316 lines
9.5 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/* Instantiate a public key crypto key from an X.509 Certificate
*
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
* Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
#define pr_fmt(fmt) "ASYM: "fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <crypto/public_key.h>
#include "asymmetric_keys.h"
static bool use_builtin_keys;
static struct asymmetric_key_id *ca_keyid;
#ifndef MODULE
static struct {
struct asymmetric_key_id id;
unsigned char data[10];
} cakey;
static int __init ca_keys_setup(char *str)
{
if (!str) /* default system keyring */
return 1;
if (strncmp(str, "id:", 3) == 0) {
struct asymmetric_key_id *p = &cakey.id;
size_t hexlen = (strlen(str) - 3) / 2;
int ret;
if (hexlen == 0 || hexlen > sizeof(cakey.data)) {
pr_err("Missing or invalid ca_keys id\n");
return 1;
}
ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen);
if (ret < 0)
pr_err("Unparsable ca_keys id hex string\n");
else
ca_keyid = p; /* owner key 'id:xxxxxx' */
} else if (strcmp(str, "builtin") == 0) {
use_builtin_keys = true;
}
return 1;
}
__setup("ca_keys=", ca_keys_setup);
#endif
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
/**
* restrict_link_by_signature - Restrict additions to a ring of public keys
* @dest_keyring: Keyring being linked to.
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
* @type: The type of key being added.
* @payload: The payload of the new key.
* @trust_keyring: A ring of keys that can be used to vouch for the new cert.
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
*
* Check the new certificate against the ones in the trust keyring. If one of
* those is the signing key and validates the new certificate, then mark the
* new certificate as being trusted.
*
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
* Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a
* matching parent certificate in the trusted list, -EKEYREJECTED if the
* signature check fails or the key is blacklisted, -ENOPKG if the signature
* uses unsupported crypto, or some other error if there is a matching
* certificate but the signature check cannot be performed.
*/
int restrict_link_by_signature(struct key *dest_keyring,
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
const struct key_type *type,
const union key_payload *payload,
struct key *trust_keyring)
{
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
const struct public_key_signature *sig;
struct key *key;
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
int ret;
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
pr_devel("==>%s()\n", __func__);
if (!trust_keyring)
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
return -ENOKEY;
if (type != &key_type_asymmetric)
return -EOPNOTSUPP;
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
sig = payload->data[asym_auth];
if (!sig)
return -ENOPKG;
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
if (!sig->auth_ids[0] && !sig->auth_ids[1] && !sig->auth_ids[2])
return -ENOKEY;
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid))
return -EPERM;
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
/* See if we have a key that signed this one. */
key = find_asymmetric_key(trust_keyring,
sig->auth_ids[0], sig->auth_ids[1],
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
sig->auth_ids[2], false);
if (IS_ERR(key))
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
return -ENOKEY;
KEYS: Move the point of trust determination to __key_link() Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:26 +01:00
if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags))
ret = -ENOKEY;
else
ret = verify_signature(key, sig);
key_put(key);
return ret;
}
/**
* restrict_link_by_ca - Restrict additions to a ring of CA keys
* @dest_keyring: Keyring being linked to.
* @type: The type of key being added.
* @payload: The payload of the new key.
* @trust_keyring: Unused.
*
* Check if the new certificate is a CA. If it is a CA, then mark the new
* certificate as being ok to link.
*
* Returns 0 if the new certificate was accepted, -ENOKEY if the
* certificate is not a CA. -ENOPKG if the signature uses unsupported
* crypto, or some other error if there is a matching certificate but
* the signature check cannot be performed.
*/
int restrict_link_by_ca(struct key *dest_keyring,
const struct key_type *type,
const union key_payload *payload,
struct key *trust_keyring)
{
const struct public_key *pkey;
if (type != &key_type_asymmetric)
return -EOPNOTSUPP;
pkey = payload->data[asym_crypto];
if (!pkey)
return -ENOPKG;
if (!test_bit(KEY_EFLAG_CA, &pkey->key_eflags))
return -ENOKEY;
if (!test_bit(KEY_EFLAG_KEYCERTSIGN, &pkey->key_eflags))
return -ENOKEY;
if (!IS_ENABLED(CONFIG_INTEGRITY_CA_MACHINE_KEYRING_MAX))
return 0;
if (test_bit(KEY_EFLAG_DIGITALSIG, &pkey->key_eflags))
return -ENOKEY;
return 0;
}
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
static bool match_either_id(const struct asymmetric_key_id **pair,
const struct asymmetric_key_id *single)
{
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
return (asymmetric_key_id_same(pair[0], single) ||
asymmetric_key_id_same(pair[1], single));
}
static int key_or_keyring_common(struct key *dest_keyring,
const struct key_type *type,
const union key_payload *payload,
struct key *trusted, bool check_dest)
{
const struct public_key_signature *sig;
struct key *key = NULL;
int ret;
pr_devel("==>%s()\n", __func__);
if (!dest_keyring)
return -ENOKEY;
else if (dest_keyring->type != &key_type_keyring)
return -EOPNOTSUPP;
if (!trusted && !check_dest)
return -ENOKEY;
if (type != &key_type_asymmetric)
return -EOPNOTSUPP;
sig = payload->data[asym_auth];
if (!sig)
return -ENOPKG;
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
if (!sig->auth_ids[0] && !sig->auth_ids[1] && !sig->auth_ids[2])
return -ENOKEY;
if (trusted) {
if (trusted->type == &key_type_keyring) {
/* See if we have a key that signed this one. */
key = find_asymmetric_key(trusted, sig->auth_ids[0],
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
sig->auth_ids[1],
sig->auth_ids[2], false);
if (IS_ERR(key))
key = NULL;
} else if (trusted->type == &key_type_asymmetric) {
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
const struct asymmetric_key_id **signer_ids;
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
signer_ids = (const struct asymmetric_key_id **)
asymmetric_key_ids(trusted)->id;
/*
* The auth_ids come from the candidate key (the
* one that is being considered for addition to
* dest_keyring) and identify the key that was
* used to sign.
*
* The signer_ids are identifiers for the
* signing key specified for dest_keyring.
*
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
* The first auth_id is the preferred id, 2nd and
* 3rd are the fallbacks. If exactly one of
* auth_ids[0] and auth_ids[1] is present, it may
* match either signer_ids[0] or signed_ids[1].
* If both are present the first one may match
* either signed_id but the second one must match
* the second signer_id. If neither of them is
* available, auth_ids[2] is matched against
* signer_ids[2] as a fallback.
*/
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
if (!sig->auth_ids[0] && !sig->auth_ids[1]) {
if (asymmetric_key_id_same(signer_ids[2],
sig->auth_ids[2]))
key = __key_get(trusted);
} else if (!sig->auth_ids[0] || !sig->auth_ids[1]) {
const struct asymmetric_key_id *auth_id;
auth_id = sig->auth_ids[0] ?: sig->auth_ids[1];
if (match_either_id(signer_ids, auth_id))
key = __key_get(trusted);
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
} else if (asymmetric_key_id_same(signer_ids[1],
sig->auth_ids[1]) &&
match_either_id(signer_ids,
sig->auth_ids[0])) {
key = __key_get(trusted);
}
} else {
return -EOPNOTSUPP;
}
}
if (check_dest && !key) {
/* See if the destination has a key that signed this one. */
key = find_asymmetric_key(dest_keyring, sig->auth_ids[0],
keys: X.509 public key issuer lookup without AKID There are non-root X.509 v3 certificates in use out there that contain no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For trust verification purposes the kernel asymmetric key type keeps two struct asymmetric_key_id instances that the key can be looked up by, and another two to look up the key's issuer. The x509 public key type and the PKCS7 type generate them from the SKID and AKID extensions in the certificate. In effect current code has no way to look up the issuer certificate for verification without the AKID. To remedy this, add a third asymmetric_key_id blob to the arrays in both asymmetric_key_id's (for certficate subject) and in the public_keys_signature's auth_ids (for issuer lookup), using just raw subject and issuer DNs from the certificate. Adapt asymmetric_key_ids() and its callers to use the third ID for lookups when none of the other two are available. Attempt to keep the logic intact when they are, to minimise behaviour changes. Adapt the restrict functions' NULL-checks to include that ID too. Do not modify the lookup logic in pkcs7_verify.c, the AKID extensions are still required there. Internally use a new "dn:" prefix to the search specifier string generated for the key lookup in find_asymmetric_key(). This tells asymmetric_key_match_preparse to only match the data against the raw DN in the third ID and shouldn't conflict with search specifiers already in use. In effect implement what (2) in the struct asymmetric_key_id comment (include/keys/asymmetric-type.h) is probably talking about already, so do not modify that comment. It is also how "openssl verify" looks up issuer certificates without the AKID available. Lookups by the raw DN are unambiguous only provided that the CAs respect the condition in RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses a single signing key. The following is an example of two things that this change enables. A self-signed ceritficate is generated following the example from https://letsencrypt.org/docs/certificates-for-localhost/, and can be looked up by an identifier and verified against itself by linking to a restricted keyring -- both things not possible before due to the missing AKID extension: $ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \ -newkey rsa:2048 -nodes -sha256 \ -subj '/CN=localhost' -extensions EXT -config <( \ echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \ "subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \ "extendedKeyUsage=serverAuth") $ keyring=`keyctl newring test @u` $ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \ echo $trusted 39726322 $ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374 39726322 $ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted $ keyctl padd asymmetric verified $keyring < localhost.crt Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
2021-11-09 16:16:49 +01:00
sig->auth_ids[1], sig->auth_ids[2],
false);
if (IS_ERR(key))
key = NULL;
}
if (!key)
return -ENOKEY;
ret = key_validate(key);
if (ret == 0)
ret = verify_signature(key, sig);
key_put(key);
return ret;
}
/**
* restrict_link_by_key_or_keyring - Restrict additions to a ring of public
* keys using the restrict_key information stored in the ring.
* @dest_keyring: Keyring being linked to.
* @type: The type of key being added.
* @payload: The payload of the new key.
* @trusted: A key or ring of keys that can be used to vouch for the new cert.
*
* Check the new certificate only against the key or keys passed in the data
* parameter. If one of those is the signing key and validates the new
* certificate, then mark the new certificate as being ok to link.
*
* Returns 0 if the new certificate was accepted, -ENOKEY if we
* couldn't find a matching parent certificate in the trusted list,
* -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
* unsupported crypto, or some other error if there is a matching certificate
* but the signature check cannot be performed.
*/
int restrict_link_by_key_or_keyring(struct key *dest_keyring,
const struct key_type *type,
const union key_payload *payload,
struct key *trusted)
{
return key_or_keyring_common(dest_keyring, type, payload, trusted,
false);
}
/**
* restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of
* public keys using the restrict_key information stored in the ring.
* @dest_keyring: Keyring being linked to.
* @type: The type of key being added.
* @payload: The payload of the new key.
* @trusted: A key or ring of keys that can be used to vouch for the new cert.
*
* Check the new certificate against the key or keys passed in the data
* parameter and against the keys already linked to the destination keyring. If
* one of those is the signing key and validates the new certificate, then mark
* the new certificate as being ok to link.
*
* Returns 0 if the new certificate was accepted, -ENOKEY if we
* couldn't find a matching parent certificate in the trusted list,
* -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
* unsupported crypto, or some other error if there is a matching certificate
* but the signature check cannot be performed.
*/
int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring,
const struct key_type *type,
const union key_payload *payload,
struct key *trusted)
{
return key_or_keyring_common(dest_keyring, type, payload, trusted,
true);
}