2012-11-29 08:28:09 +04:00
/*
2012-11-02 12:10:12 +04:00
* fs / f2fs / data . c
*
* Copyright ( c ) 2012 Samsung Electronics Co . , Ltd .
* http : //www.samsung.com/
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation .
*/
# include <linux/fs.h>
# include <linux/f2fs_fs.h>
# include <linux/buffer_head.h>
# include <linux/mpage.h>
2013-05-08 03:19:08 +04:00
# include <linux/aio.h>
2012-11-02 12:10:12 +04:00
# include <linux/writeback.h>
# include <linux/backing-dev.h>
# include <linux/blkdev.h>
# include <linux/bio.h>
2012-12-20 01:19:30 +04:00
# include <linux/prefetch.h>
2012-11-02 12:10:12 +04:00
# include "f2fs.h"
# include "node.h"
# include "segment.h"
2013-04-23 11:38:02 +04:00
# include <trace/events/f2fs.h>
2012-11-02 12:10:12 +04:00
2012-11-29 08:28:09 +04:00
/*
2012-11-02 12:10:12 +04:00
* Lock ordering for the change of data block address :
* - > data_page
* - > node_page
* update block addresses in the node page
*/
static void __set_data_blkaddr ( struct dnode_of_data * dn , block_t new_addr )
{
struct f2fs_node * rn ;
__le32 * addr_array ;
struct page * node_page = dn - > node_page ;
unsigned int ofs_in_node = dn - > ofs_in_node ;
2013-08-05 16:02:04 +04:00
f2fs_wait_on_page_writeback ( node_page , NODE , false ) ;
2012-11-02 12:10:12 +04:00
2013-07-15 13:57:38 +04:00
rn = F2FS_NODE ( node_page ) ;
2012-11-02 12:10:12 +04:00
/* Get physical address of data block */
addr_array = blkaddr_in_node ( rn ) ;
addr_array [ ofs_in_node ] = cpu_to_le32 ( new_addr ) ;
set_page_dirty ( node_page ) ;
}
int reserve_new_block ( struct dnode_of_data * dn )
{
struct f2fs_sb_info * sbi = F2FS_SB ( dn - > inode - > i_sb ) ;
if ( is_inode_flag_set ( F2FS_I ( dn - > inode ) , FI_NO_ALLOC ) )
return - EPERM ;
if ( ! inc_valid_block_count ( sbi , dn - > inode , 1 ) )
return - ENOSPC ;
2013-04-23 12:00:52 +04:00
trace_f2fs_reserve_new_block ( dn - > inode , dn - > nid , dn - > ofs_in_node ) ;
2012-11-02 12:10:12 +04:00
__set_data_blkaddr ( dn , NEW_ADDR ) ;
dn - > data_blkaddr = NEW_ADDR ;
sync_inode_page ( dn ) ;
return 0 ;
}
2013-11-10 19:13:18 +04:00
int f2fs_reserve_block ( struct dnode_of_data * dn , pgoff_t index )
{
bool need_put = dn - > inode_page ? false : true ;
int err ;
err = get_dnode_of_data ( dn , index , ALLOC_NODE ) ;
if ( err )
return err ;
if ( dn - > data_blkaddr = = NULL_ADDR )
err = reserve_new_block ( dn ) ;
if ( need_put )
f2fs_put_dnode ( dn ) ;
return err ;
}
2012-11-02 12:10:12 +04:00
static int check_extent_cache ( struct inode * inode , pgoff_t pgofs ,
struct buffer_head * bh_result )
{
struct f2fs_inode_info * fi = F2FS_I ( inode ) ;
pgoff_t start_fofs , end_fofs ;
block_t start_blkaddr ;
2013-11-19 05:41:54 +04:00
if ( is_inode_flag_set ( fi , FI_NO_EXTENT ) )
return 0 ;
2012-11-02 12:10:12 +04:00
read_lock ( & fi - > ext . ext_lock ) ;
if ( fi - > ext . len = = 0 ) {
read_unlock ( & fi - > ext . ext_lock ) ;
return 0 ;
}
2013-10-22 15:56:10 +04:00
stat_inc_total_hit ( inode - > i_sb ) ;
2012-11-02 12:10:12 +04:00
start_fofs = fi - > ext . fofs ;
end_fofs = fi - > ext . fofs + fi - > ext . len - 1 ;
start_blkaddr = fi - > ext . blk_addr ;
if ( pgofs > = start_fofs & & pgofs < = end_fofs ) {
unsigned int blkbits = inode - > i_sb - > s_blocksize_bits ;
size_t count ;
clear_buffer_new ( bh_result ) ;
map_bh ( bh_result , inode - > i_sb ,
start_blkaddr + pgofs - start_fofs ) ;
count = end_fofs - pgofs + 1 ;
if ( count < ( UINT_MAX > > blkbits ) )
bh_result - > b_size = ( count < < blkbits ) ;
else
bh_result - > b_size = UINT_MAX ;
2013-10-22 15:56:10 +04:00
stat_inc_read_hit ( inode - > i_sb ) ;
2012-11-02 12:10:12 +04:00
read_unlock ( & fi - > ext . ext_lock ) ;
return 1 ;
}
read_unlock ( & fi - > ext . ext_lock ) ;
return 0 ;
}
void update_extent_cache ( block_t blk_addr , struct dnode_of_data * dn )
{
struct f2fs_inode_info * fi = F2FS_I ( dn - > inode ) ;
pgoff_t fofs , start_fofs , end_fofs ;
block_t start_blkaddr , end_blkaddr ;
2013-11-19 05:41:54 +04:00
int need_update = true ;
2012-11-02 12:10:12 +04:00
2013-10-29 10:14:54 +04:00
f2fs_bug_on ( blk_addr = = NEW_ADDR ) ;
2013-08-12 16:08:03 +04:00
fofs = start_bidx_of_node ( ofs_of_node ( dn - > node_page ) , fi ) +
dn - > ofs_in_node ;
2012-11-02 12:10:12 +04:00
/* Update the page address in the parent node */
__set_data_blkaddr ( dn , blk_addr ) ;
2013-11-19 05:41:54 +04:00
if ( is_inode_flag_set ( fi , FI_NO_EXTENT ) )
return ;
2012-11-02 12:10:12 +04:00
write_lock ( & fi - > ext . ext_lock ) ;
start_fofs = fi - > ext . fofs ;
end_fofs = fi - > ext . fofs + fi - > ext . len - 1 ;
start_blkaddr = fi - > ext . blk_addr ;
end_blkaddr = fi - > ext . blk_addr + fi - > ext . len - 1 ;
/* Drop and initialize the matched extent */
if ( fi - > ext . len = = 1 & & fofs = = start_fofs )
fi - > ext . len = 0 ;
/* Initial extent */
if ( fi - > ext . len = = 0 ) {
if ( blk_addr ! = NULL_ADDR ) {
fi - > ext . fofs = fofs ;
fi - > ext . blk_addr = blk_addr ;
fi - > ext . len = 1 ;
}
goto end_update ;
}
2013-04-06 09:44:32 +04:00
/* Front merge */
2012-11-02 12:10:12 +04:00
if ( fofs = = start_fofs - 1 & & blk_addr = = start_blkaddr - 1 ) {
fi - > ext . fofs - - ;
fi - > ext . blk_addr - - ;
fi - > ext . len + + ;
goto end_update ;
}
/* Back merge */
if ( fofs = = end_fofs + 1 & & blk_addr = = end_blkaddr + 1 ) {
fi - > ext . len + + ;
goto end_update ;
}
/* Split the existing extent */
if ( fi - > ext . len > 1 & &
fofs > = start_fofs & & fofs < = end_fofs ) {
if ( ( end_fofs - fofs ) < ( fi - > ext . len > > 1 ) ) {
fi - > ext . len = fofs - start_fofs ;
} else {
fi - > ext . fofs = fofs + 1 ;
fi - > ext . blk_addr = start_blkaddr +
fofs - start_fofs + 1 ;
fi - > ext . len - = fofs - start_fofs + 1 ;
}
2013-11-19 05:41:54 +04:00
} else {
need_update = false ;
2012-11-02 12:10:12 +04:00
}
2013-11-19 05:41:54 +04:00
/* Finally, if the extent is very fragmented, let's drop the cache. */
if ( fi - > ext . len < F2FS_MIN_EXTENT_LEN ) {
fi - > ext . len = 0 ;
set_inode_flag ( fi , FI_NO_EXTENT ) ;
need_update = true ;
}
2012-11-02 12:10:12 +04:00
end_update :
write_unlock ( & fi - > ext . ext_lock ) ;
2013-11-19 05:41:54 +04:00
if ( need_update )
sync_inode_page ( dn ) ;
return ;
2012-11-02 12:10:12 +04:00
}
f2fs: give a chance to merge IOs by IO scheduler
Previously, background GC submits many 4KB read requests to load victim blocks
and/or its (i)node blocks.
...
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb61, blkaddr = 0x3b964ed
f2fs_gc : block_rq_complete: 8,16 R () 499854968 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb6f, blkaddr = 0x3b964ee
f2fs_gc : block_rq_complete: 8,16 R () 499854976 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb79, blkaddr = 0x3b964ef
f2fs_gc : block_rq_complete: 8,16 R () 499854984 + 8 [0]
...
However, by the fact that many IOs are sequential, we can give a chance to merge
the IOs by IO scheduler.
In order to do that, let's use blk_plug.
...
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c6, blkaddr = 0x2e6ee
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c7, blkaddr = 0x2e6ef
<idle> : block_rq_complete: 8,16 R () 1519616 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1519848 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1520432 + 96 [0]
<idle> : block_rq_complete: 8,16 R () 1520536 + 104 [0]
<idle> : block_rq_complete: 8,16 R () 1521008 + 112 [0]
<idle> : block_rq_complete: 8,16 R () 1521440 + 152 [0]
<idle> : block_rq_complete: 8,16 R () 1521688 + 144 [0]
<idle> : block_rq_complete: 8,16 R () 1522128 + 192 [0]
<idle> : block_rq_complete: 8,16 R () 1523256 + 328 [0]
...
Note that this issue should be addressed in checkpoint, and some readahead
flows too.
Reviewed-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-04-24 08:19:56 +04:00
struct page * find_data_page ( struct inode * inode , pgoff_t index , bool sync )
2012-11-02 12:10:12 +04:00
{
struct f2fs_sb_info * sbi = F2FS_SB ( inode - > i_sb ) ;
struct address_space * mapping = inode - > i_mapping ;
struct dnode_of_data dn ;
struct page * page ;
int err ;
page = find_get_page ( mapping , index ) ;
if ( page & & PageUptodate ( page ) )
return page ;
f2fs_put_page ( page , 0 ) ;
set_new_dnode ( & dn , inode , NULL , NULL , 0 ) ;
2013-02-26 08:10:46 +04:00
err = get_dnode_of_data ( & dn , index , LOOKUP_NODE ) ;
2012-11-02 12:10:12 +04:00
if ( err )
return ERR_PTR ( err ) ;
f2fs_put_dnode ( & dn ) ;
if ( dn . data_blkaddr = = NULL_ADDR )
return ERR_PTR ( - ENOENT ) ;
/* By fallocate(), there is no cached page, but with NEW_ADDR */
if ( dn . data_blkaddr = = NEW_ADDR )
return ERR_PTR ( - EINVAL ) ;
2013-05-20 11:15:22 +04:00
page = grab_cache_page_write_begin ( mapping , index , AOP_FLAG_NOFS ) ;
2012-11-02 12:10:12 +04:00
if ( ! page )
return ERR_PTR ( - ENOMEM ) ;
2013-03-08 16:29:23 +04:00
if ( PageUptodate ( page ) ) {
unlock_page ( page ) ;
return page ;
}
f2fs: give a chance to merge IOs by IO scheduler
Previously, background GC submits many 4KB read requests to load victim blocks
and/or its (i)node blocks.
...
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb61, blkaddr = 0x3b964ed
f2fs_gc : block_rq_complete: 8,16 R () 499854968 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb6f, blkaddr = 0x3b964ee
f2fs_gc : block_rq_complete: 8,16 R () 499854976 + 8 [0]
f2fs_gc : f2fs_readpage: ino = 1, page_index = 0xb79, blkaddr = 0x3b964ef
f2fs_gc : block_rq_complete: 8,16 R () 499854984 + 8 [0]
...
However, by the fact that many IOs are sequential, we can give a chance to merge
the IOs by IO scheduler.
In order to do that, let's use blk_plug.
...
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c6, blkaddr = 0x2e6ee
f2fs_gc : f2fs_iget: ino = 143
f2fs_gc : f2fs_readpage: ino = 143, page_index = 0x1c7, blkaddr = 0x2e6ef
<idle> : block_rq_complete: 8,16 R () 1519616 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1519848 + 8 [0]
<idle> : block_rq_complete: 8,16 R () 1520432 + 96 [0]
<idle> : block_rq_complete: 8,16 R () 1520536 + 104 [0]
<idle> : block_rq_complete: 8,16 R () 1521008 + 112 [0]
<idle> : block_rq_complete: 8,16 R () 1521440 + 152 [0]
<idle> : block_rq_complete: 8,16 R () 1521688 + 144 [0]
<idle> : block_rq_complete: 8,16 R () 1522128 + 192 [0]
<idle> : block_rq_complete: 8,16 R () 1523256 + 328 [0]
...
Note that this issue should be addressed in checkpoint, and some readahead
flows too.
Reviewed-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-04-24 08:19:56 +04:00
err = f2fs_readpage ( sbi , page , dn . data_blkaddr ,
sync ? READ_SYNC : READA ) ;
if ( sync ) {
wait_on_page_locked ( page ) ;
if ( ! PageUptodate ( page ) ) {
f2fs_put_page ( page , 0 ) ;
return ERR_PTR ( - EIO ) ;
}
2012-11-02 12:10:12 +04:00
}
return page ;
}
2012-11-29 08:28:09 +04:00
/*
2012-11-02 12:10:12 +04:00
* If it tries to access a hole , return an error .
* Because , the callers , functions in dir . c and GC , should be able to know
* whether this page exists or not .
*/
struct page * get_lock_data_page ( struct inode * inode , pgoff_t index )
{
struct f2fs_sb_info * sbi = F2FS_SB ( inode - > i_sb ) ;
struct address_space * mapping = inode - > i_mapping ;
struct dnode_of_data dn ;
struct page * page ;
int err ;
2013-05-13 03:38:35 +04:00
repeat :
2013-05-20 11:15:22 +04:00
page = grab_cache_page_write_begin ( mapping , index , AOP_FLAG_NOFS ) ;
2013-05-13 03:38:35 +04:00
if ( ! page )
return ERR_PTR ( - ENOMEM ) ;
2012-11-02 12:10:12 +04:00
set_new_dnode ( & dn , inode , NULL , NULL , 0 ) ;
2013-02-26 08:10:46 +04:00
err = get_dnode_of_data ( & dn , index , LOOKUP_NODE ) ;
2013-05-13 03:38:35 +04:00
if ( err ) {
f2fs_put_page ( page , 1 ) ;
2012-11-02 12:10:12 +04:00
return ERR_PTR ( err ) ;
2013-05-13 03:38:35 +04:00
}
2012-11-02 12:10:12 +04:00
f2fs_put_dnode ( & dn ) ;
2013-05-13 03:38:35 +04:00
if ( dn . data_blkaddr = = NULL_ADDR ) {
f2fs_put_page ( page , 1 ) ;
2012-11-02 12:10:12 +04:00
return ERR_PTR ( - ENOENT ) ;
2013-05-13 03:38:35 +04:00
}
2012-11-02 12:10:12 +04:00
if ( PageUptodate ( page ) )
return page ;
2013-08-20 14:13:07 +04:00
/*
* A new dentry page is allocated but not able to be written , since its
* new inode page couldn ' t be allocated due to - ENOSPC .
* In such the case , its blkaddr can be remained as NEW_ADDR .
* see , f2fs_add_link - > get_new_data_page - > init_inode_metadata .
*/
if ( dn . data_blkaddr = = NEW_ADDR ) {
zero_user_segment ( page , 0 , PAGE_CACHE_SIZE ) ;
SetPageUptodate ( page ) ;
return page ;
}
2012-11-02 12:10:12 +04:00
err = f2fs_readpage ( sbi , page , dn . data_blkaddr , READ_SYNC ) ;
2013-03-08 16:29:23 +04:00
if ( err )
2012-11-02 12:10:12 +04:00
return ERR_PTR ( err ) ;
2013-03-08 16:29:23 +04:00
lock_page ( page ) ;
if ( ! PageUptodate ( page ) ) {
f2fs_put_page ( page , 1 ) ;
return ERR_PTR ( - EIO ) ;
2012-11-02 12:10:12 +04:00
}
2013-04-26 06:55:17 +04:00
if ( page - > mapping ! = mapping ) {
f2fs_put_page ( page , 1 ) ;
goto repeat ;
2012-11-02 12:10:12 +04:00
}
return page ;
}
2012-11-29 08:28:09 +04:00
/*
2012-11-02 12:10:12 +04:00
* Caller ensures that this data page is never allocated .
* A new zero - filled data page is allocated in the page cache .
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
*
* Also , caller should grab and release a mutex by calling mutex_lock_op ( ) and
* mutex_unlock_op ( ) .
2013-05-20 05:10:29 +04:00
* Note that , npage is set only by make_empty_dir .
2012-11-02 12:10:12 +04:00
*/
2013-05-20 04:55:50 +04:00
struct page * get_new_data_page ( struct inode * inode ,
struct page * npage , pgoff_t index , bool new_i_size )
2012-11-02 12:10:12 +04:00
{
struct f2fs_sb_info * sbi = F2FS_SB ( inode - > i_sb ) ;
struct address_space * mapping = inode - > i_mapping ;
struct page * page ;
struct dnode_of_data dn ;
int err ;
2013-05-20 04:55:50 +04:00
set_new_dnode ( & dn , inode , npage , npage , 0 ) ;
2013-11-10 19:13:18 +04:00
err = f2fs_reserve_block ( & dn , index ) ;
2012-11-02 12:10:12 +04:00
if ( err )
return ERR_PTR ( err ) ;
2013-04-26 06:55:17 +04:00
repeat :
2012-11-02 12:10:12 +04:00
page = grab_cache_page ( mapping , index ) ;
if ( ! page )
return ERR_PTR ( - ENOMEM ) ;
if ( PageUptodate ( page ) )
return page ;
if ( dn . data_blkaddr = = NEW_ADDR ) {
zero_user_segment ( page , 0 , PAGE_CACHE_SIZE ) ;
2013-03-08 16:29:23 +04:00
SetPageUptodate ( page ) ;
2012-11-02 12:10:12 +04:00
} else {
err = f2fs_readpage ( sbi , page , dn . data_blkaddr , READ_SYNC ) ;
2013-03-08 16:29:23 +04:00
if ( err )
2012-11-02 12:10:12 +04:00
return ERR_PTR ( err ) ;
2013-03-08 16:29:23 +04:00
lock_page ( page ) ;
if ( ! PageUptodate ( page ) ) {
f2fs_put_page ( page , 1 ) ;
return ERR_PTR ( - EIO ) ;
2012-11-02 12:10:12 +04:00
}
2013-04-26 06:55:17 +04:00
if ( page - > mapping ! = mapping ) {
f2fs_put_page ( page , 1 ) ;
goto repeat ;
2012-11-02 12:10:12 +04:00
}
}
if ( new_i_size & &
i_size_read ( inode ) < ( ( index + 1 ) < < PAGE_CACHE_SHIFT ) ) {
i_size_write ( inode , ( ( index + 1 ) < < PAGE_CACHE_SHIFT ) ) ;
2013-06-07 17:08:23 +04:00
/* Only the directory inode sets new_i_size */
set_inode_flag ( F2FS_I ( inode ) , FI_UPDATE_DIR ) ;
2012-11-02 12:10:12 +04:00
mark_inode_dirty_sync ( inode ) ;
}
return page ;
}
static void read_end_io ( struct bio * bio , int err )
{
const int uptodate = test_bit ( BIO_UPTODATE , & bio - > bi_flags ) ;
struct bio_vec * bvec = bio - > bi_io_vec + bio - > bi_vcnt - 1 ;
do {
struct page * page = bvec - > bv_page ;
if ( - - bvec > = bio - > bi_io_vec )
prefetchw ( & bvec - > bv_page - > flags ) ;
if ( uptodate ) {
SetPageUptodate ( page ) ;
} else {
ClearPageUptodate ( page ) ;
SetPageError ( page ) ;
}
unlock_page ( page ) ;
} while ( bvec > = bio - > bi_io_vec ) ;
bio_put ( bio ) ;
}
2012-11-29 08:28:09 +04:00
/*
2012-11-02 12:10:12 +04:00
* Fill the locked page with data located in the block address .
2013-03-08 16:29:23 +04:00
* Return unlocked page .
2012-11-02 12:10:12 +04:00
*/
int f2fs_readpage ( struct f2fs_sb_info * sbi , struct page * page ,
block_t blk_addr , int type )
{
struct block_device * bdev = sbi - > sb - > s_bdev ;
struct bio * bio ;
2013-04-23 11:38:02 +04:00
trace_f2fs_readpage ( page , blk_addr , type ) ;
2012-11-02 12:10:12 +04:00
/* Allocate a new bio */
2012-12-10 04:26:05 +04:00
bio = f2fs_bio_alloc ( bdev , 1 ) ;
2012-11-02 12:10:12 +04:00
/* Initialize the bio */
2012-12-10 04:26:05 +04:00
bio - > bi_sector = SECTOR_FROM_BLOCK ( sbi , blk_addr ) ;
2012-11-02 12:10:12 +04:00
bio - > bi_end_io = read_end_io ;
2012-12-10 04:26:05 +04:00
2012-11-02 12:10:12 +04:00
if ( bio_add_page ( bio , page , PAGE_CACHE_SIZE , 0 ) < PAGE_CACHE_SIZE ) {
bio_put ( bio ) ;
2013-03-08 16:29:23 +04:00
f2fs_put_page ( page , 1 ) ;
2012-11-02 12:10:12 +04:00
return - EFAULT ;
}
submit_bio ( type , bio ) ;
return 0 ;
}
2013-11-20 10:46:39 +04:00
void f2fs_submit_read_bio ( struct f2fs_sb_info * sbi , int rw )
{
struct f2fs_bio_info * io = & sbi - > read_io ;
if ( ! io - > bio )
return ;
2013-11-24 07:36:42 +04:00
trace_f2fs_submit_read_bio ( sbi - > sb , rw , META , io - > bio ) ;
2013-11-20 10:46:39 +04:00
mutex_lock ( & io - > io_mutex ) ;
if ( io - > bio ) {
submit_bio ( rw , io - > bio ) ;
io - > bio = NULL ;
}
mutex_unlock ( & io - > io_mutex ) ;
}
void submit_read_page ( struct f2fs_sb_info * sbi , struct page * page ,
block_t blk_addr , int rw )
{
struct block_device * bdev = sbi - > sb - > s_bdev ;
struct f2fs_bio_info * io = & sbi - > read_io ;
int bio_blocks ;
verify_block_addr ( sbi , blk_addr ) ;
mutex_lock ( & io - > io_mutex ) ;
if ( io - > bio & & io - > last_block_in_bio ! = blk_addr - 1 ) {
submit_bio ( rw , io - > bio ) ;
io - > bio = NULL ;
}
alloc_new :
if ( io - > bio = = NULL ) {
bio_blocks = MAX_BIO_BLOCKS ( max_hw_blocks ( sbi ) ) ;
io - > bio = f2fs_bio_alloc ( bdev , bio_blocks ) ;
io - > bio - > bi_sector = SECTOR_FROM_BLOCK ( sbi , blk_addr ) ;
io - > bio - > bi_end_io = read_end_io ;
}
if ( bio_add_page ( io - > bio , page , PAGE_CACHE_SIZE , 0 ) <
PAGE_CACHE_SIZE ) {
submit_bio ( rw , io - > bio ) ;
io - > bio = NULL ;
goto alloc_new ;
}
io - > last_block_in_bio = blk_addr ;
mutex_unlock ( & io - > io_mutex ) ;
2013-11-20 12:40:10 +04:00
trace_f2fs_submit_read_page ( page , rw , META , blk_addr ) ;
2013-11-20 10:46:39 +04:00
}
2012-11-29 08:28:09 +04:00
/*
2012-11-02 12:10:12 +04:00
* This function should be used by the data read flow only where it
* does not check the " create " flag that indicates block allocation .
* The reason for this special functionality is to exploit VFS readahead
* mechanism .
*/
static int get_data_block_ro ( struct inode * inode , sector_t iblock ,
struct buffer_head * bh_result , int create )
{
unsigned int blkbits = inode - > i_sb - > s_blocksize_bits ;
unsigned maxblocks = bh_result - > b_size > > blkbits ;
struct dnode_of_data dn ;
pgoff_t pgofs ;
int err ;
/* Get the page offset from the block offset(iblock) */
pgofs = ( pgoff_t ) ( iblock > > ( PAGE_CACHE_SHIFT - blkbits ) ) ;
2013-04-23 11:38:02 +04:00
if ( check_extent_cache ( inode , pgofs , bh_result ) ) {
trace_f2fs_get_data_block ( inode , iblock , bh_result , 0 ) ;
2012-11-02 12:10:12 +04:00
return 0 ;
2013-04-23 11:38:02 +04:00
}
2012-11-02 12:10:12 +04:00
/* When reading holes, we need its node page */
set_new_dnode ( & dn , inode , NULL , NULL , 0 ) ;
2013-02-26 08:10:46 +04:00
err = get_dnode_of_data ( & dn , pgofs , LOOKUP_NODE_RA ) ;
2013-04-23 11:38:02 +04:00
if ( err ) {
trace_f2fs_get_data_block ( inode , iblock , bh_result , err ) ;
2012-11-02 12:10:12 +04:00
return ( err = = - ENOENT ) ? 0 : err ;
2013-04-23 11:38:02 +04:00
}
2012-11-02 12:10:12 +04:00
/* It does not support data allocation */
2013-10-29 10:14:54 +04:00
f2fs_bug_on ( create ) ;
2012-11-02 12:10:12 +04:00
if ( dn . data_blkaddr ! = NEW_ADDR & & dn . data_blkaddr ! = NULL_ADDR ) {
int i ;
unsigned int end_offset ;
end_offset = IS_INODE ( dn . node_page ) ?
2013-08-12 16:08:03 +04:00
ADDRS_PER_INODE ( F2FS_I ( inode ) ) :
2012-11-02 12:10:12 +04:00
ADDRS_PER_BLOCK ;
clear_buffer_new ( bh_result ) ;
/* Give more consecutive addresses for the read ahead */
for ( i = 0 ; i < end_offset - dn . ofs_in_node ; i + + )
if ( ( ( datablock_addr ( dn . node_page ,
dn . ofs_in_node + i ) )
! = ( dn . data_blkaddr + i ) ) | | maxblocks = = i )
break ;
map_bh ( bh_result , inode - > i_sb , dn . data_blkaddr ) ;
2013-11-28 07:44:05 +04:00
bh_result - > b_size = ( ( ( size_t ) i ) < < blkbits ) ;
2012-11-02 12:10:12 +04:00
}
f2fs_put_dnode ( & dn ) ;
2013-04-23 11:38:02 +04:00
trace_f2fs_get_data_block ( inode , iblock , bh_result , 0 ) ;
2012-11-02 12:10:12 +04:00
return 0 ;
}
static int f2fs_read_data_page ( struct file * file , struct page * page )
{
return mpage_readpage ( page , get_data_block_ro ) ;
}
static int f2fs_read_data_pages ( struct file * file ,
struct address_space * mapping ,
struct list_head * pages , unsigned nr_pages )
{
return mpage_readpages ( mapping , pages , nr_pages , get_data_block_ro ) ;
}
int do_write_data_page ( struct page * page )
{
struct inode * inode = page - > mapping - > host ;
block_t old_blk_addr , new_blk_addr ;
struct dnode_of_data dn ;
int err = 0 ;
set_new_dnode ( & dn , inode , NULL , NULL , 0 ) ;
2013-02-26 08:10:46 +04:00
err = get_dnode_of_data ( & dn , page - > index , LOOKUP_NODE ) ;
2012-11-02 12:10:12 +04:00
if ( err )
return err ;
old_blk_addr = dn . data_blkaddr ;
/* This page is already truncated */
if ( old_blk_addr = = NULL_ADDR )
goto out_writepage ;
set_page_writeback ( page ) ;
/*
* If current allocation needs SSR ,
* it had better in - place writes for updated data .
*/
2013-06-13 12:59:29 +04:00
if ( unlikely ( old_blk_addr ! = NEW_ADDR & &
! is_cold_data ( page ) & &
need_inplace_update ( inode ) ) ) {
2012-11-02 12:10:12 +04:00
rewrite_data_page ( F2FS_SB ( inode - > i_sb ) , page ,
old_blk_addr ) ;
} else {
write_data_page ( inode , page , & dn ,
old_blk_addr , & new_blk_addr ) ;
update_extent_cache ( new_blk_addr , & dn ) ;
}
out_writepage :
f2fs_put_dnode ( & dn ) ;
return err ;
}
static int f2fs_write_data_page ( struct page * page ,
struct writeback_control * wbc )
{
struct inode * inode = page - > mapping - > host ;
struct f2fs_sb_info * sbi = F2FS_SB ( inode - > i_sb ) ;
loff_t i_size = i_size_read ( inode ) ;
const pgoff_t end_index = ( ( unsigned long long ) i_size )
> > PAGE_CACHE_SHIFT ;
unsigned offset ;
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
bool need_balance_fs = false ;
2012-11-02 12:10:12 +04:00
int err = 0 ;
if ( page - > index < end_index )
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
goto write ;
2012-11-02 12:10:12 +04:00
/*
* If the offset is out - of - range of file size ,
* this page does not have to be written to disk .
*/
offset = i_size & ( PAGE_CACHE_SIZE - 1 ) ;
if ( ( page - > index > = end_index + 1 ) | | ! offset ) {
if ( S_ISDIR ( inode - > i_mode ) ) {
dec_page_count ( sbi , F2FS_DIRTY_DENTS ) ;
inode_dec_dirty_dents ( inode ) ;
}
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
goto out ;
2012-11-02 12:10:12 +04:00
}
zero_user_segment ( page , offset , PAGE_CACHE_SIZE ) ;
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
write :
if ( sbi - > por_doing ) {
err = AOP_WRITEPAGE_ACTIVATE ;
2012-11-02 12:10:12 +04:00
goto redirty_out ;
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
}
2012-11-02 12:10:12 +04:00
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
/* Dentry blocks are controlled by checkpoint */
2012-11-02 12:10:12 +04:00
if ( S_ISDIR ( inode - > i_mode ) ) {
dec_page_count ( sbi , F2FS_DIRTY_DENTS ) ;
inode_dec_dirty_dents ( inode ) ;
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
err = do_write_data_page ( page ) ;
} else {
f2fs: use rw_sem instead of fs_lock(locks mutex)
The fs_locks is used to block other ops(ex, recovery) when doing checkpoint.
And each other operate routine(besides checkpoint) needs to acquire a fs_lock,
there is a terrible problem here, if these are too many concurrency threads acquiring
fs_lock, so that they will block each other and may lead to some performance problem,
but this is not the phenomenon we want to see.
Though there are some optimization patches introduced to enhance the usage of fs_lock,
but the thorough solution is using a *rw_sem* to replace the fs_lock.
Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block
other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other,
this can avoid the problem described above completely.
Because of the weakness of rw_sem, the above change may introduce a potential problem
that the checkpoint thread might get starved if other threads are intensively locking
the read semaphore for I/O.(Pointed out by Xu Jin)
In order to avoid this, a wait_list is introduced, the appending read semaphore ops
will be dropped into the wait_list if checkpoint thread is waiting for write semaphore,
and will be waked up when checkpoint thread gives up write semaphore.
Thanks to Kim's previous review and test, and will be very glad to see other guys'
performance tests about this patch.
V2:
-fix the potential starvation problem.
-use more suitable func name suggested by Xu Jin.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
[Jaegeuk Kim: adjust minor coding standard]
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 14:08:30 +04:00
f2fs_lock_op ( sbi ) ;
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
err = do_write_data_page ( page ) ;
f2fs: use rw_sem instead of fs_lock(locks mutex)
The fs_locks is used to block other ops(ex, recovery) when doing checkpoint.
And each other operate routine(besides checkpoint) needs to acquire a fs_lock,
there is a terrible problem here, if these are too many concurrency threads acquiring
fs_lock, so that they will block each other and may lead to some performance problem,
but this is not the phenomenon we want to see.
Though there are some optimization patches introduced to enhance the usage of fs_lock,
but the thorough solution is using a *rw_sem* to replace the fs_lock.
Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block
other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other,
this can avoid the problem described above completely.
Because of the weakness of rw_sem, the above change may introduce a potential problem
that the checkpoint thread might get starved if other threads are intensively locking
the read semaphore for I/O.(Pointed out by Xu Jin)
In order to avoid this, a wait_list is introduced, the appending read semaphore ops
will be dropped into the wait_list if checkpoint thread is waiting for write semaphore,
and will be waked up when checkpoint thread gives up write semaphore.
Thanks to Kim's previous review and test, and will be very glad to see other guys'
performance tests about this patch.
V2:
-fix the potential starvation problem.
-use more suitable func name suggested by Xu Jin.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
[Jaegeuk Kim: adjust minor coding standard]
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 14:08:30 +04:00
f2fs_unlock_op ( sbi ) ;
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
need_balance_fs = true ;
2012-11-02 12:10:12 +04:00
}
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
if ( err = = - ENOENT )
goto out ;
else if ( err )
goto redirty_out ;
2012-11-02 12:10:12 +04:00
if ( wbc - > for_reclaim )
f2fs_submit_bio ( sbi , DATA , true ) ;
clear_cold_data ( page ) ;
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
out :
2012-11-02 12:10:12 +04:00
unlock_page ( page ) ;
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
if ( need_balance_fs )
2012-11-02 12:10:12 +04:00
f2fs_balance_fs ( sbi ) ;
return 0 ;
redirty_out :
wbc - > pages_skipped + + ;
set_page_dirty ( page ) ;
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 11:21:29 +04:00
return err ;
2012-11-02 12:10:12 +04:00
}
# define MAX_DESIRED_PAGES_WP 4096
2013-01-15 11:45:24 +04:00
static int __f2fs_writepage ( struct page * page , struct writeback_control * wbc ,
void * data )
{
struct address_space * mapping = data ;
int ret = mapping - > a_ops - > writepage ( page , wbc ) ;
mapping_set_error ( mapping , ret ) ;
return ret ;
}
2012-11-28 11:12:41 +04:00
static int f2fs_write_data_pages ( struct address_space * mapping ,
2012-11-02 12:10:12 +04:00
struct writeback_control * wbc )
{
struct inode * inode = mapping - > host ;
struct f2fs_sb_info * sbi = F2FS_SB ( inode - > i_sb ) ;
2013-04-30 06:33:27 +04:00
bool locked = false ;
2012-11-02 12:10:12 +04:00
int ret ;
long excess_nrtw = 0 , desired_nrtw ;
2013-04-03 06:38:00 +04:00
/* deal with chardevs and other special file */
if ( ! mapping - > a_ops - > writepage )
return 0 ;
2012-11-02 12:10:12 +04:00
if ( wbc - > nr_to_write < MAX_DESIRED_PAGES_WP ) {
desired_nrtw = MAX_DESIRED_PAGES_WP ;
excess_nrtw = desired_nrtw - wbc - > nr_to_write ;
wbc - > nr_to_write = desired_nrtw ;
}
2013-04-30 06:33:27 +04:00
if ( ! S_ISDIR ( inode - > i_mode ) ) {
2012-11-02 12:10:12 +04:00
mutex_lock ( & sbi - > writepages ) ;
2013-04-30 06:33:27 +04:00
locked = true ;
}
2013-01-15 11:45:24 +04:00
ret = write_cache_pages ( mapping , wbc , __f2fs_writepage , mapping ) ;
2013-04-30 06:33:27 +04:00
if ( locked )
2012-11-02 12:10:12 +04:00
mutex_unlock ( & sbi - > writepages ) ;
f2fs_submit_bio ( sbi , DATA , ( wbc - > sync_mode = = WB_SYNC_ALL ) ) ;
remove_dirty_dir_inode ( inode ) ;
wbc - > nr_to_write - = excess_nrtw ;
return ret ;
}
static int f2fs_write_begin ( struct file * file , struct address_space * mapping ,
loff_t pos , unsigned len , unsigned flags ,
struct page * * pagep , void * * fsdata )
{
struct inode * inode = mapping - > host ;
struct f2fs_sb_info * sbi = F2FS_SB ( inode - > i_sb ) ;
struct page * page ;
pgoff_t index = ( ( unsigned long long ) pos ) > > PAGE_CACHE_SHIFT ;
struct dnode_of_data dn ;
int err = 0 ;
f2fs_balance_fs ( sbi ) ;
2013-04-26 06:55:17 +04:00
repeat :
2012-11-02 12:10:12 +04:00
page = grab_cache_page_write_begin ( mapping , index , flags ) ;
if ( ! page )
return - ENOMEM ;
* pagep = page ;
f2fs: use rw_sem instead of fs_lock(locks mutex)
The fs_locks is used to block other ops(ex, recovery) when doing checkpoint.
And each other operate routine(besides checkpoint) needs to acquire a fs_lock,
there is a terrible problem here, if these are too many concurrency threads acquiring
fs_lock, so that they will block each other and may lead to some performance problem,
but this is not the phenomenon we want to see.
Though there are some optimization patches introduced to enhance the usage of fs_lock,
but the thorough solution is using a *rw_sem* to replace the fs_lock.
Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block
other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other,
this can avoid the problem described above completely.
Because of the weakness of rw_sem, the above change may introduce a potential problem
that the checkpoint thread might get starved if other threads are intensively locking
the read semaphore for I/O.(Pointed out by Xu Jin)
In order to avoid this, a wait_list is introduced, the appending read semaphore ops
will be dropped into the wait_list if checkpoint thread is waiting for write semaphore,
and will be waked up when checkpoint thread gives up write semaphore.
Thanks to Kim's previous review and test, and will be very glad to see other guys'
performance tests about this patch.
V2:
-fix the potential starvation problem.
-use more suitable func name suggested by Xu Jin.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
[Jaegeuk Kim: adjust minor coding standard]
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 14:08:30 +04:00
f2fs_lock_op ( sbi ) ;
2012-11-02 12:10:12 +04:00
set_new_dnode ( & dn , inode , NULL , NULL , 0 ) ;
2013-11-10 19:13:18 +04:00
err = f2fs_reserve_block ( & dn , index ) ;
f2fs: use rw_sem instead of fs_lock(locks mutex)
The fs_locks is used to block other ops(ex, recovery) when doing checkpoint.
And each other operate routine(besides checkpoint) needs to acquire a fs_lock,
there is a terrible problem here, if these are too many concurrency threads acquiring
fs_lock, so that they will block each other and may lead to some performance problem,
but this is not the phenomenon we want to see.
Though there are some optimization patches introduced to enhance the usage of fs_lock,
but the thorough solution is using a *rw_sem* to replace the fs_lock.
Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block
other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other,
this can avoid the problem described above completely.
Because of the weakness of rw_sem, the above change may introduce a potential problem
that the checkpoint thread might get starved if other threads are intensively locking
the read semaphore for I/O.(Pointed out by Xu Jin)
In order to avoid this, a wait_list is introduced, the appending read semaphore ops
will be dropped into the wait_list if checkpoint thread is waiting for write semaphore,
and will be waked up when checkpoint thread gives up write semaphore.
Thanks to Kim's previous review and test, and will be very glad to see other guys'
performance tests about this patch.
V2:
-fix the potential starvation problem.
-use more suitable func name suggested by Xu Jin.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
[Jaegeuk Kim: adjust minor coding standard]
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 14:08:30 +04:00
f2fs_unlock_op ( sbi ) ;
2012-11-02 12:10:12 +04:00
2013-11-10 19:13:18 +04:00
if ( err ) {
f2fs_put_page ( page , 1 ) ;
return err ;
}
2012-11-02 12:10:12 +04:00
if ( ( len = = PAGE_CACHE_SIZE ) | | PageUptodate ( page ) )
return 0 ;
if ( ( pos & PAGE_CACHE_MASK ) > = i_size_read ( inode ) ) {
unsigned start = pos & ( PAGE_CACHE_SIZE - 1 ) ;
unsigned end = start + len ;
/* Reading beyond i_size is simple: memset to zero */
zero_user_segments ( page , 0 , start , end , PAGE_CACHE_SIZE ) ;
2013-03-08 16:29:23 +04:00
goto out ;
2012-11-02 12:10:12 +04:00
}
if ( dn . data_blkaddr = = NEW_ADDR ) {
zero_user_segment ( page , 0 , PAGE_CACHE_SIZE ) ;
} else {
err = f2fs_readpage ( sbi , page , dn . data_blkaddr , READ_SYNC ) ;
2013-03-08 16:29:23 +04:00
if ( err )
2012-11-02 12:10:12 +04:00
return err ;
2013-03-08 16:29:23 +04:00
lock_page ( page ) ;
if ( ! PageUptodate ( page ) ) {
f2fs_put_page ( page , 1 ) ;
return - EIO ;
2012-11-02 12:10:12 +04:00
}
2013-04-26 06:55:17 +04:00
if ( page - > mapping ! = mapping ) {
f2fs_put_page ( page , 1 ) ;
goto repeat ;
2012-11-02 12:10:12 +04:00
}
}
2013-03-08 16:29:23 +04:00
out :
2012-11-02 12:10:12 +04:00
SetPageUptodate ( page ) ;
clear_cold_data ( page ) ;
return 0 ;
}
2013-06-27 08:04:08 +04:00
static int f2fs_write_end ( struct file * file ,
struct address_space * mapping ,
loff_t pos , unsigned len , unsigned copied ,
struct page * page , void * fsdata )
{
struct inode * inode = page - > mapping - > host ;
SetPageUptodate ( page ) ;
set_page_dirty ( page ) ;
if ( pos + copied > i_size_read ( inode ) ) {
i_size_write ( inode , pos + copied ) ;
mark_inode_dirty ( inode ) ;
update_inode_page ( inode ) ;
}
2013-11-16 10:15:59 +04:00
f2fs_put_page ( page , 1 ) ;
2013-06-27 08:04:08 +04:00
return copied ;
}
2012-11-02 12:10:12 +04:00
static ssize_t f2fs_direct_IO ( int rw , struct kiocb * iocb ,
const struct iovec * iov , loff_t offset , unsigned long nr_segs )
{
struct file * file = iocb - > ki_filp ;
struct inode * inode = file - > f_mapping - > host ;
if ( rw = = WRITE )
return 0 ;
/* Needs synchronization with the cleaner */
return blockdev_direct_IO ( rw , iocb , inode , iov , offset , nr_segs ,
get_data_block_ro ) ;
}
2013-05-22 07:17:23 +04:00
static void f2fs_invalidate_data_page ( struct page * page , unsigned int offset ,
unsigned int length )
2012-11-02 12:10:12 +04:00
{
struct inode * inode = page - > mapping - > host ;
struct f2fs_sb_info * sbi = F2FS_SB ( inode - > i_sb ) ;
if ( S_ISDIR ( inode - > i_mode ) & & PageDirty ( page ) ) {
dec_page_count ( sbi , F2FS_DIRTY_DENTS ) ;
inode_dec_dirty_dents ( inode ) ;
}
ClearPagePrivate ( page ) ;
}
static int f2fs_release_data_page ( struct page * page , gfp_t wait )
{
ClearPagePrivate ( page ) ;
2013-03-14 04:24:32 +04:00
return 1 ;
2012-11-02 12:10:12 +04:00
}
static int f2fs_set_data_page_dirty ( struct page * page )
{
struct address_space * mapping = page - > mapping ;
struct inode * inode = mapping - > host ;
2013-10-24 12:53:29 +04:00
trace_f2fs_set_page_dirty ( page , DATA ) ;
2012-11-02 12:10:12 +04:00
SetPageUptodate ( page ) ;
if ( ! PageDirty ( page ) ) {
__set_page_dirty_nobuffers ( page ) ;
set_dirty_dir_page ( inode , page ) ;
return 1 ;
}
return 0 ;
}
2013-01-17 15:30:23 +04:00
static sector_t f2fs_bmap ( struct address_space * mapping , sector_t block )
{
return generic_block_bmap ( mapping , block , get_data_block_ro ) ;
}
2012-11-02 12:10:12 +04:00
const struct address_space_operations f2fs_dblock_aops = {
. readpage = f2fs_read_data_page ,
. readpages = f2fs_read_data_pages ,
. writepage = f2fs_write_data_page ,
. writepages = f2fs_write_data_pages ,
. write_begin = f2fs_write_begin ,
2013-06-27 08:04:08 +04:00
. write_end = f2fs_write_end ,
2012-11-02 12:10:12 +04:00
. set_page_dirty = f2fs_set_data_page_dirty ,
. invalidatepage = f2fs_invalidate_data_page ,
. releasepage = f2fs_release_data_page ,
. direct_IO = f2fs_direct_IO ,
2013-01-17 15:30:23 +04:00
. bmap = f2fs_bmap ,
2012-11-02 12:10:12 +04:00
} ;