2005-07-10 19:58:20 +01:00
/*
2011-05-26 19:39:18 -07:00
* CPU frequency scaling for OMAP using OPP information
2005-07-10 19:58:20 +01:00
*
* Copyright ( C ) 2005 Nokia Corporation
* Written by Tony Lindgren < tony @ atomide . com >
*
* Based on cpu - sa1110 . c , Copyright ( C ) 2001 Russell King
*
2010-08-11 17:02:43 -07:00
* Copyright ( C ) 2007 - 2011 Texas Instruments , Inc .
* - OMAP3 / 4 support by Rajendra Nayak , Santosh Shilimkar
*
2005-07-10 19:58:20 +01:00
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation .
*/
# include <linux/types.h>
# include <linux/kernel.h>
# include <linux/sched.h>
# include <linux/cpufreq.h>
# include <linux/delay.h>
# include <linux/init.h>
# include <linux/err.h>
2006-01-07 16:15:52 +00:00
# include <linux/clk.h>
2008-09-06 12:10:45 +01:00
# include <linux/io.h>
2010-08-11 17:02:43 -07:00
# include <linux/opp.h>
2011-09-21 16:53:00 -07:00
# include <linux/cpu.h>
2011-09-30 10:41:26 -07:00
# include <linux/module.h>
cpufreq: OMAP: instantiate omap-cpufreq as a platform_driver
As multi-platform build is being adopted by more and more ARM platforms,
initcall function should be used very carefully. For example, when
CONFIG_ARM_OMAP2PLUS_CPUFREQ is built in the kernel, omap_cpufreq_init()
will be called on all the platforms to initialize omap-cpufreq driver.
Further, on OMAP, we now use Soc generic cpufreq-cpu0 driver using device
tree entries. To allow cpufreq-cpu0 and omap-cpufreq drivers to co-exist
for OMAP in a single image, we need to ensure the following:
1. With device tree boot, we use cpufreq-cpu0
2. With non device tree boot, we use omap-cpufreq
In the case of (1), we will have cpu OPPs and regulator registered
as part of the device tree nodes, to ensure that omap-cpufreq
and cpufreq-cpu0 don't conflict in managing the frequency of the
same CPU, we should not permit omap-cpufreq to be probed.
In the case of (2), we will not have the cpufreq-cpu0 device, hence
only omap-cpufreq will be active.
To eliminate this undesired these effects, we change omap-cpufreq
driver to have it instantiated as a platform_driver and register
"omap-cpufreq" device only when booted without device tree nodes on
OMAP platforms.
This allows the following:
a) Will only run on platforms that create the platform_device
"omap-cpufreq".
b) Since the platform_device is registered only when device tree nodes
are *not* populated, omap-cpufreq driver does not conflict with
the usage of cpufreq-cpu0 driver which is used on OMAP platforms when
device tree nodes are present.
Inspired by commit 5553f9e26f6f49a93ba732fd222eac6973a4cf35
(cpufreq: instantiate cpufreq-cpu0 as a platform_driver)
[robherring2@gmail.com: reported conflict of omap-cpufreq vs other
driver in an non-device tree supported boot]
Reported-by: Rob Herring <robherring2@gmail.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-04-09 23:22:01 +00:00
# include <linux/platform_device.h>
2011-07-15 15:05:04 -07:00
# include <linux/regulator/consumer.h>
2005-07-10 19:58:20 +01:00
2010-08-11 17:02:43 -07:00
# include <asm/smp_plat.h>
2011-09-21 16:53:00 -07:00
# include <asm/cpu.h>
2005-07-10 19:58:20 +01:00
2012-02-23 19:19:24 +05:30
/* OPP tolerance in percentage */
# define OPP_TOLERANCE 4
2010-08-11 17:02:43 -07:00
static struct cpufreq_frequency_table * freq_table ;
2011-05-26 19:39:20 -07:00
static atomic_t freq_table_users = ATOMIC_INIT ( 0 ) ;
2007-08-30 12:46:39 +03:00
static struct clk * mpu_clk ;
2011-05-25 16:38:47 -07:00
static struct device * mpu_dev ;
2011-07-15 15:05:04 -07:00
static struct regulator * mpu_reg ;
2007-08-30 12:46:39 +03:00
2010-10-08 10:00:19 -07:00
static unsigned int omap_getspeed ( unsigned int cpu )
2005-07-10 19:58:20 +01:00
{
unsigned long rate ;
2011-09-21 16:53:00 -07:00
if ( cpu > = NR_CPUS )
2005-07-10 19:58:20 +01:00
return 0 ;
rate = clk_get_rate ( mpu_clk ) / 1000 ;
return rate ;
}
static int omap_target ( struct cpufreq_policy * policy ,
unsigned int target_freq ,
unsigned int relation )
{
2011-05-26 19:39:17 -07:00
unsigned int i ;
2011-07-15 15:05:04 -07:00
int r , ret = 0 ;
2010-08-11 17:02:43 -07:00
struct cpufreq_freqs freqs ;
2011-07-15 15:05:04 -07:00
struct opp * opp ;
2012-02-23 19:19:24 +05:30
unsigned long freq , volt = 0 , volt_old = 0 , tol = 0 ;
2005-07-10 19:58:20 +01:00
2011-05-26 19:39:17 -07:00
if ( ! freq_table ) {
dev_err ( mpu_dev , " %s: cpu%d: no freq table! \n " , __func__ ,
policy - > cpu ) ;
return - EINVAL ;
}
ret = cpufreq_frequency_table_target ( policy , freq_table , target_freq ,
relation , & i ) ;
if ( ret ) {
dev_dbg ( mpu_dev , " %s: cpu%d: no freq match for %d(ret=%d) \n " ,
__func__ , policy - > cpu , target_freq , ret ) ;
return ret ;
}
freqs . new = freq_table [ i ] . frequency ;
if ( ! freqs . new ) {
dev_err ( mpu_dev , " %s: cpu%d: no match for freq %d \n " , __func__ ,
policy - > cpu , target_freq ) ;
return - EINVAL ;
}
2009-01-27 19:13:38 -07:00
2011-09-21 16:53:00 -07:00
freqs . old = omap_getspeed ( policy - > cpu ) ;
2005-07-10 19:58:20 +01:00
2011-06-06 21:05:29 -05:00
if ( freqs . old = = freqs . new & & policy - > cur = = freqs . new )
2009-01-27 19:13:38 -07:00
return ret ;
2011-07-15 15:05:04 -07:00
freq = freqs . new * 1000 ;
2012-10-02 15:39:03 -07:00
ret = clk_round_rate ( mpu_clk , freq ) ;
if ( IS_ERR_VALUE ( ret ) ) {
dev_warn ( mpu_dev ,
" CPUfreq: Cannot find matching frequency for %lu \n " ,
freq ) ;
return ret ;
}
freq = ret ;
2011-07-15 15:05:04 -07:00
if ( mpu_reg ) {
2013-01-18 19:52:32 +00:00
rcu_read_lock ( ) ;
2011-07-15 15:05:04 -07:00
opp = opp_find_freq_ceil ( mpu_dev , & freq ) ;
if ( IS_ERR ( opp ) ) {
2013-01-18 19:52:32 +00:00
rcu_read_unlock ( ) ;
2011-07-15 15:05:04 -07:00
dev_err ( mpu_dev , " %s: unable to find MPU OPP for %d \n " ,
__func__ , freqs . new ) ;
return - EINVAL ;
}
volt = opp_get_voltage ( opp ) ;
2013-01-18 19:52:32 +00:00
rcu_read_unlock ( ) ;
2012-02-23 19:19:24 +05:30
tol = volt * OPP_TOLERANCE / 100 ;
2011-07-15 15:05:04 -07:00
volt_old = regulator_get_voltage ( mpu_reg ) ;
}
dev_dbg ( mpu_dev , " cpufreq-omap: %u MHz, %ld mV --> %u MHz, %ld mV \n " ,
freqs . old / 1000 , volt_old ? volt_old / 1000 : - 1 ,
freqs . new / 1000 , volt ? volt / 1000 : - 1 ) ;
2013-06-19 11:18:20 +05:30
/* notifiers */
cpufreq_notify_transition ( policy , & freqs , CPUFREQ_PRECHANGE ) ;
2011-07-15 15:05:04 -07:00
/* scaling up? scale voltage before frequency */
if ( mpu_reg & & ( freqs . new > freqs . old ) ) {
2012-02-23 19:19:24 +05:30
r = regulator_set_voltage ( mpu_reg , volt - tol , volt + tol ) ;
2011-07-15 15:05:04 -07:00
if ( r < 0 ) {
dev_warn ( mpu_dev , " %s: unable to scale voltage up. \n " ,
__func__ ) ;
freqs . new = freqs . old ;
goto done ;
}
}
2010-08-11 17:02:43 -07:00
2009-01-27 19:13:38 -07:00
ret = clk_set_rate ( mpu_clk , freqs . new * 1000 ) ;
2011-09-21 16:53:00 -07:00
2011-07-15 15:05:04 -07:00
/* scaling down? scale voltage after frequency */
if ( mpu_reg & & ( freqs . new < freqs . old ) ) {
2012-02-23 19:19:24 +05:30
r = regulator_set_voltage ( mpu_reg , volt - tol , volt + tol ) ;
2011-07-15 15:05:04 -07:00
if ( r < 0 ) {
dev_warn ( mpu_dev , " %s: unable to scale voltage down. \n " ,
__func__ ) ;
ret = clk_set_rate ( mpu_clk , freqs . old * 1000 ) ;
freqs . new = freqs . old ;
goto done ;
}
}
freqs . new = omap_getspeed ( policy - > cpu ) ;
2011-09-21 16:53:00 -07:00
2011-07-15 15:05:04 -07:00
done :
2011-09-21 16:53:00 -07:00
/* notifiers */
2013-03-24 11:56:43 +05:30
cpufreq_notify_transition ( policy , & freqs , CPUFREQ_POSTCHANGE ) ;
2005-07-10 19:58:20 +01:00
return ret ;
}
2011-05-26 19:39:20 -07:00
static inline void freq_table_free ( void )
{
if ( atomic_dec_and_test ( & freq_table_users ) )
opp_free_cpufreq_table ( mpu_dev , & freq_table ) ;
}
2013-06-19 13:54:04 -04:00
static int omap_cpu_init ( struct cpufreq_policy * policy )
2005-07-10 19:58:20 +01:00
{
2009-01-27 19:13:38 -07:00
int result = 0 ;
2010-08-11 17:02:43 -07:00
2012-09-07 18:16:35 +00:00
mpu_clk = clk_get ( NULL , " cpufreq_ck " ) ;
2005-07-10 19:58:20 +01:00
if ( IS_ERR ( mpu_clk ) )
return PTR_ERR ( mpu_clk ) ;
2011-05-26 19:39:19 -07:00
if ( policy - > cpu > = NR_CPUS ) {
result = - EINVAL ;
goto fail_ck ;
}
2009-01-27 19:13:38 -07:00
2012-08-09 12:38:21 +05:30
if ( ! freq_table )
2011-05-26 19:39:20 -07:00
result = opp_init_cpufreq_table ( mpu_dev , & freq_table ) ;
2011-05-26 19:39:17 -07:00
if ( result ) {
dev_err ( mpu_dev , " %s: cpu%d: failed creating freq table[%d] \n " ,
__func__ , policy - > cpu , result ) ;
2011-05-26 19:39:19 -07:00
goto fail_ck ;
2009-01-27 19:13:38 -07:00
}
2012-08-09 12:38:21 +05:30
atomic_inc_return ( & freq_table_users ) ;
2013-09-16 18:56:23 +05:30
result = cpufreq_table_validate_and_show ( policy , freq_table ) ;
2011-05-26 19:39:20 -07:00
if ( result )
goto fail_table ;
2011-09-21 16:53:00 -07:00
/*
* On OMAP SMP configuartion , both processors share the voltage
* and clock . So both CPUs needs to be scaled together and hence
* needs software co - ordination . Use cpufreq affected_cpus
* interface to handle this scenario . Additional is_smp ( ) check
* is to keep SMP_ON_UP build working .
*/
2013-02-01 06:40:02 +00:00
if ( is_smp ( ) )
2011-06-07 13:57:52 -07:00
cpumask_setall ( policy - > cpus ) ;
2010-08-11 17:02:43 -07:00
2009-01-27 19:13:38 -07:00
/* FIXME: what's the actual transition time? */
2009-11-11 11:00:38 -08:00
policy - > cpuinfo . transition_latency = 300 * 1000 ;
2005-07-10 19:58:20 +01:00
return 0 ;
2011-05-26 19:39:19 -07:00
2011-05-26 19:39:20 -07:00
fail_table :
freq_table_free ( ) ;
2011-05-26 19:39:19 -07:00
fail_ck :
clk_put ( mpu_clk ) ;
return result ;
2005-07-10 19:58:20 +01:00
}
2007-08-30 12:46:39 +03:00
static int omap_cpu_exit ( struct cpufreq_policy * policy )
{
2013-09-16 18:56:46 +05:30
cpufreq_frequency_table_put_attr ( policy - > cpu ) ;
2011-05-26 19:39:20 -07:00
freq_table_free ( ) ;
2007-08-30 12:46:39 +03:00
clk_put ( mpu_clk ) ;
return 0 ;
}
2005-07-10 19:58:20 +01:00
static struct cpufreq_driver omap_driver = {
. flags = CPUFREQ_STICKY ,
2013-10-03 20:28:13 +05:30
. verify = cpufreq_generic_frequency_table_verify ,
2005-07-10 19:58:20 +01:00
. target = omap_target ,
. get = omap_getspeed ,
. init = omap_cpu_init ,
2007-08-30 12:46:39 +03:00
. exit = omap_cpu_exit ,
2005-07-10 19:58:20 +01:00
. name = " omap " ,
2013-10-03 20:28:13 +05:30
. attr = cpufreq_generic_attr ,
2005-07-10 19:58:20 +01:00
} ;
cpufreq: OMAP: instantiate omap-cpufreq as a platform_driver
As multi-platform build is being adopted by more and more ARM platforms,
initcall function should be used very carefully. For example, when
CONFIG_ARM_OMAP2PLUS_CPUFREQ is built in the kernel, omap_cpufreq_init()
will be called on all the platforms to initialize omap-cpufreq driver.
Further, on OMAP, we now use Soc generic cpufreq-cpu0 driver using device
tree entries. To allow cpufreq-cpu0 and omap-cpufreq drivers to co-exist
for OMAP in a single image, we need to ensure the following:
1. With device tree boot, we use cpufreq-cpu0
2. With non device tree boot, we use omap-cpufreq
In the case of (1), we will have cpu OPPs and regulator registered
as part of the device tree nodes, to ensure that omap-cpufreq
and cpufreq-cpu0 don't conflict in managing the frequency of the
same CPU, we should not permit omap-cpufreq to be probed.
In the case of (2), we will not have the cpufreq-cpu0 device, hence
only omap-cpufreq will be active.
To eliminate this undesired these effects, we change omap-cpufreq
driver to have it instantiated as a platform_driver and register
"omap-cpufreq" device only when booted without device tree nodes on
OMAP platforms.
This allows the following:
a) Will only run on platforms that create the platform_device
"omap-cpufreq".
b) Since the platform_device is registered only when device tree nodes
are *not* populated, omap-cpufreq driver does not conflict with
the usage of cpufreq-cpu0 driver which is used on OMAP platforms when
device tree nodes are present.
Inspired by commit 5553f9e26f6f49a93ba732fd222eac6973a4cf35
(cpufreq: instantiate cpufreq-cpu0 as a platform_driver)
[robherring2@gmail.com: reported conflict of omap-cpufreq vs other
driver in an non-device tree supported boot]
Reported-by: Rob Herring <robherring2@gmail.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-04-09 23:22:01 +00:00
static int omap_cpufreq_probe ( struct platform_device * pdev )
2005-07-10 19:58:20 +01:00
{
2012-09-06 14:22:44 -07:00
mpu_dev = get_cpu_device ( 0 ) ;
if ( ! mpu_dev ) {
2011-05-25 16:38:47 -07:00
pr_warning ( " %s: unable to get the mpu device \n " , __func__ ) ;
2012-09-06 14:22:44 -07:00
return - EINVAL ;
2011-05-25 16:38:47 -07:00
}
2011-07-15 15:05:04 -07:00
mpu_reg = regulator_get ( mpu_dev , " vcc " ) ;
if ( IS_ERR ( mpu_reg ) ) {
pr_warning ( " %s: unable to get MPU regulator \n " , __func__ ) ;
mpu_reg = NULL ;
} else {
/*
* Ensure physical regulator is present .
* ( e . g . could be dummy regulator . )
*/
if ( regulator_get_voltage ( mpu_reg ) < 0 ) {
pr_warn ( " %s: physical regulator not present for MPU \n " ,
__func__ ) ;
regulator_put ( mpu_reg ) ;
mpu_reg = NULL ;
}
}
2005-07-10 19:58:20 +01:00
return cpufreq_register_driver ( & omap_driver ) ;
}
cpufreq: OMAP: instantiate omap-cpufreq as a platform_driver
As multi-platform build is being adopted by more and more ARM platforms,
initcall function should be used very carefully. For example, when
CONFIG_ARM_OMAP2PLUS_CPUFREQ is built in the kernel, omap_cpufreq_init()
will be called on all the platforms to initialize omap-cpufreq driver.
Further, on OMAP, we now use Soc generic cpufreq-cpu0 driver using device
tree entries. To allow cpufreq-cpu0 and omap-cpufreq drivers to co-exist
for OMAP in a single image, we need to ensure the following:
1. With device tree boot, we use cpufreq-cpu0
2. With non device tree boot, we use omap-cpufreq
In the case of (1), we will have cpu OPPs and regulator registered
as part of the device tree nodes, to ensure that omap-cpufreq
and cpufreq-cpu0 don't conflict in managing the frequency of the
same CPU, we should not permit omap-cpufreq to be probed.
In the case of (2), we will not have the cpufreq-cpu0 device, hence
only omap-cpufreq will be active.
To eliminate this undesired these effects, we change omap-cpufreq
driver to have it instantiated as a platform_driver and register
"omap-cpufreq" device only when booted without device tree nodes on
OMAP platforms.
This allows the following:
a) Will only run on platforms that create the platform_device
"omap-cpufreq".
b) Since the platform_device is registered only when device tree nodes
are *not* populated, omap-cpufreq driver does not conflict with
the usage of cpufreq-cpu0 driver which is used on OMAP platforms when
device tree nodes are present.
Inspired by commit 5553f9e26f6f49a93ba732fd222eac6973a4cf35
(cpufreq: instantiate cpufreq-cpu0 as a platform_driver)
[robherring2@gmail.com: reported conflict of omap-cpufreq vs other
driver in an non-device tree supported boot]
Reported-by: Rob Herring <robherring2@gmail.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-04-09 23:22:01 +00:00
static int omap_cpufreq_remove ( struct platform_device * pdev )
2010-08-11 17:02:43 -07:00
{
cpufreq: OMAP: instantiate omap-cpufreq as a platform_driver
As multi-platform build is being adopted by more and more ARM platforms,
initcall function should be used very carefully. For example, when
CONFIG_ARM_OMAP2PLUS_CPUFREQ is built in the kernel, omap_cpufreq_init()
will be called on all the platforms to initialize omap-cpufreq driver.
Further, on OMAP, we now use Soc generic cpufreq-cpu0 driver using device
tree entries. To allow cpufreq-cpu0 and omap-cpufreq drivers to co-exist
for OMAP in a single image, we need to ensure the following:
1. With device tree boot, we use cpufreq-cpu0
2. With non device tree boot, we use omap-cpufreq
In the case of (1), we will have cpu OPPs and regulator registered
as part of the device tree nodes, to ensure that omap-cpufreq
and cpufreq-cpu0 don't conflict in managing the frequency of the
same CPU, we should not permit omap-cpufreq to be probed.
In the case of (2), we will not have the cpufreq-cpu0 device, hence
only omap-cpufreq will be active.
To eliminate this undesired these effects, we change omap-cpufreq
driver to have it instantiated as a platform_driver and register
"omap-cpufreq" device only when booted without device tree nodes on
OMAP platforms.
This allows the following:
a) Will only run on platforms that create the platform_device
"omap-cpufreq".
b) Since the platform_device is registered only when device tree nodes
are *not* populated, omap-cpufreq driver does not conflict with
the usage of cpufreq-cpu0 driver which is used on OMAP platforms when
device tree nodes are present.
Inspired by commit 5553f9e26f6f49a93ba732fd222eac6973a4cf35
(cpufreq: instantiate cpufreq-cpu0 as a platform_driver)
[robherring2@gmail.com: reported conflict of omap-cpufreq vs other
driver in an non-device tree supported boot]
Reported-by: Rob Herring <robherring2@gmail.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-04-09 23:22:01 +00:00
return cpufreq_unregister_driver ( & omap_driver ) ;
2010-08-11 17:02:43 -07:00
}
2009-01-27 19:13:38 -07:00
cpufreq: OMAP: instantiate omap-cpufreq as a platform_driver
As multi-platform build is being adopted by more and more ARM platforms,
initcall function should be used very carefully. For example, when
CONFIG_ARM_OMAP2PLUS_CPUFREQ is built in the kernel, omap_cpufreq_init()
will be called on all the platforms to initialize omap-cpufreq driver.
Further, on OMAP, we now use Soc generic cpufreq-cpu0 driver using device
tree entries. To allow cpufreq-cpu0 and omap-cpufreq drivers to co-exist
for OMAP in a single image, we need to ensure the following:
1. With device tree boot, we use cpufreq-cpu0
2. With non device tree boot, we use omap-cpufreq
In the case of (1), we will have cpu OPPs and regulator registered
as part of the device tree nodes, to ensure that omap-cpufreq
and cpufreq-cpu0 don't conflict in managing the frequency of the
same CPU, we should not permit omap-cpufreq to be probed.
In the case of (2), we will not have the cpufreq-cpu0 device, hence
only omap-cpufreq will be active.
To eliminate this undesired these effects, we change omap-cpufreq
driver to have it instantiated as a platform_driver and register
"omap-cpufreq" device only when booted without device tree nodes on
OMAP platforms.
This allows the following:
a) Will only run on platforms that create the platform_device
"omap-cpufreq".
b) Since the platform_device is registered only when device tree nodes
are *not* populated, omap-cpufreq driver does not conflict with
the usage of cpufreq-cpu0 driver which is used on OMAP platforms when
device tree nodes are present.
Inspired by commit 5553f9e26f6f49a93ba732fd222eac6973a4cf35
(cpufreq: instantiate cpufreq-cpu0 as a platform_driver)
[robherring2@gmail.com: reported conflict of omap-cpufreq vs other
driver in an non-device tree supported boot]
Reported-by: Rob Herring <robherring2@gmail.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-04-09 23:22:01 +00:00
static struct platform_driver omap_cpufreq_platdrv = {
. driver = {
. name = " omap-cpufreq " ,
. owner = THIS_MODULE ,
} ,
. probe = omap_cpufreq_probe ,
. remove = omap_cpufreq_remove ,
} ;
module_platform_driver ( omap_cpufreq_platdrv ) ;
2010-08-11 17:02:43 -07:00
MODULE_DESCRIPTION ( " cpufreq driver for OMAP SoCs " ) ;
MODULE_LICENSE ( " GPL " ) ;