2005-04-16 15:20:36 -07:00
/* i2c-core.c - a device driver for the iic-bus interface */
/* ------------------------------------------------------------------------- */
/* Copyright (C) 1995-99 Simon G. Vogl
This program is free software ; you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation ; either version 2 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program ; if not , write to the Free Software
Foundation , Inc . , 675 Mass Ave , Cambridge , MA 0213 9 , USA . */
/* ------------------------------------------------------------------------- */
2007-10-19 23:21:04 +02:00
/* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
2005-04-16 15:20:36 -07:00
All SMBus - related things are written by Frodo Looijaard < frodol @ dds . nl >
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
SMBus 2.0 support by Mark Studebaker < mdsxyz123 @ yahoo . com > and
2010-08-11 18:21:02 +02:00
Jean Delvare < khali @ linux - fr . org >
Mux support by Rodolfo Giometti < giometti @ enneenne . com > and
Michael Lawnick < michael . lawnick . ext @ nsn . com > */
2005-04-16 15:20:36 -07:00
# include <linux/module.h>
# include <linux/kernel.h>
# include <linux/errno.h>
# include <linux/slab.h>
# include <linux/i2c.h>
# include <linux/init.h>
# include <linux/idr.h>
2006-01-11 10:50:26 +01:00
# include <linux/mutex.h>
2010-06-08 07:48:19 -06:00
# include <linux/of_device.h>
2007-02-13 22:09:00 +01:00
# include <linux/completion.h>
2008-01-27 18:14:50 +01:00
# include <linux/hardirq.h>
# include <linux/irqflags.h>
2009-06-19 16:58:20 +02:00
# include <linux/rwsem.h>
2010-03-02 12:23:46 +01:00
# include <linux/pm_runtime.h>
2005-04-16 15:20:36 -07:00
# include <asm/uaccess.h>
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
# include "i2c-core.h"
2005-04-16 15:20:36 -07:00
2010-05-04 11:09:28 +02:00
/* core_lock protects i2c_adapter_idr, and guarantees
2009-06-19 16:58:19 +02:00
that device detection , deletion of detected devices , and attach_adapter
and detach_adapter calls are serialized */
2008-01-27 18:14:49 +01:00
static DEFINE_MUTEX ( core_lock ) ;
2005-04-16 15:20:36 -07:00
static DEFINE_IDR ( i2c_adapter_idr ) ;
2009-09-18 22:45:46 +02:00
static struct device_type i2c_client_type ;
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
static int i2c_detect ( struct i2c_adapter * adapter , struct i2c_driver * driver ) ;
2007-02-13 22:09:00 +01:00
/* ------------------------------------------------------------------------- */
2008-04-29 23:11:39 +02:00
static const struct i2c_device_id * i2c_match_id ( const struct i2c_device_id * id ,
const struct i2c_client * client )
{
while ( id - > name [ 0 ] ) {
if ( strcmp ( client - > name , id - > name ) = = 0 )
return id ;
id + + ;
}
return NULL ;
}
2005-04-16 15:20:36 -07:00
static int i2c_device_match ( struct device * dev , struct device_driver * drv )
{
2009-09-18 22:45:45 +02:00
struct i2c_client * client = i2c_verify_client ( dev ) ;
struct i2c_driver * driver ;
if ( ! client )
return 0 ;
2007-05-01 23:26:30 +02:00
2010-06-08 07:48:19 -06:00
/* Attempt an OF style match */
if ( of_driver_match_device ( dev , drv ) )
return 1 ;
2009-09-18 22:45:45 +02:00
driver = to_i2c_driver ( drv ) ;
2008-04-29 23:11:39 +02:00
/* match on an id table if there is one */
if ( driver - > id_table )
return i2c_match_id ( driver - > id_table , client ) ! = NULL ;
2008-05-18 20:49:41 +02:00
return 0 ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:30 +02:00
# ifdef CONFIG_HOTPLUG
/* uevent helps with hotplug: modprobe -q $(MODALIAS) */
2007-08-14 15:15:12 +02:00
static int i2c_device_uevent ( struct device * dev , struct kobj_uevent_env * env )
2007-05-01 23:26:30 +02:00
{
struct i2c_client * client = to_i2c_client ( dev ) ;
2008-05-18 20:49:41 +02:00
if ( add_uevent_var ( env , " MODALIAS=%s%s " ,
I2C_MODULE_PREFIX , client - > name ) )
return - ENOMEM ;
2007-05-01 23:26:30 +02:00
dev_dbg ( dev , " uevent \n " ) ;
return 0 ;
}
# else
# define i2c_device_uevent NULL
# endif /* CONFIG_HOTPLUG */
2007-02-13 22:09:00 +01:00
static int i2c_device_probe ( struct device * dev )
2005-04-16 15:20:36 -07:00
{
2009-09-18 22:45:45 +02:00
struct i2c_client * client = i2c_verify_client ( dev ) ;
struct i2c_driver * driver ;
2008-03-12 14:15:00 +01:00
int status ;
2007-05-01 23:26:30 +02:00
2009-09-18 22:45:45 +02:00
if ( ! client )
return 0 ;
driver = to_i2c_driver ( dev - > driver ) ;
2008-07-14 22:38:30 +02:00
if ( ! driver - > probe | | ! driver - > id_table )
2007-05-01 23:26:30 +02:00
return - ENODEV ;
client - > driver = driver ;
2008-08-28 08:33:22 +02:00
if ( ! device_can_wakeup ( & client - > dev ) )
device_init_wakeup ( & client - > dev ,
client - > flags & I2C_CLIENT_WAKE ) ;
2007-05-01 23:26:30 +02:00
dev_dbg ( dev , " probe \n " ) ;
2008-04-29 23:11:39 +02:00
2008-07-14 22:38:30 +02:00
status = driver - > probe ( client , i2c_match_id ( driver - > id_table , client ) ) ;
2010-05-04 11:09:27 +02:00
if ( status ) {
2008-03-12 14:15:00 +01:00
client - > driver = NULL ;
2010-05-04 11:09:27 +02:00
i2c_set_clientdata ( client , NULL ) ;
}
2008-03-12 14:15:00 +01:00
return status ;
2007-02-13 22:09:00 +01:00
}
2005-04-16 15:20:36 -07:00
2007-02-13 22:09:00 +01:00
static int i2c_device_remove ( struct device * dev )
{
2009-09-18 22:45:45 +02:00
struct i2c_client * client = i2c_verify_client ( dev ) ;
2007-05-01 23:26:30 +02:00
struct i2c_driver * driver ;
int status ;
2009-09-18 22:45:45 +02:00
if ( ! client | | ! dev - > driver )
2007-05-01 23:26:30 +02:00
return 0 ;
driver = to_i2c_driver ( dev - > driver ) ;
if ( driver - > remove ) {
dev_dbg ( dev , " remove \n " ) ;
status = driver - > remove ( client ) ;
} else {
dev - > driver = NULL ;
status = 0 ;
}
2010-05-04 11:09:27 +02:00
if ( status = = 0 ) {
2007-05-01 23:26:30 +02:00
client - > driver = NULL ;
2010-05-04 11:09:27 +02:00
i2c_set_clientdata ( client , NULL ) ;
}
2007-05-01 23:26:30 +02:00
return status ;
2005-04-16 15:20:36 -07:00
}
2007-02-13 22:09:00 +01:00
static void i2c_device_shutdown ( struct device * dev )
2005-04-16 15:20:36 -07:00
{
2009-09-18 22:45:45 +02:00
struct i2c_client * client = i2c_verify_client ( dev ) ;
2007-02-13 22:09:00 +01:00
struct i2c_driver * driver ;
2009-09-18 22:45:45 +02:00
if ( ! client | | ! dev - > driver )
2007-02-13 22:09:00 +01:00
return ;
driver = to_i2c_driver ( dev - > driver ) ;
if ( driver - > shutdown )
2009-09-18 22:45:45 +02:00
driver - > shutdown ( client ) ;
2005-04-16 15:20:36 -07:00
}
2010-05-10 23:09:30 +02:00
# ifdef CONFIG_PM_SLEEP
static int i2c_legacy_suspend ( struct device * dev , pm_message_t mesg )
2009-12-14 21:17:30 +01:00
{
2010-05-10 23:09:30 +02:00
struct i2c_client * client = i2c_verify_client ( dev ) ;
struct i2c_driver * driver ;
2009-12-14 21:17:30 +01:00
2010-05-10 23:09:30 +02:00
if ( ! client | | ! dev - > driver )
2009-12-14 21:17:30 +01:00
return 0 ;
2010-05-10 23:09:30 +02:00
driver = to_i2c_driver ( dev - > driver ) ;
if ( ! driver - > suspend )
2009-12-14 21:17:30 +01:00
return 0 ;
2010-05-10 23:09:30 +02:00
return driver - > suspend ( client , mesg ) ;
2009-12-14 21:17:30 +01:00
}
2010-05-10 23:09:30 +02:00
static int i2c_legacy_resume ( struct device * dev )
2009-12-14 21:17:30 +01:00
{
2010-05-10 23:09:30 +02:00
struct i2c_client * client = i2c_verify_client ( dev ) ;
struct i2c_driver * driver ;
2009-12-14 21:17:30 +01:00
2010-05-10 23:09:30 +02:00
if ( ! client | | ! dev - > driver )
2009-12-14 21:17:30 +01:00
return 0 ;
2010-05-10 23:09:30 +02:00
driver = to_i2c_driver ( dev - > driver ) ;
if ( ! driver - > resume )
2009-12-14 21:17:30 +01:00
return 0 ;
2010-05-10 23:09:30 +02:00
return driver - > resume ( client ) ;
2009-12-14 21:17:30 +01:00
}
2010-05-10 23:09:30 +02:00
static int i2c_device_pm_suspend ( struct device * dev )
2010-03-02 12:23:46 +01:00
{
2010-05-10 23:09:30 +02:00
const struct dev_pm_ops * pm = dev - > driver ? dev - > driver - > pm : NULL ;
2010-03-02 12:23:46 +01:00
2011-01-14 22:03:49 +01:00
if ( pm )
return pm_generic_suspend ( dev ) ;
else
return i2c_legacy_suspend ( dev , PMSG_SUSPEND ) ;
2010-03-02 12:23:46 +01:00
}
2010-05-10 23:09:30 +02:00
static int i2c_device_pm_resume ( struct device * dev )
2010-03-02 12:23:46 +01:00
{
2010-05-10 23:09:30 +02:00
const struct dev_pm_ops * pm = dev - > driver ? dev - > driver - > pm : NULL ;
2010-03-02 12:23:46 +01:00
2010-05-10 23:09:30 +02:00
if ( pm )
2011-01-14 22:03:49 +01:00
return pm_generic_resume ( dev ) ;
2010-05-10 23:09:30 +02:00
else
2011-01-14 22:03:49 +01:00
return i2c_legacy_resume ( dev ) ;
2010-03-02 12:23:46 +01:00
}
2010-05-10 23:09:30 +02:00
static int i2c_device_pm_freeze ( struct device * dev )
2005-04-16 15:20:36 -07:00
{
2010-05-10 23:09:30 +02:00
const struct dev_pm_ops * pm = dev - > driver ? dev - > driver - > pm : NULL ;
2007-02-13 22:09:00 +01:00
2011-01-14 22:03:49 +01:00
if ( pm )
return pm_generic_freeze ( dev ) ;
else
return i2c_legacy_suspend ( dev , PMSG_FREEZE ) ;
2005-04-16 15:20:36 -07:00
}
2010-05-10 23:09:30 +02:00
static int i2c_device_pm_thaw ( struct device * dev )
2005-04-16 15:20:36 -07:00
{
2010-05-10 23:09:30 +02:00
const struct dev_pm_ops * pm = dev - > driver ? dev - > driver - > pm : NULL ;
2007-02-13 22:09:00 +01:00
2011-01-14 22:03:49 +01:00
if ( pm )
return pm_generic_thaw ( dev ) ;
else
return i2c_legacy_resume ( dev ) ;
2010-05-10 23:09:30 +02:00
}
static int i2c_device_pm_poweroff ( struct device * dev )
{
const struct dev_pm_ops * pm = dev - > driver ? dev - > driver - > pm : NULL ;
2011-01-14 22:03:49 +01:00
if ( pm )
return pm_generic_poweroff ( dev ) ;
else
return i2c_legacy_suspend ( dev , PMSG_HIBERNATE ) ;
2010-05-10 23:09:30 +02:00
}
static int i2c_device_pm_restore ( struct device * dev )
{
const struct dev_pm_ops * pm = dev - > driver ? dev - > driver - > pm : NULL ;
if ( pm )
2011-01-14 22:03:49 +01:00
return pm_generic_restore ( dev ) ;
2010-05-10 23:09:30 +02:00
else
2011-01-14 22:03:49 +01:00
return i2c_legacy_resume ( dev ) ;
2005-04-16 15:20:36 -07:00
}
2010-05-10 23:09:30 +02:00
# else /* !CONFIG_PM_SLEEP */
# define i2c_device_pm_suspend NULL
# define i2c_device_pm_resume NULL
# define i2c_device_pm_freeze NULL
# define i2c_device_pm_thaw NULL
# define i2c_device_pm_poweroff NULL
# define i2c_device_pm_restore NULL
# endif /* !CONFIG_PM_SLEEP */
2005-04-16 15:20:36 -07:00
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
static void i2c_client_dev_release ( struct device * dev )
{
kfree ( to_i2c_client ( dev ) ) ;
}
2009-03-28 21:34:46 +01:00
static ssize_t
2009-09-18 22:45:46 +02:00
show_name ( struct device * dev , struct device_attribute * attr , char * buf )
2007-05-01 23:26:30 +02:00
{
2009-09-18 22:45:46 +02:00
return sprintf ( buf , " %s \n " , dev - > type = = & i2c_client_type ?
to_i2c_client ( dev ) - > name : to_i2c_adapter ( dev ) - > name ) ;
2007-05-01 23:26:30 +02:00
}
2009-03-28 21:34:46 +01:00
static ssize_t
show_modalias ( struct device * dev , struct device_attribute * attr , char * buf )
2007-05-01 23:26:30 +02:00
{
struct i2c_client * client = to_i2c_client ( dev ) ;
2008-05-18 20:49:41 +02:00
return sprintf ( buf , " %s%s \n " , I2C_MODULE_PREFIX , client - > name ) ;
2007-05-01 23:26:30 +02:00
}
2009-09-18 22:45:46 +02:00
static DEVICE_ATTR ( name , S_IRUGO , show_name , NULL ) ;
2009-09-18 22:45:45 +02:00
static DEVICE_ATTR ( modalias , S_IRUGO , show_modalias , NULL ) ;
static struct attribute * i2c_dev_attrs [ ] = {
& dev_attr_name . attr ,
2007-05-01 23:26:30 +02:00
/* modalias helps coldplug: modprobe $(cat .../modalias) */
2009-09-18 22:45:45 +02:00
& dev_attr_modalias . attr ,
NULL
} ;
static struct attribute_group i2c_dev_attr_group = {
. attrs = i2c_dev_attrs ,
} ;
static const struct attribute_group * i2c_dev_attr_groups [ ] = {
& i2c_dev_attr_group ,
NULL
2007-05-01 23:26:30 +02:00
} ;
2010-01-16 20:43:12 +01:00
static const struct dev_pm_ops i2c_device_pm_ops = {
2009-12-14 21:17:30 +01:00
. suspend = i2c_device_pm_suspend ,
. resume = i2c_device_pm_resume ,
2010-05-10 23:09:30 +02:00
. freeze = i2c_device_pm_freeze ,
. thaw = i2c_device_pm_thaw ,
. poweroff = i2c_device_pm_poweroff ,
. restore = i2c_device_pm_restore ,
SET_RUNTIME_PM_OPS (
pm_generic_runtime_suspend ,
pm_generic_runtime_resume ,
pm_generic_runtime_idle
)
2009-12-14 21:17:30 +01:00
} ;
2008-07-14 22:38:35 +02:00
struct bus_type i2c_bus_type = {
2007-02-13 22:09:00 +01:00
. name = " i2c " ,
. match = i2c_device_match ,
. probe = i2c_device_probe ,
. remove = i2c_device_remove ,
. shutdown = i2c_device_shutdown ,
2009-12-14 21:17:30 +01:00
. pm = & i2c_device_pm_ops ,
2006-01-05 14:37:50 +00:00
} ;
2008-07-14 22:38:35 +02:00
EXPORT_SYMBOL_GPL ( i2c_bus_type ) ;
2006-01-05 14:37:50 +00:00
2009-09-18 22:45:45 +02:00
static struct device_type i2c_client_type = {
. groups = i2c_dev_attr_groups ,
. uevent = i2c_device_uevent ,
. release = i2c_client_dev_release ,
} ;
2008-01-27 18:14:51 +01:00
/**
* i2c_verify_client - return parameter as i2c_client , or NULL
* @ dev : device , probably from some driver model iterator
*
* When traversing the driver model tree , perhaps using driver model
* iterators like @ device_for_each_child ( ) , you can ' t assume very much
* about the nodes you find . Use this function to avoid oopses caused
* by wrongly treating some non - I2C device as an i2c_client .
*/
struct i2c_client * i2c_verify_client ( struct device * dev )
{
2009-09-18 22:45:45 +02:00
return ( dev - > type = = & i2c_client_type )
2008-01-27 18:14:51 +01:00
? to_i2c_client ( dev )
: NULL ;
}
EXPORT_SYMBOL ( i2c_verify_client ) ;
2010-06-03 11:33:52 +02:00
/* This is a permissive address validity check, I2C address map constraints
2011-03-30 22:57:33 -03:00
* are purposely not enforced , except for the general call address . */
2010-06-03 11:33:52 +02:00
static int i2c_check_client_addr_validity ( const struct i2c_client * client )
{
if ( client - > flags & I2C_CLIENT_TEN ) {
/* 10-bit address, all values are valid */
if ( client - > addr > 0x3ff )
return - EINVAL ;
} else {
/* 7-bit address, reject the general call address */
if ( client - > addr = = 0x00 | | client - > addr > 0x7f )
return - EINVAL ;
}
return 0 ;
}
2010-06-03 11:33:53 +02:00
/* And this is a strict address validity check, used when probing. If a
* device uses a reserved address , then it shouldn ' t be probed . 7 - bit
* addressing is assumed , 10 - bit address devices are rare and should be
* explicitly enumerated . */
static int i2c_check_addr_validity ( unsigned short addr )
{
/*
* Reserved addresses per I2C specification :
* 0x00 General call address / START byte
* 0x01 CBUS address
* 0x02 Reserved for different bus format
* 0x03 Reserved for future purposes
* 0x04 - 0x07 Hs - mode master code
* 0x78 - 0x7b 10 - bit slave addressing
* 0x7c - 0x7f Reserved for future purposes
*/
if ( addr < 0x08 | | addr > 0x77 )
return - EINVAL ;
return 0 ;
}
2010-06-03 11:33:55 +02:00
static int __i2c_check_addr_busy ( struct device * dev , void * addrp )
{
struct i2c_client * client = i2c_verify_client ( dev ) ;
int addr = * ( int * ) addrp ;
if ( client & & client - > addr = = addr )
return - EBUSY ;
return 0 ;
}
2010-08-11 18:21:02 +02:00
/* walk up mux tree */
static int i2c_check_mux_parents ( struct i2c_adapter * adapter , int addr )
{
2010-10-24 18:16:57 +02:00
struct i2c_adapter * parent = i2c_parent_is_i2c_adapter ( adapter ) ;
2010-08-11 18:21:02 +02:00
int result ;
result = device_for_each_child ( & adapter - > dev , & addr ,
__i2c_check_addr_busy ) ;
2010-10-24 18:16:57 +02:00
if ( ! result & & parent )
result = i2c_check_mux_parents ( parent , addr ) ;
2010-08-11 18:21:02 +02:00
return result ;
}
/* recurse down mux tree */
static int i2c_check_mux_children ( struct device * dev , void * addrp )
{
int result ;
if ( dev - > type = = & i2c_adapter_type )
result = device_for_each_child ( dev , addrp ,
i2c_check_mux_children ) ;
else
result = __i2c_check_addr_busy ( dev , addrp ) ;
return result ;
}
2010-06-03 11:33:55 +02:00
static int i2c_check_addr_busy ( struct i2c_adapter * adapter , int addr )
{
2010-10-24 18:16:57 +02:00
struct i2c_adapter * parent = i2c_parent_is_i2c_adapter ( adapter ) ;
2010-08-11 18:21:02 +02:00
int result = 0 ;
2010-10-24 18:16:57 +02:00
if ( parent )
result = i2c_check_mux_parents ( parent , addr ) ;
2010-08-11 18:21:02 +02:00
if ( ! result )
result = device_for_each_child ( & adapter - > dev , & addr ,
i2c_check_mux_children ) ;
return result ;
2010-06-03 11:33:55 +02:00
}
2010-08-11 18:20:58 +02:00
/**
* i2c_lock_adapter - Get exclusive access to an I2C bus segment
* @ adapter : Target I2C bus segment
*/
void i2c_lock_adapter ( struct i2c_adapter * adapter )
{
2010-10-24 18:16:57 +02:00
struct i2c_adapter * parent = i2c_parent_is_i2c_adapter ( adapter ) ;
if ( parent )
i2c_lock_adapter ( parent ) ;
2010-08-11 18:21:02 +02:00
else
rt_mutex_lock ( & adapter - > bus_lock ) ;
2010-08-11 18:20:58 +02:00
}
EXPORT_SYMBOL_GPL ( i2c_lock_adapter ) ;
/**
* i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
* @ adapter : Target I2C bus segment
*/
static int i2c_trylock_adapter ( struct i2c_adapter * adapter )
{
2010-10-24 18:16:57 +02:00
struct i2c_adapter * parent = i2c_parent_is_i2c_adapter ( adapter ) ;
if ( parent )
return i2c_trylock_adapter ( parent ) ;
2010-08-11 18:21:02 +02:00
else
return rt_mutex_trylock ( & adapter - > bus_lock ) ;
2010-08-11 18:20:58 +02:00
}
/**
* i2c_unlock_adapter - Release exclusive access to an I2C bus segment
* @ adapter : Target I2C bus segment
*/
void i2c_unlock_adapter ( struct i2c_adapter * adapter )
{
2010-10-24 18:16:57 +02:00
struct i2c_adapter * parent = i2c_parent_is_i2c_adapter ( adapter ) ;
if ( parent )
i2c_unlock_adapter ( parent ) ;
2010-08-11 18:21:02 +02:00
else
rt_mutex_unlock ( & adapter - > bus_lock ) ;
2010-08-11 18:20:58 +02:00
}
EXPORT_SYMBOL_GPL ( i2c_unlock_adapter ) ;
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
/**
2009-06-19 16:58:18 +02:00
* i2c_new_device - instantiate an i2c device
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
* @ adap : the adapter managing the device
* @ info : describes one I2C device ; bus_num is ignored
2007-07-12 14:12:28 +02:00
* Context : can sleep
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
*
2009-06-19 16:58:18 +02:00
* Create an i2c device . Binding is handled through driver model
* probe ( ) / remove ( ) methods . A driver may be bound to this device when we
* return from this function , or any later moment ( e . g . maybe hotplugging will
* load the driver module ) . This call is not appropriate for use by mainboard
* initialization logic , which usually runs during an arch_initcall ( ) long
* before any i2c_adapter could exist .
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
*
* This returns the new i2c client , which may be saved for later use with
* i2c_unregister_device ( ) ; or NULL to indicate an error .
*/
struct i2c_client *
i2c_new_device ( struct i2c_adapter * adap , struct i2c_board_info const * info )
{
struct i2c_client * client ;
int status ;
client = kzalloc ( sizeof * client , GFP_KERNEL ) ;
if ( ! client )
return NULL ;
client - > adapter = adap ;
client - > dev . platform_data = info - > platform_data ;
2007-10-13 23:56:29 +02:00
2008-10-22 20:21:33 +02:00
if ( info - > archdata )
client - > dev . archdata = * info - > archdata ;
2008-08-28 08:33:22 +02:00
client - > flags = info - > flags ;
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
client - > addr = info - > addr ;
client - > irq = info - > irq ;
strlcpy ( client - > name , info - > type , sizeof ( client - > name ) ) ;
2010-06-03 11:33:52 +02:00
/* Check for address validity */
status = i2c_check_client_addr_validity ( client ) ;
if ( status ) {
dev_err ( & adap - > dev , " Invalid %d-bit I2C address 0x%02hx \n " ,
client - > flags & I2C_CLIENT_TEN ? 10 : 7 , client - > addr ) ;
goto out_err_silent ;
}
2009-06-19 16:58:18 +02:00
/* Check for address business */
2010-06-03 11:33:55 +02:00
status = i2c_check_addr_busy ( adap , client - > addr ) ;
2009-06-19 16:58:18 +02:00
if ( status )
goto out_err ;
client - > dev . parent = & client - > adapter - > dev ;
client - > dev . bus = & i2c_bus_type ;
2009-09-18 22:45:45 +02:00
client - > dev . type = & i2c_client_type ;
2010-04-13 16:12:28 -07:00
client - > dev . of_node = info - > of_node ;
2009-06-19 16:58:18 +02:00
2011-11-23 11:33:07 +01:00
/* For 10-bit clients, add an arbitrary offset to avoid collisions */
2009-06-19 16:58:18 +02:00
dev_set_name ( & client - > dev , " %d-%04x " , i2c_adapter_id ( adap ) ,
2011-11-23 11:33:07 +01:00
client - > addr | ( ( client - > flags & I2C_CLIENT_TEN )
? 0xa000 : 0 ) ) ;
2009-06-19 16:58:18 +02:00
status = device_register ( & client - > dev ) ;
if ( status )
goto out_err ;
dev_dbg ( & adap - > dev , " client [%s] registered with bus id %s \n " ,
client - > name , dev_name ( & client - > dev ) ) ;
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
return client ;
2009-06-19 16:58:18 +02:00
out_err :
dev_err ( & adap - > dev , " Failed to register i2c client %s at 0x%02x "
" (%d) \n " , client - > name , client - > addr , status ) ;
2010-06-03 11:33:52 +02:00
out_err_silent :
2009-06-19 16:58:18 +02:00
kfree ( client ) ;
return NULL ;
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
}
EXPORT_SYMBOL_GPL ( i2c_new_device ) ;
/**
* i2c_unregister_device - reverse effect of i2c_new_device ( )
* @ client : value returned from i2c_new_device ( )
2007-07-12 14:12:28 +02:00
* Context : can sleep
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
*/
void i2c_unregister_device ( struct i2c_client * client )
2007-05-01 23:26:30 +02:00
{
device_unregister ( & client - > dev ) ;
}
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL_GPL ( i2c_unregister_device ) ;
2007-05-01 23:26:30 +02:00
2008-05-11 20:37:06 +02:00
static const struct i2c_device_id dummy_id [ ] = {
{ " dummy " , 0 } ,
{ } ,
} ;
2008-04-29 23:11:39 +02:00
static int dummy_probe ( struct i2c_client * client ,
const struct i2c_device_id * id )
{
return 0 ;
}
static int dummy_remove ( struct i2c_client * client )
2008-01-27 18:14:52 +01:00
{
return 0 ;
}
static struct i2c_driver dummy_driver = {
. driver . name = " dummy " ,
2008-04-29 23:11:39 +02:00
. probe = dummy_probe ,
. remove = dummy_remove ,
2008-05-11 20:37:06 +02:00
. id_table = dummy_id ,
2008-01-27 18:14:52 +01:00
} ;
/**
* i2c_new_dummy - return a new i2c device bound to a dummy driver
* @ adapter : the adapter managing the device
* @ address : seven bit address to be used
* Context : can sleep
*
* This returns an I2C client bound to the " dummy " driver , intended for use
* with devices that consume multiple addresses . Examples of such chips
* include various EEPROMS ( like 24 c04 and 24 c08 models ) .
*
* These dummy devices have two main uses . First , most I2C and SMBus calls
* except i2c_transfer ( ) need a client handle ; the dummy will be that handle .
* And second , this prevents the specified address from being bound to a
* different driver .
*
* This returns the new i2c client , which should be saved for later use with
* i2c_unregister_device ( ) ; or NULL to indicate an error .
*/
2009-03-28 21:34:46 +01:00
struct i2c_client * i2c_new_dummy ( struct i2c_adapter * adapter , u16 address )
2008-01-27 18:14:52 +01:00
{
struct i2c_board_info info = {
2008-05-11 20:37:06 +02:00
I2C_BOARD_INFO ( " dummy " , address ) ,
2008-01-27 18:14:52 +01:00
} ;
return i2c_new_device ( adapter , & info ) ;
}
EXPORT_SYMBOL_GPL ( i2c_new_dummy ) ;
2007-02-13 22:09:00 +01:00
/* ------------------------------------------------------------------------- */
2007-05-01 23:26:28 +02:00
/* I2C bus adapters -- one roots each I2C or SMBUS segment */
2007-10-13 23:56:30 +02:00
static void i2c_adapter_dev_release ( struct device * dev )
2005-04-16 15:20:36 -07:00
{
2007-05-01 23:26:28 +02:00
struct i2c_adapter * adap = to_i2c_adapter ( dev ) ;
2005-04-16 15:20:36 -07:00
complete ( & adap - > dev_released ) ;
}
2009-06-19 16:58:20 +02:00
/*
* Let users instantiate I2C devices through sysfs . This can be used when
* platform initialization code doesn ' t contain the proper data for
* whatever reason . Also useful for drivers that do device detection and
* detection fails , either because the device uses an unexpected address ,
* or this is a compatible device with different ID register values .
*
* Parameter checking may look overzealous , but we really don ' t want
* the user to provide incorrect parameters .
*/
static ssize_t
i2c_sysfs_new_device ( struct device * dev , struct device_attribute * attr ,
const char * buf , size_t count )
{
struct i2c_adapter * adap = to_i2c_adapter ( dev ) ;
struct i2c_board_info info ;
struct i2c_client * client ;
char * blank , end ;
int res ;
memset ( & info , 0 , sizeof ( struct i2c_board_info ) ) ;
blank = strchr ( buf , ' ' ) ;
if ( ! blank ) {
dev_err ( dev , " %s: Missing parameters \n " , " new_device " ) ;
return - EINVAL ;
}
if ( blank - buf > I2C_NAME_SIZE - 1 ) {
dev_err ( dev , " %s: Invalid device name \n " , " new_device " ) ;
return - EINVAL ;
}
memcpy ( info . type , buf , blank - buf ) ;
/* Parse remaining parameters, reject extra parameters */
res = sscanf ( + + blank , " %hi%c " , & info . addr , & end ) ;
if ( res < 1 ) {
dev_err ( dev , " %s: Can't parse I2C address \n " , " new_device " ) ;
return - EINVAL ;
}
if ( res > 1 & & end ! = ' \n ' ) {
dev_err ( dev , " %s: Extra parameters \n " , " new_device " ) ;
return - EINVAL ;
}
client = i2c_new_device ( adap , & info ) ;
if ( ! client )
2010-06-03 11:33:52 +02:00
return - EINVAL ;
2009-06-19 16:58:20 +02:00
/* Keep track of the added device */
2010-08-11 18:21:01 +02:00
mutex_lock ( & adap - > userspace_clients_lock ) ;
2010-05-04 11:09:28 +02:00
list_add_tail ( & client - > detected , & adap - > userspace_clients ) ;
2010-08-11 18:21:01 +02:00
mutex_unlock ( & adap - > userspace_clients_lock ) ;
2009-06-19 16:58:20 +02:00
dev_info ( dev , " %s: Instantiated device %s at 0x%02hx \n " , " new_device " ,
info . type , info . addr ) ;
return count ;
}
/*
* And of course let the users delete the devices they instantiated , if
* they got it wrong . This interface can only be used to delete devices
* instantiated by i2c_sysfs_new_device above . This guarantees that we
* don ' t delete devices to which some kernel code still has references .
*
* Parameter checking may look overzealous , but we really don ' t want
* the user to delete the wrong device .
*/
static ssize_t
i2c_sysfs_delete_device ( struct device * dev , struct device_attribute * attr ,
const char * buf , size_t count )
{
struct i2c_adapter * adap = to_i2c_adapter ( dev ) ;
struct i2c_client * client , * next ;
unsigned short addr ;
char end ;
int res ;
/* Parse parameters, reject extra parameters */
res = sscanf ( buf , " %hi%c " , & addr , & end ) ;
if ( res < 1 ) {
dev_err ( dev , " %s: Can't parse I2C address \n " , " delete_device " ) ;
return - EINVAL ;
}
if ( res > 1 & & end ! = ' \n ' ) {
dev_err ( dev , " %s: Extra parameters \n " , " delete_device " ) ;
return - EINVAL ;
}
/* Make sure the device was added through sysfs */
res = - ENOENT ;
2010-08-11 18:21:01 +02:00
mutex_lock ( & adap - > userspace_clients_lock ) ;
2010-05-04 11:09:28 +02:00
list_for_each_entry_safe ( client , next , & adap - > userspace_clients ,
detected ) {
if ( client - > addr = = addr ) {
2009-06-19 16:58:20 +02:00
dev_info ( dev , " %s: Deleting device %s at 0x%02hx \n " ,
" delete_device " , client - > name , client - > addr ) ;
list_del ( & client - > detected ) ;
i2c_unregister_device ( client ) ;
res = count ;
break ;
}
}
2010-08-11 18:21:01 +02:00
mutex_unlock ( & adap - > userspace_clients_lock ) ;
2009-06-19 16:58:20 +02:00
if ( res < 0 )
dev_err ( dev , " %s: Can't find device in list \n " ,
" delete_device " ) ;
return res ;
}
2009-09-18 22:45:46 +02:00
static DEVICE_ATTR ( new_device , S_IWUSR , NULL , i2c_sysfs_new_device ) ;
static DEVICE_ATTR ( delete_device , S_IWUSR , NULL , i2c_sysfs_delete_device ) ;
static struct attribute * i2c_adapter_attrs [ ] = {
& dev_attr_name . attr ,
& dev_attr_new_device . attr ,
& dev_attr_delete_device . attr ,
NULL
} ;
static struct attribute_group i2c_adapter_attr_group = {
. attrs = i2c_adapter_attrs ,
} ;
static const struct attribute_group * i2c_adapter_attr_groups [ ] = {
& i2c_adapter_attr_group ,
NULL
2007-05-01 23:26:28 +02:00
} ;
2007-01-04 13:07:04 +01:00
2010-08-11 18:21:02 +02:00
struct device_type i2c_adapter_type = {
2009-09-18 22:45:46 +02:00
. groups = i2c_adapter_attr_groups ,
. release = i2c_adapter_dev_release ,
2005-04-16 15:20:36 -07:00
} ;
2010-08-11 18:21:02 +02:00
EXPORT_SYMBOL_GPL ( i2c_adapter_type ) ;
2005-04-16 15:20:36 -07:00
2009-09-18 22:45:46 +02:00
# ifdef CONFIG_I2C_COMPAT
static struct class_compat * i2c_adapter_compat_class ;
# endif
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
static void i2c_scan_static_board_info ( struct i2c_adapter * adapter )
{
struct i2c_devinfo * devinfo ;
2009-06-19 16:58:20 +02:00
down_read ( & __i2c_board_lock ) ;
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
list_for_each_entry ( devinfo , & __i2c_board_list , list ) {
if ( devinfo - > busnum = = adapter - > nr
& & ! i2c_new_device ( adapter ,
& devinfo - > board_info ) )
2009-03-28 21:34:46 +01:00
dev_err ( & adapter - > dev ,
" Can't create device at 0x%02x \n " ,
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
devinfo - > board_info . addr ) ;
}
2009-06-19 16:58:20 +02:00
up_read ( & __i2c_board_lock ) ;
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
}
2009-12-06 17:06:27 +01:00
static int i2c_do_add_adapter ( struct i2c_driver * driver ,
struct i2c_adapter * adap )
2008-01-27 18:14:49 +01:00
{
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
/* Detect supported devices on that bus, and instantiate them */
i2c_detect ( adap , driver ) ;
/* Let legacy drivers scan this bus for matching devices */
2008-01-27 18:14:49 +01:00
if ( driver - > attach_adapter ) {
2011-04-17 10:20:19 +02:00
dev_warn ( & adap - > dev , " %s: attach_adapter method is deprecated \n " ,
driver - > driver . name ) ;
2011-03-20 14:50:53 +01:00
dev_warn ( & adap - > dev , " Please use another way to instantiate "
" your i2c_client \n " ) ;
2008-01-27 18:14:49 +01:00
/* We ignore the return code; if it fails, too bad */
driver - > attach_adapter ( adap ) ;
}
return 0 ;
}
2009-12-06 17:06:27 +01:00
static int __process_new_adapter ( struct device_driver * d , void * data )
{
return i2c_do_add_adapter ( to_i2c_driver ( d ) , data ) ;
}
2007-05-01 23:26:31 +02:00
static int i2c_register_adapter ( struct i2c_adapter * adap )
2005-04-16 15:20:36 -07:00
{
2010-08-11 18:20:59 +02:00
int res = 0 ;
2005-04-16 15:20:36 -07:00
2008-10-14 17:30:05 +02:00
/* Can't register until after driver model init */
2009-06-19 16:58:19 +02:00
if ( unlikely ( WARN_ON ( ! i2c_bus_type . p ) ) ) {
res = - EAGAIN ;
goto out_list ;
}
2008-10-14 17:30:05 +02:00
2010-11-15 22:40:38 +01:00
/* Sanity checks */
if ( unlikely ( adap - > name [ 0 ] = = ' \0 ' ) ) {
pr_err ( " i2c-core: Attempt to register an adapter with "
" no name! \n " ) ;
return - EINVAL ;
}
if ( unlikely ( ! adap - > algo ) ) {
pr_err ( " i2c-core: Attempt to register adapter '%s' with "
" no algo! \n " , adap - > name ) ;
return - EINVAL ;
}
2009-12-06 17:06:22 +01:00
rt_mutex_init ( & adap - > bus_lock ) ;
2010-08-11 18:21:01 +02:00
mutex_init ( & adap - > userspace_clients_lock ) ;
2010-05-04 11:09:28 +02:00
INIT_LIST_HEAD ( & adap - > userspace_clients ) ;
2005-04-16 15:20:36 -07:00
2009-03-28 21:34:43 +01:00
/* Set default timeout to 1 second if not already set */
if ( adap - > timeout = = 0 )
adap - > timeout = HZ ;
i2c: Replace bus_id with dev_name(), dev_set_name()
This patch is part of a larger patch series which will remove
the "char bus_id[20]" name string from struct device. The device
name is managed in the kobject anyway, and without any size
limitation, and just needlessly copied into "struct device".
To set and read the device name dev_name(dev) and dev_set_name(dev)
must be used. If your code uses static kobjects, which it shouldn't
do, "const char *init_name" can be used to statically provide the
name the registered device should have. At registration time, the
init_name field is cleared, to enforce the use of dev_name(dev) to
access the device name at a later time.
We need to get rid of all occurrences of bus_id in the entire tree
to be able to enable the new interface. Please apply this patch,
and possibly convert any remaining remaining occurrences of bus_id.
We want to submit a patch to -next, which will remove bus_id from
"struct device", to find the remaining pieces to convert, and finally
switch over to the new api, which will remove the 20 bytes array
and does no longer have a size limitation.
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2009-01-07 14:29:16 +01:00
dev_set_name ( & adap - > dev , " i2c-%d " , adap - > nr ) ;
2009-09-18 22:45:46 +02:00
adap - > dev . bus = & i2c_bus_type ;
adap - > dev . type = & i2c_adapter_type ;
2006-08-15 18:26:30 +02:00
res = device_register ( & adap - > dev ) ;
if ( res )
goto out_list ;
2005-04-16 15:20:36 -07:00
2005-07-31 19:02:53 +02:00
dev_dbg ( & adap - > dev , " adapter [%s] registered \n " , adap - > name ) ;
2009-09-18 22:45:46 +02:00
# ifdef CONFIG_I2C_COMPAT
res = class_compat_create_link ( i2c_adapter_compat_class , & adap - > dev ,
adap - > dev . parent ) ;
if ( res )
dev_warn ( & adap - > dev ,
" Failed to create compatibility class link \n " ) ;
# endif
2009-06-19 16:58:18 +02:00
/* create pre-declared device nodes */
2007-05-01 23:26:31 +02:00
if ( adap - > nr < __i2c_first_dynamic_bus_num )
i2c_scan_static_board_info ( adap ) ;
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
/* Notify drivers */
2009-06-19 16:58:19 +02:00
mutex_lock ( & core_lock ) ;
2010-08-11 18:20:59 +02:00
bus_for_each_drv ( & i2c_bus_type , NULL , adap , __process_new_adapter ) ;
2008-01-27 18:14:49 +01:00
mutex_unlock ( & core_lock ) ;
2009-06-19 16:58:19 +02:00
return 0 ;
2006-08-15 18:26:30 +02:00
out_list :
2009-06-19 16:58:19 +02:00
mutex_lock ( & core_lock ) ;
2006-08-15 18:26:30 +02:00
idr_remove ( & i2c_adapter_idr , adap - > nr ) ;
2009-06-19 16:58:19 +02:00
mutex_unlock ( & core_lock ) ;
return res ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
/**
* i2c_add_adapter - declare i2c adapter , use dynamic bus number
* @ adapter : the adapter to add
2007-07-12 14:12:28 +02:00
* Context : can sleep
2007-05-01 23:26:31 +02:00
*
* This routine is used to declare an I2C adapter when its bus number
* doesn ' t matter . Examples : for I2C adapters dynamically added by
* USB links or PCI plugin cards .
*
* When this returns zero , a new bus number was allocated and stored
* in adap - > nr , and the specified adapter became available for clients .
* Otherwise , a negative errno value is returned .
*/
int i2c_add_adapter ( struct i2c_adapter * adapter )
{
int id , res = 0 ;
retry :
if ( idr_pre_get ( & i2c_adapter_idr , GFP_KERNEL ) = = 0 )
return - ENOMEM ;
2008-01-27 18:14:49 +01:00
mutex_lock ( & core_lock ) ;
2007-05-01 23:26:31 +02:00
/* "above" here means "above or equal to", sigh */
res = idr_get_new_above ( & i2c_adapter_idr , adapter ,
__i2c_first_dynamic_bus_num , & id ) ;
2008-01-27 18:14:49 +01:00
mutex_unlock ( & core_lock ) ;
2007-05-01 23:26:31 +02:00
if ( res < 0 ) {
if ( res = = - EAGAIN )
goto retry ;
return res ;
}
adapter - > nr = id ;
return i2c_register_adapter ( adapter ) ;
}
EXPORT_SYMBOL ( i2c_add_adapter ) ;
/**
* i2c_add_numbered_adapter - declare i2c adapter , use static bus number
* @ adap : the adapter to register ( with adap - > nr initialized )
2007-07-12 14:12:28 +02:00
* Context : can sleep
2007-05-01 23:26:31 +02:00
*
* This routine is used to declare an I2C adapter when its bus number
2008-03-23 20:28:20 +01:00
* matters . For example , use it for I2C adapters from system - on - chip CPUs ,
* or otherwise built in to the system ' s mainboard , and where i2c_board_info
2007-05-01 23:26:31 +02:00
* is used to properly configure I2C devices .
*
2011-07-25 17:49:43 +02:00
* If the requested bus number is set to - 1 , then this function will behave
* identically to i2c_add_adapter , and will dynamically assign a bus number .
*
2007-05-01 23:26:31 +02:00
* If no devices have pre - been declared for this bus , then be sure to
* register the adapter before any dynamically allocated ones . Otherwise
* the required bus ID may not be available .
*
* When this returns zero , the specified adapter became available for
* clients using the bus number provided in adap - > nr . Also , the table
* of I2C devices pre - declared using i2c_register_board_info ( ) is scanned ,
* and the appropriate driver model device nodes are created . Otherwise , a
* negative errno value is returned .
*/
int i2c_add_numbered_adapter ( struct i2c_adapter * adap )
{
int id ;
int status ;
2011-07-25 17:49:43 +02:00
if ( adap - > nr = = - 1 ) /* -1 means dynamically assign bus id */
return i2c_add_adapter ( adap ) ;
2007-05-01 23:26:31 +02:00
if ( adap - > nr & ~ MAX_ID_MASK )
return - EINVAL ;
retry :
if ( idr_pre_get ( & i2c_adapter_idr , GFP_KERNEL ) = = 0 )
return - ENOMEM ;
2008-01-27 18:14:49 +01:00
mutex_lock ( & core_lock ) ;
2007-05-01 23:26:31 +02:00
/* "above" here means "above or equal to", sigh;
* we need the " equal to " result to force the result
*/
status = idr_get_new_above ( & i2c_adapter_idr , adap , adap - > nr , & id ) ;
if ( status = = 0 & & id ! = adap - > nr ) {
status = - EBUSY ;
idr_remove ( & i2c_adapter_idr , id ) ;
}
2008-01-27 18:14:49 +01:00
mutex_unlock ( & core_lock ) ;
2007-05-01 23:26:31 +02:00
if ( status = = - EAGAIN )
goto retry ;
if ( status = = 0 )
status = i2c_register_adapter ( adap ) ;
return status ;
}
EXPORT_SYMBOL_GPL ( i2c_add_numbered_adapter ) ;
2009-12-06 17:06:27 +01:00
static int i2c_do_del_adapter ( struct i2c_driver * driver ,
struct i2c_adapter * adapter )
2008-01-27 18:14:49 +01:00
{
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
struct i2c_client * client , * _n ;
2008-01-27 18:14:49 +01:00
int res ;
2009-03-28 21:34:40 +01:00
/* Remove the devices we created ourselves as the result of hardware
* probing ( using a driver ' s detect method ) */
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
list_for_each_entry_safe ( client , _n , & driver - > clients , detected ) {
if ( client - > adapter = = adapter ) {
dev_dbg ( & adapter - > dev , " Removing %s at 0x%x \n " ,
client - > name , client - > addr ) ;
list_del ( & client - > detected ) ;
i2c_unregister_device ( client ) ;
}
}
2008-01-27 18:14:49 +01:00
if ( ! driver - > detach_adapter )
return 0 ;
2011-04-17 10:20:19 +02:00
dev_warn ( & adapter - > dev , " %s: detach_adapter method is deprecated \n " ,
driver - > driver . name ) ;
2008-01-27 18:14:49 +01:00
res = driver - > detach_adapter ( adapter ) ;
if ( res )
dev_err ( & adapter - > dev , " detach_adapter failed (%d) "
" for driver [%s] \n " , res , driver - > driver . name ) ;
return res ;
}
2009-06-19 16:58:19 +02:00
static int __unregister_client ( struct device * dev , void * dummy )
2011-01-14 22:03:49 +01:00
{
struct i2c_client * client = i2c_verify_client ( dev ) ;
if ( client & & strcmp ( client - > name , " dummy " ) )
i2c_unregister_device ( client ) ;
return 0 ;
}
static int __unregister_dummy ( struct device * dev , void * dummy )
2009-06-19 16:58:19 +02:00
{
struct i2c_client * client = i2c_verify_client ( dev ) ;
if ( client )
i2c_unregister_device ( client ) ;
return 0 ;
}
2009-12-06 17:06:27 +01:00
static int __process_removed_adapter ( struct device_driver * d , void * data )
{
return i2c_do_del_adapter ( to_i2c_driver ( d ) , data ) ;
}
2007-07-12 14:12:28 +02:00
/**
* i2c_del_adapter - unregister I2C adapter
* @ adap : the adapter being unregistered
* Context : can sleep
*
* This unregisters an I2C adapter which was previously registered
* by @ i2c_add_adapter or @ i2c_add_numbered_adapter .
*/
2005-04-16 15:20:36 -07:00
int i2c_del_adapter ( struct i2c_adapter * adap )
{
int res = 0 ;
2009-06-19 16:58:19 +02:00
struct i2c_adapter * found ;
2009-11-26 09:22:33 +01:00
struct i2c_client * client , * next ;
2005-04-16 15:20:36 -07:00
/* First make sure that this adapter was ever added */
2009-06-19 16:58:19 +02:00
mutex_lock ( & core_lock ) ;
found = idr_find ( & i2c_adapter_idr , adap - > nr ) ;
mutex_unlock ( & core_lock ) ;
if ( found ! = adap ) {
2005-07-31 19:02:53 +02:00
pr_debug ( " i2c-core: attempting to delete unregistered "
" adapter [%s] \n " , adap - > name ) ;
2009-06-19 16:58:19 +02:00
return - EINVAL ;
2005-04-16 15:20:36 -07:00
}
2008-01-27 18:14:49 +01:00
/* Tell drivers about this removal */
2009-06-19 16:58:19 +02:00
mutex_lock ( & core_lock ) ;
2008-01-27 18:14:49 +01:00
res = bus_for_each_drv ( & i2c_bus_type , NULL , adap ,
2009-12-06 17:06:27 +01:00
__process_removed_adapter ) ;
2009-06-19 16:58:19 +02:00
mutex_unlock ( & core_lock ) ;
2008-01-27 18:14:49 +01:00
if ( res )
2009-06-19 16:58:19 +02:00
return res ;
2005-04-16 15:20:36 -07:00
2009-11-26 09:22:33 +01:00
/* Remove devices instantiated from sysfs */
2010-08-11 18:21:01 +02:00
mutex_lock ( & adap - > userspace_clients_lock ) ;
2010-05-04 11:09:28 +02:00
list_for_each_entry_safe ( client , next , & adap - > userspace_clients ,
detected ) {
dev_dbg ( & adap - > dev , " Removing %s at 0x%x \n " , client - > name ,
client - > addr ) ;
list_del ( & client - > detected ) ;
i2c_unregister_device ( client ) ;
2009-11-26 09:22:33 +01:00
}
2010-08-11 18:21:01 +02:00
mutex_unlock ( & adap - > userspace_clients_lock ) ;
2009-11-26 09:22:33 +01:00
2009-06-19 16:58:19 +02:00
/* Detach any active clients. This can't fail, thus we do not
2011-01-14 22:03:49 +01:00
* check the returned value . This is a two - pass process , because
* we can ' t remove the dummy devices during the first pass : they
* could have been instantiated by real devices wishing to clean
* them up properly , so we give them a chance to do that first . */
2009-06-19 16:58:19 +02:00
res = device_for_each_child ( & adap - > dev , NULL , __unregister_client ) ;
2011-01-14 22:03:49 +01:00
res = device_for_each_child ( & adap - > dev , NULL , __unregister_dummy ) ;
2005-04-16 15:20:36 -07:00
2009-09-18 22:45:46 +02:00
# ifdef CONFIG_I2C_COMPAT
class_compat_remove_link ( i2c_adapter_compat_class , & adap - > dev ,
adap - > dev . parent ) ;
# endif
2010-01-16 20:43:13 +01:00
/* device name is gone after device_unregister */
dev_dbg ( & adap - > dev , " adapter [%s] unregistered \n " , adap - > name ) ;
2005-04-16 15:20:36 -07:00
/* clean up the sysfs representation */
init_completion ( & adap - > dev_released ) ;
device_unregister ( & adap - > dev ) ;
/* wait for sysfs to drop all references */
wait_for_completion ( & adap - > dev_released ) ;
2007-05-01 23:26:31 +02:00
/* free bus id */
2009-06-19 16:58:19 +02:00
mutex_lock ( & core_lock ) ;
2005-04-16 15:20:36 -07:00
idr_remove ( & i2c_adapter_idr , adap - > nr ) ;
2009-06-19 16:58:19 +02:00
mutex_unlock ( & core_lock ) ;
2005-04-16 15:20:36 -07:00
2008-07-16 19:30:05 +02:00
/* Clear the device structure in case this adapter is ever going to be
added again */
memset ( & adap - > dev , 0 , sizeof ( adap - > dev ) ) ;
2009-06-19 16:58:19 +02:00
return 0 ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_del_adapter ) ;
2005-04-16 15:20:36 -07:00
2007-05-01 23:26:30 +02:00
/* ------------------------------------------------------------------------- */
2011-03-20 14:50:52 +01:00
int i2c_for_each_dev ( void * data , int ( * fn ) ( struct device * , void * ) )
{
int res ;
mutex_lock ( & core_lock ) ;
res = bus_for_each_dev ( & i2c_bus_type , NULL , data , fn ) ;
mutex_unlock ( & core_lock ) ;
return res ;
}
EXPORT_SYMBOL_GPL ( i2c_for_each_dev ) ;
2009-12-06 17:06:27 +01:00
static int __process_new_driver ( struct device * dev , void * data )
2008-07-14 22:38:19 +02:00
{
2009-09-18 22:45:46 +02:00
if ( dev - > type ! = & i2c_adapter_type )
return 0 ;
2009-12-06 17:06:27 +01:00
return i2c_do_add_adapter ( data , to_i2c_adapter ( dev ) ) ;
2008-07-14 22:38:19 +02:00
}
2007-05-01 23:26:30 +02:00
/*
* An i2c_driver is used with one or more i2c_client ( device ) nodes to access
2009-06-19 16:58:18 +02:00
* i2c slave chips , on a bus instance associated with some i2c_adapter .
2005-04-16 15:20:36 -07:00
*/
2005-12-06 15:33:15 -08:00
int i2c_register_driver ( struct module * owner , struct i2c_driver * driver )
2005-04-16 15:20:36 -07:00
{
2006-02-05 23:28:21 +01:00
int res ;
2005-04-16 15:20:36 -07:00
2008-10-14 17:30:05 +02:00
/* Can't register until after driver model init */
if ( unlikely ( WARN_ON ( ! i2c_bus_type . p ) ) )
return - EAGAIN ;
2005-04-16 15:20:36 -07:00
/* add the driver to the list of i2c drivers in the driver core */
2005-12-06 15:33:15 -08:00
driver - > driver . owner = owner ;
2005-04-16 15:20:36 -07:00
driver - > driver . bus = & i2c_bus_type ;
2009-06-19 16:58:18 +02:00
/* When registration returns, the driver core
2007-05-01 23:26:31 +02:00
* will have called probe ( ) for all matching - but - unbound devices .
*/
2005-04-16 15:20:36 -07:00
res = driver_register ( & driver - > driver ) ;
if ( res )
2006-02-05 23:28:21 +01:00
return res ;
2006-12-10 21:21:31 +01:00
2011-01-14 22:03:50 +01:00
/* Drivers should switch to dev_pm_ops instead. */
if ( driver - > suspend )
pr_warn ( " i2c-core: driver [%s] using legacy suspend method \n " ,
driver - > driver . name ) ;
if ( driver - > resume )
pr_warn ( " i2c-core: driver [%s] using legacy resume method \n " ,
driver - > driver . name ) ;
2005-11-26 20:34:05 +01:00
pr_debug ( " i2c-core: driver [%s] registered \n " , driver - > driver . name ) ;
2005-04-16 15:20:36 -07:00
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
INIT_LIST_HEAD ( & driver - > clients ) ;
/* Walk the adapters that are already present */
2011-03-20 14:50:52 +01:00
i2c_for_each_dev ( driver , __process_new_driver ) ;
2009-06-19 16:58:19 +02:00
2008-07-14 22:38:19 +02:00
return 0 ;
}
EXPORT_SYMBOL ( i2c_register_driver ) ;
2009-12-06 17:06:27 +01:00
static int __process_removed_driver ( struct device * dev , void * data )
2008-07-14 22:38:19 +02:00
{
2009-09-18 22:45:46 +02:00
if ( dev - > type ! = & i2c_adapter_type )
return 0 ;
2009-12-06 17:06:27 +01:00
return i2c_do_del_adapter ( data , to_i2c_adapter ( dev ) ) ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:30 +02:00
/**
* i2c_del_driver - unregister I2C driver
* @ driver : the driver being unregistered
2007-07-12 14:12:28 +02:00
* Context : can sleep
2007-05-01 23:26:30 +02:00
*/
2007-05-01 23:26:32 +02:00
void i2c_del_driver ( struct i2c_driver * driver )
2005-04-16 15:20:36 -07:00
{
2011-03-20 14:50:52 +01:00
i2c_for_each_dev ( driver , __process_removed_driver ) ;
2005-04-16 15:20:36 -07:00
driver_unregister ( & driver - > driver ) ;
2005-11-26 20:34:05 +01:00
pr_debug ( " i2c-core: driver [%s] unregistered \n " , driver - > driver . name ) ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_del_driver ) ;
2005-04-16 15:20:36 -07:00
2007-05-01 23:26:30 +02:00
/* ------------------------------------------------------------------------- */
2008-01-27 18:14:48 +01:00
/**
* i2c_use_client - increments the reference count of the i2c client structure
* @ client : the client being referenced
*
* Each live reference to a client should be refcounted . The driver model does
* that automatically as part of driver binding , so that most drivers don ' t
* need to do this explicitly : they hold a reference until they ' re unbound
* from the device .
*
* A pointer to the client with the incremented reference counter is returned .
*/
struct i2c_client * i2c_use_client ( struct i2c_client * client )
2005-04-16 15:20:36 -07:00
{
2008-07-14 22:38:24 +02:00
if ( client & & get_device ( & client - > dev ) )
return client ;
return NULL ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_use_client ) ;
2005-04-16 15:20:36 -07:00
2008-01-27 18:14:48 +01:00
/**
* i2c_release_client - release a use of the i2c client structure
* @ client : the client being no longer referenced
*
* Must be called when a user of a client is finished with it .
*/
void i2c_release_client ( struct i2c_client * client )
2005-04-16 15:20:36 -07:00
{
2008-07-14 22:38:24 +02:00
if ( client )
put_device ( & client - > dev ) ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_release_client ) ;
2005-04-16 15:20:36 -07:00
2008-01-27 18:14:51 +01:00
struct i2c_cmd_arg {
unsigned cmd ;
void * arg ;
} ;
static int i2c_cmd ( struct device * dev , void * _arg )
{
struct i2c_client * client = i2c_verify_client ( dev ) ;
struct i2c_cmd_arg * arg = _arg ;
if ( client & & client - > driver & & client - > driver - > command )
client - > driver - > command ( client , arg - > cmd , arg - > arg ) ;
return 0 ;
}
2005-04-16 15:20:36 -07:00
void i2c_clients_command ( struct i2c_adapter * adap , unsigned int cmd , void * arg )
{
2008-01-27 18:14:51 +01:00
struct i2c_cmd_arg cmd_arg ;
2005-04-16 15:20:36 -07:00
2008-01-27 18:14:51 +01:00
cmd_arg . cmd = cmd ;
cmd_arg . arg = arg ;
device_for_each_child ( & adap - > dev , & cmd_arg , i2c_cmd ) ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_clients_command ) ;
2005-04-16 15:20:36 -07:00
static int __init i2c_init ( void )
{
int retval ;
retval = bus_register ( & i2c_bus_type ) ;
if ( retval )
return retval ;
2009-09-18 22:45:46 +02:00
# ifdef CONFIG_I2C_COMPAT
i2c_adapter_compat_class = class_compat_register ( " i2c-adapter " ) ;
if ( ! i2c_adapter_compat_class ) {
retval = - ENOMEM ;
goto bus_err ;
}
# endif
2008-01-27 18:14:52 +01:00
retval = i2c_add_driver ( & dummy_driver ) ;
if ( retval )
2009-09-18 22:45:46 +02:00
goto class_err ;
2008-01-27 18:14:52 +01:00
return 0 ;
2009-09-18 22:45:46 +02:00
class_err :
# ifdef CONFIG_I2C_COMPAT
class_compat_unregister ( i2c_adapter_compat_class ) ;
2008-01-27 18:14:52 +01:00
bus_err :
2009-09-18 22:45:46 +02:00
# endif
2008-01-27 18:14:52 +01:00
bus_unregister ( & i2c_bus_type ) ;
return retval ;
2005-04-16 15:20:36 -07:00
}
static void __exit i2c_exit ( void )
{
2008-01-27 18:14:52 +01:00
i2c_del_driver ( & dummy_driver ) ;
2009-09-18 22:45:46 +02:00
# ifdef CONFIG_I2C_COMPAT
class_compat_unregister ( i2c_adapter_compat_class ) ;
# endif
2005-04-16 15:20:36 -07:00
bus_unregister ( & i2c_bus_type ) ;
}
2008-10-14 17:30:06 +02:00
/* We must initialize early, because some subsystems register i2c drivers
* in subsys_initcall ( ) code , but are linked ( and initialized ) before i2c .
*/
postcore_initcall ( i2c_init ) ;
2005-04-16 15:20:36 -07:00
module_exit ( i2c_exit ) ;
/* ----------------------------------------------------
* the functional interface to the i2c busses .
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*/
2008-07-14 22:38:24 +02:00
/**
* i2c_transfer - execute a single or combined I2C message
* @ adap : Handle to I2C bus
* @ msgs : One or more messages to execute before STOP is issued to
* terminate the operation ; each message begins with a START .
* @ num : Number of messages to be executed .
*
* Returns negative errno , else the number of messages executed .
*
* Note that there is no requirement that each message be sent to
* the same slave address , although that is the most common model .
*/
2009-03-28 21:34:46 +01:00
int i2c_transfer ( struct i2c_adapter * adap , struct i2c_msg * msgs , int num )
2005-04-16 15:20:36 -07:00
{
2009-06-15 18:01:46 +02:00
unsigned long orig_jiffies ;
int ret , try ;
2005-04-16 15:20:36 -07:00
2008-07-14 22:38:24 +02:00
/* REVISIT the fault reporting model here is weak:
*
* - When we get an error after receiving N bytes from a slave ,
* there is no way to report " N " .
*
* - When we get a NAK after transmitting N bytes to a slave ,
* there is no way to report " N " . . . or to let the master
* continue executing the rest of this combined message , if
* that ' s the appropriate response .
*
* - When for example " num " is two and we successfully complete
* the first message but get an error part way through the
* second , it ' s unclear whether that should be reported as
* one ( discarding status on the second message ) or errno
* ( discarding status on the first one ) .
*/
2005-04-16 15:20:36 -07:00
if ( adap - > algo - > master_xfer ) {
# ifdef DEBUG
for ( ret = 0 ; ret < num ; ret + + ) {
dev_dbg ( & adap - > dev , " master_xfer[%d] %c, addr=0x%02x, "
2007-05-01 23:26:29 +02:00
" len=%d%s \n " , ret , ( msgs [ ret ] . flags & I2C_M_RD )
? ' R ' : ' W ' , msgs [ ret ] . addr , msgs [ ret ] . len ,
( msgs [ ret ] . flags & I2C_M_RECV_LEN ) ? " + " : " " ) ;
2005-04-16 15:20:36 -07:00
}
# endif
2008-01-27 18:14:50 +01:00
if ( in_atomic ( ) | | irqs_disabled ( ) ) {
2010-08-11 18:20:58 +02:00
ret = i2c_trylock_adapter ( adap ) ;
2008-01-27 18:14:50 +01:00
if ( ! ret )
/* I2C activity is ongoing. */
return - EAGAIN ;
} else {
2010-08-11 18:20:58 +02:00
i2c_lock_adapter ( adap ) ;
2008-01-27 18:14:50 +01:00
}
2009-06-15 18:01:46 +02:00
/* Retry automatically on arbitration loss */
orig_jiffies = jiffies ;
for ( ret = 0 , try = 0 ; try < = adap - > retries ; try + + ) {
ret = adap - > algo - > master_xfer ( adap , msgs , num ) ;
if ( ret ! = - EAGAIN )
break ;
if ( time_after ( jiffies , orig_jiffies + adap - > timeout ) )
break ;
}
2010-08-11 18:20:58 +02:00
i2c_unlock_adapter ( adap ) ;
2005-04-16 15:20:36 -07:00
return ret ;
} else {
dev_dbg ( & adap - > dev , " I2C level transfers not supported \n " ) ;
2008-07-14 22:38:23 +02:00
return - EOPNOTSUPP ;
2005-04-16 15:20:36 -07:00
}
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_transfer ) ;
2005-04-16 15:20:36 -07:00
2008-07-14 22:38:24 +02:00
/**
* i2c_master_send - issue a single I2C message in master transmit mode
* @ client : Handle to slave device
* @ buf : Data that will be written to the slave
2010-03-02 12:23:49 +01:00
* @ count : How many bytes to write , must be less than 64 k since msg . len is u16
2008-07-14 22:38:24 +02:00
*
* Returns negative errno , or else the number of bytes written .
*/
2011-01-10 22:11:23 +01:00
int i2c_master_send ( const struct i2c_client * client , const char * buf , int count )
2005-04-16 15:20:36 -07:00
{
int ret ;
2010-05-21 18:40:58 +02:00
struct i2c_adapter * adap = client - > adapter ;
2005-04-16 15:20:36 -07:00
struct i2c_msg msg ;
2005-05-07 22:58:46 +02:00
msg . addr = client - > addr ;
msg . flags = client - > flags & I2C_M_TEN ;
msg . len = count ;
msg . buf = ( char * ) buf ;
2006-12-10 21:21:31 +01:00
2005-05-07 22:58:46 +02:00
ret = i2c_transfer ( adap , & msg , 1 ) ;
2005-04-16 15:20:36 -07:00
2012-03-15 18:11:05 +01:00
/*
* If everything went ok ( i . e . 1 msg transmitted ) , return # bytes
* transmitted , else error code .
*/
2005-05-07 22:58:46 +02:00
return ( ret = = 1 ) ? count : ret ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_master_send ) ;
2005-04-16 15:20:36 -07:00
2008-07-14 22:38:24 +02:00
/**
* i2c_master_recv - issue a single I2C message in master receive mode
* @ client : Handle to slave device
* @ buf : Where to store data read from slave
2010-03-02 12:23:49 +01:00
* @ count : How many bytes to read , must be less than 64 k since msg . len is u16
2008-07-14 22:38:24 +02:00
*
* Returns negative errno , or else the number of bytes read .
*/
2011-01-10 22:11:23 +01:00
int i2c_master_recv ( const struct i2c_client * client , char * buf , int count )
2005-04-16 15:20:36 -07:00
{
2010-05-21 18:40:58 +02:00
struct i2c_adapter * adap = client - > adapter ;
2005-04-16 15:20:36 -07:00
struct i2c_msg msg ;
int ret ;
2005-05-07 22:58:46 +02:00
msg . addr = client - > addr ;
msg . flags = client - > flags & I2C_M_TEN ;
msg . flags | = I2C_M_RD ;
msg . len = count ;
msg . buf = buf ;
ret = i2c_transfer ( adap , & msg , 1 ) ;
2012-03-15 18:11:05 +01:00
/*
* If everything went ok ( i . e . 1 msg received ) , return # bytes received ,
* else error code .
*/
2005-05-07 22:58:46 +02:00
return ( ret = = 1 ) ? count : ret ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_master_recv ) ;
2005-04-16 15:20:36 -07:00
/* ----------------------------------------------------
* the i2c address scanning function
* Will not work for 10 - bit addresses !
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*/
2010-06-03 11:33:51 +02:00
/*
* Legacy default probe function , mostly relevant for SMBus . The default
* probe method is a quick write , but it is known to corrupt the 24 RF08
* EEPROMs due to a state machine bug , and could also irreversibly
* write - protect some EEPROMs , so for address ranges 0x30 - 0x37 and 0x50 - 0x5f ,
* we use a short byte read instead . Also , some bus drivers don ' t implement
* quick write , so we fallback to a byte read in that case too .
* On x86 , there is another special case for FSC hardware monitoring chips ,
* which want regular byte reads ( address 0x73 . ) Fortunately , these are the
* only known chips using this I2C address on PC hardware .
* Returns 1 if probe succeeded , 0 if not .
*/
static int i2c_default_probe ( struct i2c_adapter * adap , unsigned short addr )
{
int err ;
union i2c_smbus_data dummy ;
# ifdef CONFIG_X86
if ( addr = = 0x73 & & ( adap - > class & I2C_CLASS_HWMON )
& & i2c_check_functionality ( adap , I2C_FUNC_SMBUS_READ_BYTE_DATA ) )
err = i2c_smbus_xfer ( adap , addr , 0 , I2C_SMBUS_READ , 0 ,
I2C_SMBUS_BYTE_DATA , & dummy ) ;
else
# endif
2010-08-11 18:21:00 +02:00
if ( ! ( ( addr & ~ 0x07 ) = = 0x30 | | ( addr & ~ 0x0f ) = = 0x50 )
& & i2c_check_functionality ( adap , I2C_FUNC_SMBUS_QUICK ) )
2010-06-03 11:33:51 +02:00
err = i2c_smbus_xfer ( adap , addr , 0 , I2C_SMBUS_WRITE , 0 ,
I2C_SMBUS_QUICK , NULL ) ;
2010-08-11 18:21:00 +02:00
else if ( i2c_check_functionality ( adap , I2C_FUNC_SMBUS_READ_BYTE ) )
err = i2c_smbus_xfer ( adap , addr , 0 , I2C_SMBUS_READ , 0 ,
I2C_SMBUS_BYTE , & dummy ) ;
else {
dev_warn ( & adap - > dev , " No suitable probing method supported \n " ) ;
err = - EOPNOTSUPP ;
}
2010-06-03 11:33:51 +02:00
return err > = 0 ;
}
2009-12-06 17:06:25 +01:00
static int i2c_detect_address ( struct i2c_client * temp_client ,
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
struct i2c_driver * driver )
{
struct i2c_board_info info ;
struct i2c_adapter * adapter = temp_client - > adapter ;
int addr = temp_client - > addr ;
int err ;
/* Make sure the address is valid */
2010-06-03 11:33:53 +02:00
err = i2c_check_addr_validity ( addr ) ;
if ( err ) {
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
dev_warn ( & adapter - > dev , " Invalid probe address 0x%02x \n " ,
addr ) ;
2010-06-03 11:33:53 +02:00
return err ;
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
}
/* Skip if already in use */
2010-06-03 11:33:55 +02:00
if ( i2c_check_addr_busy ( adapter , addr ) )
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
return 0 ;
2009-12-06 17:06:25 +01:00
/* Make sure there is something at this address */
2010-06-03 11:33:51 +02:00
if ( ! i2c_default_probe ( adapter , addr ) )
return 0 ;
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
/* Finally call the custom detection function */
memset ( & info , 0 , sizeof ( struct i2c_board_info ) ) ;
info . addr = addr ;
2009-12-14 21:17:23 +01:00
err = driver - > detect ( temp_client , & info ) ;
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
if ( err ) {
/* -ENODEV is returned if the detection fails. We catch it
here as this isn ' t an error . */
return err = = - ENODEV ? 0 : err ;
}
/* Consistency check */
if ( info . type [ 0 ] = = ' \0 ' ) {
dev_err ( & adapter - > dev , " %s detection function provided "
" no name for 0x%x \n " , driver - > driver . name ,
addr ) ;
} else {
struct i2c_client * client ;
/* Detection succeeded, instantiate the device */
dev_dbg ( & adapter - > dev , " Creating %s at 0x%02x \n " ,
info . type , info . addr ) ;
client = i2c_new_device ( adapter , & info ) ;
if ( client )
list_add_tail ( & client - > detected , & driver - > clients ) ;
else
dev_err ( & adapter - > dev , " Failed creating %s at 0x%02x \n " ,
info . type , info . addr ) ;
}
return 0 ;
}
static int i2c_detect ( struct i2c_adapter * adapter , struct i2c_driver * driver )
{
2009-12-14 21:17:25 +01:00
const unsigned short * address_list ;
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
struct i2c_client * temp_client ;
int i , err = 0 ;
int adap_id = i2c_adapter_id ( adapter ) ;
2009-12-14 21:17:25 +01:00
address_list = driver - > address_list ;
if ( ! driver - > detect | | ! address_list )
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
return 0 ;
2010-10-24 18:16:58 +02:00
/* Stop here if the classes do not match */
if ( ! ( adapter - > class & driver - > class ) )
return 0 ;
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
/* Set up a temporary client to help detect callback */
temp_client = kzalloc ( sizeof ( struct i2c_client ) , GFP_KERNEL ) ;
if ( ! temp_client )
return - ENOMEM ;
temp_client - > adapter = adapter ;
2009-12-14 21:17:25 +01:00
for ( i = 0 ; address_list [ i ] ! = I2C_CLIENT_END ; i + = 1 ) {
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
dev_dbg ( & adapter - > dev , " found normal entry for adapter %d, "
2009-12-14 21:17:25 +01:00
" addr 0x%02x \n " , adap_id , address_list [ i ] ) ;
temp_client - > addr = address_list [ i ] ;
2009-12-06 17:06:25 +01:00
err = i2c_detect_address ( temp_client , driver ) ;
2010-10-24 18:16:58 +02:00
if ( unlikely ( err ) )
break ;
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
}
kfree ( temp_client ) ;
return err ;
}
2010-08-11 18:20:57 +02:00
int i2c_probe_func_quick_read ( struct i2c_adapter * adap , unsigned short addr )
{
return i2c_smbus_xfer ( adap , addr , 0 , I2C_SMBUS_READ , 0 ,
I2C_SMBUS_QUICK , NULL ) > = 0 ;
}
EXPORT_SYMBOL_GPL ( i2c_probe_func_quick_read ) ;
2007-05-01 23:26:31 +02:00
struct i2c_client *
i2c_new_probed_device ( struct i2c_adapter * adap ,
struct i2c_board_info * info ,
2010-08-11 18:20:56 +02:00
unsigned short const * addr_list ,
int ( * probe ) ( struct i2c_adapter * , unsigned short addr ) )
2007-05-01 23:26:31 +02:00
{
int i ;
2010-08-11 18:21:00 +02:00
if ( ! probe )
2010-08-11 18:20:56 +02:00
probe = i2c_default_probe ;
2007-05-01 23:26:31 +02:00
for ( i = 0 ; addr_list [ i ] ! = I2C_CLIENT_END ; i + + ) {
/* Check address validity */
2010-06-03 11:33:53 +02:00
if ( i2c_check_addr_validity ( addr_list [ i ] ) < 0 ) {
2007-05-01 23:26:31 +02:00
dev_warn ( & adap - > dev , " Invalid 7-bit address "
" 0x%02x \n " , addr_list [ i ] ) ;
continue ;
}
/* Check address availability */
2010-06-03 11:33:55 +02:00
if ( i2c_check_addr_busy ( adap , addr_list [ i ] ) ) {
2007-05-01 23:26:31 +02:00
dev_dbg ( & adap - > dev , " Address 0x%02x already in "
" use, not probing \n " , addr_list [ i ] ) ;
continue ;
}
2010-06-03 11:33:51 +02:00
/* Test address responsiveness */
2010-08-11 18:20:56 +02:00
if ( probe ( adap , addr_list [ i ] ) )
2010-06-03 11:33:51 +02:00
break ;
2007-05-01 23:26:31 +02:00
}
if ( addr_list [ i ] = = I2C_CLIENT_END ) {
dev_dbg ( & adap - > dev , " Probing failed, no device found \n " ) ;
return NULL ;
}
info - > addr = addr_list [ i ] ;
return i2c_new_device ( adap , info ) ;
}
EXPORT_SYMBOL_GPL ( i2c_new_probed_device ) ;
2011-03-20 14:50:52 +01:00
struct i2c_adapter * i2c_get_adapter ( int nr )
2005-04-16 15:20:36 -07:00
{
struct i2c_adapter * adapter ;
2006-12-10 21:21:31 +01:00
2008-01-27 18:14:49 +01:00
mutex_lock ( & core_lock ) ;
2011-03-20 14:50:52 +01:00
adapter = idr_find ( & i2c_adapter_idr , nr ) ;
2005-06-28 00:21:30 -04:00
if ( adapter & & ! try_module_get ( adapter - > owner ) )
adapter = NULL ;
2008-01-27 18:14:49 +01:00
mutex_unlock ( & core_lock ) ;
2005-06-28 00:21:30 -04:00
return adapter ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_get_adapter ) ;
2005-04-16 15:20:36 -07:00
void i2c_put_adapter ( struct i2c_adapter * adap )
{
module_put ( adap - > owner ) ;
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_put_adapter ) ;
2005-04-16 15:20:36 -07:00
/* The SMBus parts */
2006-12-10 21:21:31 +01:00
# define POLY (0x1070U << 3)
2009-03-28 21:34:46 +01:00
static u8 crc8 ( u16 data )
2005-04-16 15:20:36 -07:00
{
int i ;
2006-12-10 21:21:31 +01:00
2010-05-21 18:40:58 +02:00
for ( i = 0 ; i < 8 ; i + + ) {
2006-12-10 21:21:31 +01:00
if ( data & 0x8000 )
2005-04-16 15:20:36 -07:00
data = data ^ POLY ;
data = data < < 1 ;
}
return ( u8 ) ( data > > 8 ) ;
}
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
/* Incremental CRC8 over count bytes in the array pointed to by p */
static u8 i2c_smbus_pec ( u8 crc , u8 * p , size_t count )
2005-04-16 15:20:36 -07:00
{
int i ;
2010-05-21 18:40:58 +02:00
for ( i = 0 ; i < count ; i + + )
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
crc = crc8 ( ( crc ^ p [ i ] ) < < 8 ) ;
2005-04-16 15:20:36 -07:00
return crc ;
}
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
/* Assume a 7-bit address, which is reasonable for SMBus */
static u8 i2c_smbus_msg_pec ( u8 pec , struct i2c_msg * msg )
2005-04-16 15:20:36 -07:00
{
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
/* The address will be sent first */
u8 addr = ( msg - > addr < < 1 ) | ! ! ( msg - > flags & I2C_M_RD ) ;
pec = i2c_smbus_pec ( pec , & addr , 1 ) ;
/* The data buffer follows */
return i2c_smbus_pec ( pec , msg - > buf , msg - > len ) ;
2005-04-16 15:20:36 -07:00
}
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
/* Used for write only transactions */
static inline void i2c_smbus_add_pec ( struct i2c_msg * msg )
2005-04-16 15:20:36 -07:00
{
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
msg - > buf [ msg - > len ] = i2c_smbus_msg_pec ( 0 , msg ) ;
msg - > len + + ;
2005-04-16 15:20:36 -07:00
}
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
/* Return <0 on CRC error
If there was a write before this read ( most cases ) we need to take the
partial CRC from the write part into account .
Note that this function does modify the message ( we need to decrease the
message length to hide the CRC byte from the caller ) . */
static int i2c_smbus_check_pec ( u8 cpec , struct i2c_msg * msg )
2005-04-16 15:20:36 -07:00
{
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
u8 rpec = msg - > buf [ - - msg - > len ] ;
cpec = i2c_smbus_msg_pec ( cpec , msg ) ;
2005-04-16 15:20:36 -07:00
if ( rpec ! = cpec ) {
pr_debug ( " i2c-core: Bad PEC 0x%02x vs. 0x%02x \n " ,
rpec , cpec ) ;
2008-07-14 22:38:23 +02:00
return - EBADMSG ;
2005-04-16 15:20:36 -07:00
}
2006-12-10 21:21:31 +01:00
return 0 ;
2005-04-16 15:20:36 -07:00
}
2008-07-14 22:38:24 +02:00
/**
* i2c_smbus_read_byte - SMBus " receive byte " protocol
* @ client : Handle to slave device
*
* This executes the SMBus " receive byte " protocol , returning negative errno
* else the byte received from the device .
*/
2011-01-10 22:11:23 +01:00
s32 i2c_smbus_read_byte ( const struct i2c_client * client )
2005-04-16 15:20:36 -07:00
{
union i2c_smbus_data data ;
2008-07-14 22:38:23 +02:00
int status ;
status = i2c_smbus_xfer ( client - > adapter , client - > addr , client - > flags ,
I2C_SMBUS_READ , 0 ,
I2C_SMBUS_BYTE , & data ) ;
return ( status < 0 ) ? status : data . byte ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_smbus_read_byte ) ;
2005-04-16 15:20:36 -07:00
2008-07-14 22:38:24 +02:00
/**
* i2c_smbus_write_byte - SMBus " send byte " protocol
* @ client : Handle to slave device
* @ value : Byte to be sent
*
* This executes the SMBus " send byte " protocol , returning negative errno
* else zero on success .
*/
2011-01-10 22:11:23 +01:00
s32 i2c_smbus_write_byte ( const struct i2c_client * client , u8 value )
2005-04-16 15:20:36 -07:00
{
2010-05-21 18:40:58 +02:00
return i2c_smbus_xfer ( client - > adapter , client - > addr , client - > flags ,
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
I2C_SMBUS_WRITE , value , I2C_SMBUS_BYTE , NULL ) ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_smbus_write_byte ) ;
2005-04-16 15:20:36 -07:00
2008-07-14 22:38:24 +02:00
/**
* i2c_smbus_read_byte_data - SMBus " read byte " protocol
* @ client : Handle to slave device
* @ command : Byte interpreted by slave
*
* This executes the SMBus " read byte " protocol , returning negative errno
* else a data byte received from the device .
*/
2011-01-10 22:11:23 +01:00
s32 i2c_smbus_read_byte_data ( const struct i2c_client * client , u8 command )
2005-04-16 15:20:36 -07:00
{
union i2c_smbus_data data ;
2008-07-14 22:38:23 +02:00
int status ;
status = i2c_smbus_xfer ( client - > adapter , client - > addr , client - > flags ,
I2C_SMBUS_READ , command ,
I2C_SMBUS_BYTE_DATA , & data ) ;
return ( status < 0 ) ? status : data . byte ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_smbus_read_byte_data ) ;
2005-04-16 15:20:36 -07:00
2008-07-14 22:38:24 +02:00
/**
* i2c_smbus_write_byte_data - SMBus " write byte " protocol
* @ client : Handle to slave device
* @ command : Byte interpreted by slave
* @ value : Byte being written
*
* This executes the SMBus " write byte " protocol , returning negative errno
* else zero on success .
*/
2011-01-10 22:11:23 +01:00
s32 i2c_smbus_write_byte_data ( const struct i2c_client * client , u8 command ,
u8 value )
2005-04-16 15:20:36 -07:00
{
union i2c_smbus_data data ;
data . byte = value ;
2010-05-21 18:40:58 +02:00
return i2c_smbus_xfer ( client - > adapter , client - > addr , client - > flags ,
I2C_SMBUS_WRITE , command ,
I2C_SMBUS_BYTE_DATA , & data ) ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_smbus_write_byte_data ) ;
2005-04-16 15:20:36 -07:00
2008-07-14 22:38:24 +02:00
/**
* i2c_smbus_read_word_data - SMBus " read word " protocol
* @ client : Handle to slave device
* @ command : Byte interpreted by slave
*
* This executes the SMBus " read word " protocol , returning negative errno
* else a 16 - bit unsigned " word " received from the device .
*/
2011-01-10 22:11:23 +01:00
s32 i2c_smbus_read_word_data ( const struct i2c_client * client , u8 command )
2005-04-16 15:20:36 -07:00
{
union i2c_smbus_data data ;
2008-07-14 22:38:23 +02:00
int status ;
status = i2c_smbus_xfer ( client - > adapter , client - > addr , client - > flags ,
I2C_SMBUS_READ , command ,
I2C_SMBUS_WORD_DATA , & data ) ;
return ( status < 0 ) ? status : data . word ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_smbus_read_word_data ) ;
2005-04-16 15:20:36 -07:00
2008-07-14 22:38:24 +02:00
/**
* i2c_smbus_write_word_data - SMBus " write word " protocol
* @ client : Handle to slave device
* @ command : Byte interpreted by slave
* @ value : 16 - bit " word " being written
*
* This executes the SMBus " write word " protocol , returning negative errno
* else zero on success .
*/
2011-01-10 22:11:23 +01:00
s32 i2c_smbus_write_word_data ( const struct i2c_client * client , u8 command ,
u16 value )
2005-04-16 15:20:36 -07:00
{
union i2c_smbus_data data ;
data . word = value ;
2010-05-21 18:40:58 +02:00
return i2c_smbus_xfer ( client - > adapter , client - > addr , client - > flags ,
I2C_SMBUS_WRITE , command ,
I2C_SMBUS_WORD_DATA , & data ) ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_smbus_write_word_data ) ;
2005-04-16 15:20:36 -07:00
2008-10-14 17:30:06 +02:00
/**
* i2c_smbus_process_call - SMBus " process call " protocol
* @ client : Handle to slave device
* @ command : Byte interpreted by slave
* @ value : 16 - bit " word " being written
*
* This executes the SMBus " process call " protocol , returning negative errno
* else a 16 - bit unsigned " word " received from the device .
*/
2011-01-10 22:11:23 +01:00
s32 i2c_smbus_process_call ( const struct i2c_client * client , u8 command ,
u16 value )
2008-10-14 17:30:06 +02:00
{
union i2c_smbus_data data ;
int status ;
data . word = value ;
status = i2c_smbus_xfer ( client - > adapter , client - > addr , client - > flags ,
I2C_SMBUS_WRITE , command ,
I2C_SMBUS_PROC_CALL , & data ) ;
return ( status < 0 ) ? status : data . word ;
}
EXPORT_SYMBOL ( i2c_smbus_process_call ) ;
2007-10-13 23:56:31 +02:00
/**
2008-07-14 22:38:24 +02:00
* i2c_smbus_read_block_data - SMBus " block read " protocol
2007-10-13 23:56:31 +02:00
* @ client : Handle to slave device
2008-07-14 22:38:24 +02:00
* @ command : Byte interpreted by slave
2007-10-13 23:56:31 +02:00
* @ values : Byte array into which data will be read ; big enough to hold
* the data returned by the slave . SMBus allows at most 32 bytes .
*
2008-07-14 22:38:24 +02:00
* This executes the SMBus " block read " protocol , returning negative errno
* else the number of data bytes in the slave ' s response .
2007-10-13 23:56:31 +02:00
*
* Note that using this function requires that the client ' s adapter support
* the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality . Not all adapter drivers
* support this ; its emulation through I2C messaging relies on a specific
* mechanism ( I2C_M_RECV_LEN ) which may not be implemented .
*/
2011-01-10 22:11:23 +01:00
s32 i2c_smbus_read_block_data ( const struct i2c_client * client , u8 command ,
2007-05-01 23:26:34 +02:00
u8 * values )
{
union i2c_smbus_data data ;
2008-07-14 22:38:23 +02:00
int status ;
2007-05-01 23:26:34 +02:00
2008-07-14 22:38:23 +02:00
status = i2c_smbus_xfer ( client - > adapter , client - > addr , client - > flags ,
I2C_SMBUS_READ , command ,
I2C_SMBUS_BLOCK_DATA , & data ) ;
if ( status )
return status ;
2007-05-01 23:26:34 +02:00
memcpy ( values , & data . block [ 1 ] , data . block [ 0 ] ) ;
return data . block [ 0 ] ;
}
EXPORT_SYMBOL ( i2c_smbus_read_block_data ) ;
2008-07-14 22:38:24 +02:00
/**
* i2c_smbus_write_block_data - SMBus " block write " protocol
* @ client : Handle to slave device
* @ command : Byte interpreted by slave
* @ length : Size of data block ; SMBus allows at most 32 bytes
* @ values : Byte array which will be written .
*
* This executes the SMBus " block write " protocol , returning negative errno
* else zero on success .
*/
2011-01-10 22:11:23 +01:00
s32 i2c_smbus_write_block_data ( const struct i2c_client * client , u8 command ,
2006-06-12 21:42:20 +02:00
u8 length , const u8 * values )
2005-04-16 15:20:36 -07:00
{
union i2c_smbus_data data ;
2006-01-18 23:14:55 +01:00
2005-04-16 15:20:36 -07:00
if ( length > I2C_SMBUS_BLOCK_MAX )
length = I2C_SMBUS_BLOCK_MAX ;
data . block [ 0 ] = length ;
2006-01-18 23:14:55 +01:00
memcpy ( & data . block [ 1 ] , values , length ) ;
2010-05-21 18:40:58 +02:00
return i2c_smbus_xfer ( client - > adapter , client - > addr , client - > flags ,
I2C_SMBUS_WRITE , command ,
I2C_SMBUS_BLOCK_DATA , & data ) ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_smbus_write_block_data ) ;
2005-04-16 15:20:36 -07:00
/* Returns the number of read bytes */
2011-01-10 22:11:23 +01:00
s32 i2c_smbus_read_i2c_block_data ( const struct i2c_client * client , u8 command ,
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype
Let the drivers specify how many bytes they want to read with
i2c_smbus_read_i2c_block_data(). So far, the block count was
hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense.
Many driver authors complained about this before, and I believe it's
about time to fix it. Right now, authors have to do technically stupid
things, such as individual byte reads or full-fledged I2C messaging,
to work around the problem. We do not want to encourage that.
I even found that some bus drivers (e.g. i2c-amd8111) already
implemented I2C block read the "right" way, that is, they didn't
follow the old, broken standard. The fact that it was never noticed
before just shows how little i2c_smbus_read_i2c_block_data() was used,
which isn't that surprising given how broken its prototype was so far.
There are some obvious compatiblity considerations:
* This changes the i2c_smbus_read_i2c_block_data() prototype. Users
outside the kernel tree will notice at compilation time, and will
have to update their code.
* User-space has access to i2c_smbus_xfer() directly using i2c-dev, so
the changed expectations would affect tools such as i2cdump. In order
to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA
a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the
old numeric value. When i2c-dev receives a transaction with the
old value, it can convert it to the new format on the fly.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-07-12 14:12:29 +02:00
u8 length , u8 * values )
2005-04-16 15:20:36 -07:00
{
union i2c_smbus_data data ;
2008-07-14 22:38:23 +02:00
int status ;
2006-01-18 23:14:55 +01:00
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype
Let the drivers specify how many bytes they want to read with
i2c_smbus_read_i2c_block_data(). So far, the block count was
hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense.
Many driver authors complained about this before, and I believe it's
about time to fix it. Right now, authors have to do technically stupid
things, such as individual byte reads or full-fledged I2C messaging,
to work around the problem. We do not want to encourage that.
I even found that some bus drivers (e.g. i2c-amd8111) already
implemented I2C block read the "right" way, that is, they didn't
follow the old, broken standard. The fact that it was never noticed
before just shows how little i2c_smbus_read_i2c_block_data() was used,
which isn't that surprising given how broken its prototype was so far.
There are some obvious compatiblity considerations:
* This changes the i2c_smbus_read_i2c_block_data() prototype. Users
outside the kernel tree will notice at compilation time, and will
have to update their code.
* User-space has access to i2c_smbus_xfer() directly using i2c-dev, so
the changed expectations would affect tools such as i2cdump. In order
to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA
a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the
old numeric value. When i2c-dev receives a transaction with the
old value, it can convert it to the new format on the fly.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-07-12 14:12:29 +02:00
if ( length > I2C_SMBUS_BLOCK_MAX )
length = I2C_SMBUS_BLOCK_MAX ;
data . block [ 0 ] = length ;
2008-07-14 22:38:23 +02:00
status = i2c_smbus_xfer ( client - > adapter , client - > addr , client - > flags ,
I2C_SMBUS_READ , command ,
I2C_SMBUS_I2C_BLOCK_DATA , & data ) ;
if ( status < 0 )
return status ;
2006-01-18 23:14:55 +01:00
memcpy ( values , & data . block [ 1 ] , data . block [ 0 ] ) ;
return data . block [ 0 ] ;
2005-04-16 15:20:36 -07:00
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_smbus_read_i2c_block_data ) ;
2005-04-16 15:20:36 -07:00
2011-01-10 22:11:23 +01:00
s32 i2c_smbus_write_i2c_block_data ( const struct i2c_client * client , u8 command ,
2006-06-12 21:42:20 +02:00
u8 length , const u8 * values )
2006-01-09 15:19:18 +11:00
{
union i2c_smbus_data data ;
if ( length > I2C_SMBUS_BLOCK_MAX )
length = I2C_SMBUS_BLOCK_MAX ;
data . block [ 0 ] = length ;
memcpy ( data . block + 1 , values , length ) ;
return i2c_smbus_xfer ( client - > adapter , client - > addr , client - > flags ,
I2C_SMBUS_WRITE , command ,
I2C_SMBUS_I2C_BLOCK_DATA , & data ) ;
}
2007-05-01 23:26:31 +02:00
EXPORT_SYMBOL ( i2c_smbus_write_i2c_block_data ) ;
2006-01-09 15:19:18 +11:00
2006-12-10 21:21:31 +01:00
/* Simulate a SMBus command using the i2c protocol
2005-04-16 15:20:36 -07:00
No checking of parameters is done ! */
2010-05-21 18:40:58 +02:00
static s32 i2c_smbus_xfer_emulated ( struct i2c_adapter * adapter , u16 addr ,
unsigned short flags ,
char read_write , u8 command , int size ,
union i2c_smbus_data * data )
2005-04-16 15:20:36 -07:00
{
/* So we need to generate a series of msgs. In the case of writing, we
need to use only one message ; when reading , we need two . We initialize
most things with sane defaults , to keep the code below somewhat
simpler . */
2005-09-25 17:01:11 +02:00
unsigned char msgbuf0 [ I2C_SMBUS_BLOCK_MAX + 3 ] ;
unsigned char msgbuf1 [ I2C_SMBUS_BLOCK_MAX + 2 ] ;
2010-05-21 18:40:58 +02:00
int num = read_write = = I2C_SMBUS_READ ? 2 : 1 ;
2006-12-10 21:21:31 +01:00
struct i2c_msg msg [ 2 ] = { { addr , flags , 1 , msgbuf0 } ,
2005-04-16 15:20:36 -07:00
{ addr , flags | I2C_M_RD , 0 , msgbuf1 }
} ;
int i ;
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
u8 partial_pec = 0 ;
2008-07-14 22:38:23 +02:00
int status ;
2005-04-16 15:20:36 -07:00
msgbuf0 [ 0 ] = command ;
2010-05-21 18:40:58 +02:00
switch ( size ) {
2005-04-16 15:20:36 -07:00
case I2C_SMBUS_QUICK :
msg [ 0 ] . len = 0 ;
/* Special case: The read/write field is used as data */
2009-02-24 19:19:48 +01:00
msg [ 0 ] . flags = flags | ( read_write = = I2C_SMBUS_READ ?
I2C_M_RD : 0 ) ;
2005-04-16 15:20:36 -07:00
num = 1 ;
break ;
case I2C_SMBUS_BYTE :
if ( read_write = = I2C_SMBUS_READ ) {
/* Special case: only a read! */
msg [ 0 ] . flags = I2C_M_RD | flags ;
num = 1 ;
}
break ;
case I2C_SMBUS_BYTE_DATA :
if ( read_write = = I2C_SMBUS_READ )
msg [ 1 ] . len = 1 ;
else {
msg [ 0 ] . len = 2 ;
msgbuf0 [ 1 ] = data - > byte ;
}
break ;
case I2C_SMBUS_WORD_DATA :
if ( read_write = = I2C_SMBUS_READ )
msg [ 1 ] . len = 2 ;
else {
2010-05-21 18:40:58 +02:00
msg [ 0 ] . len = 3 ;
2005-04-16 15:20:36 -07:00
msgbuf0 [ 1 ] = data - > word & 0xff ;
2006-09-03 22:24:00 +02:00
msgbuf0 [ 2 ] = data - > word > > 8 ;
2005-04-16 15:20:36 -07:00
}
break ;
case I2C_SMBUS_PROC_CALL :
num = 2 ; /* Special case */
read_write = I2C_SMBUS_READ ;
msg [ 0 ] . len = 3 ;
msg [ 1 ] . len = 2 ;
msgbuf0 [ 1 ] = data - > word & 0xff ;
2006-09-03 22:24:00 +02:00
msgbuf0 [ 2 ] = data - > word > > 8 ;
2005-04-16 15:20:36 -07:00
break ;
case I2C_SMBUS_BLOCK_DATA :
if ( read_write = = I2C_SMBUS_READ ) {
2007-05-01 23:26:29 +02:00
msg [ 1 ] . flags | = I2C_M_RECV_LEN ;
msg [ 1 ] . len = 1 ; /* block length will be added by
the underlying bus driver */
2005-04-16 15:20:36 -07:00
} else {
msg [ 0 ] . len = data - > block [ 0 ] + 2 ;
if ( msg [ 0 ] . len > I2C_SMBUS_BLOCK_MAX + 2 ) {
2008-07-14 22:38:23 +02:00
dev_err ( & adapter - > dev ,
" Invalid block write size %d \n " ,
data - > block [ 0 ] ) ;
return - EINVAL ;
2005-04-16 15:20:36 -07:00
}
2005-09-25 17:01:11 +02:00
for ( i = 1 ; i < msg [ 0 ] . len ; i + + )
2005-04-16 15:20:36 -07:00
msgbuf0 [ i ] = data - > block [ i - 1 ] ;
}
break ;
case I2C_SMBUS_BLOCK_PROC_CALL :
2007-05-01 23:26:29 +02:00
num = 2 ; /* Another special case */
read_write = I2C_SMBUS_READ ;
if ( data - > block [ 0 ] > I2C_SMBUS_BLOCK_MAX ) {
2008-07-14 22:38:23 +02:00
dev_err ( & adapter - > dev ,
" Invalid block write size %d \n " ,
2007-05-01 23:26:29 +02:00
data - > block [ 0 ] ) ;
2008-07-14 22:38:23 +02:00
return - EINVAL ;
2007-05-01 23:26:29 +02:00
}
msg [ 0 ] . len = data - > block [ 0 ] + 2 ;
for ( i = 1 ; i < msg [ 0 ] . len ; i + + )
msgbuf0 [ i ] = data - > block [ i - 1 ] ;
msg [ 1 ] . flags | = I2C_M_RECV_LEN ;
msg [ 1 ] . len = 1 ; /* block length will be added by
the underlying bus driver */
break ;
2005-04-16 15:20:36 -07:00
case I2C_SMBUS_I2C_BLOCK_DATA :
if ( read_write = = I2C_SMBUS_READ ) {
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype
Let the drivers specify how many bytes they want to read with
i2c_smbus_read_i2c_block_data(). So far, the block count was
hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense.
Many driver authors complained about this before, and I believe it's
about time to fix it. Right now, authors have to do technically stupid
things, such as individual byte reads or full-fledged I2C messaging,
to work around the problem. We do not want to encourage that.
I even found that some bus drivers (e.g. i2c-amd8111) already
implemented I2C block read the "right" way, that is, they didn't
follow the old, broken standard. The fact that it was never noticed
before just shows how little i2c_smbus_read_i2c_block_data() was used,
which isn't that surprising given how broken its prototype was so far.
There are some obvious compatiblity considerations:
* This changes the i2c_smbus_read_i2c_block_data() prototype. Users
outside the kernel tree will notice at compilation time, and will
have to update their code.
* User-space has access to i2c_smbus_xfer() directly using i2c-dev, so
the changed expectations would affect tools such as i2cdump. In order
to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA
a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the
old numeric value. When i2c-dev receives a transaction with the
old value, it can convert it to the new format on the fly.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-07-12 14:12:29 +02:00
msg [ 1 ] . len = data - > block [ 0 ] ;
2005-04-16 15:20:36 -07:00
} else {
msg [ 0 ] . len = data - > block [ 0 ] + 1 ;
2005-10-08 00:15:59 +02:00
if ( msg [ 0 ] . len > I2C_SMBUS_BLOCK_MAX + 1 ) {
2008-07-14 22:38:23 +02:00
dev_err ( & adapter - > dev ,
" Invalid block write size %d \n " ,
data - > block [ 0 ] ) ;
return - EINVAL ;
2005-04-16 15:20:36 -07:00
}
for ( i = 1 ; i < = data - > block [ 0 ] ; i + + )
msgbuf0 [ i ] = data - > block [ i ] ;
}
break ;
default :
2008-07-14 22:38:23 +02:00
dev_err ( & adapter - > dev , " Unsupported transaction %d \n " , size ) ;
return - EOPNOTSUPP ;
2005-04-16 15:20:36 -07:00
}
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
i = ( ( flags & I2C_CLIENT_PEC ) & & size ! = I2C_SMBUS_QUICK
& & size ! = I2C_SMBUS_I2C_BLOCK_DATA ) ;
if ( i ) {
/* Compute PEC if first message is a write */
if ( ! ( msg [ 0 ] . flags & I2C_M_RD ) ) {
2006-12-10 21:21:31 +01:00
if ( num = = 1 ) /* Write only */
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
i2c_smbus_add_pec ( & msg [ 0 ] ) ;
else /* Write followed by read */
partial_pec = i2c_smbus_msg_pec ( 0 , & msg [ 0 ] ) ;
}
/* Ask for PEC if last message is a read */
if ( msg [ num - 1 ] . flags & I2C_M_RD )
2006-12-10 21:21:31 +01:00
msg [ num - 1 ] . len + + ;
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
}
2008-07-14 22:38:23 +02:00
status = i2c_transfer ( adapter , msg , num ) ;
if ( status < 0 )
return status ;
2005-04-16 15:20:36 -07:00
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
/* Check PEC if last message is a read */
if ( i & & ( msg [ num - 1 ] . flags & I2C_M_RD ) ) {
2008-07-14 22:38:23 +02:00
status = i2c_smbus_check_pec ( partial_pec , & msg [ num - 1 ] ) ;
if ( status < 0 )
return status ;
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2005-10-26 21:28:55 +02:00
}
2005-04-16 15:20:36 -07:00
if ( read_write = = I2C_SMBUS_READ )
2010-05-21 18:40:58 +02:00
switch ( size ) {
case I2C_SMBUS_BYTE :
data - > byte = msgbuf0 [ 0 ] ;
break ;
case I2C_SMBUS_BYTE_DATA :
data - > byte = msgbuf1 [ 0 ] ;
break ;
case I2C_SMBUS_WORD_DATA :
case I2C_SMBUS_PROC_CALL :
data - > word = msgbuf1 [ 0 ] | ( msgbuf1 [ 1 ] < < 8 ) ;
break ;
case I2C_SMBUS_I2C_BLOCK_DATA :
for ( i = 0 ; i < data - > block [ 0 ] ; i + + )
data - > block [ i + 1 ] = msgbuf1 [ i ] ;
break ;
case I2C_SMBUS_BLOCK_DATA :
case I2C_SMBUS_BLOCK_PROC_CALL :
for ( i = 0 ; i < msgbuf1 [ 0 ] + 1 ; i + + )
data - > block [ i ] = msgbuf1 [ i ] ;
break ;
2005-04-16 15:20:36 -07:00
}
return 0 ;
}
2008-07-14 22:38:24 +02:00
/**
* i2c_smbus_xfer - execute SMBus protocol operations
* @ adapter : Handle to I2C bus
* @ addr : Address of SMBus slave on that bus
* @ flags : I2C_CLIENT_ * flags ( usually zero or I2C_CLIENT_PEC )
* @ read_write : I2C_SMBUS_READ or I2C_SMBUS_WRITE
* @ command : Byte interpreted by slave , for protocols which use such bytes
* @ protocol : SMBus protocol operation to execute , such as I2C_SMBUS_PROC_CALL
* @ data : Data to be read or written
*
* This executes an SMBus protocol operation , and returns a negative
* errno code else zero on success .
*/
2009-03-28 21:34:46 +01:00
s32 i2c_smbus_xfer ( struct i2c_adapter * adapter , u16 addr , unsigned short flags ,
2008-07-14 22:38:24 +02:00
char read_write , u8 command , int protocol ,
2009-03-28 21:34:46 +01:00
union i2c_smbus_data * data )
2005-04-16 15:20:36 -07:00
{
2009-06-15 18:01:46 +02:00
unsigned long orig_jiffies ;
int try ;
2005-04-16 15:20:36 -07:00
s32 res ;
flags & = I2C_M_TEN | I2C_CLIENT_PEC ;
if ( adapter - > algo - > smbus_xfer ) {
2010-08-11 18:20:58 +02:00
i2c_lock_adapter ( adapter ) ;
2009-06-15 18:01:46 +02:00
/* Retry automatically on arbitration loss */
orig_jiffies = jiffies ;
for ( res = 0 , try = 0 ; try < = adapter - > retries ; try + + ) {
res = adapter - > algo - > smbus_xfer ( adapter , addr , flags ,
read_write , command ,
protocol , data ) ;
if ( res ! = - EAGAIN )
break ;
if ( time_after ( jiffies ,
orig_jiffies + adapter - > timeout ) )
break ;
}
2010-08-11 18:20:58 +02:00
i2c_unlock_adapter ( adapter ) ;
2005-04-16 15:20:36 -07:00
} else
2010-05-21 18:40:58 +02:00
res = i2c_smbus_xfer_emulated ( adapter , addr , flags , read_write ,
2008-07-14 22:38:24 +02:00
command , protocol , data ) ;
2005-04-16 15:20:36 -07:00
return res ;
}
EXPORT_SYMBOL ( i2c_smbus_xfer ) ;
MODULE_AUTHOR ( " Simon G. Vogl <simon@tk.uni-linz.ac.at> " ) ;
MODULE_DESCRIPTION ( " I2C-Bus main module " ) ;
MODULE_LICENSE ( " GPL " ) ;