1611 lines
36 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* erasure coding */
#include "bcachefs.h"
#include "alloc_foreground.h"
#include "bkey_on_stack.h"
#include "bset.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "buckets.h"
#include "disk_groups.h"
#include "ec.h"
#include "error.h"
#include "io.h"
#include "keylist.h"
#include "recovery.h"
#include "super-io.h"
#include "util.h"
#include <linux/sort.h>
#ifdef __KERNEL__
#include <linux/raid/pq.h>
#include <linux/raid/xor.h>
static void raid5_recov(unsigned disks, unsigned failed_idx,
size_t size, void **data)
{
unsigned i = 2, nr;
BUG_ON(failed_idx >= disks);
swap(data[0], data[failed_idx]);
memcpy(data[0], data[1], size);
while (i < disks) {
nr = min_t(unsigned, disks - i, MAX_XOR_BLOCKS);
xor_blocks(nr, size, data[0], data + i);
i += nr;
}
swap(data[0], data[failed_idx]);
}
static void raid_gen(int nd, int np, size_t size, void **v)
{
if (np >= 1)
raid5_recov(nd + np, nd, size, v);
if (np >= 2)
raid6_call.gen_syndrome(nd + np, size, v);
BUG_ON(np > 2);
}
static void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v)
{
switch (nr) {
case 0:
break;
case 1:
if (ir[0] < nd + 1)
raid5_recov(nd + 1, ir[0], size, v);
else
raid6_call.gen_syndrome(nd + np, size, v);
break;
case 2:
if (ir[1] < nd) {
/* data+data failure. */
raid6_2data_recov(nd + np, size, ir[0], ir[1], v);
} else if (ir[0] < nd) {
/* data + p/q failure */
if (ir[1] == nd) /* data + p failure */
raid6_datap_recov(nd + np, size, ir[0], v);
else { /* data + q failure */
raid5_recov(nd + 1, ir[0], size, v);
raid6_call.gen_syndrome(nd + np, size, v);
}
} else {
raid_gen(nd, np, size, v);
}
break;
default:
BUG();
}
}
#else
#include <raid/raid.h>
#endif
struct ec_bio {
struct bch_dev *ca;
struct ec_stripe_buf *buf;
size_t idx;
struct bio bio;
};
/* Stripes btree keys: */
const char *bch2_stripe_invalid(const struct bch_fs *c, struct bkey_s_c k)
{
const struct bch_stripe *s = bkey_s_c_to_stripe(k).v;
if (k.k->p.inode)
return "invalid stripe key";
if (bkey_val_bytes(k.k) < sizeof(*s))
return "incorrect value size";
if (bkey_val_bytes(k.k) < sizeof(*s) ||
bkey_val_u64s(k.k) < stripe_val_u64s(s))
return "incorrect value size";
return bch2_bkey_ptrs_invalid(c, k);
}
void bch2_stripe_to_text(struct printbuf *out, struct bch_fs *c,
struct bkey_s_c k)
{
const struct bch_stripe *s = bkey_s_c_to_stripe(k).v;
unsigned i;
pr_buf(out, "algo %u sectors %u blocks %u:%u csum %u gran %u",
s->algorithm,
le16_to_cpu(s->sectors),
s->nr_blocks - s->nr_redundant,
s->nr_redundant,
s->csum_type,
1U << s->csum_granularity_bits);
for (i = 0; i < s->nr_blocks; i++)
pr_buf(out, " %u:%llu:%u", s->ptrs[i].dev,
(u64) s->ptrs[i].offset,
stripe_blockcount_get(s, i));
}
static int ptr_matches_stripe(struct bch_fs *c,
struct bch_stripe *v,
const struct bch_extent_ptr *ptr)
{
unsigned i;
for (i = 0; i < v->nr_blocks - v->nr_redundant; i++) {
const struct bch_extent_ptr *ptr2 = v->ptrs + i;
if (ptr->dev == ptr2->dev &&
ptr->gen == ptr2->gen &&
ptr->offset >= ptr2->offset &&
ptr->offset < ptr2->offset + le16_to_cpu(v->sectors))
return i;
}
return -1;
}
static int extent_matches_stripe(struct bch_fs *c,
struct bch_stripe *v,
struct bkey_s_c k)
{
switch (k.k->type) {
case KEY_TYPE_extent: {
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
const struct bch_extent_ptr *ptr;
int idx;
extent_for_each_ptr(e, ptr) {
idx = ptr_matches_stripe(c, v, ptr);
if (idx >= 0)
return idx;
}
break;
}
}
return -1;
}
static bool extent_has_stripe_ptr(struct bkey_s_c k, u64 idx)
{
switch (k.k->type) {
case KEY_TYPE_extent: {
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
const union bch_extent_entry *entry;
extent_for_each_entry(e, entry)
if (extent_entry_type(entry) ==
BCH_EXTENT_ENTRY_stripe_ptr &&
entry->stripe_ptr.idx == idx)
return true;
break;
}
}
return false;
}
/* Checksumming: */
static void ec_generate_checksums(struct ec_stripe_buf *buf)
{
struct bch_stripe *v = &buf->key.v;
unsigned csum_granularity = 1 << v->csum_granularity_bits;
unsigned csums_per_device = stripe_csums_per_device(v);
unsigned csum_bytes = bch_crc_bytes[v->csum_type];
unsigned i, j;
if (!csum_bytes)
return;
BUG_ON(buf->offset);
BUG_ON(buf->size != le16_to_cpu(v->sectors));
for (i = 0; i < v->nr_blocks; i++) {
for (j = 0; j < csums_per_device; j++) {
unsigned offset = j << v->csum_granularity_bits;
unsigned len = min(csum_granularity, buf->size - offset);
struct bch_csum csum =
bch2_checksum(NULL, v->csum_type,
null_nonce(),
buf->data[i] + (offset << 9),
len << 9);
memcpy(stripe_csum(v, i, j), &csum, csum_bytes);
}
}
}
static void ec_validate_checksums(struct bch_fs *c, struct ec_stripe_buf *buf)
{
struct bch_stripe *v = &buf->key.v;
unsigned csum_granularity = 1 << v->csum_granularity_bits;
unsigned csum_bytes = bch_crc_bytes[v->csum_type];
unsigned i;
if (!csum_bytes)
return;
for (i = 0; i < v->nr_blocks; i++) {
unsigned offset = buf->offset;
unsigned end = buf->offset + buf->size;
if (!test_bit(i, buf->valid))
continue;
while (offset < end) {
unsigned j = offset >> v->csum_granularity_bits;
unsigned len = min(csum_granularity, end - offset);
struct bch_csum csum;
BUG_ON(offset & (csum_granularity - 1));
BUG_ON(offset + len != le16_to_cpu(v->sectors) &&
((offset + len) & (csum_granularity - 1)));
csum = bch2_checksum(NULL, v->csum_type,
null_nonce(),
buf->data[i] + ((offset - buf->offset) << 9),
len << 9);
if (memcmp(stripe_csum(v, i, j), &csum, csum_bytes)) {
__bcache_io_error(c,
"checksum error while doing reconstruct read (%u:%u)",
i, j);
clear_bit(i, buf->valid);
break;
}
offset += len;
}
}
}
/* Erasure coding: */
static void ec_generate_ec(struct ec_stripe_buf *buf)
{
struct bch_stripe *v = &buf->key.v;
unsigned nr_data = v->nr_blocks - v->nr_redundant;
unsigned bytes = le16_to_cpu(v->sectors) << 9;
raid_gen(nr_data, v->nr_redundant, bytes, buf->data);
}
static unsigned __ec_nr_failed(struct ec_stripe_buf *buf, unsigned nr)
{
return nr - bitmap_weight(buf->valid, nr);
}
static unsigned ec_nr_failed(struct ec_stripe_buf *buf)
{
return __ec_nr_failed(buf, buf->key.v.nr_blocks);
}
static int ec_do_recov(struct bch_fs *c, struct ec_stripe_buf *buf)
{
struct bch_stripe *v = &buf->key.v;
unsigned i, failed[EC_STRIPE_MAX], nr_failed = 0;
unsigned nr_data = v->nr_blocks - v->nr_redundant;
unsigned bytes = buf->size << 9;
if (ec_nr_failed(buf) > v->nr_redundant) {
__bcache_io_error(c,
"error doing reconstruct read: unable to read enough blocks");
return -1;
}
for (i = 0; i < nr_data; i++)
if (!test_bit(i, buf->valid))
failed[nr_failed++] = i;
raid_rec(nr_failed, failed, nr_data, v->nr_redundant, bytes, buf->data);
return 0;
}
/* IO: */
static void ec_block_endio(struct bio *bio)
{
struct ec_bio *ec_bio = container_of(bio, struct ec_bio, bio);
struct bch_dev *ca = ec_bio->ca;
struct closure *cl = bio->bi_private;
if (bch2_dev_io_err_on(bio->bi_status, ca, "erasure coding %s: %s",
bio_data_dir(bio) ? "write" : "read",
blk_status_to_str(bio->bi_status)))
clear_bit(ec_bio->idx, ec_bio->buf->valid);
bio_put(&ec_bio->bio);
percpu_ref_put(&ca->io_ref);
closure_put(cl);
}
static void ec_block_io(struct bch_fs *c, struct ec_stripe_buf *buf,
unsigned rw, unsigned idx, struct closure *cl)
{
struct bch_stripe *v = &buf->key.v;
unsigned offset = 0, bytes = buf->size << 9;
struct bch_extent_ptr *ptr = &v->ptrs[idx];
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
if (!bch2_dev_get_ioref(ca, rw)) {
clear_bit(idx, buf->valid);
return;
}
while (offset < bytes) {
unsigned nr_iovecs = min_t(size_t, BIO_MAX_VECS,
DIV_ROUND_UP(bytes, PAGE_SIZE));
unsigned b = min_t(size_t, bytes - offset,
nr_iovecs << PAGE_SHIFT);
struct ec_bio *ec_bio;
ec_bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev,
nr_iovecs,
rw,
GFP_KERNEL,
&c->ec_bioset),
struct ec_bio, bio);
ec_bio->ca = ca;
ec_bio->buf = buf;
ec_bio->idx = idx;
ec_bio->bio.bi_iter.bi_sector = ptr->offset + buf->offset + (offset >> 9);
ec_bio->bio.bi_end_io = ec_block_endio;
ec_bio->bio.bi_private = cl;
bch2_bio_map(&ec_bio->bio, buf->data[idx] + offset, b);
closure_get(cl);
percpu_ref_get(&ca->io_ref);
submit_bio(&ec_bio->bio);
offset += b;
}
percpu_ref_put(&ca->io_ref);
}
/* recovery read path: */
int bch2_ec_read_extent(struct bch_fs *c, struct bch_read_bio *rbio)
{
struct btree_trans trans;
struct btree_iter *iter;
struct ec_stripe_buf *buf;
struct closure cl;
struct bkey_s_c k;
struct bch_stripe *v;
unsigned stripe_idx;
unsigned offset, end;
unsigned i, nr_data, csum_granularity;
int ret = 0, idx;
closure_init_stack(&cl);
BUG_ON(!rbio->pick.has_ec);
stripe_idx = rbio->pick.ec.idx;
buf = kzalloc(sizeof(*buf), GFP_NOIO);
if (!buf)
return -ENOMEM;
bch2_trans_init(&trans, c, 0, 0);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EC,
POS(0, stripe_idx),
BTREE_ITER_SLOTS);
k = bch2_btree_iter_peek_slot(iter);
if (bkey_err(k) || k.k->type != KEY_TYPE_stripe) {
__bcache_io_error(c,
"error doing reconstruct read: stripe not found");
kfree(buf);
return bch2_trans_exit(&trans) ?: -EIO;
}
bkey_reassemble(&buf->key.k_i, k);
bch2_trans_exit(&trans);
v = &buf->key.v;
nr_data = v->nr_blocks - v->nr_redundant;
idx = ptr_matches_stripe(c, v, &rbio->pick.ptr);
BUG_ON(idx < 0);
csum_granularity = 1U << v->csum_granularity_bits;
offset = rbio->bio.bi_iter.bi_sector - v->ptrs[idx].offset;
end = offset + bio_sectors(&rbio->bio);
BUG_ON(end > le16_to_cpu(v->sectors));
buf->offset = round_down(offset, csum_granularity);
buf->size = min_t(unsigned, le16_to_cpu(v->sectors),
round_up(end, csum_granularity)) - buf->offset;
for (i = 0; i < v->nr_blocks; i++) {
buf->data[i] = kmalloc(buf->size << 9, GFP_NOIO);
if (!buf->data[i]) {
ret = -ENOMEM;
goto err;
}
}
memset(buf->valid, 0xFF, sizeof(buf->valid));
for (i = 0; i < v->nr_blocks; i++) {
struct bch_extent_ptr *ptr = v->ptrs + i;
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
if (ptr_stale(ca, ptr)) {
__bcache_io_error(c,
"error doing reconstruct read: stale pointer");
clear_bit(i, buf->valid);
continue;
}
ec_block_io(c, buf, REQ_OP_READ, i, &cl);
}
closure_sync(&cl);
if (ec_nr_failed(buf) > v->nr_redundant) {
__bcache_io_error(c,
"error doing reconstruct read: unable to read enough blocks");
ret = -EIO;
goto err;
}
ec_validate_checksums(c, buf);
ret = ec_do_recov(c, buf);
if (ret)
goto err;
memcpy_to_bio(&rbio->bio, rbio->bio.bi_iter,
buf->data[idx] + ((offset - buf->offset) << 9));
err:
for (i = 0; i < v->nr_blocks; i++)
kfree(buf->data[i]);
kfree(buf);
return ret;
}
/* stripe bucket accounting: */
static int __ec_stripe_mem_alloc(struct bch_fs *c, size_t idx, gfp_t gfp)
{
ec_stripes_heap n, *h = &c->ec_stripes_heap;
if (idx >= h->size) {
if (!init_heap(&n, max(1024UL, roundup_pow_of_two(idx + 1)), gfp))
return -ENOMEM;
spin_lock(&c->ec_stripes_heap_lock);
if (n.size > h->size) {
memcpy(n.data, h->data, h->used * sizeof(h->data[0]));
n.used = h->used;
swap(*h, n);
}
spin_unlock(&c->ec_stripes_heap_lock);
free_heap(&n);
}
if (!genradix_ptr_alloc(&c->stripes[0], idx, gfp))
return -ENOMEM;
if (c->gc_pos.phase != GC_PHASE_NOT_RUNNING &&
!genradix_ptr_alloc(&c->stripes[1], idx, gfp))
return -ENOMEM;
return 0;
}
static int ec_stripe_mem_alloc(struct bch_fs *c,
struct btree_iter *iter)
{
size_t idx = iter->pos.offset;
int ret = 0;
if (!__ec_stripe_mem_alloc(c, idx, GFP_NOWAIT|__GFP_NOWARN))
return ret;
bch2_trans_unlock(iter->trans);
ret = -EINTR;
if (!__ec_stripe_mem_alloc(c, idx, GFP_KERNEL))
return ret;
return -ENOMEM;
}
static ssize_t stripe_idx_to_delete(struct bch_fs *c)
{
ec_stripes_heap *h = &c->ec_stripes_heap;
return h->used && h->data[0].blocks_nonempty == 0
? h->data[0].idx : -1;
}
static inline int ec_stripes_heap_cmp(ec_stripes_heap *h,
struct ec_stripe_heap_entry l,
struct ec_stripe_heap_entry r)
{
return ((l.blocks_nonempty > r.blocks_nonempty) -
(l.blocks_nonempty < r.blocks_nonempty));
}
static inline void ec_stripes_heap_set_backpointer(ec_stripes_heap *h,
size_t i)
{
struct bch_fs *c = container_of(h, struct bch_fs, ec_stripes_heap);
genradix_ptr(&c->stripes[0], h->data[i].idx)->heap_idx = i;
}
static void heap_verify_backpointer(struct bch_fs *c, size_t idx)
{
ec_stripes_heap *h = &c->ec_stripes_heap;
struct stripe *m = genradix_ptr(&c->stripes[0], idx);
BUG_ON(!m->alive);
BUG_ON(m->heap_idx >= h->used);
BUG_ON(h->data[m->heap_idx].idx != idx);
}
void bch2_stripes_heap_del(struct bch_fs *c,
struct stripe *m, size_t idx)
{
if (!m->on_heap)
return;
m->on_heap = false;
heap_verify_backpointer(c, idx);
heap_del(&c->ec_stripes_heap, m->heap_idx,
ec_stripes_heap_cmp,
ec_stripes_heap_set_backpointer);
}
void bch2_stripes_heap_insert(struct bch_fs *c,
struct stripe *m, size_t idx)
{
if (m->on_heap)
return;
BUG_ON(heap_full(&c->ec_stripes_heap));
m->on_heap = true;
heap_add(&c->ec_stripes_heap, ((struct ec_stripe_heap_entry) {
.idx = idx,
.blocks_nonempty = m->blocks_nonempty,
}),
ec_stripes_heap_cmp,
ec_stripes_heap_set_backpointer);
heap_verify_backpointer(c, idx);
}
void bch2_stripes_heap_update(struct bch_fs *c,
struct stripe *m, size_t idx)
{
ec_stripes_heap *h = &c->ec_stripes_heap;
size_t i;
if (!m->on_heap)
return;
heap_verify_backpointer(c, idx);
h->data[m->heap_idx].blocks_nonempty = m->blocks_nonempty;
i = m->heap_idx;
heap_sift_up(h, i, ec_stripes_heap_cmp,
ec_stripes_heap_set_backpointer);
heap_sift_down(h, i, ec_stripes_heap_cmp,
ec_stripes_heap_set_backpointer);
heap_verify_backpointer(c, idx);
if (stripe_idx_to_delete(c) >= 0 &&
!percpu_ref_is_dying(&c->writes))
schedule_work(&c->ec_stripe_delete_work);
}
/* stripe deletion */
static int ec_stripe_delete(struct bch_fs *c, size_t idx)
{
//pr_info("deleting stripe %zu", idx);
return bch2_btree_delete_range(c, BTREE_ID_EC,
POS(0, idx),
POS(0, idx + 1),
NULL);
}
static void ec_stripe_delete_work(struct work_struct *work)
{
struct bch_fs *c =
container_of(work, struct bch_fs, ec_stripe_delete_work);
ssize_t idx;
while (1) {
spin_lock(&c->ec_stripes_heap_lock);
idx = stripe_idx_to_delete(c);
if (idx < 0) {
spin_unlock(&c->ec_stripes_heap_lock);
break;
}
bch2_stripes_heap_del(c, genradix_ptr(&c->stripes[0], idx), idx);
spin_unlock(&c->ec_stripes_heap_lock);
if (ec_stripe_delete(c, idx))
break;
}
}
/* stripe creation: */
static int ec_stripe_bkey_insert(struct bch_fs *c,
struct bkey_i_stripe *stripe)
{
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_s_c k;
struct bpos start_pos = POS(0, c->ec_stripe_hint);
int ret;
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
for_each_btree_key(&trans, iter, BTREE_ID_EC, start_pos,
BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ret) {
if (bkey_cmp(k.k->p, POS(0, U32_MAX)) > 0) {
if (start_pos.offset) {
start_pos = POS_MIN;
bch2_btree_iter_set_pos(iter, start_pos);
continue;
}
ret = -ENOSPC;
break;
}
if (bkey_deleted(k.k))
goto found_slot;
}
goto err;
found_slot:
start_pos = iter->pos;
ret = ec_stripe_mem_alloc(c, iter);
if (ret)
goto err;
stripe->k.p = iter->pos;
bch2_trans_update(&trans, iter, &stripe->k_i, 0);
ret = bch2_trans_commit(&trans, NULL, NULL,
BTREE_INSERT_NOFAIL);
err:
bch2_trans_iter_put(&trans, iter);
if (ret == -EINTR)
goto retry;
c->ec_stripe_hint = ret ? start_pos.offset : start_pos.offset + 1;
bch2_trans_exit(&trans);
return ret;
}
static void extent_stripe_ptr_add(struct bkey_s_extent e,
struct ec_stripe_buf *s,
struct bch_extent_ptr *ptr,
unsigned block)
{
struct bch_extent_stripe_ptr *dst = (void *) ptr;
union bch_extent_entry *end = extent_entry_last(e);
memmove_u64s_up(dst + 1, dst, (u64 *) end - (u64 *) dst);
e.k->u64s += sizeof(*dst) / sizeof(u64);
*dst = (struct bch_extent_stripe_ptr) {
.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr,
.block = block,
.idx = s->key.k.p.offset,
};
}
static int ec_stripe_update_ptrs(struct bch_fs *c,
struct ec_stripe_buf *s,
struct bkey *pos)
{
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_s_c k;
struct bkey_s_extent e;
struct bkey_on_stack sk;
int ret = 0, dev, idx;
bkey_on_stack_init(&sk);
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0);
/* XXX this doesn't support the reflink btree */
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
bkey_start_pos(pos),
BTREE_ITER_INTENT);
while ((k = bch2_btree_iter_peek(iter)).k &&
!(ret = bkey_err(k)) &&
bkey_cmp(bkey_start_pos(k.k), pos->p) < 0) {
struct bch_extent_ptr *ptr, *ec_ptr = NULL;
if (extent_has_stripe_ptr(k, s->key.k.p.offset)) {
bch2_btree_iter_next(iter);
continue;
}
idx = extent_matches_stripe(c, &s->key.v, k);
if (idx < 0) {
bch2_btree_iter_next(iter);
continue;
}
dev = s->key.v.ptrs[idx].dev;
bkey_on_stack_reassemble(&sk, c, k);
e = bkey_i_to_s_extent(sk.k);
bch2_bkey_drop_ptrs(e.s, ptr, ptr->dev != dev);
ec_ptr = (void *) bch2_bkey_has_device(e.s_c, dev);
BUG_ON(!ec_ptr);
extent_stripe_ptr_add(e, s, ec_ptr, idx);
bch2_btree_iter_set_pos(iter, bkey_start_pos(&sk.k->k));
bch2_trans_update(&trans, iter, sk.k, 0);
ret = bch2_trans_commit(&trans, NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE);
if (ret == -EINTR)
ret = 0;
if (ret)
break;
}
bch2_trans_exit(&trans);
bkey_on_stack_exit(&sk, c);
return ret;
}
/*
* data buckets of new stripe all written: create the stripe
*/
static void ec_stripe_create(struct ec_stripe_new *s)
{
struct bch_fs *c = s->c;
struct open_bucket *ob;
struct bkey_i *k;
struct stripe *m;
struct bch_stripe *v = &s->stripe.key.v;
unsigned i, nr_data = v->nr_blocks - v->nr_redundant;
struct closure cl;
int ret;
BUG_ON(s->h->s == s);
closure_init_stack(&cl);
if (s->err) {
if (s->err != -EROFS)
bch_err(c, "error creating stripe: error writing data buckets");
goto err;
}
BUG_ON(!s->allocated);
if (!percpu_ref_tryget(&c->writes))
goto err;
BUG_ON(bitmap_weight(s->blocks_allocated,
s->blocks.nr) != s->blocks.nr);
ec_generate_ec(&s->stripe);
ec_generate_checksums(&s->stripe);
/* write p/q: */
for (i = nr_data; i < v->nr_blocks; i++)
ec_block_io(c, &s->stripe, REQ_OP_WRITE, i, &cl);
closure_sync(&cl);
for (i = nr_data; i < v->nr_blocks; i++)
if (!test_bit(i, s->stripe.valid)) {
bch_err(c, "error creating stripe: error writing redundancy buckets");
goto err_put_writes;
}
ret = s->existing_stripe
? bch2_btree_insert(c, BTREE_ID_EC, &s->stripe.key.k_i,
NULL, NULL, BTREE_INSERT_NOFAIL)
: ec_stripe_bkey_insert(c, &s->stripe.key);
if (ret) {
bch_err(c, "error creating stripe: error creating stripe key");
goto err_put_writes;
}
for_each_keylist_key(&s->keys, k) {
ret = ec_stripe_update_ptrs(c, &s->stripe, &k->k);
if (ret) {
bch_err(c, "error creating stripe: error updating pointers");
break;
}
}
spin_lock(&c->ec_stripes_heap_lock);
m = genradix_ptr(&c->stripes[0], s->stripe.key.k.p.offset);
#if 0
pr_info("created a %s stripe %llu",
s->existing_stripe ? "existing" : "new",
s->stripe.key.k.p.offset);
#endif
BUG_ON(m->on_heap);
bch2_stripes_heap_insert(c, m, s->stripe.key.k.p.offset);
spin_unlock(&c->ec_stripes_heap_lock);
err_put_writes:
percpu_ref_put(&c->writes);
err:
open_bucket_for_each(c, &s->blocks, ob, i) {
ob->ec = NULL;
__bch2_open_bucket_put(c, ob);
}
bch2_open_buckets_put(c, &s->parity);
bch2_keylist_free(&s->keys, s->inline_keys);
for (i = 0; i < s->stripe.key.v.nr_blocks; i++)
kvpfree(s->stripe.data[i], s->stripe.size << 9);
kfree(s);
}
static void ec_stripe_create_work(struct work_struct *work)
{
struct bch_fs *c = container_of(work,
struct bch_fs, ec_stripe_create_work);
struct ec_stripe_new *s, *n;
restart:
mutex_lock(&c->ec_stripe_new_lock);
list_for_each_entry_safe(s, n, &c->ec_stripe_new_list, list)
if (!atomic_read(&s->pin)) {
list_del(&s->list);
mutex_unlock(&c->ec_stripe_new_lock);
ec_stripe_create(s);
goto restart;
}
mutex_unlock(&c->ec_stripe_new_lock);
}
static void ec_stripe_new_put(struct bch_fs *c, struct ec_stripe_new *s)
{
BUG_ON(atomic_read(&s->pin) <= 0);
if (atomic_dec_and_test(&s->pin)) {
BUG_ON(!s->pending);
queue_work(system_long_wq, &c->ec_stripe_create_work);
}
}
static void ec_stripe_set_pending(struct bch_fs *c, struct ec_stripe_head *h)
{
struct ec_stripe_new *s = h->s;
BUG_ON(!s->allocated && !s->err);
h->s = NULL;
s->pending = true;
mutex_lock(&c->ec_stripe_new_lock);
list_add(&s->list, &c->ec_stripe_new_list);
mutex_unlock(&c->ec_stripe_new_lock);
ec_stripe_new_put(c, s);
}
/* have a full bucket - hand it off to be erasure coded: */
void bch2_ec_bucket_written(struct bch_fs *c, struct open_bucket *ob)
{
struct ec_stripe_new *s = ob->ec;
if (ob->sectors_free)
s->err = -1;
ec_stripe_new_put(c, s);
}
void bch2_ec_bucket_cancel(struct bch_fs *c, struct open_bucket *ob)
{
struct ec_stripe_new *s = ob->ec;
s->err = -EIO;
}
void *bch2_writepoint_ec_buf(struct bch_fs *c, struct write_point *wp)
{
struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs);
struct bch_dev *ca;
unsigned offset;
if (!ob)
return NULL;
ca = bch_dev_bkey_exists(c, ob->ptr.dev);
offset = ca->mi.bucket_size - ob->sectors_free;
return ob->ec->stripe.data[ob->ec_idx] + (offset << 9);
}
void bch2_ec_add_backpointer(struct bch_fs *c, struct write_point *wp,
struct bpos pos, unsigned sectors)
{
struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs);
struct ec_stripe_new *ec;
if (!ob)
return;
//pr_info("adding backpointer at %llu:%llu", pos.inode, pos.offset);
ec = ob->ec;
mutex_lock(&ec->lock);
if (bch2_keylist_realloc(&ec->keys, ec->inline_keys,
ARRAY_SIZE(ec->inline_keys),
BKEY_U64s)) {
BUG();
}
bkey_init(&ec->keys.top->k);
ec->keys.top->k.p = pos;
bch2_key_resize(&ec->keys.top->k, sectors);
bch2_keylist_push(&ec->keys);
mutex_unlock(&ec->lock);
}
static int unsigned_cmp(const void *_l, const void *_r)
{
unsigned l = *((const unsigned *) _l);
unsigned r = *((const unsigned *) _r);
return cmp_int(l, r);
}
/* pick most common bucket size: */
static unsigned pick_blocksize(struct bch_fs *c,
struct bch_devs_mask *devs)
{
struct bch_dev *ca;
unsigned i, nr = 0, sizes[BCH_SB_MEMBERS_MAX];
struct {
unsigned nr, size;
} cur = { 0, 0 }, best = { 0, 0 };
for_each_member_device_rcu(ca, c, i, devs)
sizes[nr++] = ca->mi.bucket_size;
sort(sizes, nr, sizeof(unsigned), unsigned_cmp, NULL);
for (i = 0; i < nr; i++) {
if (sizes[i] != cur.size) {
if (cur.nr > best.nr)
best = cur;
cur.nr = 0;
cur.size = sizes[i];
}
cur.nr++;
}
if (cur.nr > best.nr)
best = cur;
return best.size;
}
static bool may_create_new_stripe(struct bch_fs *c)
{
return false;
}
static void ec_stripe_key_init(struct bch_fs *c,
struct bkey_i_stripe *s,
unsigned nr_data,
unsigned nr_parity,
unsigned stripe_size)
{
unsigned u64s;
bkey_stripe_init(&s->k_i);
s->v.sectors = cpu_to_le16(stripe_size);
s->v.algorithm = 0;
s->v.nr_blocks = nr_data + nr_parity;
s->v.nr_redundant = nr_parity;
s->v.csum_granularity_bits = ilog2(c->sb.encoded_extent_max);
s->v.csum_type = BCH_CSUM_CRC32C;
s->v.pad = 0;
while ((u64s = stripe_val_u64s(&s->v)) > BKEY_VAL_U64s_MAX) {
BUG_ON(1 << s->v.csum_granularity_bits >=
le16_to_cpu(s->v.sectors) ||
s->v.csum_granularity_bits == U8_MAX);
s->v.csum_granularity_bits++;
}
set_bkey_val_u64s(&s->k, u64s);
}
static int ec_new_stripe_alloc(struct bch_fs *c, struct ec_stripe_head *h)
{
struct ec_stripe_new *s;
unsigned i;
lockdep_assert_held(&h->lock);
s = kzalloc(sizeof(*s), GFP_KERNEL);
if (!s)
return -ENOMEM;
mutex_init(&s->lock);
atomic_set(&s->pin, 1);
s->c = c;
s->h = h;
s->nr_data = min_t(unsigned, h->nr_active_devs,
EC_STRIPE_MAX) - h->redundancy;
s->nr_parity = h->redundancy;
bch2_keylist_init(&s->keys, s->inline_keys);
s->stripe.offset = 0;
s->stripe.size = h->blocksize;
memset(s->stripe.valid, 0xFF, sizeof(s->stripe.valid));
ec_stripe_key_init(c, &s->stripe.key, s->nr_data,
s->nr_parity, h->blocksize);
for (i = 0; i < s->stripe.key.v.nr_blocks; i++) {
s->stripe.data[i] = kvpmalloc(s->stripe.size << 9, GFP_KERNEL);
if (!s->stripe.data[i])
goto err;
}
h->s = s;
return 0;
err:
for (i = 0; i < s->stripe.key.v.nr_blocks; i++)
kvpfree(s->stripe.data[i], s->stripe.size << 9);
kfree(s);
return -ENOMEM;
}
static struct ec_stripe_head *
ec_new_stripe_head_alloc(struct bch_fs *c, unsigned target,
unsigned algo, unsigned redundancy)
{
struct ec_stripe_head *h;
struct bch_dev *ca;
unsigned i;
h = kzalloc(sizeof(*h), GFP_KERNEL);
if (!h)
return NULL;
mutex_init(&h->lock);
mutex_lock(&h->lock);
h->target = target;
h->algo = algo;
h->redundancy = redundancy;
rcu_read_lock();
h->devs = target_rw_devs(c, BCH_DATA_user, target);
for_each_member_device_rcu(ca, c, i, &h->devs)
if (!ca->mi.durability)
__clear_bit(i, h->devs.d);
h->blocksize = pick_blocksize(c, &h->devs);
for_each_member_device_rcu(ca, c, i, &h->devs)
if (ca->mi.bucket_size == h->blocksize)
h->nr_active_devs++;
rcu_read_unlock();
list_add(&h->list, &c->ec_stripe_head_list);
return h;
}
void bch2_ec_stripe_head_put(struct bch_fs *c, struct ec_stripe_head *h)
{
if (h->s &&
h->s->allocated &&
bitmap_weight(h->s->blocks_allocated,
h->s->blocks.nr) == h->s->blocks.nr)
ec_stripe_set_pending(c, h);
mutex_unlock(&h->lock);
}
struct ec_stripe_head *__bch2_ec_stripe_head_get(struct bch_fs *c,
unsigned target,
unsigned algo,
unsigned redundancy)
{
struct ec_stripe_head *h;
if (!redundancy)
return NULL;
mutex_lock(&c->ec_stripe_head_lock);
list_for_each_entry(h, &c->ec_stripe_head_list, list)
if (h->target == target &&
h->algo == algo &&
h->redundancy == redundancy) {
mutex_lock(&h->lock);
goto found;
}
h = ec_new_stripe_head_alloc(c, target, algo, redundancy);
found:
mutex_unlock(&c->ec_stripe_head_lock);
return h;
}
/*
* XXX: use a higher watermark for allocating open buckets here:
*/
static int new_stripe_alloc_buckets(struct bch_fs *c, struct ec_stripe_head *h)
{
struct bch_devs_mask devs;
struct open_bucket *ob;
unsigned i, nr_have, nr_data =
min_t(unsigned, h->nr_active_devs,
EC_STRIPE_MAX) - h->redundancy;
bool have_cache = true;
int ret = 0;
devs = h->devs;
for_each_set_bit(i, h->s->blocks_allocated, EC_STRIPE_MAX) {
__clear_bit(h->s->stripe.key.v.ptrs[i].dev, devs.d);
--nr_data;
}
BUG_ON(h->s->blocks.nr > nr_data);
BUG_ON(h->s->parity.nr > h->redundancy);
open_bucket_for_each(c, &h->s->parity, ob, i)
__clear_bit(ob->ptr.dev, devs.d);
open_bucket_for_each(c, &h->s->blocks, ob, i)
__clear_bit(ob->ptr.dev, devs.d);
percpu_down_read(&c->mark_lock);
rcu_read_lock();
if (h->s->parity.nr < h->redundancy) {
nr_have = h->s->parity.nr;
ret = bch2_bucket_alloc_set(c, &h->s->parity,
&h->parity_stripe,
&devs,
h->redundancy,
&nr_have,
&have_cache,
RESERVE_NONE,
0,
NULL);
if (ret)
goto err;
}
if (h->s->blocks.nr < nr_data) {
nr_have = h->s->blocks.nr;
ret = bch2_bucket_alloc_set(c, &h->s->blocks,
&h->block_stripe,
&devs,
nr_data,
&nr_have,
&have_cache,
RESERVE_NONE,
0,
NULL);
if (ret)
goto err;
}
err:
rcu_read_unlock();
percpu_up_read(&c->mark_lock);
return ret;
}
/* XXX: doesn't obey target: */
static s64 get_existing_stripe(struct bch_fs *c,
unsigned target,
unsigned algo,
unsigned redundancy)
{
ec_stripes_heap *h = &c->ec_stripes_heap;
struct stripe *m;
size_t heap_idx;
u64 stripe_idx;
if (may_create_new_stripe(c))
return -1;
spin_lock(&c->ec_stripes_heap_lock);
for (heap_idx = 0; heap_idx < h->used; heap_idx++) {
if (!h->data[heap_idx].blocks_nonempty)
continue;
stripe_idx = h->data[heap_idx].idx;
m = genradix_ptr(&c->stripes[0], stripe_idx);
if (m->algorithm == algo &&
m->nr_redundant == redundancy &&
m->blocks_nonempty < m->nr_blocks - m->nr_redundant) {
bch2_stripes_heap_del(c, m, stripe_idx);
spin_unlock(&c->ec_stripes_heap_lock);
return stripe_idx;
}
}
spin_unlock(&c->ec_stripes_heap_lock);
return -1;
}
static int get_stripe_key(struct bch_fs *c, u64 idx, struct ec_stripe_buf *stripe)
{
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_s_c k;
int ret;
bch2_trans_init(&trans, c, 0, 0);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EC, POS(0, idx), BTREE_ITER_SLOTS);
k = bch2_btree_iter_peek_slot(iter);
ret = bkey_err(k);
if (!ret)
bkey_reassemble(&stripe->key.k_i, k);
bch2_trans_exit(&trans);
return ret;
}
struct ec_stripe_head *bch2_ec_stripe_head_get(struct bch_fs *c,
unsigned target,
unsigned algo,
unsigned redundancy)
{
struct closure cl;
struct ec_stripe_head *h;
struct open_bucket *ob;
unsigned i, data_idx = 0;
s64 idx;
closure_init_stack(&cl);
h = __bch2_ec_stripe_head_get(c, target, algo, redundancy);
if (!h)
return NULL;
if (!h->s && ec_new_stripe_alloc(c, h)) {
bch2_ec_stripe_head_put(c, h);
return NULL;
}
if (!h->s->allocated) {
if (!h->s->existing_stripe &&
(idx = get_existing_stripe(c, target, algo, redundancy)) >= 0) {
//pr_info("got existing stripe %llu", idx);
h->s->existing_stripe = true;
h->s->existing_stripe_idx = idx;
if (get_stripe_key(c, idx, &h->s->stripe)) {
/* btree error */
BUG();
}
for (i = 0; i < h->s->stripe.key.v.nr_blocks; i++)
if (stripe_blockcount_get(&h->s->stripe.key.v, i)) {
__set_bit(i, h->s->blocks_allocated);
ec_block_io(c, &h->s->stripe, READ, i, &cl);
}
}
if (new_stripe_alloc_buckets(c, h)) {
bch2_ec_stripe_head_put(c, h);
h = NULL;
goto out;
}
open_bucket_for_each(c, &h->s->blocks, ob, i) {
data_idx = find_next_zero_bit(h->s->blocks_allocated,
h->s->nr_data, data_idx);
BUG_ON(data_idx >= h->s->nr_data);
h->s->stripe.key.v.ptrs[data_idx] = ob->ptr;
h->s->data_block_idx[i] = data_idx;
data_idx++;
}
open_bucket_for_each(c, &h->s->parity, ob, i)
h->s->stripe.key.v.ptrs[h->s->nr_data + i] = ob->ptr;
//pr_info("new stripe, blocks_allocated %lx", h->s->blocks_allocated[0]);
h->s->allocated = true;
}
out:
closure_sync(&cl);
return h;
}
void bch2_ec_stop_dev(struct bch_fs *c, struct bch_dev *ca)
{
struct ec_stripe_head *h;
struct open_bucket *ob;
unsigned i;
mutex_lock(&c->ec_stripe_head_lock);
list_for_each_entry(h, &c->ec_stripe_head_list, list) {
mutex_lock(&h->lock);
if (!h->s)
goto unlock;
open_bucket_for_each(c, &h->s->blocks, ob, i)
if (ob->ptr.dev == ca->dev_idx)
goto found;
open_bucket_for_each(c, &h->s->parity, ob, i)
if (ob->ptr.dev == ca->dev_idx)
goto found;
goto unlock;
found:
h->s->err = -EROFS;
ec_stripe_set_pending(c, h);
unlock:
mutex_unlock(&h->lock);
}
mutex_unlock(&c->ec_stripe_head_lock);
}
static int __bch2_stripe_write_key(struct btree_trans *trans,
struct btree_iter *iter,
struct stripe *m,
size_t idx,
struct bkey_i_stripe *new_key)
{
struct bch_fs *c = trans->c;
struct bkey_s_c k;
unsigned i;
int ret;
bch2_btree_iter_set_pos(iter, POS(0, idx));
k = bch2_btree_iter_peek_slot(iter);
ret = bkey_err(k);
if (ret)
return ret;
if (k.k->type != KEY_TYPE_stripe)
return -EIO;
bkey_reassemble(&new_key->k_i, k);
spin_lock(&c->ec_stripes_heap_lock);
for (i = 0; i < new_key->v.nr_blocks; i++)
stripe_blockcount_set(&new_key->v, i,
m->block_sectors[i]);
m->dirty = false;
spin_unlock(&c->ec_stripes_heap_lock);
bch2_trans_update(trans, iter, &new_key->k_i, 0);
return 0;
}
int bch2_stripes_write(struct bch_fs *c, unsigned flags, bool *wrote)
{
struct btree_trans trans;
struct btree_iter *iter;
struct genradix_iter giter;
struct bkey_i_stripe *new_key;
struct stripe *m;
int ret = 0;
new_key = kmalloc(255 * sizeof(u64), GFP_KERNEL);
BUG_ON(!new_key);
bch2_trans_init(&trans, c, 0, 0);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EC, POS_MIN,
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
genradix_for_each(&c->stripes[0], giter, m) {
if (!m->dirty)
continue;
ret = __bch2_trans_do(&trans, NULL, NULL,
BTREE_INSERT_NOFAIL|flags,
__bch2_stripe_write_key(&trans, iter, m,
giter.pos, new_key));
if (ret)
break;
*wrote = true;
}
bch2_trans_exit(&trans);
kfree(new_key);
return ret;
}
static int bch2_stripes_read_fn(struct bch_fs *c, enum btree_id id,
unsigned level, struct bkey_s_c k)
{
int ret = 0;
if (k.k->type == KEY_TYPE_stripe) {
struct stripe *m;
ret = __ec_stripe_mem_alloc(c, k.k->p.offset, GFP_KERNEL) ?:
bch2_mark_key(c, k, 0, 0, NULL, 0,
BTREE_TRIGGER_ALLOC_READ|
BTREE_TRIGGER_NOATOMIC);
if (ret)
return ret;
spin_lock(&c->ec_stripes_heap_lock);
m = genradix_ptr(&c->stripes[0], k.k->p.offset);
bch2_stripes_heap_insert(c, m, k.k->p.offset);
spin_unlock(&c->ec_stripes_heap_lock);
}
return ret;
}
int bch2_stripes_read(struct bch_fs *c, struct journal_keys *journal_keys)
{
int ret = bch2_btree_and_journal_walk(c, journal_keys, BTREE_ID_EC,
NULL, bch2_stripes_read_fn);
if (ret)
bch_err(c, "error reading stripes: %i", ret);
return ret;
}
int bch2_ec_mem_alloc(struct bch_fs *c, bool gc)
{
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_s_c k;
size_t i, idx = 0;
int ret = 0;
bch2_trans_init(&trans, c, 0, 0);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EC, POS(0, U64_MAX), 0);
k = bch2_btree_iter_prev(iter);
if (!IS_ERR_OR_NULL(k.k))
idx = k.k->p.offset + 1;
ret = bch2_trans_exit(&trans);
if (ret)
return ret;
if (!idx)
return 0;
if (!gc &&
!init_heap(&c->ec_stripes_heap, roundup_pow_of_two(idx),
GFP_KERNEL))
return -ENOMEM;
#if 0
ret = genradix_prealloc(&c->stripes[gc], idx, GFP_KERNEL);
#else
for (i = 0; i < idx; i++)
if (!genradix_ptr_alloc(&c->stripes[gc], i, GFP_KERNEL))
return -ENOMEM;
#endif
return 0;
}
void bch2_stripes_heap_to_text(struct printbuf *out, struct bch_fs *c)
{
ec_stripes_heap *h = &c->ec_stripes_heap;
struct stripe *m;
size_t i;
spin_lock(&c->ec_stripes_heap_lock);
for (i = 0; i < min(h->used, 20UL); i++) {
m = genradix_ptr(&c->stripes[0], h->data[i].idx);
pr_buf(out, "%zu %u/%u+%u\n", h->data[i].idx,
h->data[i].blocks_nonempty,
m->nr_blocks - m->nr_redundant,
m->nr_redundant);
}
spin_unlock(&c->ec_stripes_heap_lock);
}
void bch2_fs_ec_exit(struct bch_fs *c)
{
struct ec_stripe_head *h;
while (1) {
mutex_lock(&c->ec_stripe_head_lock);
h = list_first_entry_or_null(&c->ec_stripe_head_list,
struct ec_stripe_head, list);
if (h)
list_del(&h->list);
mutex_unlock(&c->ec_stripe_head_lock);
if (!h)
break;
BUG_ON(h->s);
kfree(h);
}
BUG_ON(!list_empty(&c->ec_stripe_new_list));
free_heap(&c->ec_stripes_heap);
genradix_free(&c->stripes[0]);
bioset_exit(&c->ec_bioset);
}
int bch2_fs_ec_init(struct bch_fs *c)
{
INIT_WORK(&c->ec_stripe_create_work, ec_stripe_create_work);
INIT_WORK(&c->ec_stripe_delete_work, ec_stripe_delete_work);
return bioset_init(&c->ec_bioset, 1, offsetof(struct ec_bio, bio),
BIOSET_NEED_BVECS);
}