2005-04-17 02:20:36 +04:00
/*
* c 2001 PPC 64 Team , IBM Corp
*
* This program is free software ; you can redistribute it and / or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation ; either version
* 2 of the License , or ( at your option ) any later version .
*
* / dev / nvram driver for PPC64
*
* This perhaps should live in drivers / char
*/
# include <linux/types.h>
# include <linux/errno.h>
# include <linux/init.h>
# include <linux/spinlock.h>
2011-02-09 16:00:09 +03:00
# include <linux/slab.h>
# include <linux/kmsg_dump.h>
2011-07-25 11:54:50 +04:00
# include <linux/ctype.h>
# include <linux/zlib.h>
2005-04-17 02:20:36 +04:00
# include <asm/uaccess.h>
# include <asm/nvram.h>
# include <asm/rtas.h>
# include <asm/prom.h>
# include <asm/machdep.h>
2010-07-29 09:28:20 +04:00
/* Max bytes to read/write in one go */
# define NVRW_CNT 0x20
2005-04-17 02:20:36 +04:00
static unsigned int nvram_size ;
static int nvram_fetch , nvram_store ;
static char nvram_buf [ NVRW_CNT ] ; /* assume this is in the first 4GB */
static DEFINE_SPINLOCK ( nvram_lock ) ;
2010-08-02 05:18:09 +04:00
struct err_log_info {
int error_type ;
unsigned int seq_num ;
} ;
2011-02-09 15:43:13 +03:00
struct nvram_os_partition {
const char * name ;
int req_size ; /* desired size, in bytes */
int min_size ; /* minimum acceptable size (0 means req_size) */
2011-02-09 16:00:09 +03:00
long size ; /* size of data portion (excluding err_log_info) */
2011-02-09 15:43:13 +03:00
long index ; /* offset of data portion of partition */
} ;
static struct nvram_os_partition rtas_log_partition = {
. name = " ibm,rtas-log " ,
. req_size = 2079 ,
. min_size = 1055 ,
. index = - 1
} ;
2011-02-09 16:00:09 +03:00
static struct nvram_os_partition oops_log_partition = {
. name = " lnx,oops-log " ,
. req_size = 4000 ,
. min_size = 2000 ,
. index = - 1
} ;
2011-02-09 15:43:13 +03:00
static const char * pseries_nvram_os_partitions [ ] = {
" ibm,rtas-log " ,
2011-02-09 16:00:09 +03:00
" lnx,oops-log " ,
2011-02-09 15:43:13 +03:00
NULL
} ;
2010-08-02 04:51:25 +04:00
2011-02-09 16:00:09 +03:00
static void oops_to_nvram ( struct kmsg_dumper * dumper ,
enum kmsg_dump_reason reason ,
const char * old_msgs , unsigned long old_len ,
const char * new_msgs , unsigned long new_len ) ;
static struct kmsg_dumper nvram_kmsg_dumper = {
. dump = oops_to_nvram
} ;
/* See clobbering_unread_rtas_event() */
# define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */
static unsigned long last_unread_rtas_event ; /* timestamp */
2011-07-25 11:54:50 +04:00
/*
* For capturing and compressing an oops or panic report . . .
* big_oops_buf [ ] holds the uncompressed text we ' re capturing .
*
* oops_buf [ ] holds the compressed text , preceded by a prefix .
* The prefix is just a u16 holding the length of the compressed * text .
* ( * Or uncompressed , if compression fails . ) oops_buf [ ] gets written
* to NVRAM .
*
* oops_len points to the prefix . oops_data points to the compressed text .
*
* + - oops_buf
* | + - oops_data
* v v
* + - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
* | length | text |
* | ( 2 bytes ) | ( oops_data_sz bytes ) |
* + - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
* ^
* + - oops_len
*
* We preallocate these buffers during init to avoid kmalloc during oops / panic .
*/
static size_t big_oops_buf_sz ;
static char * big_oops_buf , * oops_buf ;
static u16 * oops_len ;
static char * oops_data ;
static size_t oops_data_sz ;
/* Compression parameters */
# define COMPR_LEVEL 6
# define WINDOW_BITS 12
# define MEM_LEVEL 4
static struct z_stream_s stream ;
2011-02-09 16:00:09 +03:00
2005-04-17 02:20:36 +04:00
static ssize_t pSeries_nvram_read ( char * buf , size_t count , loff_t * index )
{
unsigned int i ;
unsigned long len ;
int done ;
unsigned long flags ;
char * p = buf ;
if ( nvram_size = = 0 | | nvram_fetch = = RTAS_UNKNOWN_SERVICE )
return - ENODEV ;
if ( * index > = nvram_size )
return 0 ;
i = * index ;
if ( i + count > nvram_size )
count = nvram_size - i ;
spin_lock_irqsave ( & nvram_lock , flags ) ;
for ( ; count ! = 0 ; count - = len ) {
len = count ;
if ( len > NVRW_CNT )
len = NVRW_CNT ;
if ( ( rtas_call ( nvram_fetch , 3 , 2 , & done , i , __pa ( nvram_buf ) ,
len ) ! = 0 ) | | len ! = done ) {
spin_unlock_irqrestore ( & nvram_lock , flags ) ;
return - EIO ;
}
memcpy ( p , nvram_buf , len ) ;
p + = len ;
i + = len ;
}
spin_unlock_irqrestore ( & nvram_lock , flags ) ;
* index = i ;
return p - buf ;
}
static ssize_t pSeries_nvram_write ( char * buf , size_t count , loff_t * index )
{
unsigned int i ;
unsigned long len ;
int done ;
unsigned long flags ;
const char * p = buf ;
if ( nvram_size = = 0 | | nvram_store = = RTAS_UNKNOWN_SERVICE )
return - ENODEV ;
if ( * index > = nvram_size )
return 0 ;
i = * index ;
if ( i + count > nvram_size )
count = nvram_size - i ;
spin_lock_irqsave ( & nvram_lock , flags ) ;
for ( ; count ! = 0 ; count - = len ) {
len = count ;
if ( len > NVRW_CNT )
len = NVRW_CNT ;
memcpy ( nvram_buf , p , len ) ;
if ( ( rtas_call ( nvram_store , 3 , 2 , & done , i , __pa ( nvram_buf ) ,
len ) ! = 0 ) | | len ! = done ) {
spin_unlock_irqrestore ( & nvram_lock , flags ) ;
return - EIO ;
}
p + = len ;
i + = len ;
}
spin_unlock_irqrestore ( & nvram_lock , flags ) ;
* index = i ;
return p - buf ;
}
static ssize_t pSeries_nvram_get_size ( void )
{
return nvram_size ? nvram_size : - ENODEV ;
}
2010-08-02 05:18:09 +04:00
2011-02-09 15:43:13 +03:00
/* nvram_write_os_partition, nvram_write_error_log
2010-08-02 05:18:09 +04:00
*
* We need to buffer the error logs into nvram to ensure that we have
* the failure information to decode . If we have a severe error there
* is no way to guarantee that the OS or the machine is in a state to
* get back to user land and write the error to disk . For example if
* the SCSI device driver causes a Machine Check by writing to a bad
* IO address , there is no way of guaranteeing that the device driver
* is in any state that is would also be able to write the error data
* captured to disk , thus we buffer it in NVRAM for analysis on the
* next boot .
*
* In NVRAM the partition containing the error log buffer will looks like :
* Header ( in bytes ) :
* + - - - - - - - - - - - + - - - - - - - - - - + - - - - - - - - + - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - +
* | signature | checksum | length | name | data |
* | 0 | 1 | 2 3 | 4 15 | 16 length - 1 |
* + - - - - - - - - - - - + - - - - - - - - - - + - - - - - - - - + - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - +
*
* The ' data ' section would look like ( in bytes ) :
* + - - - - - - - - - - - - - - + - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
* | event_logged | sequence # | error log |
2011-02-09 15:43:13 +03:00
* | 0 3 | 4 7 | 8 error_log_size - 1 |
2010-08-02 05:18:09 +04:00
* + - - - - - - - - - - - - - - + - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
*
* event_logged : 0 if event has not been logged to syslog , 1 if it has
* sequence # : The unique sequence # for each event . ( until it wraps )
* error log : The error log from event_scan
*/
2011-02-09 15:43:13 +03:00
int nvram_write_os_partition ( struct nvram_os_partition * part , char * buff ,
int length , unsigned int err_type , unsigned int error_log_cnt )
2010-08-02 05:18:09 +04:00
{
int rc ;
loff_t tmp_index ;
struct err_log_info info ;
2011-02-09 15:43:13 +03:00
if ( part - > index = = - 1 ) {
2010-08-02 05:18:09 +04:00
return - ESPIPE ;
}
2011-02-09 15:43:13 +03:00
if ( length > part - > size ) {
length = part - > size ;
2010-08-02 05:18:09 +04:00
}
info . error_type = err_type ;
info . seq_num = error_log_cnt ;
2011-02-09 15:43:13 +03:00
tmp_index = part - > index ;
2010-08-02 05:18:09 +04:00
rc = ppc_md . nvram_write ( ( char * ) & info , sizeof ( struct err_log_info ) , & tmp_index ) ;
if ( rc < = 0 ) {
2011-02-09 15:43:13 +03:00
pr_err ( " %s: Failed nvram_write (%d) \n " , __FUNCTION__ , rc ) ;
2010-08-02 05:18:09 +04:00
return rc ;
}
rc = ppc_md . nvram_write ( buff , length , & tmp_index ) ;
if ( rc < = 0 ) {
2011-02-09 15:43:13 +03:00
pr_err ( " %s: Failed nvram_write (%d) \n " , __FUNCTION__ , rc ) ;
2010-08-02 05:18:09 +04:00
return rc ;
}
return 0 ;
}
2011-02-09 15:43:13 +03:00
int nvram_write_error_log ( char * buff , int length ,
unsigned int err_type , unsigned int error_log_cnt )
{
2011-02-09 16:00:09 +03:00
int rc = nvram_write_os_partition ( & rtas_log_partition , buff , length ,
2011-02-09 15:43:13 +03:00
err_type , error_log_cnt ) ;
2011-02-09 16:00:09 +03:00
if ( ! rc )
last_unread_rtas_event = get_seconds ( ) ;
return rc ;
2011-02-09 15:43:13 +03:00
}
2010-08-02 05:18:09 +04:00
/* nvram_read_error_log
*
* Reads nvram for error log for at most ' length '
*/
int nvram_read_error_log ( char * buff , int length ,
unsigned int * err_type , unsigned int * error_log_cnt )
{
int rc ;
loff_t tmp_index ;
struct err_log_info info ;
2011-02-09 15:43:13 +03:00
if ( rtas_log_partition . index = = - 1 )
2010-08-02 05:18:09 +04:00
return - 1 ;
2011-02-09 15:43:13 +03:00
if ( length > rtas_log_partition . size )
length = rtas_log_partition . size ;
2010-08-02 05:18:09 +04:00
2011-02-09 15:43:13 +03:00
tmp_index = rtas_log_partition . index ;
2010-08-02 05:18:09 +04:00
rc = ppc_md . nvram_read ( ( char * ) & info , sizeof ( struct err_log_info ) , & tmp_index ) ;
if ( rc < = 0 ) {
printk ( KERN_ERR " nvram_read_error_log: Failed nvram_read (%d) \n " , rc ) ;
return rc ;
}
rc = ppc_md . nvram_read ( buff , length , & tmp_index ) ;
if ( rc < = 0 ) {
printk ( KERN_ERR " nvram_read_error_log: Failed nvram_read (%d) \n " , rc ) ;
return rc ;
}
* error_log_cnt = info . seq_num ;
* err_type = info . error_type ;
return 0 ;
}
/* This doesn't actually zero anything, but it sets the event_logged
* word to tell that this event is safely in syslog .
*/
int nvram_clear_error_log ( void )
{
loff_t tmp_index ;
int clear_word = ERR_FLAG_ALREADY_LOGGED ;
int rc ;
2011-02-09 15:43:13 +03:00
if ( rtas_log_partition . index = = - 1 )
2010-08-02 05:18:09 +04:00
return - 1 ;
2011-02-09 15:43:13 +03:00
tmp_index = rtas_log_partition . index ;
2010-08-02 05:18:09 +04:00
rc = ppc_md . nvram_write ( ( char * ) & clear_word , sizeof ( int ) , & tmp_index ) ;
if ( rc < = 0 ) {
printk ( KERN_ERR " nvram_clear_error_log: Failed nvram_write (%d) \n " , rc ) ;
return rc ;
}
2011-02-09 16:00:09 +03:00
last_unread_rtas_event = 0 ;
2010-08-02 05:18:09 +04:00
return 0 ;
}
2011-02-09 15:43:13 +03:00
/* pseries_nvram_init_os_partition
2010-08-02 05:18:09 +04:00
*
2011-02-09 15:43:13 +03:00
* This sets up a partition with an " OS " signature .
2010-08-02 05:18:09 +04:00
*
* The general strategy is the following :
2011-02-09 15:43:13 +03:00
* 1. ) If a partition with the indicated name already exists . . .
* - If it ' s large enough , use it .
* - Otherwise , recycle it and keep going .
* 2. ) Search for a free partition that is large enough .
* 3. ) If there ' s not a free partition large enough , recycle any obsolete
* OS partitions and try again .
* 4. ) Will first try getting a chunk that will satisfy the requested size .
* 5. ) If a chunk of the requested size cannot be allocated , then try finding
* a chunk that will satisfy the minum needed .
*
* Returns 0 on success , else - 1.
2010-08-02 05:18:09 +04:00
*/
2011-02-09 15:43:13 +03:00
static int __init pseries_nvram_init_os_partition ( struct nvram_os_partition
* part )
2010-08-02 05:18:09 +04:00
{
loff_t p ;
int size ;
/* Scan nvram for partitions */
nvram_scan_partitions ( ) ;
2011-02-09 15:43:13 +03:00
/* Look for ours */
p = nvram_find_partition ( part - > name , NVRAM_SIG_OS , & size ) ;
2010-08-02 05:18:09 +04:00
/* Found one but too small, remove it */
2011-02-09 15:43:13 +03:00
if ( p & & size < part - > min_size ) {
pr_info ( " nvram: Found too small %s partition, "
" removing it... \n " , part - > name ) ;
nvram_remove_partition ( part - > name , NVRAM_SIG_OS , NULL ) ;
2010-08-02 05:18:09 +04:00
p = 0 ;
}
/* Create one if we didn't find */
if ( ! p ) {
2011-02-09 15:43:13 +03:00
p = nvram_create_partition ( part - > name , NVRAM_SIG_OS ,
part - > req_size , part - > min_size ) ;
2010-08-02 05:18:09 +04:00
if ( p = = - ENOSPC ) {
2011-02-09 15:43:13 +03:00
pr_info ( " nvram: No room to create %s partition, "
" deleting any obsolete OS partitions... \n " ,
part - > name ) ;
nvram_remove_partition ( NULL , NVRAM_SIG_OS ,
pseries_nvram_os_partitions ) ;
p = nvram_create_partition ( part - > name , NVRAM_SIG_OS ,
part - > req_size , part - > min_size ) ;
2010-08-02 05:18:09 +04:00
}
}
if ( p < = 0 ) {
2011-02-09 15:43:13 +03:00
pr_err ( " nvram: Failed to find or create %s "
" partition, err %d \n " , part - > name , ( int ) p ) ;
return - 1 ;
2010-08-02 05:18:09 +04:00
}
2011-02-09 15:43:13 +03:00
part - > index = p ;
part - > size = nvram_get_partition_size ( p ) - sizeof ( struct err_log_info ) ;
2010-08-02 05:18:09 +04:00
return 0 ;
}
2011-02-09 15:43:13 +03:00
2011-02-09 16:00:09 +03:00
static void __init nvram_init_oops_partition ( int rtas_partition_exists )
{
int rc ;
rc = pseries_nvram_init_os_partition ( & oops_log_partition ) ;
if ( rc ! = 0 ) {
if ( ! rtas_partition_exists )
return ;
pr_notice ( " nvram: Using %s partition to log both "
" RTAS errors and oops/panic reports \n " ,
rtas_log_partition . name ) ;
memcpy ( & oops_log_partition , & rtas_log_partition ,
sizeof ( rtas_log_partition ) ) ;
}
oops_buf = kmalloc ( oops_log_partition . size , GFP_KERNEL ) ;
2011-07-25 11:54:50 +04:00
if ( ! oops_buf ) {
pr_err ( " nvram: No memory for %s partition \n " ,
oops_log_partition . name ) ;
return ;
}
oops_len = ( u16 * ) oops_buf ;
oops_data = oops_buf + sizeof ( u16 ) ;
oops_data_sz = oops_log_partition . size - sizeof ( u16 ) ;
/*
* Figure compression ( preceded by elimination of each line ' s < n >
* severity prefix ) will reduce the oops / panic report to at most
* 45 % of its original size .
*/
big_oops_buf_sz = ( oops_data_sz * 100 ) / 45 ;
big_oops_buf = kmalloc ( big_oops_buf_sz , GFP_KERNEL ) ;
if ( big_oops_buf ) {
stream . workspace = kmalloc ( zlib_deflate_workspacesize (
WINDOW_BITS , MEM_LEVEL ) , GFP_KERNEL ) ;
if ( ! stream . workspace ) {
pr_err ( " nvram: No memory for compression workspace; "
" skipping compression of %s partition data \n " ,
oops_log_partition . name ) ;
kfree ( big_oops_buf ) ;
big_oops_buf = NULL ;
}
} else {
pr_err ( " No memory for uncompressed %s data; "
" skipping compression \n " , oops_log_partition . name ) ;
stream . workspace = NULL ;
}
2011-02-09 16:00:09 +03:00
rc = kmsg_dump_register ( & nvram_kmsg_dumper ) ;
if ( rc ! = 0 ) {
pr_err ( " nvram: kmsg_dump_register() failed; returned %d \n " , rc ) ;
kfree ( oops_buf ) ;
2011-07-25 11:54:50 +04:00
kfree ( big_oops_buf ) ;
kfree ( stream . workspace ) ;
2011-02-09 16:00:09 +03:00
}
}
2011-02-09 15:43:13 +03:00
static int __init pseries_nvram_init_log_partitions ( void )
{
2011-02-09 16:00:09 +03:00
int rc ;
rc = pseries_nvram_init_os_partition ( & rtas_log_partition ) ;
nvram_init_oops_partition ( rc = = 0 ) ;
2011-02-09 15:43:13 +03:00
return 0 ;
}
machine_arch_initcall ( pseries , pseries_nvram_init_log_partitions ) ;
2010-08-02 05:18:09 +04:00
2005-04-17 02:20:36 +04:00
int __init pSeries_nvram_init ( void )
{
struct device_node * nvram ;
2006-07-12 09:39:43 +04:00
const unsigned int * nbytes_p ;
unsigned int proplen ;
2005-04-17 02:20:36 +04:00
nvram = of_find_node_by_type ( NULL , " nvram " ) ;
if ( nvram = = NULL )
return - ENODEV ;
2007-04-03 16:26:41 +04:00
nbytes_p = of_get_property ( nvram , " #bytes " , & proplen ) ;
2008-06-09 16:20:04 +04:00
if ( nbytes_p = = NULL | | proplen ! = sizeof ( unsigned int ) ) {
of_node_put ( nvram ) ;
2005-04-17 02:20:36 +04:00
return - EIO ;
2008-06-09 16:20:04 +04:00
}
2005-04-17 02:20:36 +04:00
nvram_size = * nbytes_p ;
nvram_fetch = rtas_token ( " nvram-fetch " ) ;
nvram_store = rtas_token ( " nvram-store " ) ;
printk ( KERN_INFO " PPC64 nvram contains %d bytes \n " , nvram_size ) ;
of_node_put ( nvram ) ;
ppc_md . nvram_read = pSeries_nvram_read ;
ppc_md . nvram_write = pSeries_nvram_write ;
ppc_md . nvram_size = pSeries_nvram_get_size ;
return 0 ;
}
2011-02-09 16:00:09 +03:00
/*
* Try to capture the last capture_len bytes of the printk buffer . Return
* the amount actually captured .
*/
static size_t capture_last_msgs ( const char * old_msgs , size_t old_len ,
const char * new_msgs , size_t new_len ,
char * captured , size_t capture_len )
{
if ( new_len > = capture_len ) {
memcpy ( captured , new_msgs + ( new_len - capture_len ) ,
capture_len ) ;
return capture_len ;
} else {
/* Grab the end of old_msgs. */
size_t old_tail_len = min ( old_len , capture_len - new_len ) ;
memcpy ( captured , old_msgs + ( old_len - old_tail_len ) ,
old_tail_len ) ;
memcpy ( captured + old_tail_len , new_msgs , new_len ) ;
return old_tail_len + new_len ;
}
}
/*
* Are we using the ibm , rtas - log for oops / panic reports ? And if so ,
* would logging this oops / panic overwrite an RTAS event that rtas_errd
* hasn ' t had a chance to read and process ? Return 1 if so , else 0.
*
* We assume that if rtas_errd hasn ' t read the RTAS event in
* NVRAM_RTAS_READ_TIMEOUT seconds , it ' s probably not going to .
*/
static int clobbering_unread_rtas_event ( void )
{
return ( oops_log_partition . index = = rtas_log_partition . index
& & last_unread_rtas_event
& & get_seconds ( ) - last_unread_rtas_event < =
NVRAM_RTAS_READ_TIMEOUT ) ;
}
2011-07-25 11:54:50 +04:00
/* Squeeze out each line's <n> severity prefix. */
static size_t elide_severities ( char * buf , size_t len )
{
char * in , * out , * buf_end = buf + len ;
/* Assume a <n> at the very beginning marks the start of a line. */
int newline = 1 ;
in = out = buf ;
while ( in < buf_end ) {
if ( newline & & in + 3 < = buf_end & &
* in = = ' < ' & & isdigit ( in [ 1 ] ) & & in [ 2 ] = = ' > ' ) {
in + = 3 ;
newline = 0 ;
} else {
newline = ( * in = = ' \n ' ) ;
* out + + = * in + + ;
}
}
return out - buf ;
}
/* Derived from logfs_compress() */
static int nvram_compress ( const void * in , void * out , size_t inlen ,
size_t outlen )
{
int err , ret ;
ret = - EIO ;
err = zlib_deflateInit2 ( & stream , COMPR_LEVEL , Z_DEFLATED , WINDOW_BITS ,
MEM_LEVEL , Z_DEFAULT_STRATEGY ) ;
if ( err ! = Z_OK )
goto error ;
stream . next_in = in ;
stream . avail_in = inlen ;
stream . total_in = 0 ;
stream . next_out = out ;
stream . avail_out = outlen ;
stream . total_out = 0 ;
err = zlib_deflate ( & stream , Z_FINISH ) ;
if ( err ! = Z_STREAM_END )
goto error ;
err = zlib_deflateEnd ( & stream ) ;
if ( err ! = Z_OK )
goto error ;
if ( stream . total_out > = stream . total_in )
goto error ;
ret = stream . total_out ;
error :
return ret ;
}
/* Compress the text from big_oops_buf into oops_buf. */
static int zip_oops ( size_t text_len )
{
int zipped_len = nvram_compress ( big_oops_buf , oops_data , text_len ,
oops_data_sz ) ;
if ( zipped_len < 0 ) {
pr_err ( " nvram: compression failed; returned %d \n " , zipped_len ) ;
pr_err ( " nvram: logging uncompressed oops/panic report \n " ) ;
return - 1 ;
}
* oops_len = ( u16 ) zipped_len ;
return 0 ;
}
/*
* This is our kmsg_dump callback , called after an oops or panic report
* has been written to the printk buffer . We want to capture as much
* of the printk buffer as possible . First , capture as much as we can
* that we think will compress sufficiently to fit in the lnx , oops - log
* partition . If that ' s too much , go back and capture uncompressed text .
*/
2011-02-09 16:00:09 +03:00
static void oops_to_nvram ( struct kmsg_dumper * dumper ,
enum kmsg_dump_reason reason ,
const char * old_msgs , unsigned long old_len ,
const char * new_msgs , unsigned long new_len )
{
static unsigned int oops_count = 0 ;
2011-03-25 15:47:58 +03:00
static bool panicking = false ;
2011-11-30 19:46:45 +04:00
static DEFINE_SPINLOCK ( lock ) ;
unsigned long flags ;
2011-02-09 16:00:09 +03:00
size_t text_len ;
2011-07-25 11:54:50 +04:00
unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ ;
int rc = - 1 ;
2011-02-09 16:00:09 +03:00
2011-03-25 15:47:58 +03:00
switch ( reason ) {
case KMSG_DUMP_RESTART :
case KMSG_DUMP_HALT :
case KMSG_DUMP_POWEROFF :
/* These are almost always orderly shutdowns. */
return ;
case KMSG_DUMP_OOPS :
break ;
case KMSG_DUMP_PANIC :
panicking = true ;
break ;
case KMSG_DUMP_EMERG :
if ( panicking )
/* Panic report already captured. */
return ;
break ;
default :
pr_err ( " %s: ignoring unrecognized KMSG_DUMP_* reason %d \n " ,
__FUNCTION__ , ( int ) reason ) ;
return ;
}
2011-02-09 16:00:09 +03:00
if ( clobbering_unread_rtas_event ( ) )
return ;
2011-11-30 19:46:45 +04:00
if ( ! spin_trylock_irqsave ( & lock , flags ) )
return ;
2011-07-25 11:54:50 +04:00
if ( big_oops_buf ) {
text_len = capture_last_msgs ( old_msgs , old_len ,
new_msgs , new_len , big_oops_buf , big_oops_buf_sz ) ;
text_len = elide_severities ( big_oops_buf , text_len ) ;
rc = zip_oops ( text_len ) ;
}
if ( rc ! = 0 ) {
text_len = capture_last_msgs ( old_msgs , old_len ,
new_msgs , new_len , oops_data , oops_data_sz ) ;
err_type = ERR_TYPE_KERNEL_PANIC ;
* oops_len = ( u16 ) text_len ;
}
2011-02-09 16:00:09 +03:00
( void ) nvram_write_os_partition ( & oops_log_partition , oops_buf ,
2011-07-25 11:54:50 +04:00
( int ) ( sizeof ( * oops_len ) + * oops_len ) , err_type , + + oops_count ) ;
2011-11-30 19:46:45 +04:00
spin_unlock_irqrestore ( & lock , flags ) ;
2011-02-09 16:00:09 +03:00
}