linux/drivers/rtc/rtc-m48t59.c

549 lines
14 KiB
C
Raw Normal View History

/*
* ST M48T59 RTC driver
*
* Copyright (c) 2007 Wind River Systems, Inc.
*
* Author: Mark Zhan <rongkai.zhan@windriver.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#include <linux/rtc/m48t59.h>
#include <linux/bcd.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#ifndef NO_IRQ
#define NO_IRQ (-1)
#endif
#define M48T59_READ(reg) (pdata->read_byte(dev, pdata->offset + reg))
#define M48T59_WRITE(val, reg) \
(pdata->write_byte(dev, pdata->offset + reg, val))
#define M48T59_SET_BITS(mask, reg) \
M48T59_WRITE((M48T59_READ(reg) | (mask)), (reg))
#define M48T59_CLEAR_BITS(mask, reg) \
M48T59_WRITE((M48T59_READ(reg) & ~(mask)), (reg))
struct m48t59_private {
void __iomem *ioaddr;
int irq;
struct rtc_device *rtc;
spinlock_t lock; /* serialize the NVRAM and RTC access */
};
/*
* This is the generic access method when the chip is memory-mapped
*/
static void
m48t59_mem_writeb(struct device *dev, u32 ofs, u8 val)
{
struct platform_device *pdev = to_platform_device(dev);
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
writeb(val, m48t59->ioaddr+ofs);
}
static u8
m48t59_mem_readb(struct device *dev, u32 ofs)
{
struct platform_device *pdev = to_platform_device(dev);
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
return readb(m48t59->ioaddr+ofs);
}
/*
* NOTE: M48T59 only uses BCD mode
*/
static int m48t59_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct platform_device *pdev = to_platform_device(dev);
struct m48t59_plat_data *pdata = pdev->dev.platform_data;
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
unsigned long flags;
u8 val;
spin_lock_irqsave(&m48t59->lock, flags);
/* Issue the READ command */
M48T59_SET_BITS(M48T59_CNTL_READ, M48T59_CNTL);
tm->tm_year = bcd2bin(M48T59_READ(M48T59_YEAR));
/* tm_mon is 0-11 */
tm->tm_mon = bcd2bin(M48T59_READ(M48T59_MONTH)) - 1;
tm->tm_mday = bcd2bin(M48T59_READ(M48T59_MDAY));
val = M48T59_READ(M48T59_WDAY);
if ((pdata->type == M48T59RTC_TYPE_M48T59) &&
(val & M48T59_WDAY_CEB) && (val & M48T59_WDAY_CB)) {
dev_dbg(dev, "Century bit is enabled\n");
tm->tm_year += 100; /* one century */
}
#ifdef CONFIG_SPARC
/* Sun SPARC machines count years since 1968 */
tm->tm_year += 68;
#endif
tm->tm_wday = bcd2bin(val & 0x07);
tm->tm_hour = bcd2bin(M48T59_READ(M48T59_HOUR) & 0x3F);
tm->tm_min = bcd2bin(M48T59_READ(M48T59_MIN) & 0x7F);
tm->tm_sec = bcd2bin(M48T59_READ(M48T59_SEC) & 0x7F);
/* Clear the READ bit */
M48T59_CLEAR_BITS(M48T59_CNTL_READ, M48T59_CNTL);
spin_unlock_irqrestore(&m48t59->lock, flags);
dev_dbg(dev, "RTC read time %04d-%02d-%02d %02d/%02d/%02d\n",
tm->tm_year + 1900, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
return rtc_valid_tm(tm);
}
static int m48t59_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct platform_device *pdev = to_platform_device(dev);
struct m48t59_plat_data *pdata = pdev->dev.platform_data;
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
unsigned long flags;
u8 val = 0;
int year = tm->tm_year;
#ifdef CONFIG_SPARC
/* Sun SPARC machines count years since 1968 */
year -= 68;
#endif
dev_dbg(dev, "RTC set time %04d-%02d-%02d %02d/%02d/%02d\n",
year + 1900, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
if (year < 0)
return -EINVAL;
spin_lock_irqsave(&m48t59->lock, flags);
/* Issue the WRITE command */
M48T59_SET_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
M48T59_WRITE((bin2bcd(tm->tm_sec) & 0x7F), M48T59_SEC);
M48T59_WRITE((bin2bcd(tm->tm_min) & 0x7F), M48T59_MIN);
M48T59_WRITE((bin2bcd(tm->tm_hour) & 0x3F), M48T59_HOUR);
M48T59_WRITE((bin2bcd(tm->tm_mday) & 0x3F), M48T59_MDAY);
/* tm_mon is 0-11 */
M48T59_WRITE((bin2bcd(tm->tm_mon + 1) & 0x1F), M48T59_MONTH);
M48T59_WRITE(bin2bcd(year % 100), M48T59_YEAR);
if (pdata->type == M48T59RTC_TYPE_M48T59 && (year / 100))
val = (M48T59_WDAY_CEB | M48T59_WDAY_CB);
val |= (bin2bcd(tm->tm_wday) & 0x07);
M48T59_WRITE(val, M48T59_WDAY);
/* Clear the WRITE bit */
M48T59_CLEAR_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
spin_unlock_irqrestore(&m48t59->lock, flags);
return 0;
}
/*
* Read alarm time and date in RTC
*/
static int m48t59_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct platform_device *pdev = to_platform_device(dev);
struct m48t59_plat_data *pdata = pdev->dev.platform_data;
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
struct rtc_time *tm = &alrm->time;
unsigned long flags;
u8 val;
/* If no irq, we don't support ALARM */
if (m48t59->irq == NO_IRQ)
return -EIO;
spin_lock_irqsave(&m48t59->lock, flags);
/* Issue the READ command */
M48T59_SET_BITS(M48T59_CNTL_READ, M48T59_CNTL);
tm->tm_year = bcd2bin(M48T59_READ(M48T59_YEAR));
#ifdef CONFIG_SPARC
/* Sun SPARC machines count years since 1968 */
tm->tm_year += 68;
#endif
/* tm_mon is 0-11 */
tm->tm_mon = bcd2bin(M48T59_READ(M48T59_MONTH)) - 1;
val = M48T59_READ(M48T59_WDAY);
if ((val & M48T59_WDAY_CEB) && (val & M48T59_WDAY_CB))
tm->tm_year += 100; /* one century */
tm->tm_mday = bcd2bin(M48T59_READ(M48T59_ALARM_DATE));
tm->tm_hour = bcd2bin(M48T59_READ(M48T59_ALARM_HOUR));
tm->tm_min = bcd2bin(M48T59_READ(M48T59_ALARM_MIN));
tm->tm_sec = bcd2bin(M48T59_READ(M48T59_ALARM_SEC));
/* Clear the READ bit */
M48T59_CLEAR_BITS(M48T59_CNTL_READ, M48T59_CNTL);
spin_unlock_irqrestore(&m48t59->lock, flags);
dev_dbg(dev, "RTC read alarm time %04d-%02d-%02d %02d/%02d/%02d\n",
tm->tm_year + 1900, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
return rtc_valid_tm(tm);
}
/*
* Set alarm time and date in RTC
*/
static int m48t59_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct platform_device *pdev = to_platform_device(dev);
struct m48t59_plat_data *pdata = pdev->dev.platform_data;
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
struct rtc_time *tm = &alrm->time;
u8 mday, hour, min, sec;
unsigned long flags;
int year = tm->tm_year;
#ifdef CONFIG_SPARC
/* Sun SPARC machines count years since 1968 */
year -= 68;
#endif
/* If no irq, we don't support ALARM */
if (m48t59->irq == NO_IRQ)
return -EIO;
if (year < 0)
return -EINVAL;
/*
* 0xff means "always match"
*/
mday = tm->tm_mday;
mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
if (mday == 0xff)
mday = M48T59_READ(M48T59_MDAY);
hour = tm->tm_hour;
hour = (hour < 24) ? bin2bcd(hour) : 0x00;
min = tm->tm_min;
min = (min < 60) ? bin2bcd(min) : 0x00;
sec = tm->tm_sec;
sec = (sec < 60) ? bin2bcd(sec) : 0x00;
spin_lock_irqsave(&m48t59->lock, flags);
/* Issue the WRITE command */
M48T59_SET_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
M48T59_WRITE(mday, M48T59_ALARM_DATE);
M48T59_WRITE(hour, M48T59_ALARM_HOUR);
M48T59_WRITE(min, M48T59_ALARM_MIN);
M48T59_WRITE(sec, M48T59_ALARM_SEC);
/* Clear the WRITE bit */
M48T59_CLEAR_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
spin_unlock_irqrestore(&m48t59->lock, flags);
dev_dbg(dev, "RTC set alarm time %04d-%02d-%02d %02d/%02d/%02d\n",
year + 1900, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
return 0;
}
/*
* Handle commands from user-space
*/
static int m48t59_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct platform_device *pdev = to_platform_device(dev);
struct m48t59_plat_data *pdata = pdev->dev.platform_data;
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
unsigned long flags;
spin_lock_irqsave(&m48t59->lock, flags);
if (enabled)
M48T59_WRITE(M48T59_INTR_AFE, M48T59_INTR);
else
M48T59_WRITE(0x00, M48T59_INTR);
spin_unlock_irqrestore(&m48t59->lock, flags);
return 0;
}
static int m48t59_rtc_proc(struct device *dev, struct seq_file *seq)
{
struct platform_device *pdev = to_platform_device(dev);
struct m48t59_plat_data *pdata = pdev->dev.platform_data;
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
unsigned long flags;
u8 val;
spin_lock_irqsave(&m48t59->lock, flags);
val = M48T59_READ(M48T59_FLAGS);
spin_unlock_irqrestore(&m48t59->lock, flags);
seq_printf(seq, "battery\t\t: %s\n",
(val & M48T59_FLAGS_BF) ? "low" : "normal");
return 0;
}
/*
* IRQ handler for the RTC
*/
static irqreturn_t m48t59_rtc_interrupt(int irq, void *dev_id)
{
struct device *dev = (struct device *)dev_id;
struct platform_device *pdev = to_platform_device(dev);
struct m48t59_plat_data *pdata = pdev->dev.platform_data;
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
u8 event;
spin_lock(&m48t59->lock);
event = M48T59_READ(M48T59_FLAGS);
spin_unlock(&m48t59->lock);
if (event & M48T59_FLAGS_AF) {
rtc_update_irq(m48t59->rtc, 1, (RTC_AF | RTC_IRQF));
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static const struct rtc_class_ops m48t59_rtc_ops = {
.read_time = m48t59_rtc_read_time,
.set_time = m48t59_rtc_set_time,
.read_alarm = m48t59_rtc_readalarm,
.set_alarm = m48t59_rtc_setalarm,
.proc = m48t59_rtc_proc,
.alarm_irq_enable = m48t59_rtc_alarm_irq_enable,
};
static const struct rtc_class_ops m48t02_rtc_ops = {
.read_time = m48t59_rtc_read_time,
.set_time = m48t59_rtc_set_time,
};
static ssize_t m48t59_nvram_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t pos, size_t size)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct platform_device *pdev = to_platform_device(dev);
struct m48t59_plat_data *pdata = pdev->dev.platform_data;
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
ssize_t cnt = 0;
unsigned long flags;
for (; size > 0 && pos < pdata->offset; cnt++, size--) {
spin_lock_irqsave(&m48t59->lock, flags);
*buf++ = M48T59_READ(cnt);
spin_unlock_irqrestore(&m48t59->lock, flags);
}
return cnt;
}
static ssize_t m48t59_nvram_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t pos, size_t size)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct platform_device *pdev = to_platform_device(dev);
struct m48t59_plat_data *pdata = pdev->dev.platform_data;
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
ssize_t cnt = 0;
unsigned long flags;
for (; size > 0 && pos < pdata->offset; cnt++, size--) {
spin_lock_irqsave(&m48t59->lock, flags);
M48T59_WRITE(*buf++, cnt);
spin_unlock_irqrestore(&m48t59->lock, flags);
}
return cnt;
}
static struct bin_attribute m48t59_nvram_attr = {
.attr = {
.name = "nvram",
.mode = S_IRUGO | S_IWUSR,
},
.read = m48t59_nvram_read,
.write = m48t59_nvram_write,
};
static int __devinit m48t59_rtc_probe(struct platform_device *pdev)
{
struct m48t59_plat_data *pdata = pdev->dev.platform_data;
struct m48t59_private *m48t59 = NULL;
struct resource *res;
int ret = -ENOMEM;
char *name;
const struct rtc_class_ops *ops;
/* This chip could be memory-mapped or I/O-mapped */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (!res)
return -EINVAL;
}
if (res->flags & IORESOURCE_IO) {
/* If we are I/O-mapped, the platform should provide
* the operations accessing chip registers.
*/
if (!pdata || !pdata->write_byte || !pdata->read_byte)
return -EINVAL;
} else if (res->flags & IORESOURCE_MEM) {
/* we are memory-mapped */
if (!pdata) {
pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
/* Ensure we only kmalloc platform data once */
pdev->dev.platform_data = pdata;
}
if (!pdata->type)
pdata->type = M48T59RTC_TYPE_M48T59;
/* Try to use the generic memory read/write ops */
if (!pdata->write_byte)
pdata->write_byte = m48t59_mem_writeb;
if (!pdata->read_byte)
pdata->read_byte = m48t59_mem_readb;
}
m48t59 = kzalloc(sizeof(*m48t59), GFP_KERNEL);
if (!m48t59)
return -ENOMEM;
m48t59->ioaddr = pdata->ioaddr;
if (!m48t59->ioaddr) {
/* ioaddr not mapped externally */
m48t59->ioaddr = ioremap(res->start, resource_size(res));
if (!m48t59->ioaddr)
goto out;
}
/* Try to get irq number. We also can work in
* the mode without IRQ.
*/
m48t59->irq = platform_get_irq(pdev, 0);
if (m48t59->irq <= 0)
m48t59->irq = NO_IRQ;
if (m48t59->irq != NO_IRQ) {
ret = request_irq(m48t59->irq, m48t59_rtc_interrupt,
IRQF_SHARED, "rtc-m48t59", &pdev->dev);
if (ret)
goto out;
}
switch (pdata->type) {
case M48T59RTC_TYPE_M48T59:
name = "m48t59";
ops = &m48t59_rtc_ops;
pdata->offset = 0x1ff0;
break;
case M48T59RTC_TYPE_M48T02:
name = "m48t02";
ops = &m48t02_rtc_ops;
pdata->offset = 0x7f0;
break;
case M48T59RTC_TYPE_M48T08:
name = "m48t08";
ops = &m48t02_rtc_ops;
pdata->offset = 0x1ff0;
break;
default:
dev_err(&pdev->dev, "Unknown RTC type\n");
ret = -ENODEV;
goto out;
}
spin_lock_init(&m48t59->lock);
platform_set_drvdata(pdev, m48t59);
m48t59->rtc = rtc_device_register(name, &pdev->dev, ops, THIS_MODULE);
if (IS_ERR(m48t59->rtc)) {
ret = PTR_ERR(m48t59->rtc);
goto out;
}
m48t59_nvram_attr.size = pdata->offset;
ret = sysfs_create_bin_file(&pdev->dev.kobj, &m48t59_nvram_attr);
if (ret) {
rtc_device_unregister(m48t59->rtc);
goto out;
}
return 0;
out:
if (m48t59->irq != NO_IRQ)
free_irq(m48t59->irq, &pdev->dev);
if (m48t59->ioaddr)
iounmap(m48t59->ioaddr);
kfree(m48t59);
return ret;
}
static int __devexit m48t59_rtc_remove(struct platform_device *pdev)
{
struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
struct m48t59_plat_data *pdata = pdev->dev.platform_data;
sysfs_remove_bin_file(&pdev->dev.kobj, &m48t59_nvram_attr);
if (!IS_ERR(m48t59->rtc))
rtc_device_unregister(m48t59->rtc);
if (m48t59->ioaddr && !pdata->ioaddr)
iounmap(m48t59->ioaddr);
if (m48t59->irq != NO_IRQ)
free_irq(m48t59->irq, &pdev->dev);
platform_set_drvdata(pdev, NULL);
kfree(m48t59);
return 0;
}
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:rtc-m48t59");
static struct platform_driver m48t59_rtc_driver = {
.driver = {
.name = "rtc-m48t59",
.owner = THIS_MODULE,
},
.probe = m48t59_rtc_probe,
.remove = __devexit_p(m48t59_rtc_remove),
};
static int __init m48t59_rtc_init(void)
{
return platform_driver_register(&m48t59_rtc_driver);
}
static void __exit m48t59_rtc_exit(void)
{
platform_driver_unregister(&m48t59_rtc_driver);
}
module_init(m48t59_rtc_init);
module_exit(m48t59_rtc_exit);
MODULE_AUTHOR("Mark Zhan <rongkai.zhan@windriver.com>");
MODULE_DESCRIPTION("M48T59/M48T02/M48T08 RTC driver");
MODULE_LICENSE("GPL");