of style issues (Matthew Auld) v4: - Dont check for st->sgl being NULL in i915_ttm_tt__shmem_unpopulate(), that should never happen. (Matthew Auld) v5: - Fix a Potential double-free (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211101122444.114607-1-thomas.hellstrom@linux.intel.com
2021-11-01 13:24:44 +01:00
if (sg_alloc_table(st, page_count, GFP_KERNEL))
return -ENOMEM;
/*
* Get the list of pages out of our struct file. They'll be pinned
* at this point until we release them.
*
* Fail silently without starting the shrinker
*/
mapping_set_unevictable(mapping);
noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
sg = st->sgl;
st->nents = 0;
for (i = 0; i < page_count; i++) {
const unsigned int shrink[] = {
I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
0,
}, *s = shrink;
gfp_t gfp = noreclaim;
do {
cond_resched();
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
if (!IS_ERR(page))
break;
if (!*s) {
ret = PTR_ERR(page);
goto err_sg;
}
i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
/*
* We've tried hard to allocate the memory by reaping
* our own buffer, now let the real VM do its job and
* go down in flames if truly OOM.
*
* However, since graphics tend to be disposable,
* defer the oom here by reporting the ENOMEM back
* to userspace.
*/
if (!*s) {
/* reclaim and warn, but no oom */
gfp = mapping_gfp_mask(mapping);
/*
* Our bo are always dirty and so we require
* kswapd to reclaim our pages (direct reclaim
* does not effectively begin pageout of our
* buffers on its own). However, direct reclaim
* only waits for kswapd when under allocation
* congestion. So as a result __GFP_RECLAIM is
* unreliable and fails to actually reclaim our
* dirty pages -- unless you try over and over
* again with !__GFP_NORETRY. However, we still
* want to fail this allocation rather than
* trigger the out-of-memory killer and for
* this we want __GFP_RETRY_MAYFAIL.
*/
gfp |= __GFP_RETRY_MAYFAIL;
}
} while (1);
if (!i ||
sg->length >= max_segment ||
page_to_pfn(page) != last_pfn + 1) {
if (i)
sg = sg_next(sg);
st->nents++;
sg_set_page(sg, page, PAGE_SIZE, 0);
} else {
sg->length += PAGE_SIZE;
}
last_pfn = page_to_pfn(page);
/* Check that the i965g/gm workaround works. */
GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL);
}
if (sg) /* loop terminated early; short sg table */
sg_mark_end(sg);
/* Trim unused sg entries to avoid wasting memory. */
i915_sg_trim(st);
drm/i915: Introduce refcounted sg-tables As we start to introduce asynchronous failsafe object migration, where we update the object state and then submit asynchronous commands we need to record what memory resources are actually used by various part of the command stream. Initially for three purposes: 1) Error capture. 2) Asynchronous migration error recovery. 3) Asynchronous vma bind. At the time where these happens, the object state may have been updated to be several migrations ahead and object sg-tables discarded. In order to make it possible to keep sg-tables with memory resource information for these operations, introduce refcounted sg-tables that aren't freed until the last user is done with them. The alternative would be to reference information sitting on the corresponding ttm_resources which typically have the same lifetime as these refcountes sg_tables, but that leads to other awkward constructs: Due to the design direction chosen for ttm resource managers that would lead to diamond-style inheritance, the LMEM resources may sometimes be prematurely freed, and finally the subclassed struct ttm_resource would have to bleed into the asynchronous vma bind code. v3: - Address a number of style issues (Matthew Auld) v4: - Dont check for st->sgl being NULL in i915_ttm_tt__shmem_unpopulate(), that should never happen. (Matthew Auld) v5: - Fix a Potential double-free (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211101122444.114607-1-thomas.hellstrom@linux.intel.com
2021-11-01 13:24:44 +01:00
return 0;
err_sg:
sg_mark_end(sg);
if (sg != st->sgl) {
drm/i915: Introduce refcounted sg-tables As we start to introduce asynchronous failsafe object migration, where we update the object state and then submit asynchronous commands we need to record what memory resources are actually used by various part of the command stream. Initially for three purposes: 1) Error capture. 2) Asynchronous migration error recovery. 3) Asynchronous vma bind. At the time where these happens, the object state may have been updated to be several migrations ahead and object sg-tables discarded. In order to make it possible to keep sg-tables with memory resource information for these operations, introduce refcounted sg-tables that aren't freed until the last user is done with them. The alternative would be to reference information sitting on the corresponding ttm_resources which typically have the same lifetime as these refcountes sg_tables, but that leads to other awkward constructs: Due to the design direction chosen for ttm resource managers that would lead to diamond-style inheritance, the LMEM resources may sometimes be prematurely freed, and finally the subclassed struct ttm_resource would have to bleed into the asynchronous vma bind code. v3: - Address a number of style issues (Matthew Auld) v4: - Dont check for st->sgl being NULL in i915_ttm_tt__shmem_unpopulate(), that should never happen. (Matthew Auld) v5: - Fix a Potential double-free (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211101122444.114607-1-thomas.hellstrom@linux.intel.com
2021-11-01 13:24:44 +01:00
shmem_sg_free_table(st, mapping, false, false);
} else {
mapping_clear_unevictable(mapping);
sg_free_table(st);
}
/*
* shmemfs first checks if there is enough memory to allocate the page
* and reports ENOSPC should there be insufficient, along with the usual
* ENOMEM for a genuine allocation failure.
*
* We use ENOSPC in our driver to mean that we have run out of aperture
* space and so want to translate the error from shmemfs back to our
* usual understanding of ENOMEM.
*/
if (ret == -ENOSPC)
ret = -ENOMEM;
drm/i915: Introduce refcounted sg-tables As we start to introduce asynchronous failsafe object migration, where we update the object state and then submit asynchronous commands we need to record what memory resources are actually used by various part of the command stream. Initially for three purposes: 1) Error capture. 2) Asynchronous migration error recovery. 3) Asynchronous vma bind. At the time where these happens, the object state may have been updated to be several migrations ahead and object sg-tables discarded. In order to make it possible to keep sg-tables with memory resource information for these operations, introduce refcounted sg-tables that aren't freed until the last user is done with them. The alternative would be to reference information sitting on the corresponding ttm_resources which typically have the same lifetime as these refcountes sg_tables, but that leads to other awkward constructs: Due to the design direction chosen for ttm resource managers that would lead to diamond-style inheritance, the LMEM resources may sometimes be prematurely freed, and finally the subclassed struct ttm_resource would have to bleed into the asynchronous vma bind code. v3: - Address a number of style issues (Matthew Auld) v4: - Dont check for st->sgl being NULL in i915_ttm_tt__shmem_unpopulate(), that should never happen. (Matthew Auld) v5: - Fix a Potential double-free (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211101122444.114607-1-thomas.hellstrom@linux.intel.com
2021-11-01 13:24:44 +01:00
return ret;
}
static int shmem_get_pages(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct intel_memory_region *mem = obj->mm.region;
struct address_space *mapping = obj->base.filp->f_mapping;
const unsigned long page_count = obj->base.size / PAGE_SIZE;
unsigned int max_segment = i915_sg_segment_size();
struct sg_table *st;
struct sgt_iter sgt_iter;
struct page *page;
int ret;
/*
* Assert that the object is not currently in any GPU domain. As it
* wasn't in the GTT, there shouldn't be any way it could have been in
* a GPU cache
*/
GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
rebuild_st:
drm/i915: Introduce refcounted sg-tables As we start to introduce asynchronous failsafe object migration, where we update the object state and then submit asynchronous commands we need to record what memory resources are actually used by various part of the command stream. Initially for three purposes: 1) Error capture. 2) Asynchronous migration error recovery. 3) Asynchronous vma bind. At the time where these happens, the object state may have been updated to be several migrations ahead and object sg-tables discarded. In order to make it possible to keep sg-tables with memory resource information for these operations, introduce refcounted sg-tables that aren't freed until the last user is done with them. The alternative would be to reference information sitting on the corresponding ttm_resources which typically have the same lifetime as these refcountes sg_tables, but that leads to other awkward constructs: Due to the design direction chosen for ttm resource managers that would lead to diamond-style inheritance, the LMEM resources may sometimes be prematurely freed, and finally the subclassed struct ttm_resource would have to bleed into the asynchronous vma bind code. v3: - Address a number of style issues (Matthew Auld) v4: - Dont check for st->sgl being NULL in i915_ttm_tt__shmem_unpopulate(), that should never happen. (Matthew Auld) v5: - Fix a Potential double-free (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211101122444.114607-1-thomas.hellstrom@linux.intel.com
2021-11-01 13:24:44 +01:00
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping,
max_segment);
if (ret)
goto err_st;
ret = i915_gem_gtt_prepare_pages(obj, st);
if (ret) {
/*
* DMA remapping failed? One possible cause is that
* it could not reserve enough large entries, asking
* for PAGE_SIZE chunks instead may be helpful.
*/
if (max_segment > PAGE_SIZE) {
for_each_sgt_page(page, sgt_iter, st)
put_page(page);
sg_free_table(st);
kfree(st);
max_segment = PAGE_SIZE;
goto rebuild_st;
} else {
dev_warn(i915->drm.dev,
"Failed to DMA remap %lu pages\n",
page_count);
goto err_pages;
}
}
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_do_bit_17_swizzle(obj, st);
if (i915_gem_object_can_bypass_llc(obj))
obj->cache_dirty = true;
__i915_gem_object_set_pages(obj, st, i915_sg_dma_sizes(st->sgl));
return 0;
err_pages:
drm/i915: Introduce refcounted sg-tables As we start to introduce asynchronous failsafe object migration, where we update the object state and then submit asynchronous commands we need to record what memory resources are actually used by various part of the command stream. Initially for three purposes: 1) Error capture. 2) Asynchronous migration error recovery. 3) Asynchronous vma bind. At the time where these happens, the object state may have been updated to be several migrations ahead and object sg-tables discarded. In order to make it possible to keep sg-tables with memory resource information for these operations, introduce refcounted sg-tables that aren't freed until the last user is done with them. The alternative would be to reference information sitting on the corresponding ttm_resources which typically have the same lifetime as these refcountes sg_tables, but that leads to other awkward constructs: Due to the design direction chosen for ttm resource managers that would lead to diamond-style inheritance, the LMEM resources may sometimes be prematurely freed, and finally the subclassed struct ttm_resource would have to bleed into the asynchronous vma bind code. v3: - Address a number of style issues (Matthew Auld) v4: - Dont check for st->sgl being NULL in i915_ttm_tt__shmem_unpopulate(), that should never happen. (Matthew Auld) v5: - Fix a Potential double-free (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211101122444.114607-1-thomas.hellstrom@linux.intel.com
2021-11-01 13:24:44 +01:00
shmem_sg_free_table(st, mapping, false, false);
/*
* shmemfs first checks if there is enough memory to allocate the page
* and reports ENOSPC should there be insufficient, along with the usual
* ENOMEM for a genuine allocation failure.
*
* We use ENOSPC in our driver to mean that we have run out of aperture
* space and so want to translate the error from shmemfs back to our
* usual understanding of ENOMEM.
*/
err_st:
if (ret == -ENOSPC)
ret = -ENOMEM;
drm/i915: Introduce refcounted sg-tables As we start to introduce asynchronous failsafe object migration, where we update the object state and then submit asynchronous commands we need to record what memory resources are actually used by various part of the command stream. Initially for three purposes: 1) Error capture. 2) Asynchronous migration error recovery. 3) Asynchronous vma bind. At the time where these happens, the object state may have been updated to be several migrations ahead and object sg-tables discarded. In order to make it possible to keep sg-tables with memory resource information for these operations, introduce refcounted sg-tables that aren't freed until the last user is done with them. The alternative would be to reference information sitting on the corresponding ttm_resources which typically have the same lifetime as these refcountes sg_tables, but that leads to other awkward constructs: Due to the design direction chosen for ttm resource managers that would lead to diamond-style inheritance, the LMEM resources may sometimes be prematurely freed, and finally the subclassed struct ttm_resource would have to bleed into the asynchronous vma bind code. v3: - Address a number of style issues (Matthew Auld) v4: - Dont check for st->sgl being NULL in i915_ttm_tt__shmem_unpopulate(), that should never happen. (Matthew Auld) v5: - Fix a Potential double-free (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211101122444.114607-1-thomas.hellstrom@linux.intel.com
2021-11-01 13:24:44 +01:00
kfree(st);
return ret;
}
drm/i915/ttm: add tt shmem backend For cached objects we can allocate our pages directly in shmem. This should make it possible(in a later patch) to utilise the existing i915-gem shrinker code for such objects. For now this is still disabled. v2(Thomas): - Add optional try_to_writeback hook for objects. Importantly we need to check if the object is even still shrinkable; in between us dropping the shrinker LRU lock and acquiring the object lock it could for example have been moved. Also we need to differentiate between "lazy" shrinking and the immediate writeback mode. Also later we need to handle objects which don't even have mm.pages, so bundling this into put_pages() would require somehow handling that edge case, hence just letting the ttm backend handle everything in try_to_writeback doesn't seem too bad. v3(Thomas): - Likely a bad idea to touch the object from the unpopulate hook, since it's not possible to hold a reference, without also creating circular dependency, so likely this is too fragile. For now just ensure we at least mark the pages as dirty/accessed when called from the shrinker on WILLNEED objects. - s/try_to_writeback/shrinker_release_pages, since this can do more than just writeback. - Get rid of do_backup boolean and just set the SWAPPED flag prior to calling unpopulate. - Keep shmem_tt as lowest priority for the TTM LRU bo_swapout walk, since these just get skipped anyway. We can try to come up with something better later. v4(Thomas): - s/PCI_DMA/DMA/. Also drop NO_KERNEL_MAPPING and NO_WARN, which apparently doesn't do anything with streaming mappings. - Just pass along the error for ->truncate, and assume nothing. Signed-off-by: Matthew Auld <matthew.auld@intel.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Oak Zeng <oak.zeng@intel.com> Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Acked-by: Oak Zeng <oak.zeng@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211018091055.1998191-2-matthew.auld@intel.com
2021-10-18 10:10:49 +01:00
static int
shmem_truncate(struct drm_i915_gem_object *obj)
{
/*
* Our goal here is to return as much of the memory as
* is possible back to the system as we are called from OOM.
* To do this we must instruct the shmfs to drop all of its
* backing pages, *now*.
*/
shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
obj->mm.madv = __I915_MADV_PURGED;
obj->mm.pages = ERR_PTR(-EFAULT);
drm/i915/ttm: add tt shmem backend For cached objects we can allocate our pages directly in shmem. This should make it possible(in a later patch) to utilise the existing i915-gem shrinker code for such objects. For now this is still disabled. v2(Thomas): - Add optional try_to_writeback hook for objects. Importantly we need to check if the object is even still shrinkable; in between us dropping the shrinker LRU lock and acquiring the object lock it could for example have been moved. Also we need to differentiate between "lazy" shrinking and the immediate writeback mode. Also later we need to handle objects which don't even have mm.pages, so bundling this into put_pages() would require somehow handling that edge case, hence just letting the ttm backend handle everything in try_to_writeback doesn't seem too bad. v3(Thomas): - Likely a bad idea to touch the object from the unpopulate hook, since it's not possible to hold a reference, without also creating circular dependency, so likely this is too fragile. For now just ensure we at least mark the pages as dirty/accessed when called from the shrinker on WILLNEED objects. - s/try_to_writeback/shrinker_release_pages, since this can do more than just writeback. - Get rid of do_backup boolean and just set the SWAPPED flag prior to calling unpopulate. - Keep shmem_tt as lowest priority for the TTM LRU bo_swapout walk, since these just get skipped anyway. We can try to come up with something better later. v4(Thomas): - s/PCI_DMA/DMA/. Also drop NO_KERNEL_MAPPING and NO_WARN, which apparently doesn't do anything with streaming mappings. - Just pass along the error for ->truncate, and assume nothing. Signed-off-by: Matthew Auld <matthew.auld@intel.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Oak Zeng <oak.zeng@intel.com> Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Acked-by: Oak Zeng <oak.zeng@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211018091055.1998191-2-matthew.auld@intel.com
2021-10-18 10:10:49 +01:00
return 0;
}
drm/i915/ttm: add tt shmem backend For cached objects we can allocate our pages directly in shmem. This should make it possible(in a later patch) to utilise the existing i915-gem shrinker code for such objects. For now this is still disabled. v2(Thomas): - Add optional try_to_writeback hook for objects. Importantly we need to check if the object is even still shrinkable; in between us dropping the shrinker LRU lock and acquiring the object lock it could for example have been moved. Also we need to differentiate between "lazy" shrinking and the immediate writeback mode. Also later we need to handle objects which don't even have mm.pages, so bundling this into put_pages() would require somehow handling that edge case, hence just letting the ttm backend handle everything in try_to_writeback doesn't seem too bad. v3(Thomas): - Likely a bad idea to touch the object from the unpopulate hook, since it's not possible to hold a reference, without also creating circular dependency, so likely this is too fragile. For now just ensure we at least mark the pages as dirty/accessed when called from the shrinker on WILLNEED objects. - s/try_to_writeback/shrinker_release_pages, since this can do more than just writeback. - Get rid of do_backup boolean and just set the SWAPPED flag prior to calling unpopulate. - Keep shmem_tt as lowest priority for the TTM LRU bo_swapout walk, since these just get skipped anyway. We can try to come up with something better later. v4(Thomas): - s/PCI_DMA/DMA/. Also drop NO_KERNEL_MAPPING and NO_WARN, which apparently doesn't do anything with streaming mappings. - Just pass along the error for ->truncate, and assume nothing. Signed-off-by: Matthew Auld <matthew.auld@intel.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Oak Zeng <oak.zeng@intel.com> Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Acked-by: Oak Zeng <oak.zeng@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211018091055.1998191-2-matthew.auld@intel.com
2021-10-18 10:10:49 +01:00
void __shmem_writeback(size_t size, struct address_space *mapping)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
.nr_to_write = SWAP_CLUSTER_MAX,
.range_start = 0,
.range_end = LLONG_MAX,
.for_reclaim = 1,
};
unsigned long i;
/*
* Leave mmapings intact (GTT will have been revoked on unbinding,
* leaving only CPU mmapings around) and add those pages to the LRU
* instead of invoking writeback so they are aged and paged out
* as normal.
*/
/* Begin writeback on each dirty page */
for (i = 0; i < size >> PAGE_SHIFT; i++) {
struct page *page;
page = find_lock_page(mapping, i);
if (!page)
continue;
if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
int ret;
SetPageReclaim(page);
ret = mapping->a_ops->writepage(page, &wbc);
if (!PageWriteback(page))
ClearPageReclaim(page);
if (!ret)
goto put;
}
unlock_page(page);
put:
put_page(page);
}
}
static void
shmem_writeback(struct drm_i915_gem_object *obj)
{
__shmem_writeback(obj->base.size, obj->base.filp->f_mapping);
}
static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
{
switch (obj->mm.madv) {
case I915_MADV_DONTNEED:
return i915_gem_object_truncate(obj);
case __I915_MADV_PURGED:
return 0;
}
if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
shmem_writeback(obj);
return 0;
}
void
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
struct sg_table *pages,
bool needs_clflush)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
if (obj->mm.madv == I915_MADV_DONTNEED)
obj->mm.dirty = false;
if (needs_clflush &&
(obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
drm_clflush_sg(pages);
__start_cpu_write(obj);
/*
* On non-LLC platforms, force the flush-on-acquire if this is ever
* swapped-in. Our async flush path is not trust worthy enough yet(and
* happens in the wrong order), and with some tricks it's conceivable
* for userspace to change the cache-level to I915_CACHE_NONE after the
* pages are swapped-in, and since execbuf binds the object before doing
* the async flush, we have a race window.
*/
if (!HAS_LLC(i915))
obj->cache_dirty = true;
}
void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
{
__i915_gem_object_release_shmem(obj, pages, true);
i915_gem_gtt_finish_pages(obj, pages);
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_save_bit_17_swizzle(obj, pages);
drm/i915: Introduce refcounted sg-tables As we start to introduce asynchronous failsafe object migration, where we update the object state and then submit asynchronous commands we need to record what memory resources are actually used by various part of the command stream. Initially for three purposes: 1) Error capture. 2) Asynchronous migration error recovery. 3) Asynchronous vma bind. At the time where these happens, the object state may have been updated to be several migrations ahead and object sg-tables discarded. In order to make it possible to keep sg-tables with memory resource information for these operations, introduce refcounted sg-tables that aren't freed until the last user is done with them. The alternative would be to reference information sitting on the corresponding ttm_resources which typically have the same lifetime as these refcountes sg_tables, but that leads to other awkward constructs: Due to the design direction chosen for ttm resource managers that would lead to diamond-style inheritance, the LMEM resources may sometimes be prematurely freed, and finally the subclassed struct ttm_resource would have to bleed into the asynchronous vma bind code. v3: - Address a number of style issues (Matthew Auld) v4: - Dont check for st->sgl being NULL in i915_ttm_tt__shmem_unpopulate(), that should never happen. (Matthew Auld) v5: - Fix a Potential double-free (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211101122444.114607-1-thomas.hellstrom@linux.intel.com
2021-11-01 13:24:44 +01:00
shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping,
obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED);
kfree(pages);
obj->mm.dirty = false;
}
static void
shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
{
if (likely(i915_gem_object_has_struct_page(obj)))
i915_gem_object_put_pages_shmem(obj, pages);
else
i915_gem_object_put_pages_phys(obj, pages);
}
static int
shmem_pwrite(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_pwrite *arg)
{
struct address_space *mapping = obj->base.filp->f_mapping;
char __user *user_data = u64_to_user_ptr(arg->data_ptr);
u64 remain, offset;
unsigned int pg;
/* Caller already validated user args */
GEM_BUG_ON(!access_ok(user_data, arg->size));
if (!i915_gem_object_has_struct_page(obj))
return i915_gem_object_pwrite_phys(obj, arg);
/*
* Before we instantiate/pin the backing store for our use, we
* can prepopulate the shmemfs filp efficiently using a write into
* the pagecache. We avoid the penalty of instantiating all the
* pages, important if the user is just writing to a few and never
* uses the object on the GPU, and using a direct write into shmemfs
* allows it to avoid the cost of retrieving a page (either swapin
* or clearing-before-use) before it is overwritten.
*/
if (i915_gem_object_has_pages(obj))
return -ENODEV;
if (obj->mm.madv != I915_MADV_WILLNEED)
return -EFAULT;
/*
* Before the pages are instantiated the object is treated as being
* in the CPU domain. The pages will be clflushed as required before
* use, and we can freely write into the pages directly. If userspace
* races pwrite with any other operation; corruption will ensue -
* that is userspace's prerogative!
*/
remain = arg->size;
offset = arg->offset;
pg = offset_in_page(offset);
do {
unsigned int len, unwritten;
struct page *page;
void *data, *vaddr;
int err;
char c;
len = PAGE_SIZE - pg;
if (len > remain)
len = remain;
/* Prefault the user page to reduce potential recursion */
err = __get_user(c, user_data);
if (err)
return err;
err = __get_user(c, user_data + len - 1);
if (err)
return err;
err = pagecache_write_begin(obj->base.filp, mapping,
offset, len, 0,
&page, &data);
if (err < 0)
return err;
vaddr = kmap_atomic(page);
unwritten = __copy_from_user_inatomic(vaddr + pg,
user_data,
len);
kunmap_atomic(vaddr);
err = pagecache_write_end(obj->base.filp, mapping,
offset, len, len - unwritten,
page, data);
if (err < 0)
return err;
/* We don't handle -EFAULT, leave it to the caller to check */
if (unwritten)
return -ENODEV;
remain -= len;
user_data += len;
offset += len;
pg = 0;
} while (remain);
return 0;
}
static int
shmem_pread(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_pread *arg)
{
if (!i915_gem_object_has_struct_page(obj))
return i915_gem_object_pread_phys(obj, arg);
return -ENODEV;
}
static void shmem_release(struct drm_i915_gem_object *obj)
{
if (i915_gem_object_has_struct_page(obj))
i915_gem_object_release_memory_region(obj);
fput(obj->base.filp);
}
const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
.name = "i915_gem_object_shmem",
.flags = I915_GEM_OBJECT_IS_SHRINKABLE,
.get_pages = shmem_get_pages,
.put_pages = shmem_put_pages,
.truncate = shmem_truncate,
.shrink = shmem_shrink,
.pwrite = shmem_pwrite,
.pread = shmem_pread,
.release = shmem_release,
};
static int __create_shmem(struct drm_i915_private *i915,
struct drm_gem_object *obj,
resource_size_t size)
{
unsigned long flags = VM_NORESERVE;
struct file *filp;
drm_gem_private_object_init(&i915->drm, obj, size);
if (i915->mm.gemfs)
filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
flags);
else
filp = shmem_file_setup("i915", size, flags);
if (IS_ERR(filp))
return PTR_ERR(filp);
obj->filp = filp;
return 0;
}
static int shmem_object_init(struct intel_memory_region *mem,
struct drm_i915_gem_object *obj,
resource_size_t size,
resource_size_t page_size,
unsigned int flags)
{
static struct lock_class_key lock_class;
struct drm_i915_private *i915 = mem->i915;
struct address_space *mapping;
unsigned int cache_level;
gfp_t mask;
int ret;
ret = __create_shmem(i915, &obj->base, size);
if (ret)
return ret;
mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
if (IS_I965GM(i915) || IS_I965G(i915)) {
/* 965gm cannot relocate objects above 4GiB. */
mask &= ~__GFP_HIGHMEM;
mask |= __GFP_DMA32;
}
mapping = obj->base.filp->f_mapping;
mapping_set_gfp_mask(mapping, mask);
GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, 0);
obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
obj->write_domain = I915_GEM_DOMAIN_CPU;
obj->read_domains = I915_GEM_DOMAIN_CPU;
if (HAS_LLC(i915))
/* On some devices, we can have the GPU use the LLC (the CPU
* cache) for about a 10% performance improvement
* compared to uncached. Graphics requests other than
* display scanout are coherent with the CPU in
* accessing this cache. This means in this mode we
* don't need to clflush on the CPU side, and on the
* GPU side we only need to flush internal caches to
* get data visible to the CPU.
*
* However, we maintain the display planes as UC, and so
* need to rebind when first used as such.
*/
cache_level = I915_CACHE_LLC;
else
cache_level = I915_CACHE_NONE;
i915_gem_object_set_cache_coherency(obj, cache_level);
i915_gem_object_init_memory_region(obj, mem);
return 0;
}
struct drm_i915_gem_object *
i915_gem_object_create_shmem(struct drm_i915_private *i915,
resource_size_t size)
{
return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
size, 0, 0);
}
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
const void *data, resource_size_t size)
{
struct drm_i915_gem_object *obj;
struct file *file;
resource_size_t offset;
int err;
GEM_WARN_ON(IS_DGFX(dev_priv));
obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
if (IS_ERR(obj))
return obj;
GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
file = obj->base.filp;
offset = 0;
do {
unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
struct page *page;
void *pgdata, *vaddr;
err = pagecache_write_begin(file, file->f_mapping,
offset, len, 0,
&page, &pgdata);
if (err < 0)
goto fail;
vaddr = kmap(page);
memcpy(vaddr, data, len);
kunmap(page);
err = pagecache_write_end(file, file->f_mapping,
offset, len, len,
page, pgdata);
if (err < 0)
goto fail;
size -= len;
data += len;
offset += len;
} while (size);
return obj;
fail:
i915_gem_object_put(obj);
return ERR_PTR(err);
}
static int init_shmem(struct intel_memory_region *mem)
{
int err;
err = i915_gemfs_init(mem->i915);
if (err) {
DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n",
err);
}
intel_memory_region_set_name(mem, "system");
return 0; /* Don't error, we can simply fallback to the kernel mnt */
}
static int release_shmem(struct intel_memory_region *mem)
{
i915_gemfs_fini(mem->i915);
return 0;
}
static const struct intel_memory_region_ops shmem_region_ops = {
.init = init_shmem,
.release = release_shmem,
.init_object = shmem_object_init,
};
struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
u16 type, u16 instance)
{
return intel_memory_region_create(i915, 0,
totalram_pages() << PAGE_SHIFT,
PAGE_SIZE, 0, 0,
type, instance,
&shmem_region_ops);
}
bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
{
return obj->ops == &i915_gem_shmem_ops;
}