2019-10-25 17:42:13 +01:00
// SPDX-License-Identifier: GPL-2.0
/*
* Exception handling code
*
* Copyright ( C ) 2019 ARM Ltd .
*/
# include <linux/context_tracking.h>
2021-06-07 10:46:08 +01:00
# include <linux/linkage.h>
# include <linux/lockdep.h>
2019-10-25 17:42:13 +01:00
# include <linux/ptrace.h>
2021-06-07 10:46:08 +01:00
# include <linux/sched.h>
# include <linux/sched/debug.h>
2019-10-25 17:42:13 +01:00
# include <linux/thread_info.h>
# include <asm/cpufeature.h>
# include <asm/daifflags.h>
# include <asm/esr.h>
# include <asm/exception.h>
# include <asm/kprobes.h>
2019-10-25 17:42:16 +01:00
# include <asm/mmu.h>
2019-10-25 17:42:13 +01:00
# include <asm/sysreg.h>
2020-11-30 11:59:48 +00:00
/*
* This is intended to match the logic in irqentry_enter ( ) , handling the kernel
* mode transitions only .
*/
static void noinstr enter_from_kernel_mode ( struct pt_regs * regs )
{
regs - > exit_rcu = false ;
if ( ! IS_ENABLED ( CONFIG_TINY_RCU ) & & is_idle_task ( current ) ) {
lockdep_hardirqs_off ( CALLER_ADDR0 ) ;
rcu_irq_enter ( ) ;
trace_hardirqs_off_finish ( ) ;
regs - > exit_rcu = true ;
return ;
}
lockdep_hardirqs_off ( CALLER_ADDR0 ) ;
rcu_irq_enter_check_tick ( ) ;
trace_hardirqs_off_finish ( ) ;
2021-03-15 13:20:17 +00:00
mte_check_tfsr_entry ( ) ;
2020-11-30 11:59:48 +00:00
}
/*
* This is intended to match the logic in irqentry_exit ( ) , handling the kernel
* mode transitions only , and with preemption handled elsewhere .
*/
static void noinstr exit_to_kernel_mode ( struct pt_regs * regs )
{
lockdep_assert_irqs_disabled ( ) ;
2021-03-15 13:20:17 +00:00
mte_check_tfsr_exit ( ) ;
2020-11-30 11:59:48 +00:00
if ( interrupts_enabled ( regs ) ) {
if ( regs - > exit_rcu ) {
trace_hardirqs_on_prepare ( ) ;
lockdep_hardirqs_on_prepare ( CALLER_ADDR0 ) ;
rcu_irq_exit ( ) ;
lockdep_hardirqs_on ( CALLER_ADDR0 ) ;
return ;
}
trace_hardirqs_on ( ) ;
} else {
if ( regs - > exit_rcu )
rcu_irq_exit ( ) ;
}
}
arm64: entry: fix NMI {user, kernel}->kernel transitions
Exceptions which can be taken at (almost) any time are consdiered to be
NMIs. On arm64 that includes:
* SDEI events
* GICv3 Pseudo-NMIs
* Kernel stack overflows
* Unexpected/unhandled exceptions
... but currently debug exceptions (BRKs, breakpoints, watchpoints,
single-step) are not considered NMIs.
As these can be taken at any time, kernel features (lockdep, RCU,
ftrace) may not be in a consistent kernel state. For example, we may
take an NMI from the idle code or partway through an entry/exit path.
While nmi_enter() and nmi_exit() handle most of this state, notably they
don't save/restore the lockdep state across an NMI being taken and
handled. When interrupts are enabled and an NMI is taken, lockdep may
see interrupts become disabled within the NMI code, but not see
interrupts become enabled when returning from the NMI, leaving lockdep
believing interrupts are disabled when they are actually disabled.
The x86 code handles this in idtentry_{enter,exit}_nmi(), which will
shortly be moved to the generic entry code. As we can't use either yet,
we copy the x86 approach in arm64-specific helpers. All the NMI
entrypoints are marked as noinstr to prevent any instrumentation
handling code being invoked before the state has been corrected.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-11-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:49 +00:00
void noinstr arm64_enter_nmi ( struct pt_regs * regs )
{
regs - > lockdep_hardirqs = lockdep_hardirqs_enabled ( ) ;
__nmi_enter ( ) ;
lockdep_hardirqs_off ( CALLER_ADDR0 ) ;
lockdep_hardirq_enter ( ) ;
rcu_nmi_enter ( ) ;
trace_hardirqs_off_finish ( ) ;
ftrace_nmi_enter ( ) ;
}
void noinstr arm64_exit_nmi ( struct pt_regs * regs )
{
bool restore = regs - > lockdep_hardirqs ;
ftrace_nmi_exit ( ) ;
if ( restore ) {
trace_hardirqs_on_prepare ( ) ;
lockdep_hardirqs_on_prepare ( CALLER_ADDR0 ) ;
}
rcu_nmi_exit ( ) ;
lockdep_hardirq_exit ( ) ;
if ( restore )
lockdep_hardirqs_on ( CALLER_ADDR0 ) ;
__nmi_exit ( ) ;
}
2020-11-30 11:59:45 +00:00
asmlinkage void noinstr enter_el1_irq_or_nmi ( struct pt_regs * regs )
{
if ( IS_ENABLED ( CONFIG_ARM64_PSEUDO_NMI ) & & ! interrupts_enabled ( regs ) )
arm64: entry: fix NMI {user, kernel}->kernel transitions
Exceptions which can be taken at (almost) any time are consdiered to be
NMIs. On arm64 that includes:
* SDEI events
* GICv3 Pseudo-NMIs
* Kernel stack overflows
* Unexpected/unhandled exceptions
... but currently debug exceptions (BRKs, breakpoints, watchpoints,
single-step) are not considered NMIs.
As these can be taken at any time, kernel features (lockdep, RCU,
ftrace) may not be in a consistent kernel state. For example, we may
take an NMI from the idle code or partway through an entry/exit path.
While nmi_enter() and nmi_exit() handle most of this state, notably they
don't save/restore the lockdep state across an NMI being taken and
handled. When interrupts are enabled and an NMI is taken, lockdep may
see interrupts become disabled within the NMI code, but not see
interrupts become enabled when returning from the NMI, leaving lockdep
believing interrupts are disabled when they are actually disabled.
The x86 code handles this in idtentry_{enter,exit}_nmi(), which will
shortly be moved to the generic entry code. As we can't use either yet,
we copy the x86 approach in arm64-specific helpers. All the NMI
entrypoints are marked as noinstr to prevent any instrumentation
handling code being invoked before the state has been corrected.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-11-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:49 +00:00
arm64_enter_nmi ( regs ) ;
2020-11-30 11:59:48 +00:00
else
enter_from_kernel_mode ( regs ) ;
2020-11-30 11:59:45 +00:00
}
asmlinkage void noinstr exit_el1_irq_or_nmi ( struct pt_regs * regs )
{
if ( IS_ENABLED ( CONFIG_ARM64_PSEUDO_NMI ) & & ! interrupts_enabled ( regs ) )
arm64: entry: fix NMI {user, kernel}->kernel transitions
Exceptions which can be taken at (almost) any time are consdiered to be
NMIs. On arm64 that includes:
* SDEI events
* GICv3 Pseudo-NMIs
* Kernel stack overflows
* Unexpected/unhandled exceptions
... but currently debug exceptions (BRKs, breakpoints, watchpoints,
single-step) are not considered NMIs.
As these can be taken at any time, kernel features (lockdep, RCU,
ftrace) may not be in a consistent kernel state. For example, we may
take an NMI from the idle code or partway through an entry/exit path.
While nmi_enter() and nmi_exit() handle most of this state, notably they
don't save/restore the lockdep state across an NMI being taken and
handled. When interrupts are enabled and an NMI is taken, lockdep may
see interrupts become disabled within the NMI code, but not see
interrupts become enabled when returning from the NMI, leaving lockdep
believing interrupts are disabled when they are actually disabled.
The x86 code handles this in idtentry_{enter,exit}_nmi(), which will
shortly be moved to the generic entry code. As we can't use either yet,
we copy the x86 approach in arm64-specific helpers. All the NMI
entrypoints are marked as noinstr to prevent any instrumentation
handling code being invoked before the state has been corrected.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-11-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:49 +00:00
arm64_exit_nmi ( regs ) ;
2020-11-30 11:59:45 +00:00
else
2020-11-30 11:59:48 +00:00
exit_to_kernel_mode ( regs ) ;
2020-11-30 11:59:45 +00:00
}
2021-06-07 10:46:08 +01:00
asmlinkage void __sched arm64_preempt_schedule_irq ( void )
{
lockdep_assert_irqs_disabled ( ) ;
2021-06-07 10:46:09 +01:00
/*
* DAIF . DA are cleared at the start of IRQ / FIQ handling , and when GIC
* priority masking is used the GIC irqchip driver will clear DAIF . IF
* using gic_arch_enable_irqs ( ) for normal IRQs . If anything is set in
* DAIF we must have handled an NMI , so skip preemption .
*/
if ( system_uses_irq_prio_masking ( ) & & read_sysreg ( daif ) )
return ;
2021-06-07 10:46:08 +01:00
/*
* Preempting a task from an IRQ means we leave copies of PSTATE
* on the stack . cpufeature ' s enable calls may modify PSTATE , but
* resuming one of these preempted tasks would undo those changes .
*
* Only allow a task to be preempted once cpufeatures have been
* enabled .
*/
if ( system_capabilities_finalized ( ) )
preempt_schedule_irq ( ) ;
}
2021-02-02 12:03:41 +00:00
# ifdef CONFIG_ARM64_ERRATUM_1463225
static DEFINE_PER_CPU ( int , __in_cortex_a76_erratum_1463225_wa ) ;
static void cortex_a76_erratum_1463225_svc_handler ( void )
{
u32 reg , val ;
if ( ! unlikely ( test_thread_flag ( TIF_SINGLESTEP ) ) )
return ;
if ( ! unlikely ( this_cpu_has_cap ( ARM64_WORKAROUND_1463225 ) ) )
return ;
__this_cpu_write ( __in_cortex_a76_erratum_1463225_wa , 1 ) ;
reg = read_sysreg ( mdscr_el1 ) ;
val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE ;
write_sysreg ( val , mdscr_el1 ) ;
asm volatile ( " msr daifclr, #8 " ) ;
isb ( ) ;
/* We will have taken a single-step exception by this point */
write_sysreg ( reg , mdscr_el1 ) ;
__this_cpu_write ( __in_cortex_a76_erratum_1463225_wa , 0 ) ;
}
static bool cortex_a76_erratum_1463225_debug_handler ( struct pt_regs * regs )
{
if ( ! __this_cpu_read ( __in_cortex_a76_erratum_1463225_wa ) )
return false ;
/*
* We ' ve taken a dummy step exception from the kernel to ensure
* that interrupts are re - enabled on the syscall path . Return back
* to cortex_a76_erratum_1463225_svc_handler ( ) with debug exceptions
* masked so that we can safely restore the mdscr and get on with
* handling the syscall .
*/
regs - > pstate | = PSR_D_BIT ;
return true ;
}
# else /* CONFIG_ARM64_ERRATUM_1463225 */
static void cortex_a76_erratum_1463225_svc_handler ( void ) { }
static bool cortex_a76_erratum_1463225_debug_handler ( struct pt_regs * regs )
{
return false ;
}
# endif /* CONFIG_ARM64_ERRATUM_1463225 */
2020-11-30 11:59:42 +00:00
static void noinstr el1_abort ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:13 +01:00
{
unsigned long far = read_sysreg ( far_el1 ) ;
2020-11-30 11:59:48 +00:00
enter_from_kernel_mode ( regs ) ;
2019-10-25 17:42:13 +01:00
local_daif_inherit ( regs ) ;
do_mem_abort ( far , esr , regs ) ;
2020-11-30 11:59:48 +00:00
local_daif_mask ( ) ;
exit_to_kernel_mode ( regs ) ;
2019-10-25 17:42:13 +01:00
}
2020-11-30 11:59:42 +00:00
static void noinstr el1_pc ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:13 +01:00
{
unsigned long far = read_sysreg ( far_el1 ) ;
2020-11-30 11:59:48 +00:00
enter_from_kernel_mode ( regs ) ;
2019-10-25 17:42:13 +01:00
local_daif_inherit ( regs ) ;
do_sp_pc_abort ( far , esr , regs ) ;
2020-11-30 11:59:48 +00:00
local_daif_mask ( ) ;
exit_to_kernel_mode ( regs ) ;
2019-10-25 17:42:13 +01:00
}
2020-11-30 11:59:42 +00:00
static void noinstr el1_undef ( struct pt_regs * regs )
2019-10-25 17:42:13 +01:00
{
2020-11-30 11:59:48 +00:00
enter_from_kernel_mode ( regs ) ;
2019-10-25 17:42:13 +01:00
local_daif_inherit ( regs ) ;
do_undefinstr ( regs ) ;
2020-11-30 11:59:48 +00:00
local_daif_mask ( ) ;
exit_to_kernel_mode ( regs ) ;
2019-10-25 17:42:13 +01:00
}
2020-11-30 11:59:42 +00:00
static void noinstr el1_inv ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:13 +01:00
{
2020-11-30 11:59:48 +00:00
enter_from_kernel_mode ( regs ) ;
2019-10-25 17:42:13 +01:00
local_daif_inherit ( regs ) ;
bad_mode ( regs , 0 , esr ) ;
2020-11-30 11:59:48 +00:00
local_daif_mask ( ) ;
exit_to_kernel_mode ( regs ) ;
2019-10-25 17:42:13 +01:00
}
2020-11-30 11:59:50 +00:00
static void noinstr arm64_enter_el1_dbg ( struct pt_regs * regs )
{
regs - > lockdep_hardirqs = lockdep_hardirqs_enabled ( ) ;
lockdep_hardirqs_off ( CALLER_ADDR0 ) ;
rcu_nmi_enter ( ) ;
trace_hardirqs_off_finish ( ) ;
}
static void noinstr arm64_exit_el1_dbg ( struct pt_regs * regs )
{
bool restore = regs - > lockdep_hardirqs ;
if ( restore ) {
trace_hardirqs_on_prepare ( ) ;
lockdep_hardirqs_on_prepare ( CALLER_ADDR0 ) ;
}
rcu_nmi_exit ( ) ;
if ( restore )
lockdep_hardirqs_on ( CALLER_ADDR0 ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el1_dbg ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:13 +01:00
{
unsigned long far = read_sysreg ( far_el1 ) ;
2020-11-30 11:59:50 +00:00
arm64_enter_el1_dbg ( regs ) ;
2021-02-02 12:03:41 +00:00
if ( ! cortex_a76_erratum_1463225_debug_handler ( regs ) )
do_debug_exception ( far , esr , regs ) ;
2020-11-30 11:59:50 +00:00
arm64_exit_el1_dbg ( regs ) ;
2019-10-25 17:42:13 +01:00
}
2020-11-30 11:59:42 +00:00
static void noinstr el1_fpac ( struct pt_regs * regs , unsigned long esr )
2020-09-14 14:06:53 +05:30
{
2020-11-30 11:59:48 +00:00
enter_from_kernel_mode ( regs ) ;
2020-09-14 14:06:53 +05:30
local_daif_inherit ( regs ) ;
do_ptrauth_fault ( regs , esr ) ;
2020-11-30 11:59:48 +00:00
local_daif_mask ( ) ;
exit_to_kernel_mode ( regs ) ;
2020-09-14 14:06:53 +05:30
}
2020-11-30 11:59:42 +00:00
asmlinkage void noinstr el1_sync_handler ( struct pt_regs * regs )
2019-10-25 17:42:13 +01:00
{
unsigned long esr = read_sysreg ( esr_el1 ) ;
switch ( ESR_ELx_EC ( esr ) ) {
case ESR_ELx_EC_DABT_CUR :
case ESR_ELx_EC_IABT_CUR :
el1_abort ( regs , esr ) ;
break ;
/*
* We don ' t handle ESR_ELx_EC_SP_ALIGN , since we will have hit a
* recursive exception when trying to push the initial pt_regs .
*/
case ESR_ELx_EC_PC_ALIGN :
el1_pc ( regs , esr ) ;
break ;
case ESR_ELx_EC_SYS64 :
case ESR_ELx_EC_UNKNOWN :
el1_undef ( regs ) ;
break ;
case ESR_ELx_EC_BREAKPT_CUR :
case ESR_ELx_EC_SOFTSTP_CUR :
case ESR_ELx_EC_WATCHPT_CUR :
case ESR_ELx_EC_BRK64 :
el1_dbg ( regs , esr ) ;
break ;
2020-09-14 14:06:53 +05:30
case ESR_ELx_EC_FPAC :
el1_fpac ( regs , esr ) ;
break ;
2019-10-25 17:42:13 +01:00
default :
el1_inv ( regs , esr ) ;
2020-04-18 16:19:09 +08:00
}
2019-10-25 17:42:13 +01:00
}
2019-10-25 17:42:14 +01:00
2021-06-07 10:46:07 +01:00
asmlinkage void noinstr el1_error_handler ( struct pt_regs * regs )
{
unsigned long esr = read_sysreg ( esr_el1 ) ;
local_daif_restore ( DAIF_ERRCTX ) ;
arm64_enter_nmi ( regs ) ;
do_serror ( regs , esr ) ;
arm64_exit_nmi ( regs ) ;
}
2020-11-30 11:59:43 +00:00
asmlinkage void noinstr enter_from_user_mode ( void )
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
lockdep_hardirqs_off ( CALLER_ADDR0 ) ;
2020-11-30 11:59:43 +00:00
CT_WARN_ON ( ct_state ( ) ! = CONTEXT_USER ) ;
user_exit_irqoff ( ) ;
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
trace_hardirqs_off_finish ( ) ;
}
asmlinkage void noinstr exit_to_user_mode ( void )
{
2021-03-15 13:20:17 +00:00
mte_check_tfsr_exit ( ) ;
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
trace_hardirqs_on_prepare ( ) ;
lockdep_hardirqs_on_prepare ( CALLER_ADDR0 ) ;
user_enter_irqoff ( ) ;
lockdep_hardirqs_on ( CALLER_ADDR0 ) ;
2020-11-30 11:59:43 +00:00
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_da ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:14 +01:00
{
unsigned long far = read_sysreg ( far_el1 ) ;
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2019-10-25 17:42:14 +01:00
local_daif_restore ( DAIF_PROCCTX ) ;
do_mem_abort ( far , esr , regs ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_ia ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:14 +01:00
{
unsigned long far = read_sysreg ( far_el1 ) ;
2019-10-25 17:42:16 +01:00
/*
* We ' ve taken an instruction abort from userspace and not yet
* re - enabled IRQs . If the address is a kernel address , apply
* BP hardening prior to enabling IRQs and pre - emption .
*/
if ( ! is_ttbr0_addr ( far ) )
arm64_apply_bp_hardening ( ) ;
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2019-10-25 17:42:16 +01:00
local_daif_restore ( DAIF_PROCCTX ) ;
do_mem_abort ( far , esr , regs ) ;
2019-10-25 17:42:14 +01:00
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_fpsimd_acc ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:14 +01:00
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2019-10-25 17:42:14 +01:00
local_daif_restore ( DAIF_PROCCTX ) ;
do_fpsimd_acc ( esr , regs ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_sve_acc ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:14 +01:00
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2019-10-25 17:42:14 +01:00
local_daif_restore ( DAIF_PROCCTX ) ;
do_sve_acc ( esr , regs ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_fpsimd_exc ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:14 +01:00
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2019-10-25 17:42:14 +01:00
local_daif_restore ( DAIF_PROCCTX ) ;
do_fpsimd_exc ( esr , regs ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_sys ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:14 +01:00
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2019-10-25 17:42:14 +01:00
local_daif_restore ( DAIF_PROCCTX ) ;
do_sysinstr ( esr , regs ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_pc ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:14 +01:00
{
unsigned long far = read_sysreg ( far_el1 ) ;
2019-10-25 17:42:16 +01:00
if ( ! is_ttbr0_addr ( instruction_pointer ( regs ) ) )
arm64_apply_bp_hardening ( ) ;
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2019-10-25 17:42:16 +01:00
local_daif_restore ( DAIF_PROCCTX ) ;
2019-10-25 17:42:14 +01:00
do_sp_pc_abort ( far , esr , regs ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_sp ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:14 +01:00
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2020-02-28 14:59:42 +00:00
local_daif_restore ( DAIF_PROCCTX ) ;
2019-10-25 17:42:14 +01:00
do_sp_pc_abort ( regs - > sp , esr , regs ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_undef ( struct pt_regs * regs )
2019-10-25 17:42:14 +01:00
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2019-10-25 17:42:14 +01:00
local_daif_restore ( DAIF_PROCCTX ) ;
do_undefinstr ( regs ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_bti ( struct pt_regs * regs )
2020-03-16 16:50:45 +00:00
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2020-03-16 16:50:45 +00:00
local_daif_restore ( DAIF_PROCCTX ) ;
do_bti ( regs ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_inv ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:14 +01:00
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2019-10-25 17:42:14 +01:00
local_daif_restore ( DAIF_PROCCTX ) ;
bad_el0_sync ( regs , 0 , esr ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_dbg ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:14 +01:00
{
/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
unsigned long far = read_sysreg ( far_el1 ) ;
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2019-10-25 17:42:14 +01:00
do_debug_exception ( far , esr , regs ) ;
arm64: entry: unmask IRQ+FIQ after EL0 handling
For non-fatal exceptions taken from EL0, we expect that at some point
during exception handling it is possible to return to a regular process
context with all exceptions unmasked (e.g. as we do in
do_notify_resume()), and we generally aim to unmask exceptions wherever
possible.
While handling SError and debug exceptions from EL0, we need to leave
some exceptions masked during handling. Handling SError requires us to
mask SError (which also requires masking IRQ+FIQ), and handing debug
exceptions requires us to mask debug (which also requires masking
SError+IRQ+FIQ).
Once do_serror() or do_debug_exception() has returned, we no longer need
to mask exceptions, and can unmask them all, which is what we did prior
to commit:
9034f6251572a474 ("arm64: Do not enable IRQs for ct_user_exit")
... where we had to mask IRQs as for context_tracking_user_exit()
expected IRQs to be masked.
Since then, we realised that our context tracking wasn't entirely
correct, and reworked the entry code to fix this. As of commit:
23529049c6842382 ("arm64: entry: fix non-NMI user<->kernel transitions")
... we replaced the call to context_tracking_user_exit() with a call to
user_exit_irqoff() as part of enter_from_user_mode(), which occurs
earlier, before we run the body of the handler and unmask exceptions in
DAIF.
When we return to userspace, we go via ret_to_user(), which masks
exceptions in DAIF prior to calling user_enter_irqoff() as part of
exit_to_user_mode().
Thus, there's no longer a reason to leave IRQs or FIQs masked at the end
of the EL0 debug or error handlers, as neither the user exit context
tracking nor the user entry context tracking requires this. Let's bring
these into line with other EL0 exception handlers and ensure that IRQ
and FIQ are unmasked in DAIF at some point during the handler.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2021-06-07 10:46:06 +01:00
local_daif_restore ( DAIF_PROCCTX ) ;
2019-10-25 17:42:14 +01:00
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_svc ( struct pt_regs * regs )
2019-10-25 17:42:14 +01:00
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2021-02-02 12:03:41 +00:00
cortex_a76_erratum_1463225_svc_handler ( ) ;
2020-01-16 18:35:47 +00:00
do_el0_svc ( regs ) ;
2019-10-25 17:42:14 +01:00
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_fpac ( struct pt_regs * regs , unsigned long esr )
2020-09-14 14:06:53 +05:30
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2020-09-14 14:06:53 +05:30
local_daif_restore ( DAIF_PROCCTX ) ;
do_ptrauth_fault ( regs , esr ) ;
}
2020-11-30 11:59:42 +00:00
asmlinkage void noinstr el0_sync_handler ( struct pt_regs * regs )
2019-10-25 17:42:14 +01:00
{
unsigned long esr = read_sysreg ( esr_el1 ) ;
switch ( ESR_ELx_EC ( esr ) ) {
case ESR_ELx_EC_SVC64 :
el0_svc ( regs ) ;
break ;
case ESR_ELx_EC_DABT_LOW :
el0_da ( regs , esr ) ;
break ;
case ESR_ELx_EC_IABT_LOW :
el0_ia ( regs , esr ) ;
break ;
case ESR_ELx_EC_FP_ASIMD :
el0_fpsimd_acc ( regs , esr ) ;
break ;
case ESR_ELx_EC_SVE :
el0_sve_acc ( regs , esr ) ;
break ;
case ESR_ELx_EC_FP_EXC64 :
el0_fpsimd_exc ( regs , esr ) ;
break ;
case ESR_ELx_EC_SYS64 :
case ESR_ELx_EC_WFx :
el0_sys ( regs , esr ) ;
break ;
case ESR_ELx_EC_SP_ALIGN :
el0_sp ( regs , esr ) ;
break ;
case ESR_ELx_EC_PC_ALIGN :
el0_pc ( regs , esr ) ;
break ;
case ESR_ELx_EC_UNKNOWN :
el0_undef ( regs ) ;
break ;
2020-03-16 16:50:45 +00:00
case ESR_ELx_EC_BTI :
el0_bti ( regs ) ;
break ;
2019-10-25 17:42:14 +01:00
case ESR_ELx_EC_BREAKPT_LOW :
case ESR_ELx_EC_SOFTSTP_LOW :
case ESR_ELx_EC_WATCHPT_LOW :
case ESR_ELx_EC_BRK64 :
el0_dbg ( regs , esr ) ;
break ;
2020-09-14 14:06:53 +05:30
case ESR_ELx_EC_FPAC :
el0_fpac ( regs , esr ) ;
break ;
2019-10-25 17:42:14 +01:00
default :
el0_inv ( regs , esr ) ;
}
}
2021-06-07 10:46:07 +01:00
static void __el0_error_handler_common ( struct pt_regs * regs )
{
unsigned long esr = read_sysreg ( esr_el1 ) ;
enter_from_user_mode ( ) ;
local_daif_restore ( DAIF_ERRCTX ) ;
arm64_enter_nmi ( regs ) ;
do_serror ( regs , esr ) ;
arm64_exit_nmi ( regs ) ;
local_daif_restore ( DAIF_PROCCTX ) ;
}
asmlinkage void noinstr el0_error_handler ( struct pt_regs * regs )
{
__el0_error_handler_common ( regs ) ;
}
2019-10-25 17:42:14 +01:00
# ifdef CONFIG_COMPAT
2020-11-30 11:59:42 +00:00
static void noinstr el0_cp15 ( struct pt_regs * regs , unsigned long esr )
2019-10-25 17:42:14 +01:00
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2019-10-25 17:42:14 +01:00
local_daif_restore ( DAIF_PROCCTX ) ;
do_cp15instr ( esr , regs ) ;
}
2020-11-30 11:59:42 +00:00
static void noinstr el0_svc_compat ( struct pt_regs * regs )
2019-10-25 17:42:14 +01:00
{
arm64: entry: fix non-NMI user<->kernel transitions
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-11-30 11:59:46 +00:00
enter_from_user_mode ( ) ;
2021-02-02 12:03:41 +00:00
cortex_a76_erratum_1463225_svc_handler ( ) ;
2020-01-16 18:35:47 +00:00
do_el0_svc_compat ( regs ) ;
2019-10-25 17:42:14 +01:00
}
2020-11-30 11:59:42 +00:00
asmlinkage void noinstr el0_sync_compat_handler ( struct pt_regs * regs )
2019-10-25 17:42:14 +01:00
{
unsigned long esr = read_sysreg ( esr_el1 ) ;
switch ( ESR_ELx_EC ( esr ) ) {
case ESR_ELx_EC_SVC32 :
el0_svc_compat ( regs ) ;
break ;
case ESR_ELx_EC_DABT_LOW :
el0_da ( regs , esr ) ;
break ;
case ESR_ELx_EC_IABT_LOW :
el0_ia ( regs , esr ) ;
break ;
case ESR_ELx_EC_FP_ASIMD :
el0_fpsimd_acc ( regs , esr ) ;
break ;
case ESR_ELx_EC_FP_EXC32 :
el0_fpsimd_exc ( regs , esr ) ;
break ;
case ESR_ELx_EC_PC_ALIGN :
el0_pc ( regs , esr ) ;
break ;
case ESR_ELx_EC_UNKNOWN :
case ESR_ELx_EC_CP14_MR :
case ESR_ELx_EC_CP14_LS :
case ESR_ELx_EC_CP14_64 :
el0_undef ( regs ) ;
break ;
case ESR_ELx_EC_CP15_32 :
case ESR_ELx_EC_CP15_64 :
el0_cp15 ( regs , esr ) ;
break ;
case ESR_ELx_EC_BREAKPT_LOW :
case ESR_ELx_EC_SOFTSTP_LOW :
case ESR_ELx_EC_WATCHPT_LOW :
case ESR_ELx_EC_BKPT32 :
el0_dbg ( regs , esr ) ;
break ;
default :
el0_inv ( regs , esr ) ;
}
}
2021-06-07 10:46:07 +01:00
asmlinkage void noinstr el0_error_compat_handler ( struct pt_regs * regs )
{
__el0_error_handler_common ( regs ) ;
}
2019-10-25 17:42:14 +01:00
# endif /* CONFIG_COMPAT */