2008-11-26 19:21:24 +03:00
/*
* Copyright ( C ) 2007 - 2008 Advanced Micro Devices , Inc .
* Author : Joerg Roedel < joerg . roedel @ amd . com >
*
* This program is free software ; you can redistribute it and / or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*/
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
# define pr_fmt(fmt) "%s: " fmt, __func__
2011-09-06 18:03:26 +04:00
# include <linux/device.h>
2011-09-02 21:32:32 +04:00
# include <linux/kernel.h>
2008-11-26 19:21:24 +03:00
# include <linux/bug.h>
# include <linux/types.h>
2009-05-07 03:03:07 +04:00
# include <linux/module.h>
# include <linux/slab.h>
2008-11-26 19:21:24 +03:00
# include <linux/errno.h>
# include <linux/iommu.h>
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
# include <linux/idr.h>
# include <linux/notifier.h>
# include <linux/err.h>
2014-07-03 19:51:18 +04:00
# include <linux/pci.h>
2014-09-19 20:03:06 +04:00
# include <linux/bitops.h>
2013-08-15 21:59:23 +04:00
# include <trace/events/iommu.h>
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
static struct kset * iommu_group_kset ;
static struct ida iommu_group_ida ;
static struct mutex iommu_group_mutex ;
2014-06-27 11:03:12 +04:00
struct iommu_callback_data {
const struct iommu_ops * ops ;
} ;
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
struct iommu_group {
struct kobject kobj ;
struct kobject * devices_kobj ;
struct list_head devices ;
struct mutex mutex ;
struct blocking_notifier_head notifier ;
void * iommu_data ;
void ( * iommu_data_release ) ( void * iommu_data ) ;
char * name ;
int id ;
} ;
struct iommu_device {
struct list_head list ;
struct device * dev ;
char * name ;
} ;
struct iommu_group_attribute {
struct attribute attr ;
ssize_t ( * show ) ( struct iommu_group * group , char * buf ) ;
ssize_t ( * store ) ( struct iommu_group * group ,
const char * buf , size_t count ) ;
} ;
# define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
struct iommu_group_attribute iommu_group_attr_ # # _name = \
__ATTR ( _name , _mode , _show , _store )
2008-11-26 19:21:24 +03:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
# define to_iommu_group_attr(_attr) \
container_of ( _attr , struct iommu_group_attribute , attr )
# define to_iommu_group(_kobj) \
container_of ( _kobj , struct iommu_group , kobj )
2008-11-26 19:21:24 +03:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
static ssize_t iommu_group_attr_show ( struct kobject * kobj ,
struct attribute * __attr , char * buf )
2011-10-21 23:56:05 +04:00
{
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
struct iommu_group_attribute * attr = to_iommu_group_attr ( __attr ) ;
struct iommu_group * group = to_iommu_group ( kobj ) ;
ssize_t ret = - EIO ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
if ( attr - > show )
ret = attr - > show ( group , buf ) ;
return ret ;
}
static ssize_t iommu_group_attr_store ( struct kobject * kobj ,
struct attribute * __attr ,
const char * buf , size_t count )
{
struct iommu_group_attribute * attr = to_iommu_group_attr ( __attr ) ;
struct iommu_group * group = to_iommu_group ( kobj ) ;
ssize_t ret = - EIO ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
if ( attr - > store )
ret = attr - > store ( group , buf , count ) ;
return ret ;
2011-10-21 23:56:05 +04:00
}
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
static const struct sysfs_ops iommu_group_sysfs_ops = {
. show = iommu_group_attr_show ,
. store = iommu_group_attr_store ,
} ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
static int iommu_group_create_file ( struct iommu_group * group ,
struct iommu_group_attribute * attr )
{
return sysfs_create_file ( & group - > kobj , & attr - > attr ) ;
2011-10-21 23:56:05 +04:00
}
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
static void iommu_group_remove_file ( struct iommu_group * group ,
struct iommu_group_attribute * attr )
{
sysfs_remove_file ( & group - > kobj , & attr - > attr ) ;
}
static ssize_t iommu_group_show_name ( struct iommu_group * group , char * buf )
{
return sprintf ( buf , " %s \n " , group - > name ) ;
}
static IOMMU_GROUP_ATTR ( name , S_IRUGO , iommu_group_show_name , NULL ) ;
static void iommu_group_release ( struct kobject * kobj )
{
struct iommu_group * group = to_iommu_group ( kobj ) ;
if ( group - > iommu_data_release )
group - > iommu_data_release ( group - > iommu_data ) ;
mutex_lock ( & iommu_group_mutex ) ;
ida_remove ( & iommu_group_ida , group - > id ) ;
mutex_unlock ( & iommu_group_mutex ) ;
kfree ( group - > name ) ;
kfree ( group ) ;
}
static struct kobj_type iommu_group_ktype = {
. sysfs_ops = & iommu_group_sysfs_ops ,
. release = iommu_group_release ,
} ;
/**
* iommu_group_alloc - Allocate a new group
* @ name : Optional name to associate with group , visible in sysfs
*
* This function is called by an iommu driver to allocate a new iommu
* group . The iommu group represents the minimum granularity of the iommu .
* Upon successful return , the caller holds a reference to the supplied
* group in order to hold the group until devices are added . Use
* iommu_group_put ( ) to release this extra reference count , allowing the
* group to be automatically reclaimed once it has no devices or external
* references .
*/
struct iommu_group * iommu_group_alloc ( void )
2011-10-21 23:56:05 +04:00
{
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
struct iommu_group * group ;
int ret ;
group = kzalloc ( sizeof ( * group ) , GFP_KERNEL ) ;
if ( ! group )
return ERR_PTR ( - ENOMEM ) ;
group - > kobj . kset = iommu_group_kset ;
mutex_init ( & group - > mutex ) ;
INIT_LIST_HEAD ( & group - > devices ) ;
BLOCKING_INIT_NOTIFIER_HEAD ( & group - > notifier ) ;
mutex_lock ( & iommu_group_mutex ) ;
again :
if ( unlikely ( 0 = = ida_pre_get ( & iommu_group_ida , GFP_KERNEL ) ) ) {
kfree ( group ) ;
mutex_unlock ( & iommu_group_mutex ) ;
return ERR_PTR ( - ENOMEM ) ;
}
if ( - EAGAIN = = ida_get_new ( & iommu_group_ida , & group - > id ) )
goto again ;
mutex_unlock ( & iommu_group_mutex ) ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
ret = kobject_init_and_add ( & group - > kobj , & iommu_group_ktype ,
NULL , " %d " , group - > id ) ;
if ( ret ) {
mutex_lock ( & iommu_group_mutex ) ;
ida_remove ( & iommu_group_ida , group - > id ) ;
mutex_unlock ( & iommu_group_mutex ) ;
kfree ( group ) ;
return ERR_PTR ( ret ) ;
}
group - > devices_kobj = kobject_create_and_add ( " devices " , & group - > kobj ) ;
if ( ! group - > devices_kobj ) {
kobject_put ( & group - > kobj ) ; /* triggers .release & free */
return ERR_PTR ( - ENOMEM ) ;
}
/*
* The devices_kobj holds a reference on the group kobject , so
* as long as that exists so will the group . We can therefore
* use the devices_kobj for reference counting .
*/
kobject_put ( & group - > kobj ) ;
return group ;
}
EXPORT_SYMBOL_GPL ( iommu_group_alloc ) ;
2013-03-25 03:23:49 +04:00
struct iommu_group * iommu_group_get_by_id ( int id )
{
struct kobject * group_kobj ;
struct iommu_group * group ;
const char * name ;
if ( ! iommu_group_kset )
return NULL ;
name = kasprintf ( GFP_KERNEL , " %d " , id ) ;
if ( ! name )
return NULL ;
group_kobj = kset_find_obj ( iommu_group_kset , name ) ;
kfree ( name ) ;
if ( ! group_kobj )
return NULL ;
group = container_of ( group_kobj , struct iommu_group , kobj ) ;
BUG_ON ( group - > id ! = id ) ;
kobject_get ( group - > devices_kobj ) ;
kobject_put ( & group - > kobj ) ;
return group ;
}
EXPORT_SYMBOL_GPL ( iommu_group_get_by_id ) ;
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
/**
* iommu_group_get_iommudata - retrieve iommu_data registered for a group
* @ group : the group
*
* iommu drivers can store data in the group for use when doing iommu
* operations . This function provides a way to retrieve it . Caller
* should hold a group reference .
*/
void * iommu_group_get_iommudata ( struct iommu_group * group )
{
return group - > iommu_data ;
}
EXPORT_SYMBOL_GPL ( iommu_group_get_iommudata ) ;
/**
* iommu_group_set_iommudata - set iommu_data for a group
* @ group : the group
* @ iommu_data : new data
* @ release : release function for iommu_data
*
* iommu drivers can store data in the group for use when doing iommu
* operations . This function provides a way to set the data after
* the group has been allocated . Caller should hold a group reference .
*/
void iommu_group_set_iommudata ( struct iommu_group * group , void * iommu_data ,
void ( * release ) ( void * iommu_data ) )
2011-10-21 23:56:05 +04:00
{
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
group - > iommu_data = iommu_data ;
group - > iommu_data_release = release ;
}
EXPORT_SYMBOL_GPL ( iommu_group_set_iommudata ) ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
/**
* iommu_group_set_name - set name for a group
* @ group : the group
* @ name : name
*
* Allow iommu driver to set a name for a group . When set it will
* appear in a name attribute file under the group in sysfs .
*/
int iommu_group_set_name ( struct iommu_group * group , const char * name )
{
int ret ;
if ( group - > name ) {
iommu_group_remove_file ( group , & iommu_group_attr_name ) ;
kfree ( group - > name ) ;
group - > name = NULL ;
if ( ! name )
return 0 ;
}
group - > name = kstrdup ( name , GFP_KERNEL ) ;
if ( ! group - > name )
return - ENOMEM ;
ret = iommu_group_create_file ( group , & iommu_group_attr_name ) ;
if ( ret ) {
kfree ( group - > name ) ;
group - > name = NULL ;
return ret ;
}
2011-10-21 23:56:05 +04:00
return 0 ;
}
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
EXPORT_SYMBOL_GPL ( iommu_group_set_name ) ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
/**
* iommu_group_add_device - add a device to an iommu group
* @ group : the group into which to add the device ( reference should be held )
* @ dev : the device
*
* This function is called by an iommu driver to add a device into a
* group . Adding a device increments the group reference count .
*/
int iommu_group_add_device ( struct iommu_group * group , struct device * dev )
2011-10-21 23:56:05 +04:00
{
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
int ret , i = 0 ;
struct iommu_device * device ;
device = kzalloc ( sizeof ( * device ) , GFP_KERNEL ) ;
if ( ! device )
return - ENOMEM ;
device - > dev = dev ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
ret = sysfs_create_link ( & dev - > kobj , & group - > kobj , " iommu_group " ) ;
if ( ret ) {
kfree ( device ) ;
return ret ;
}
device - > name = kasprintf ( GFP_KERNEL , " %s " , kobject_name ( & dev - > kobj ) ) ;
rename :
if ( ! device - > name ) {
sysfs_remove_link ( & dev - > kobj , " iommu_group " ) ;
kfree ( device ) ;
return - ENOMEM ;
}
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
ret = sysfs_create_link_nowarn ( group - > devices_kobj ,
& dev - > kobj , device - > name ) ;
if ( ret ) {
kfree ( device - > name ) ;
if ( ret = = - EEXIST & & i > = 0 ) {
/*
* Account for the slim chance of collision
* and append an instance to the name .
*/
device - > name = kasprintf ( GFP_KERNEL , " %s.%d " ,
kobject_name ( & dev - > kobj ) , i + + ) ;
goto rename ;
}
sysfs_remove_link ( & dev - > kobj , " iommu_group " ) ;
kfree ( device ) ;
return ret ;
}
kobject_get ( group - > devices_kobj ) ;
dev - > iommu_group = group ;
mutex_lock ( & group - > mutex ) ;
list_add_tail ( & device - > list , & group - > devices ) ;
mutex_unlock ( & group - > mutex ) ;
/* Notify any listeners about change to group. */
blocking_notifier_call_chain ( & group - > notifier ,
IOMMU_GROUP_NOTIFY_ADD_DEVICE , dev ) ;
2013-08-15 21:59:24 +04:00
trace_add_device_to_group ( group - > id , dev ) ;
2011-10-21 23:56:05 +04:00
return 0 ;
}
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
EXPORT_SYMBOL_GPL ( iommu_group_add_device ) ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
/**
* iommu_group_remove_device - remove a device from it ' s current group
* @ dev : device to be removed
*
* This function is called by an iommu driver to remove the device from
* it ' s current group . This decrements the iommu group reference count .
*/
void iommu_group_remove_device ( struct device * dev )
{
struct iommu_group * group = dev - > iommu_group ;
struct iommu_device * tmp_device , * device = NULL ;
/* Pre-notify listeners that a device is being removed. */
blocking_notifier_call_chain ( & group - > notifier ,
IOMMU_GROUP_NOTIFY_DEL_DEVICE , dev ) ;
mutex_lock ( & group - > mutex ) ;
list_for_each_entry ( tmp_device , & group - > devices , list ) {
if ( tmp_device - > dev = = dev ) {
device = tmp_device ;
list_del ( & device - > list ) ;
break ;
}
}
mutex_unlock ( & group - > mutex ) ;
if ( ! device )
return ;
sysfs_remove_link ( group - > devices_kobj , device - > name ) ;
sysfs_remove_link ( & dev - > kobj , " iommu_group " ) ;
2013-08-15 21:59:25 +04:00
trace_remove_device_from_group ( group - > id , dev ) ;
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
kfree ( device - > name ) ;
kfree ( device ) ;
dev - > iommu_group = NULL ;
kobject_put ( group - > devices_kobj ) ;
}
EXPORT_SYMBOL_GPL ( iommu_group_remove_device ) ;
/**
* iommu_group_for_each_dev - iterate over each device in the group
* @ group : the group
* @ data : caller opaque data to be passed to callback function
* @ fn : caller supplied callback function
*
* This function is called by group users to iterate over group devices .
* Callers should hold a reference count to the group during callback .
* The group - > mutex is held across callbacks , which will block calls to
* iommu_group_add / remove_device .
*/
int iommu_group_for_each_dev ( struct iommu_group * group , void * data ,
int ( * fn ) ( struct device * , void * ) )
{
struct iommu_device * device ;
int ret = 0 ;
mutex_lock ( & group - > mutex ) ;
list_for_each_entry ( device , & group - > devices , list ) {
ret = fn ( device - > dev , data ) ;
if ( ret )
break ;
}
mutex_unlock ( & group - > mutex ) ;
return ret ;
}
EXPORT_SYMBOL_GPL ( iommu_group_for_each_dev ) ;
/**
* iommu_group_get - Return the group for a device and increment reference
* @ dev : get the group that this device belongs to
*
* This function is called by iommu drivers and users to get the group
* for the specified device . If found , the group is returned and the group
* reference in incremented , else NULL .
*/
struct iommu_group * iommu_group_get ( struct device * dev )
{
struct iommu_group * group = dev - > iommu_group ;
if ( group )
kobject_get ( group - > devices_kobj ) ;
return group ;
}
EXPORT_SYMBOL_GPL ( iommu_group_get ) ;
/**
* iommu_group_put - Decrement group reference
* @ group : the group to use
*
* This function is called by iommu drivers and users to release the
* iommu group . Once the reference count is zero , the group is released .
*/
void iommu_group_put ( struct iommu_group * group )
{
if ( group )
kobject_put ( group - > devices_kobj ) ;
}
EXPORT_SYMBOL_GPL ( iommu_group_put ) ;
/**
* iommu_group_register_notifier - Register a notifier for group changes
* @ group : the group to watch
* @ nb : notifier block to signal
*
* This function allows iommu group users to track changes in a group .
* See include / linux / iommu . h for actions sent via this notifier . Caller
* should hold a reference to the group throughout notifier registration .
*/
int iommu_group_register_notifier ( struct iommu_group * group ,
struct notifier_block * nb )
{
return blocking_notifier_chain_register ( & group - > notifier , nb ) ;
}
EXPORT_SYMBOL_GPL ( iommu_group_register_notifier ) ;
/**
* iommu_group_unregister_notifier - Unregister a notifier
* @ group : the group to watch
* @ nb : notifier block to signal
*
* Unregister a previously registered group notifier block .
*/
int iommu_group_unregister_notifier ( struct iommu_group * group ,
struct notifier_block * nb )
{
return blocking_notifier_chain_unregister ( & group - > notifier , nb ) ;
}
EXPORT_SYMBOL_GPL ( iommu_group_unregister_notifier ) ;
/**
* iommu_group_id - Return ID for a group
* @ group : the group to ID
*
* Return the unique ID for the group matching the sysfs group number .
*/
int iommu_group_id ( struct iommu_group * group )
{
return group - > id ;
}
EXPORT_SYMBOL_GPL ( iommu_group_id ) ;
2011-10-21 23:56:05 +04:00
2014-09-19 20:03:06 +04:00
static struct iommu_group * get_pci_alias_group ( struct pci_dev * pdev ,
unsigned long * devfns ) ;
2014-07-03 19:51:18 +04:00
/*
* To consider a PCI device isolated , we require ACS to support Source
* Validation , Request Redirection , Completer Redirection , and Upstream
* Forwarding . This effectively means that devices cannot spoof their
* requester ID , requests and completions cannot be redirected , and all
* transactions are forwarded upstream , even as it passes through a
* bridge where the target device is downstream .
*/
# define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
2014-09-19 20:03:06 +04:00
/*
* For multifunction devices which are not isolated from each other , find
* all the other non - isolated functions and look for existing groups . For
* each function , we also need to look for aliases to or from other devices
* that may already have a group .
*/
static struct iommu_group * get_pci_function_alias_group ( struct pci_dev * pdev ,
unsigned long * devfns )
{
struct pci_dev * tmp = NULL ;
struct iommu_group * group ;
if ( ! pdev - > multifunction | | pci_acs_enabled ( pdev , REQ_ACS_FLAGS ) )
return NULL ;
for_each_pci_dev ( tmp ) {
if ( tmp = = pdev | | tmp - > bus ! = pdev - > bus | |
PCI_SLOT ( tmp - > devfn ) ! = PCI_SLOT ( pdev - > devfn ) | |
pci_acs_enabled ( tmp , REQ_ACS_FLAGS ) )
continue ;
group = get_pci_alias_group ( tmp , devfns ) ;
if ( group ) {
pci_dev_put ( tmp ) ;
return group ;
}
}
return NULL ;
}
/*
* Look for aliases to or from the given device for exisiting groups . The
* dma_alias_devfn only supports aliases on the same bus , therefore the search
* space is quite small ( especially since we ' re really only looking at pcie
* device , and therefore only expect multiple slots on the root complex or
* downstream switch ports ) . It ' s conceivable though that a pair of
* multifunction devices could have aliases between them that would cause a
* loop . To prevent this , we use a bitmap to track where we ' ve been .
*/
static struct iommu_group * get_pci_alias_group ( struct pci_dev * pdev ,
unsigned long * devfns )
{
struct pci_dev * tmp = NULL ;
struct iommu_group * group ;
if ( test_and_set_bit ( pdev - > devfn & 0xff , devfns ) )
return NULL ;
group = iommu_group_get ( & pdev - > dev ) ;
if ( group )
return group ;
for_each_pci_dev ( tmp ) {
if ( tmp = = pdev | | tmp - > bus ! = pdev - > bus )
continue ;
/* We alias them or they alias us */
if ( ( ( pdev - > dev_flags & PCI_DEV_FLAGS_DMA_ALIAS_DEVFN ) & &
pdev - > dma_alias_devfn = = tmp - > devfn ) | |
( ( tmp - > dev_flags & PCI_DEV_FLAGS_DMA_ALIAS_DEVFN ) & &
tmp - > dma_alias_devfn = = pdev - > devfn ) ) {
group = get_pci_alias_group ( tmp , devfns ) ;
if ( group ) {
pci_dev_put ( tmp ) ;
return group ;
}
group = get_pci_function_alias_group ( tmp , devfns ) ;
if ( group ) {
pci_dev_put ( tmp ) ;
return group ;
}
}
}
return NULL ;
}
2014-07-03 19:51:18 +04:00
struct group_for_pci_data {
struct pci_dev * pdev ;
struct iommu_group * group ;
} ;
/*
* DMA alias iterator callback , return the last seen device . Stop and return
* the IOMMU group if we find one along the way .
*/
static int get_pci_alias_or_group ( struct pci_dev * pdev , u16 alias , void * opaque )
{
struct group_for_pci_data * data = opaque ;
data - > pdev = pdev ;
data - > group = iommu_group_get ( & pdev - > dev ) ;
return data - > group ! = NULL ;
}
/*
* Use standard PCI bus topology , isolation features , and DMA alias quirks
* to find or create an IOMMU group for a device .
*/
static struct iommu_group * iommu_group_get_for_pci_dev ( struct pci_dev * pdev )
{
struct group_for_pci_data data ;
struct pci_bus * bus ;
struct iommu_group * group = NULL ;
2014-09-19 20:03:06 +04:00
u64 devfns [ 4 ] = { 0 } ;
2014-07-03 19:51:18 +04:00
/*
* Find the upstream DMA alias for the device . A device must not
* be aliased due to topology in order to have its own IOMMU group .
* If we find an alias along the way that already belongs to a
* group , use it .
*/
if ( pci_for_each_dma_alias ( pdev , get_pci_alias_or_group , & data ) )
return data . group ;
pdev = data . pdev ;
/*
* Continue upstream from the point of minimum IOMMU granularity
* due to aliases to the point where devices are protected from
* peer - to - peer DMA by PCI ACS . Again , if we find an existing
* group , use it .
*/
for ( bus = pdev - > bus ; ! pci_is_root_bus ( bus ) ; bus = bus - > parent ) {
if ( ! bus - > self )
continue ;
if ( pci_acs_path_enabled ( bus - > self , NULL , REQ_ACS_FLAGS ) )
break ;
pdev = bus - > self ;
group = iommu_group_get ( & pdev - > dev ) ;
if ( group )
return group ;
}
/*
2014-09-19 20:03:06 +04:00
* Look for existing groups on device aliases . If we alias another
* device or another device aliases us , use the same group .
2014-07-03 19:51:18 +04:00
*/
2014-09-19 20:03:06 +04:00
group = get_pci_alias_group ( pdev , ( unsigned long * ) devfns ) ;
if ( group )
return group ;
2014-07-03 19:51:18 +04:00
/*
2014-09-19 20:03:06 +04:00
* Look for existing groups on non - isolated functions on the same
* slot and aliases of those funcions , if any . No need to clear
* the search bitmap , the tested devfns are still valid .
2014-07-03 19:51:18 +04:00
*/
2014-09-19 20:03:06 +04:00
group = get_pci_function_alias_group ( pdev , ( unsigned long * ) devfns ) ;
if ( group )
return group ;
2014-07-03 19:51:18 +04:00
/* No shared group found, allocate new */
return iommu_group_alloc ( ) ;
}
/**
* iommu_group_get_for_dev - Find or create the IOMMU group for a device
* @ dev : target device
*
* This function is intended to be called by IOMMU drivers and extended to
* support common , bus - defined algorithms when determining or creating the
* IOMMU group for a device . On success , the caller will hold a reference
* to the returned IOMMU group , which will already include the provided
* device . The reference should be released with iommu_group_put ( ) .
*/
struct iommu_group * iommu_group_get_for_dev ( struct device * dev )
{
2014-08-22 00:32:08 +04:00
struct iommu_group * group ;
2014-07-03 19:51:18 +04:00
int ret ;
group = iommu_group_get ( dev ) ;
if ( group )
return group ;
2014-08-22 00:32:08 +04:00
if ( ! dev_is_pci ( dev ) )
return ERR_PTR ( - EINVAL ) ;
group = iommu_group_get_for_pci_dev ( to_pci_dev ( dev ) ) ;
2014-07-03 19:51:18 +04:00
if ( IS_ERR ( group ) )
return group ;
ret = iommu_group_add_device ( group , dev ) ;
if ( ret ) {
iommu_group_put ( group ) ;
return ERR_PTR ( ret ) ;
}
return group ;
}
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
static int add_iommu_group ( struct device * dev , void * data )
2011-10-21 23:56:05 +04:00
{
2014-06-27 11:03:12 +04:00
struct iommu_callback_data * cb = data ;
const struct iommu_ops * ops = cb - > ops ;
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
if ( ! ops - > add_device )
2014-11-19 14:15:31 +03:00
return 0 ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
WARN_ON ( dev - > iommu_group ) ;
ops - > add_device ( dev ) ;
2011-10-21 23:56:05 +04:00
return 0 ;
}
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
static int iommu_bus_notifier ( struct notifier_block * nb ,
unsigned long action , void * data )
2011-10-21 23:56:05 +04:00
{
struct device * dev = data ;
2014-06-27 11:03:12 +04:00
const struct iommu_ops * ops = dev - > bus - > iommu_ops ;
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
struct iommu_group * group ;
unsigned long group_action = 0 ;
/*
* ADD / DEL call into iommu driver ops if provided , which may
* result in ADD / DEL notifiers to group - > notifier
*/
if ( action = = BUS_NOTIFY_ADD_DEVICE ) {
if ( ops - > add_device )
return ops - > add_device ( dev ) ;
} else if ( action = = BUS_NOTIFY_DEL_DEVICE ) {
if ( ops - > remove_device & & dev - > iommu_group ) {
ops - > remove_device ( dev ) ;
return 0 ;
}
}
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
/*
* Remaining BUS_NOTIFYs get filtered and republished to the
* group , if anyone is listening
*/
group = iommu_group_get ( dev ) ;
if ( ! group )
return 0 ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
switch ( action ) {
case BUS_NOTIFY_BIND_DRIVER :
group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER ;
break ;
case BUS_NOTIFY_BOUND_DRIVER :
group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER ;
break ;
case BUS_NOTIFY_UNBIND_DRIVER :
group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER ;
break ;
case BUS_NOTIFY_UNBOUND_DRIVER :
group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER ;
break ;
}
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
if ( group_action )
blocking_notifier_call_chain ( & group - > notifier ,
group_action , dev ) ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
iommu_group_put ( group ) ;
2011-10-21 23:56:05 +04:00
return 0 ;
}
2014-09-21 21:58:24 +04:00
static int iommu_bus_init ( struct bus_type * bus , const struct iommu_ops * ops )
2011-08-26 18:48:26 +04:00
{
2014-09-21 21:58:24 +04:00
int err ;
struct notifier_block * nb ;
2014-06-27 11:03:12 +04:00
struct iommu_callback_data cb = {
. ops = ops ,
} ;
2014-09-21 21:58:24 +04:00
nb = kzalloc ( sizeof ( struct notifier_block ) , GFP_KERNEL ) ;
if ( ! nb )
return - ENOMEM ;
nb - > notifier_call = iommu_bus_notifier ;
err = bus_register_notifier ( bus , nb ) ;
if ( err ) {
kfree ( nb ) ;
return err ;
}
2014-10-29 03:22:56 +03:00
err = bus_for_each_dev ( bus , NULL , & cb , add_iommu_group ) ;
if ( err ) {
bus_unregister_notifier ( bus , nb ) ;
kfree ( nb ) ;
return err ;
}
return 0 ;
2011-08-26 18:48:26 +04:00
}
2008-11-26 19:21:24 +03:00
2011-08-26 18:48:26 +04:00
/**
* bus_set_iommu - set iommu - callbacks for the bus
* @ bus : bus .
* @ ops : the callbacks provided by the iommu - driver
*
* This function is called by an iommu driver to set the iommu methods
* used for a particular bus . Drivers for devices on that bus can use
* the iommu - api after these ops are registered .
* This special function is needed because IOMMUs are usually devices on
* the bus itself , so the iommu drivers are not initialized when the bus
* is set up . With this function the iommu - driver can set the iommu - ops
* afterwards .
*/
2014-06-27 11:03:12 +04:00
int bus_set_iommu ( struct bus_type * bus , const struct iommu_ops * ops )
2008-11-26 19:21:24 +03:00
{
2014-10-29 03:22:56 +03:00
int err ;
2011-08-26 18:48:26 +04:00
if ( bus - > iommu_ops ! = NULL )
return - EBUSY ;
2008-11-26 19:21:24 +03:00
2011-08-26 18:48:26 +04:00
bus - > iommu_ops = ops ;
/* Do IOMMU specific setup for this bus-type */
2014-10-29 03:22:56 +03:00
err = iommu_bus_init ( bus , ops ) ;
if ( err )
bus - > iommu_ops = NULL ;
return err ;
2008-11-26 19:21:24 +03:00
}
2011-08-26 18:48:26 +04:00
EXPORT_SYMBOL_GPL ( bus_set_iommu ) ;
2008-11-26 19:21:24 +03:00
2011-09-06 20:46:34 +04:00
bool iommu_present ( struct bus_type * bus )
2008-11-26 19:21:24 +03:00
{
2011-09-06 20:58:54 +04:00
return bus - > iommu_ops ! = NULL ;
2008-11-26 19:21:24 +03:00
}
2011-09-06 20:46:34 +04:00
EXPORT_SYMBOL_GPL ( iommu_present ) ;
2008-11-26 19:21:24 +03:00
2014-09-03 20:47:25 +04:00
bool iommu_capable ( struct bus_type * bus , enum iommu_cap cap )
{
if ( ! bus - > iommu_ops | | ! bus - > iommu_ops - > capable )
return false ;
return bus - > iommu_ops - > capable ( cap ) ;
}
EXPORT_SYMBOL_GPL ( iommu_capable ) ;
2011-09-13 23:25:23 +04:00
/**
* iommu_set_fault_handler ( ) - set a fault handler for an iommu domain
* @ domain : iommu domain
* @ handler : fault handler
2012-05-21 21:20:05 +04:00
* @ token : user data , will be passed back to the fault handler
2011-09-27 15:36:40 +04:00
*
* This function should be used by IOMMU users which want to be notified
* whenever an IOMMU fault happens .
*
* The fault handler itself should return 0 on success , and an appropriate
* error code otherwise .
2011-09-13 23:25:23 +04:00
*/
void iommu_set_fault_handler ( struct iommu_domain * domain ,
2012-05-21 21:20:05 +04:00
iommu_fault_handler_t handler ,
void * token )
2011-09-13 23:25:23 +04:00
{
BUG_ON ( ! domain ) ;
domain - > handler = handler ;
2012-05-21 21:20:05 +04:00
domain - > handler_token = token ;
2011-09-13 23:25:23 +04:00
}
2011-09-26 17:11:46 +04:00
EXPORT_SYMBOL_GPL ( iommu_set_fault_handler ) ;
2011-09-13 23:25:23 +04:00
2011-09-06 18:03:26 +04:00
struct iommu_domain * iommu_domain_alloc ( struct bus_type * bus )
2008-11-26 19:21:24 +03:00
{
struct iommu_domain * domain ;
int ret ;
2011-09-06 20:58:54 +04:00
if ( bus = = NULL | | bus - > iommu_ops = = NULL )
2011-09-06 18:03:26 +04:00
return NULL ;
2011-12-16 16:38:25 +04:00
domain = kzalloc ( sizeof ( * domain ) , GFP_KERNEL ) ;
2008-11-26 19:21:24 +03:00
if ( ! domain )
return NULL ;
2011-09-06 20:58:54 +04:00
domain - > ops = bus - > iommu_ops ;
2011-09-06 18:03:26 +04:00
2011-09-06 20:58:54 +04:00
ret = domain - > ops - > domain_init ( domain ) ;
2008-11-26 19:21:24 +03:00
if ( ret )
goto out_free ;
return domain ;
out_free :
kfree ( domain ) ;
return NULL ;
}
EXPORT_SYMBOL_GPL ( iommu_domain_alloc ) ;
void iommu_domain_free ( struct iommu_domain * domain )
{
2011-09-06 18:44:29 +04:00
if ( likely ( domain - > ops - > domain_destroy ! = NULL ) )
domain - > ops - > domain_destroy ( domain ) ;
2008-11-26 19:21:24 +03:00
kfree ( domain ) ;
}
EXPORT_SYMBOL_GPL ( iommu_domain_free ) ;
int iommu_attach_device ( struct iommu_domain * domain , struct device * dev )
{
2013-08-15 21:59:26 +04:00
int ret ;
2011-09-06 18:44:29 +04:00
if ( unlikely ( domain - > ops - > attach_dev = = NULL ) )
return - ENODEV ;
2013-08-15 21:59:26 +04:00
ret = domain - > ops - > attach_dev ( domain , dev ) ;
if ( ! ret )
trace_attach_device_to_domain ( dev ) ;
return ret ;
2008-11-26 19:21:24 +03:00
}
EXPORT_SYMBOL_GPL ( iommu_attach_device ) ;
void iommu_detach_device ( struct iommu_domain * domain , struct device * dev )
{
2011-09-06 18:44:29 +04:00
if ( unlikely ( domain - > ops - > detach_dev = = NULL ) )
return ;
domain - > ops - > detach_dev ( domain , dev ) ;
2013-08-15 21:59:27 +04:00
trace_detach_device_from_domain ( dev ) ;
2008-11-26 19:21:24 +03:00
}
EXPORT_SYMBOL_GPL ( iommu_detach_device ) ;
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
/*
* IOMMU groups are really the natrual working unit of the IOMMU , but
* the IOMMU API works on domains and devices . Bridge that gap by
* iterating over the devices in a group . Ideally we ' d have a single
* device which represents the requestor ID of the group , but we also
* allow IOMMU drivers to create policy defined minimum sets , where
* the physical hardware may be able to distiguish members , but we
* wish to group them at a higher level ( ex . untrusted multi - function
* PCI devices ) . Thus we attach each device .
*/
static int iommu_group_do_attach_device ( struct device * dev , void * data )
{
struct iommu_domain * domain = data ;
return iommu_attach_device ( domain , dev ) ;
}
int iommu_attach_group ( struct iommu_domain * domain , struct iommu_group * group )
{
return iommu_group_for_each_dev ( group , domain ,
iommu_group_do_attach_device ) ;
}
EXPORT_SYMBOL_GPL ( iommu_attach_group ) ;
static int iommu_group_do_detach_device ( struct device * dev , void * data )
{
struct iommu_domain * domain = data ;
iommu_detach_device ( domain , dev ) ;
return 0 ;
}
void iommu_detach_group ( struct iommu_domain * domain , struct iommu_group * group )
{
iommu_group_for_each_dev ( group , domain , iommu_group_do_detach_device ) ;
}
EXPORT_SYMBOL_GPL ( iommu_detach_group ) ;
2013-03-28 23:53:58 +04:00
phys_addr_t iommu_iova_to_phys ( struct iommu_domain * domain , dma_addr_t iova )
2008-11-26 19:21:24 +03:00
{
2011-09-06 18:44:29 +04:00
if ( unlikely ( domain - > ops - > iova_to_phys = = NULL ) )
return 0 ;
return domain - > ops - > iova_to_phys ( domain , iova ) ;
2008-11-26 19:21:24 +03:00
}
EXPORT_SYMBOL_GPL ( iommu_iova_to_phys ) ;
2009-03-18 10:33:06 +03:00
2013-06-18 05:57:34 +04:00
static size_t iommu_pgsize ( struct iommu_domain * domain ,
unsigned long addr_merge , size_t size )
{
unsigned int pgsize_idx ;
size_t pgsize ;
/* Max page size that still fits into 'size' */
pgsize_idx = __fls ( size ) ;
/* need to consider alignment requirements ? */
if ( likely ( addr_merge ) ) {
/* Max page size allowed by address */
unsigned int align_pgsize_idx = __ffs ( addr_merge ) ;
pgsize_idx = min ( pgsize_idx , align_pgsize_idx ) ;
}
/* build a mask of acceptable page sizes */
pgsize = ( 1UL < < ( pgsize_idx + 1 ) ) - 1 ;
/* throw away page sizes not supported by the hardware */
pgsize & = domain - > ops - > pgsize_bitmap ;
/* make sure we're still sane */
BUG_ON ( ! pgsize ) ;
/* pick the biggest page */
pgsize_idx = __fls ( pgsize ) ;
pgsize = 1UL < < pgsize_idx ;
return pgsize ;
}
2010-01-08 15:35:09 +03:00
int iommu_map ( struct iommu_domain * domain , unsigned long iova ,
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
phys_addr_t paddr , size_t size , int prot )
2010-01-08 15:35:09 +03:00
{
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
unsigned long orig_iova = iova ;
unsigned int min_pagesz ;
size_t orig_size = size ;
int ret = 0 ;
2010-01-08 15:35:09 +03:00
2014-08-19 02:19:26 +04:00
if ( unlikely ( domain - > ops - > map = = NULL | |
2013-01-29 16:41:09 +04:00
domain - > ops - > pgsize_bitmap = = 0UL ) )
2011-09-06 18:44:29 +04:00
return - ENODEV ;
2010-01-08 15:35:09 +03:00
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
/* find out the minimum page size supported */
min_pagesz = 1 < < __ffs ( domain - > ops - > pgsize_bitmap ) ;
/*
* both the virtual address and the physical one , as well as
* the size of the mapping , must be aligned ( at least ) to the
* size of the smallest page supported by the hardware
*/
if ( ! IS_ALIGNED ( iova | paddr | size , min_pagesz ) ) {
2013-08-22 17:25:42 +04:00
pr_err ( " unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x \n " ,
2013-06-23 23:29:04 +04:00
iova , & paddr , size , min_pagesz ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
return - EINVAL ;
}
2013-08-22 17:25:42 +04:00
pr_debug ( " map: iova 0x%lx pa %pa size 0x%zx \n " , iova , & paddr , size ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
while ( size ) {
2013-06-18 05:57:34 +04:00
size_t pgsize = iommu_pgsize ( domain , iova | paddr , size ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
2013-08-22 17:25:42 +04:00
pr_debug ( " mapping: iova 0x%lx pa %pa pgsize 0x%zx \n " ,
2013-06-23 23:29:04 +04:00
iova , & paddr , pgsize ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
ret = domain - > ops - > map ( domain , iova , paddr , pgsize , prot ) ;
if ( ret )
break ;
iova + = pgsize ;
paddr + = pgsize ;
size - = pgsize ;
}
/* unroll mapping in case something went wrong */
if ( ret )
iommu_unmap ( domain , orig_iova , orig_size - size ) ;
2013-08-15 21:59:28 +04:00
else
trace_map ( iova , paddr , size ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
return ret ;
2010-01-08 15:35:09 +03:00
}
EXPORT_SYMBOL_GPL ( iommu_map ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
size_t iommu_unmap ( struct iommu_domain * domain , unsigned long iova , size_t size )
2010-01-08 15:35:09 +03:00
{
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
size_t unmapped_page , unmapped = 0 ;
unsigned int min_pagesz ;
2010-01-08 15:35:09 +03:00
2013-01-29 16:41:09 +04:00
if ( unlikely ( domain - > ops - > unmap = = NULL | |
domain - > ops - > pgsize_bitmap = = 0UL ) )
2011-09-06 18:44:29 +04:00
return - ENODEV ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
/* find out the minimum page size supported */
min_pagesz = 1 < < __ffs ( domain - > ops - > pgsize_bitmap ) ;
/*
* The virtual address , as well as the size of the mapping , must be
* aligned ( at least ) to the size of the smallest page supported
* by the hardware
*/
if ( ! IS_ALIGNED ( iova | size , min_pagesz ) ) {
2013-06-23 23:29:04 +04:00
pr_err ( " unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x \n " ,
iova , size , min_pagesz ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
return - EINVAL ;
}
2013-06-23 23:29:04 +04:00
pr_debug ( " unmap this: iova 0x%lx size 0x%zx \n " , iova , size ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
/*
* Keep iterating until we either unmap ' size ' bytes ( or more )
* or we hit an area that isn ' t mapped .
*/
while ( unmapped < size ) {
2013-06-18 05:57:34 +04:00
size_t pgsize = iommu_pgsize ( domain , iova , size - unmapped ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
2013-06-18 05:57:34 +04:00
unmapped_page = domain - > ops - > unmap ( domain , iova , pgsize ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
if ( ! unmapped_page )
break ;
2013-06-23 23:29:04 +04:00
pr_debug ( " unmapped: iova 0x%lx size 0x%zx \n " ,
iova , unmapped_page ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
iova + = unmapped_page ;
unmapped + = unmapped_page ;
}
2013-08-15 21:59:29 +04:00
trace_unmap ( iova , 0 , size ) ;
iommu/core: split mapping to page sizes as supported by the hardware
When mapping a memory region, split it to page sizes as supported
by the iommu hardware. Always prefer bigger pages, when possible,
in order to reduce the TLB pressure.
The logic to do that is now added to the IOMMU core, so neither the iommu
drivers themselves nor users of the IOMMU API have to duplicate it.
This allows a more lenient granularity of mappings; traditionally the
IOMMU API took 'order' (of a page) as a mapping size, and directly let
the low level iommu drivers handle the mapping, but now that the IOMMU
core can split arbitrary memory regions into pages, we can remove this
limitation, so users don't have to split those regions by themselves.
Currently the supported page sizes are advertised once and they then
remain static. That works well for OMAP and MSM but it would probably
not fly well with intel's hardware, where the page size capabilities
seem to have the potential to be different between several DMA
remapping devices.
register_iommu() currently sets a default pgsize behavior, so we can convert
the IOMMU drivers in subsequent patches. After all the drivers
are converted, the temporary default settings will be removed.
Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted
to deal with bytes instead of page order.
Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review!
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <Joerg.Roedel@amd.com>
Cc: Stepan Moskovchenko <stepanm@codeaurora.org>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Hiroshi DOYU <hdoyu@nvidia.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 13:32:26 +04:00
return unmapped ;
2010-01-08 15:35:09 +03:00
}
EXPORT_SYMBOL_GPL ( iommu_unmap ) ;
2011-10-21 23:56:05 +04:00
2014-10-25 20:55:16 +04:00
size_t default_iommu_map_sg ( struct iommu_domain * domain , unsigned long iova ,
struct scatterlist * sg , unsigned int nents , int prot )
{
2014-11-04 16:53:51 +03:00
struct scatterlist * s ;
2014-10-25 20:55:16 +04:00
size_t mapped = 0 ;
2014-11-25 20:50:55 +03:00
unsigned int i , min_pagesz ;
2014-11-04 16:53:51 +03:00
int ret ;
2014-10-25 20:55:16 +04:00
2014-11-25 20:50:55 +03:00
if ( unlikely ( domain - > ops - > pgsize_bitmap = = 0UL ) )
return 0 ;
2014-10-25 20:55:16 +04:00
2014-11-25 20:50:55 +03:00
min_pagesz = 1 < < __ffs ( domain - > ops - > pgsize_bitmap ) ;
for_each_sg ( sg , s , nents , i ) {
phys_addr_t phys = page_to_phys ( sg_page ( s ) ) + s - > offset ;
/*
* We are mapping on IOMMU page boundaries , so offset within
* the page must be 0. However , the IOMMU may support pages
* smaller than PAGE_SIZE , so s - > offset may still represent
* an offset of that boundary within the CPU page .
*/
if ( ! IS_ALIGNED ( s - > offset , min_pagesz ) )
2014-11-04 16:53:51 +03:00
goto out_err ;
ret = iommu_map ( domain , iova + mapped , phys , s - > length , prot ) ;
if ( ret )
goto out_err ;
mapped + = s - > length ;
2014-10-25 20:55:16 +04:00
}
return mapped ;
2014-11-04 16:53:51 +03:00
out_err :
/* undo mappings already done */
iommu_unmap ( domain , iova , mapped ) ;
return 0 ;
2014-10-25 20:55:16 +04:00
}
EXPORT_SYMBOL_GPL ( default_iommu_map_sg ) ;
2013-01-29 17:26:20 +04:00
int iommu_domain_window_enable ( struct iommu_domain * domain , u32 wnd_nr ,
2013-03-28 23:54:00 +04:00
phys_addr_t paddr , u64 size , int prot )
2013-01-29 17:26:20 +04:00
{
if ( unlikely ( domain - > ops - > domain_window_enable = = NULL ) )
return - ENODEV ;
2013-03-28 23:54:00 +04:00
return domain - > ops - > domain_window_enable ( domain , wnd_nr , paddr , size ,
prot ) ;
2013-01-29 17:26:20 +04:00
}
EXPORT_SYMBOL_GPL ( iommu_domain_window_enable ) ;
void iommu_domain_window_disable ( struct iommu_domain * domain , u32 wnd_nr )
{
if ( unlikely ( domain - > ops - > domain_window_disable = = NULL ) )
return ;
return domain - > ops - > domain_window_disable ( domain , wnd_nr ) ;
}
EXPORT_SYMBOL_GPL ( iommu_domain_window_disable ) ;
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
static int __init iommu_init ( void )
2011-10-21 23:56:05 +04:00
{
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
iommu_group_kset = kset_create_and_add ( " iommu_groups " ,
NULL , kernel_kobj ) ;
ida_init ( & iommu_group_ida ) ;
mutex_init ( & iommu_group_mutex ) ;
2011-10-21 23:56:05 +04:00
iommu: IOMMU Groups
IOMMU device groups are currently a rather vague associative notion
with assembly required by the user or user level driver provider to
do anything useful. This patch intends to grow the IOMMU group concept
into something a bit more consumable.
To do this, we first create an object representing the group, struct
iommu_group. This structure is allocated (iommu_group_alloc) and
filled (iommu_group_add_device) by the iommu driver. The iommu driver
is free to add devices to the group using it's own set of policies.
This allows inclusion of devices based on physical hardware or topology
limitations of the platform, as well as soft requirements, such as
multi-function trust levels or peer-to-peer protection of the
interconnects. Each device may only belong to a single iommu group,
which is linked from struct device.iommu_group. IOMMU groups are
maintained using kobject reference counting, allowing for automatic
removal of empty, unreferenced groups. It is the responsibility of
the iommu driver to remove devices from the group
(iommu_group_remove_device).
IOMMU groups also include a userspace representation in sysfs under
/sys/kernel/iommu_groups. When allocated, each group is given a
dynamically assign ID (int). The ID is managed by the core IOMMU group
code to support multiple heterogeneous iommu drivers, which could
potentially collide in group naming/numbering. This also keeps group
IDs to small, easily managed values. A directory is created under
/sys/kernel/iommu_groups for each group. A further subdirectory named
"devices" contains links to each device within the group. The iommu_group
file in the device's sysfs directory, which formerly contained a group
number when read, is now a link to the iommu group. Example:
$ ls -l /sys/kernel/iommu_groups/26/devices/
total 0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 ->
../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 ->
../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1
$ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group
[truncating perms/owner/timestamp]
/sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group ->
../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group ->
../../../../kernel/iommu_groups/26
/sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group ->
../../../../kernel/iommu_groups/26
Groups also include several exported functions for use by user level
driver providers, for example VFIO. These include:
iommu_group_get(): Acquires a reference to a group from a device
iommu_group_put(): Releases reference
iommu_group_for_each_dev(): Iterates over group devices using callback
iommu_group_[un]register_notifier(): Allows notification of device add
and remove operations relevant to the group
iommu_group_id(): Return the group number
This patch also extends the IOMMU API to allow attaching groups to
domains. This is currently a simple wrapper for iterating through
devices within a group, but it's expected that the IOMMU API may
eventually make groups a more integral part of domains.
Groups intentionally do not try to manage group ownership. A user
level driver provider must independently acquire ownership for each
device within a group before making use of the group as a whole.
This may change in the future if group usage becomes more pervasive
across both DMA and IOMMU ops.
Groups intentionally do not provide a mechanism for driver locking
or otherwise manipulating driver matching/probing of devices within
the group. Such interfaces are generic to devices and beyond the
scope of IOMMU groups. If implemented, user level providers have
ready access via iommu_group_for_each_dev and group notifiers.
iommu_device_group() is removed here as it has no users. The
replacement is:
group = iommu_group_get(dev);
id = iommu_group_id(group);
iommu_group_put(group);
AMD-Vi & Intel VT-d support re-added in following patches.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-31 00:18:53 +04:00
BUG_ON ( ! iommu_group_kset ) ;
return 0 ;
2011-10-21 23:56:05 +04:00
}
2013-01-07 11:51:52 +04:00
arch_initcall ( iommu_init ) ;
2012-01-26 22:40:52 +04:00
int iommu_domain_get_attr ( struct iommu_domain * domain ,
enum iommu_attr attr , void * data )
{
2012-01-26 22:40:53 +04:00
struct iommu_domain_geometry * geometry ;
2013-01-29 16:49:04 +04:00
bool * paging ;
2012-01-26 22:40:53 +04:00
int ret = 0 ;
2013-02-04 17:00:01 +04:00
u32 * count ;
2012-01-26 22:40:53 +04:00
switch ( attr ) {
case DOMAIN_ATTR_GEOMETRY :
geometry = data ;
* geometry = domain - > geometry ;
2013-01-29 16:49:04 +04:00
break ;
case DOMAIN_ATTR_PAGING :
paging = data ;
* paging = ( domain - > ops - > pgsize_bitmap ! = 0UL ) ;
2013-02-04 17:00:01 +04:00
break ;
case DOMAIN_ATTR_WINDOWS :
count = data ;
if ( domain - > ops - > domain_get_windows ! = NULL )
* count = domain - > ops - > domain_get_windows ( domain ) ;
else
ret = - ENODEV ;
2012-01-26 22:40:53 +04:00
break ;
default :
if ( ! domain - > ops - > domain_get_attr )
return - EINVAL ;
2012-01-26 22:40:52 +04:00
2012-01-26 22:40:53 +04:00
ret = domain - > ops - > domain_get_attr ( domain , attr , data ) ;
}
return ret ;
2012-01-26 22:40:52 +04:00
}
EXPORT_SYMBOL_GPL ( iommu_domain_get_attr ) ;
int iommu_domain_set_attr ( struct iommu_domain * domain ,
enum iommu_attr attr , void * data )
{
2013-02-04 17:00:01 +04:00
int ret = 0 ;
u32 * count ;
switch ( attr ) {
case DOMAIN_ATTR_WINDOWS :
count = data ;
if ( domain - > ops - > domain_set_windows ! = NULL )
ret = domain - > ops - > domain_set_windows ( domain , * count ) ;
else
ret = - ENODEV ;
2011-10-21 23:56:05 +04:00
2013-02-04 17:00:01 +04:00
break ;
default :
if ( domain - > ops - > domain_set_attr = = NULL )
return - EINVAL ;
ret = domain - > ops - > domain_set_attr ( domain , attr , data ) ;
}
return ret ;
2011-10-21 23:56:05 +04:00
}
2012-01-26 22:40:52 +04:00
EXPORT_SYMBOL_GPL ( iommu_domain_set_attr ) ;