linux/include/asm-parisc/dma-mapping.h

254 lines
8.0 KiB
C
Raw Normal View History

#ifndef _PARISC_DMA_MAPPING_H
#define _PARISC_DMA_MAPPING_H
#include <linux/mm.h>
#include <asm/cacheflush.h>
#include <asm/scatterlist.h>
/* See Documentation/DMA-mapping.txt */
struct hppa_dma_ops {
int (*dma_supported)(struct device *dev, u64 mask);
void *(*alloc_consistent)(struct device *dev, size_t size, dma_addr_t *iova, gfp_t flag);
void *(*alloc_noncoherent)(struct device *dev, size_t size, dma_addr_t *iova, gfp_t flag);
void (*free_consistent)(struct device *dev, size_t size, void *vaddr, dma_addr_t iova);
dma_addr_t (*map_single)(struct device *dev, void *addr, size_t size, enum dma_data_direction direction);
void (*unmap_single)(struct device *dev, dma_addr_t iova, size_t size, enum dma_data_direction direction);
int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction);
void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nhwents, enum dma_data_direction direction);
void (*dma_sync_single_for_cpu)(struct device *dev, dma_addr_t iova, unsigned long offset, size_t size, enum dma_data_direction direction);
void (*dma_sync_single_for_device)(struct device *dev, dma_addr_t iova, unsigned long offset, size_t size, enum dma_data_direction direction);
void (*dma_sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction);
void (*dma_sync_sg_for_device)(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction);
};
/*
** We could live without the hppa_dma_ops indirection if we didn't want
** to support 4 different coherent dma models with one binary (they will
** someday be loadable modules):
** I/O MMU consistent method dma_sync behavior
** ============= ====================== =======================
** a) PA-7x00LC uncachable host memory flush/purge
** b) U2/Uturn cachable host memory NOP
** c) Ike/Astro cachable host memory NOP
** d) EPIC/SAGA memory on EPIC/SAGA flush/reset DMA channel
**
** PA-7[13]00LC processors have a GSC bus interface and no I/O MMU.
**
** Systems (eg PCX-T workstations) that don't fall into the above
** categories will need to modify the needed drivers to perform
** flush/purge and allocate "regular" cacheable pages for everything.
*/
#ifdef CONFIG_PA11
extern struct hppa_dma_ops pcxl_dma_ops;
extern struct hppa_dma_ops pcx_dma_ops;
#endif
extern struct hppa_dma_ops *hppa_dma_ops;
static inline void *
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t flag)
{
return hppa_dma_ops->alloc_consistent(dev, size, dma_handle, flag);
}
static inline void *
dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t flag)
{
return hppa_dma_ops->alloc_noncoherent(dev, size, dma_handle, flag);
}
static inline void
dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
hppa_dma_ops->free_consistent(dev, size, vaddr, dma_handle);
}
static inline void
dma_free_noncoherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
hppa_dma_ops->free_consistent(dev, size, vaddr, dma_handle);
}
static inline dma_addr_t
dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction direction)
{
return hppa_dma_ops->map_single(dev, ptr, size, direction);
}
static inline void
dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
{
hppa_dma_ops->unmap_single(dev, dma_addr, size, direction);
}
static inline int
dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction direction)
{
return hppa_dma_ops->map_sg(dev, sg, nents, direction);
}
static inline void
dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
enum dma_data_direction direction)
{
hppa_dma_ops->unmap_sg(dev, sg, nhwentries, direction);
}
static inline dma_addr_t
dma_map_page(struct device *dev, struct page *page, unsigned long offset,
size_t size, enum dma_data_direction direction)
{
return dma_map_single(dev, (page_address(page) + (offset)), size, direction);
}
static inline void
dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
enum dma_data_direction direction)
{
dma_unmap_single(dev, dma_address, size, direction);
}
static inline void
dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
{
if(hppa_dma_ops->dma_sync_single_for_cpu)
hppa_dma_ops->dma_sync_single_for_cpu(dev, dma_handle, 0, size, direction);
}
static inline void
dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
{
if(hppa_dma_ops->dma_sync_single_for_device)
hppa_dma_ops->dma_sync_single_for_device(dev, dma_handle, 0, size, direction);
}
static inline void
dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
if(hppa_dma_ops->dma_sync_single_for_cpu)
hppa_dma_ops->dma_sync_single_for_cpu(dev, dma_handle, offset, size, direction);
}
static inline void
dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
if(hppa_dma_ops->dma_sync_single_for_device)
hppa_dma_ops->dma_sync_single_for_device(dev, dma_handle, offset, size, direction);
}
static inline void
dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
{
if(hppa_dma_ops->dma_sync_sg_for_cpu)
hppa_dma_ops->dma_sync_sg_for_cpu(dev, sg, nelems, direction);
}
static inline void
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
{
if(hppa_dma_ops->dma_sync_sg_for_device)
hppa_dma_ops->dma_sync_sg_for_device(dev, sg, nelems, direction);
}
static inline int
dma_supported(struct device *dev, u64 mask)
{
return hppa_dma_ops->dma_supported(dev, mask);
}
static inline int
dma_set_mask(struct device *dev, u64 mask)
{
if(!dev->dma_mask || !dma_supported(dev, mask))
return -EIO;
*dev->dma_mask = mask;
return 0;
}
static inline int
dma_get_cache_alignment(void)
{
return dcache_stride;
}
static inline int
dma_is_consistent(struct device *dev, dma_addr_t dma_addr)
{
return (hppa_dma_ops->dma_sync_single_for_cpu == NULL);
}
static inline void
dma_cache_sync(void *vaddr, size_t size,
enum dma_data_direction direction)
{
if(hppa_dma_ops->dma_sync_single_for_cpu)
flush_kernel_dcache_range((unsigned long)vaddr, size);
}
static inline void *
parisc_walk_tree(struct device *dev)
{
struct device *otherdev;
if(likely(dev->platform_data != NULL))
return dev->platform_data;
/* OK, just traverse the bus to find it */
for(otherdev = dev->parent; otherdev;
otherdev = otherdev->parent) {
if(otherdev->platform_data) {
dev->platform_data = otherdev->platform_data;
break;
}
}
BUG_ON(!dev->platform_data);
return dev->platform_data;
}
#define GET_IOC(dev) (HBA_DATA(parisc_walk_tree(dev))->iommu);
#ifdef CONFIG_IOMMU_CCIO
struct parisc_device;
struct ioc;
void * ccio_get_iommu(const struct parisc_device *dev);
int ccio_request_resource(const struct parisc_device *dev,
struct resource *res);
int ccio_allocate_resource(const struct parisc_device *dev,
struct resource *res, unsigned long size,
unsigned long min, unsigned long max, unsigned long align);
#else /* !CONFIG_IOMMU_CCIO */
#define ccio_get_iommu(dev) NULL
#define ccio_request_resource(dev, res) request_resource(&iomem_resource, res)
#define ccio_allocate_resource(dev, res, size, min, max, align) \
allocate_resource(&iomem_resource, res, size, min, max, \
align, NULL, NULL)
#endif /* !CONFIG_IOMMU_CCIO */
#ifdef CONFIG_IOMMU_SBA
struct parisc_device;
void * sba_get_iommu(struct parisc_device *dev);
#endif
/* At the moment, we panic on error for IOMMU resource exaustion */
#define dma_mapping_error(x) 0
#endif