linux/mm/workingset.c

539 lines
18 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
// SPDX-License-Identifier: GPL-2.0
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
/*
* Workingset detection
*
* Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
*/
#include <linux/memcontrol.h>
#include <linux/writeback.h>
#include <linux/shmem_fs.h>
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
#include <linux/pagemap.h>
#include <linux/atomic.h>
#include <linux/module.h>
#include <linux/swap.h>
mm: workingset: move shadow entry tracking to radix tree exceptional tracking Currently, we track the shadow entries in the page cache in the upper bits of the radix_tree_node->count, behind the back of the radix tree implementation. Because the radix tree code has no awareness of them, we rely on random subtleties throughout the implementation (such as the node->count != 1 check in the shrinking code, which is meant to exclude multi-entry nodes but also happens to skip nodes with only one shadow entry, as that's accounted in the upper bits). This is error prone and has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't plant shadow entries without radix tree node"). To remove these subtleties, this patch moves shadow entry tracking from the upper bits of node->count to the existing counter for exceptional entries. node->count goes back to being a simple counter of valid entries in the tree node and can be shrunk to a single byte. This vastly simplifies the page cache code. All accounting happens natively inside the radix tree implementation, and maintaining the LRU linkage of shadow nodes is consolidated into a single function in the workingset code that is called for leaf nodes affected by a change in the page cache tree. This also removes the last user of the __radix_delete_node() return value. Eliminate it. Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:43:52 +03:00
#include <linux/dax.h>
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
#include <linux/fs.h>
#include <linux/mm.h>
/*
* Double CLOCK lists
*
* Per node, two clock lists are maintained for file pages: the
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
* inactive and the active list. Freshly faulted pages start out at
* the head of the inactive list and page reclaim scans pages from the
* tail. Pages that are accessed multiple times on the inactive list
* are promoted to the active list, to protect them from reclaim,
* whereas active pages are demoted to the inactive list when the
* active list grows too big.
*
* fault ------------------------+
* |
* +--------------+ | +-------------+
* reclaim <- | inactive | <-+-- demotion | active | <--+
* +--------------+ +-------------+ |
* | |
* +-------------- promotion ------------------+
*
*
* Access frequency and refault distance
*
* A workload is thrashing when its pages are frequently used but they
* are evicted from the inactive list every time before another access
* would have promoted them to the active list.
*
* In cases where the average access distance between thrashing pages
* is bigger than the size of memory there is nothing that can be
* done - the thrashing set could never fit into memory under any
* circumstance.
*
* However, the average access distance could be bigger than the
* inactive list, yet smaller than the size of memory. In this case,
* the set could fit into memory if it weren't for the currently
* active pages - which may be used more, hopefully less frequently:
*
* +-memory available to cache-+
* | |
* +-inactive------+-active----+
* a b | c d e f g h i | J K L M N |
* +---------------+-----------+
*
* It is prohibitively expensive to accurately track access frequency
* of pages. But a reasonable approximation can be made to measure
* thrashing on the inactive list, after which refaulting pages can be
* activated optimistically to compete with the existing active pages.
*
* Approximating inactive page access frequency - Observations:
*
* 1. When a page is accessed for the first time, it is added to the
* head of the inactive list, slides every existing inactive page
* towards the tail by one slot, and pushes the current tail page
* out of memory.
*
* 2. When a page is accessed for the second time, it is promoted to
* the active list, shrinking the inactive list by one slot. This
* also slides all inactive pages that were faulted into the cache
* more recently than the activated page towards the tail of the
* inactive list.
*
* Thus:
*
* 1. The sum of evictions and activations between any two points in
* time indicate the minimum number of inactive pages accessed in
* between.
*
* 2. Moving one inactive page N page slots towards the tail of the
* list requires at least N inactive page accesses.
*
* Combining these:
*
* 1. When a page is finally evicted from memory, the number of
* inactive pages accessed while the page was in cache is at least
* the number of page slots on the inactive list.
*
* 2. In addition, measuring the sum of evictions and activations (E)
* at the time of a page's eviction, and comparing it to another
* reading (R) at the time the page faults back into memory tells
* the minimum number of accesses while the page was not cached.
* This is called the refault distance.
*
* Because the first access of the page was the fault and the second
* access the refault, we combine the in-cache distance with the
* out-of-cache distance to get the complete minimum access distance
* of this page:
*
* NR_inactive + (R - E)
*
* And knowing the minimum access distance of a page, we can easily
* tell if the page would be able to stay in cache assuming all page
* slots in the cache were available:
*
* NR_inactive + (R - E) <= NR_inactive + NR_active
*
* which can be further simplified to
*
* (R - E) <= NR_active
*
* Put into words, the refault distance (out-of-cache) can be seen as
* a deficit in inactive list space (in-cache). If the inactive list
* had (R - E) more page slots, the page would not have been evicted
* in between accesses, but activated instead. And on a full system,
* the only thing eating into inactive list space is active pages.
*
*
* Activating refaulting pages
*
* All that is known about the active list is that the pages have been
* accessed more than once in the past. This means that at any given
* time there is actually a good chance that pages on the active list
* are no longer in active use.
*
* So when a refault distance of (R - E) is observed and there are at
* least (R - E) active pages, the refaulting page is activated
* optimistically in the hope that (R - E) active pages are actually
* used less frequently than the refaulting page - or even not used at
* all anymore.
*
* If this is wrong and demotion kicks in, the pages which are truly
* used more frequently will be reactivated while the less frequently
* used once will be evicted from memory.
*
* But if this is right, the stale pages will be pushed out of memory
* and the used pages get to stay in cache.
*
*
* Implementation
*
* For each node's file LRU lists, a counter for inactive evictions
* and activations is maintained (node->inactive_age).
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
*
* On eviction, a snapshot of this counter (along with some bits to
* identify the node) is stored in the now empty page cache radix tree
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
* slot of the evicted page. This is called a shadow entry.
*
* On cache misses for which there are shadow entries, an eligible
* refault distance will immediately activate the refaulting page.
*/
#define EVICTION_SHIFT ((BITS_PER_LONG - BITS_PER_XA_VALUE) + \
NODES_SHIFT + \
MEM_CGROUP_ID_SHIFT)
#define EVICTION_MASK (~0UL >> EVICTION_SHIFT)
mm: workingset: eviction buckets for bigmem/lowbit machines For per-cgroup thrash detection, we need to store the memcg ID inside the radix tree cookie as well. However, on 32 bit that doesn't leave enough bits for the eviction timestamp to cover the necessary range of recently evicted pages. The radix tree entry would look like this: [ RADIX_TREE_EXCEPTIONAL(2) | ZONEID(2) | MEMCGID(16) | EVICTION(12) ] 12 bits means 4096 pages, means 16M worth of recently evicted pages. But refaults are actionable up to distances covering half of memory. To not miss refaults, we have to stretch out the range at the cost of how precisely we can tell when a page was evicted. This way we can shave off lower bits from the eviction timestamp until the necessary range is covered. E.g. grouping evictions into 1M buckets (256 pages) will stretch the longest representable refault distance to 4G. This patch implements eviction buckets that are automatically sized according to the available bits and the necessary refault range, in preparation for per-cgroup thrash detection. The maximum actionable distance is currently half of memory, but to support memory hotplug of up to 200% of boot-time memory, we size the buckets to cover double the distance. Beyond that, thrashing won't be detectable anymore. During boot, the kernel will print out the exact parameters, like so: [ 0.113929] workingset: timestamp_bits=12 max_order=18 bucket_order=6 In this example, there are 12 radix entry bits available for the eviction timestamp, to cover a maximum distance of 2^18 pages (this is a 1G machine). Consequently, evictions must be grouped into buckets of 2^6 pages, or 256K. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:57:13 +03:00
/*
* Eviction timestamps need to be able to cover the full range of
* actionable refaults. However, bits are tight in the radix tree
* entry, and after storing the identifier for the lruvec there might
* not be enough left to represent every single actionable refault. In
* that case, we have to sacrifice granularity for distance, and group
* evictions into coarser buckets by shaving off lower timestamp bits.
*/
static unsigned int bucket_order __read_mostly;
static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction)
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
{
mm: workingset: eviction buckets for bigmem/lowbit machines For per-cgroup thrash detection, we need to store the memcg ID inside the radix tree cookie as well. However, on 32 bit that doesn't leave enough bits for the eviction timestamp to cover the necessary range of recently evicted pages. The radix tree entry would look like this: [ RADIX_TREE_EXCEPTIONAL(2) | ZONEID(2) | MEMCGID(16) | EVICTION(12) ] 12 bits means 4096 pages, means 16M worth of recently evicted pages. But refaults are actionable up to distances covering half of memory. To not miss refaults, we have to stretch out the range at the cost of how precisely we can tell when a page was evicted. This way we can shave off lower bits from the eviction timestamp until the necessary range is covered. E.g. grouping evictions into 1M buckets (256 pages) will stretch the longest representable refault distance to 4G. This patch implements eviction buckets that are automatically sized according to the available bits and the necessary refault range, in preparation for per-cgroup thrash detection. The maximum actionable distance is currently half of memory, but to support memory hotplug of up to 200% of boot-time memory, we size the buckets to cover double the distance. Beyond that, thrashing won't be detectable anymore. During boot, the kernel will print out the exact parameters, like so: [ 0.113929] workingset: timestamp_bits=12 max_order=18 bucket_order=6 In this example, there are 12 radix entry bits available for the eviction timestamp, to cover a maximum distance of 2^18 pages (this is a 1G machine). Consequently, evictions must be grouped into buckets of 2^6 pages, or 256K. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:57:13 +03:00
eviction >>= bucket_order;
eviction &= EVICTION_MASK;
eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
return xa_mk_value(eviction);
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
}
static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
unsigned long *evictionp)
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
{
unsigned long entry = xa_to_value(shadow);
int memcgid, nid;
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
nid = entry & ((1UL << NODES_SHIFT) - 1);
entry >>= NODES_SHIFT;
memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
entry >>= MEM_CGROUP_ID_SHIFT;
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
*memcgidp = memcgid;
*pgdat = NODE_DATA(nid);
mm: workingset: eviction buckets for bigmem/lowbit machines For per-cgroup thrash detection, we need to store the memcg ID inside the radix tree cookie as well. However, on 32 bit that doesn't leave enough bits for the eviction timestamp to cover the necessary range of recently evicted pages. The radix tree entry would look like this: [ RADIX_TREE_EXCEPTIONAL(2) | ZONEID(2) | MEMCGID(16) | EVICTION(12) ] 12 bits means 4096 pages, means 16M worth of recently evicted pages. But refaults are actionable up to distances covering half of memory. To not miss refaults, we have to stretch out the range at the cost of how precisely we can tell when a page was evicted. This way we can shave off lower bits from the eviction timestamp until the necessary range is covered. E.g. grouping evictions into 1M buckets (256 pages) will stretch the longest representable refault distance to 4G. This patch implements eviction buckets that are automatically sized according to the available bits and the necessary refault range, in preparation for per-cgroup thrash detection. The maximum actionable distance is currently half of memory, but to support memory hotplug of up to 200% of boot-time memory, we size the buckets to cover double the distance. Beyond that, thrashing won't be detectable anymore. During boot, the kernel will print out the exact parameters, like so: [ 0.113929] workingset: timestamp_bits=12 max_order=18 bucket_order=6 In this example, there are 12 radix entry bits available for the eviction timestamp, to cover a maximum distance of 2^18 pages (this is a 1G machine). Consequently, evictions must be grouped into buckets of 2^6 pages, or 256K. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:57:13 +03:00
*evictionp = entry << bucket_order;
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
}
/**
* workingset_eviction - note the eviction of a page from memory
* @mapping: address space the page was backing
* @page: the page being evicted
*
* Returns a shadow entry to be stored in @mapping->i_pages in place
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
* of the evicted @page so that a later refault can be detected.
*/
void *workingset_eviction(struct address_space *mapping, struct page *page)
{
struct mem_cgroup *memcg = page_memcg(page);
struct pglist_data *pgdat = page_pgdat(page);
int memcgid = mem_cgroup_id(memcg);
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
unsigned long eviction;
struct lruvec *lruvec;
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
/* Page is fully exclusive and pins page->mem_cgroup */
VM_BUG_ON_PAGE(PageLRU(page), page);
VM_BUG_ON_PAGE(page_count(page), page);
VM_BUG_ON_PAGE(!PageLocked(page), page);
lruvec = mem_cgroup_lruvec(pgdat, memcg);
eviction = atomic_long_inc_return(&lruvec->inactive_age);
return pack_shadow(memcgid, pgdat, eviction);
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
}
/**
* workingset_refault - evaluate the refault of a previously evicted page
* @shadow: shadow entry of the evicted page
*
* Calculates and evaluates the refault distance of the previously
* evicted page in the context of the node it was allocated in.
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
*
* Returns %true if the page should be activated, %false otherwise.
*/
bool workingset_refault(void *shadow)
{
unsigned long refault_distance;
unsigned long active_file;
struct mem_cgroup *memcg;
unsigned long eviction;
struct lruvec *lruvec;
unsigned long refault;
struct pglist_data *pgdat;
int memcgid;
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
unpack_shadow(shadow, &memcgid, &pgdat, &eviction);
rcu_read_lock();
/*
* Look up the memcg associated with the stored ID. It might
* have been deleted since the page's eviction.
*
* Note that in rare events the ID could have been recycled
* for a new cgroup that refaults a shared page. This is
* impossible to tell from the available data. However, this
* should be a rare and limited disturbance, and activations
* are always speculative anyway. Ultimately, it's the aging
* algorithm's job to shake out the minimum access frequency
* for the active cache.
*
* XXX: On !CONFIG_MEMCG, this will always return NULL; it
* would be better if the root_mem_cgroup existed in all
* configurations instead.
*/
memcg = mem_cgroup_from_id(memcgid);
if (!mem_cgroup_disabled() && !memcg) {
rcu_read_unlock();
return false;
}
lruvec = mem_cgroup_lruvec(pgdat, memcg);
refault = atomic_long_read(&lruvec->inactive_age);
active_file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES);
/*
* The unsigned subtraction here gives an accurate distance
* across inactive_age overflows in most cases.
*
* There is a special case: usually, shadow entries have a
* short lifetime and are either refaulted or reclaimed along
* with the inode before they get too old. But it is not
* impossible for the inactive_age to lap a shadow entry in
* the field, which can then can result in a false small
* refault distance, leading to a false activation should this
* old entry actually refault again. However, earlier kernels
* used to deactivate unconditionally with *every* reclaim
* invocation for the longest time, so the occasional
* inappropriate activation leading to pressure on the active
* list is not a problem.
*/
refault_distance = (refault - eviction) & EVICTION_MASK;
inc_lruvec_state(lruvec, WORKINGSET_REFAULT);
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
if (refault_distance <= active_file) {
inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE);
mm: vmscan: fix IO/refault regression in cache workingset transition Since commit 59dc76b0d4df ("mm: vmscan: reduce size of inactive file list") we noticed bigger IO spikes during changes in cache access patterns. The patch in question shrunk the inactive list size to leave more room for the current workingset in the presence of streaming IO. However, workingset transitions that previously happened on the inactive list are now pushed out of memory and incur more refaults to complete. This patch disables active list protection when refaults are being observed. This accelerates workingset transitions, and allows more of the new set to establish itself from memory, without eating into the ability to protect the established workingset during stable periods. The workloads that were measurably affected for us were hit pretty bad by it, with refault/majfault rates doubling and tripling during cache transitions, and the machines sustaining half-hour periods of 100% IO utilization, where they'd previously have sub-minute peaks at 60-90%. Stateful services that handle user data tend to be more conservative with kernel upgrades. As a result we hit most page cache issues with some delay, as was the case here. The severity seemed to warrant a stable tag. Fixes: 59dc76b0d4df ("mm: vmscan: reduce size of inactive file list") Link: http://lkml.kernel.org/r/20170404220052.27593-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> [4.7+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-04 00:55:03 +03:00
rcu_read_unlock();
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
return true;
}
mm: vmscan: fix IO/refault regression in cache workingset transition Since commit 59dc76b0d4df ("mm: vmscan: reduce size of inactive file list") we noticed bigger IO spikes during changes in cache access patterns. The patch in question shrunk the inactive list size to leave more room for the current workingset in the presence of streaming IO. However, workingset transitions that previously happened on the inactive list are now pushed out of memory and incur more refaults to complete. This patch disables active list protection when refaults are being observed. This accelerates workingset transitions, and allows more of the new set to establish itself from memory, without eating into the ability to protect the established workingset during stable periods. The workloads that were measurably affected for us were hit pretty bad by it, with refault/majfault rates doubling and tripling during cache transitions, and the machines sustaining half-hour periods of 100% IO utilization, where they'd previously have sub-minute peaks at 60-90%. Stateful services that handle user data tend to be more conservative with kernel upgrades. As a result we hit most page cache issues with some delay, as was the case here. The severity seemed to warrant a stable tag. Fixes: 59dc76b0d4df ("mm: vmscan: reduce size of inactive file list") Link: http://lkml.kernel.org/r/20170404220052.27593-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> [4.7+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-04 00:55:03 +03:00
rcu_read_unlock();
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
return false;
}
/**
* workingset_activation - note a page activation
* @page: page that is being activated
*/
void workingset_activation(struct page *page)
{
mm: fix vm-scalability regression in cgroup-aware workingset code Commit 23047a96d7cf ("mm: workingset: per-cgroup cache thrash detection") added a page->mem_cgroup lookup to the cache eviction, refault, and activation paths, as well as locking to the activation path, and the vm-scalability tests showed a regression of -23%. While the test in question is an artificial worst-case scenario that doesn't occur in real workloads - reading two sparse files in parallel at full CPU speed just to hammer the LRU paths - there is still some optimizations that can be done in those paths. Inline the lookup functions to eliminate calls. Also, page->mem_cgroup doesn't need to be stabilized when counting an activation; we merely need to hold the RCU lock to prevent the memcg from being freed. This cuts down on overhead quite a bit: 23047a96d7cfcfca 063f6715e77a7be5770d6081fe ---------------- -------------------------- %stddev %change %stddev \ | \ 21621405 +- 0% +11.3% 24069657 +- 2% vm-scalability.throughput [linux@roeck-us.net: drop unnecessary include file] [hannes@cmpxchg.org: add WARN_ON_ONCE()s] Link: http://lkml.kernel.org/r/20160707194024.GA26580@cmpxchg.org Link: http://lkml.kernel.org/r/20160624175101.GA3024@cmpxchg.org Reported-by: Ye Xiaolong <xiaolong.ye@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29 01:45:10 +03:00
struct mem_cgroup *memcg;
struct lruvec *lruvec;
mm: fix vm-scalability regression in cgroup-aware workingset code Commit 23047a96d7cf ("mm: workingset: per-cgroup cache thrash detection") added a page->mem_cgroup lookup to the cache eviction, refault, and activation paths, as well as locking to the activation path, and the vm-scalability tests showed a regression of -23%. While the test in question is an artificial worst-case scenario that doesn't occur in real workloads - reading two sparse files in parallel at full CPU speed just to hammer the LRU paths - there is still some optimizations that can be done in those paths. Inline the lookup functions to eliminate calls. Also, page->mem_cgroup doesn't need to be stabilized when counting an activation; we merely need to hold the RCU lock to prevent the memcg from being freed. This cuts down on overhead quite a bit: 23047a96d7cfcfca 063f6715e77a7be5770d6081fe ---------------- -------------------------- %stddev %change %stddev \ | \ 21621405 +- 0% +11.3% 24069657 +- 2% vm-scalability.throughput [linux@roeck-us.net: drop unnecessary include file] [hannes@cmpxchg.org: add WARN_ON_ONCE()s] Link: http://lkml.kernel.org/r/20160707194024.GA26580@cmpxchg.org Link: http://lkml.kernel.org/r/20160624175101.GA3024@cmpxchg.org Reported-by: Ye Xiaolong <xiaolong.ye@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29 01:45:10 +03:00
rcu_read_lock();
/*
* Filter non-memcg pages here, e.g. unmap can call
* mark_page_accessed() on VDSO pages.
*
* XXX: See workingset_refault() - this should return
* root_mem_cgroup even for !CONFIG_MEMCG.
*/
mm: fix vm-scalability regression in cgroup-aware workingset code Commit 23047a96d7cf ("mm: workingset: per-cgroup cache thrash detection") added a page->mem_cgroup lookup to the cache eviction, refault, and activation paths, as well as locking to the activation path, and the vm-scalability tests showed a regression of -23%. While the test in question is an artificial worst-case scenario that doesn't occur in real workloads - reading two sparse files in parallel at full CPU speed just to hammer the LRU paths - there is still some optimizations that can be done in those paths. Inline the lookup functions to eliminate calls. Also, page->mem_cgroup doesn't need to be stabilized when counting an activation; we merely need to hold the RCU lock to prevent the memcg from being freed. This cuts down on overhead quite a bit: 23047a96d7cfcfca 063f6715e77a7be5770d6081fe ---------------- -------------------------- %stddev %change %stddev \ | \ 21621405 +- 0% +11.3% 24069657 +- 2% vm-scalability.throughput [linux@roeck-us.net: drop unnecessary include file] [hannes@cmpxchg.org: add WARN_ON_ONCE()s] Link: http://lkml.kernel.org/r/20160707194024.GA26580@cmpxchg.org Link: http://lkml.kernel.org/r/20160624175101.GA3024@cmpxchg.org Reported-by: Ye Xiaolong <xiaolong.ye@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29 01:45:10 +03:00
memcg = page_memcg_rcu(page);
if (!mem_cgroup_disabled() && !memcg)
goto out;
lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
atomic_long_inc(&lruvec->inactive_age);
out:
mm: fix vm-scalability regression in cgroup-aware workingset code Commit 23047a96d7cf ("mm: workingset: per-cgroup cache thrash detection") added a page->mem_cgroup lookup to the cache eviction, refault, and activation paths, as well as locking to the activation path, and the vm-scalability tests showed a regression of -23%. While the test in question is an artificial worst-case scenario that doesn't occur in real workloads - reading two sparse files in parallel at full CPU speed just to hammer the LRU paths - there is still some optimizations that can be done in those paths. Inline the lookup functions to eliminate calls. Also, page->mem_cgroup doesn't need to be stabilized when counting an activation; we merely need to hold the RCU lock to prevent the memcg from being freed. This cuts down on overhead quite a bit: 23047a96d7cfcfca 063f6715e77a7be5770d6081fe ---------------- -------------------------- %stddev %change %stddev \ | \ 21621405 +- 0% +11.3% 24069657 +- 2% vm-scalability.throughput [linux@roeck-us.net: drop unnecessary include file] [hannes@cmpxchg.org: add WARN_ON_ONCE()s] Link: http://lkml.kernel.org/r/20160707194024.GA26580@cmpxchg.org Link: http://lkml.kernel.org/r/20160624175101.GA3024@cmpxchg.org Reported-by: Ye Xiaolong <xiaolong.ye@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29 01:45:10 +03:00
rcu_read_unlock();
mm: thrash detection-based file cache sizing The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:51 +04:00
}
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
/*
* Shadow entries reflect the share of the working set that does not
* fit into memory, so their number depends on the access pattern of
* the workload. In most cases, they will refault or get reclaimed
* along with the inode, but a (malicious) workload that streams
* through files with a total size several times that of available
* memory, while preventing the inodes from being reclaimed, can
* create excessive amounts of shadow nodes. To keep a lid on this,
* track shadow nodes and reclaim them when they grow way past the
* point where they would still be useful.
*/
mm: workingset: move shadow entry tracking to radix tree exceptional tracking Currently, we track the shadow entries in the page cache in the upper bits of the radix_tree_node->count, behind the back of the radix tree implementation. Because the radix tree code has no awareness of them, we rely on random subtleties throughout the implementation (such as the node->count != 1 check in the shrinking code, which is meant to exclude multi-entry nodes but also happens to skip nodes with only one shadow entry, as that's accounted in the upper bits). This is error prone and has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't plant shadow entries without radix tree node"). To remove these subtleties, this patch moves shadow entry tracking from the upper bits of node->count to the existing counter for exceptional entries. node->count goes back to being a simple counter of valid entries in the tree node and can be shrunk to a single byte. This vastly simplifies the page cache code. All accounting happens natively inside the radix tree implementation, and maintaining the LRU linkage of shadow nodes is consolidated into a single function in the workingset code that is called for leaf nodes affected by a change in the page cache tree. This also removes the last user of the __radix_delete_node() return value. Eliminate it. Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:43:52 +03:00
static struct list_lru shadow_nodes;
mm, truncate: do not check mapping for every page being truncated During truncation, the mapping has already been checked for shmem and dax so it's known that workingset_update_node is required. This patch avoids the checks on mapping for each page being truncated. In all other cases, a lookup helper is used to determine if workingset_update_node() needs to be called. The one danger is that the API is slightly harder to use as calling workingset_update_node directly without checking for dax or shmem mappings could lead to surprises. However, the API rarely needs to be used and hopefully the comment is enough to give people the hint. sparsetruncate (tiny) 4.14.0-rc4 4.14.0-rc4 oneirq-v1r1 pickhelper-v1r1 Min Time 141.00 ( 0.00%) 140.00 ( 0.71%) 1st-qrtle Time 142.00 ( 0.00%) 141.00 ( 0.70%) 2nd-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%) 3rd-qrtle Time 143.00 ( 0.00%) 143.00 ( 0.00%) Max-90% Time 144.00 ( 0.00%) 144.00 ( 0.00%) Max-95% Time 147.00 ( 0.00%) 145.00 ( 1.36%) Max-99% Time 195.00 ( 0.00%) 191.00 ( 2.05%) Max Time 230.00 ( 0.00%) 205.00 ( 10.87%) Amean Time 144.37 ( 0.00%) 143.82 ( 0.38%) Stddev Time 10.44 ( 0.00%) 9.00 ( 13.74%) Coeff Time 7.23 ( 0.00%) 6.26 ( 13.41%) Best99%Amean Time 143.72 ( 0.00%) 143.34 ( 0.26%) Best95%Amean Time 142.37 ( 0.00%) 142.00 ( 0.26%) Best90%Amean Time 142.19 ( 0.00%) 141.85 ( 0.24%) Best75%Amean Time 141.92 ( 0.00%) 141.58 ( 0.24%) Best50%Amean Time 141.69 ( 0.00%) 141.31 ( 0.27%) Best25%Amean Time 141.38 ( 0.00%) 140.97 ( 0.29%) As you'd expect, the gain is marginal but it can be detected. The differences in bonnie are all within the noise which is not surprising given the impact on the microbenchmark. radix_tree_update_node_t is a callback for some radix operations that optionally passes in a private field. The only user of the callback is workingset_update_node and as it no longer requires a mapping, the private field is removed. Link: http://lkml.kernel.org/r/20171018075952.10627-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 04:37:41 +03:00
void workingset_update_node(struct radix_tree_node *node)
mm: workingset: move shadow entry tracking to radix tree exceptional tracking Currently, we track the shadow entries in the page cache in the upper bits of the radix_tree_node->count, behind the back of the radix tree implementation. Because the radix tree code has no awareness of them, we rely on random subtleties throughout the implementation (such as the node->count != 1 check in the shrinking code, which is meant to exclude multi-entry nodes but also happens to skip nodes with only one shadow entry, as that's accounted in the upper bits). This is error prone and has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't plant shadow entries without radix tree node"). To remove these subtleties, this patch moves shadow entry tracking from the upper bits of node->count to the existing counter for exceptional entries. node->count goes back to being a simple counter of valid entries in the tree node and can be shrunk to a single byte. This vastly simplifies the page cache code. All accounting happens natively inside the radix tree implementation, and maintaining the LRU linkage of shadow nodes is consolidated into a single function in the workingset code that is called for leaf nodes affected by a change in the page cache tree. This also removes the last user of the __radix_delete_node() return value. Eliminate it. Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:43:52 +03:00
{
/*
* Track non-empty nodes that contain only shadow entries;
* unlink those that contain pages or are being freed.
*
* Avoid acquiring the list_lru lock when the nodes are
* already where they should be. The list_empty() test is safe
* as node->private_list is protected by the i_pages lock.
mm: workingset: move shadow entry tracking to radix tree exceptional tracking Currently, we track the shadow entries in the page cache in the upper bits of the radix_tree_node->count, behind the back of the radix tree implementation. Because the radix tree code has no awareness of them, we rely on random subtleties throughout the implementation (such as the node->count != 1 check in the shrinking code, which is meant to exclude multi-entry nodes but also happens to skip nodes with only one shadow entry, as that's accounted in the upper bits). This is error prone and has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't plant shadow entries without radix tree node"). To remove these subtleties, this patch moves shadow entry tracking from the upper bits of node->count to the existing counter for exceptional entries. node->count goes back to being a simple counter of valid entries in the tree node and can be shrunk to a single byte. This vastly simplifies the page cache code. All accounting happens natively inside the radix tree implementation, and maintaining the LRU linkage of shadow nodes is consolidated into a single function in the workingset code that is called for leaf nodes affected by a change in the page cache tree. This also removes the last user of the __radix_delete_node() return value. Eliminate it. Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:43:52 +03:00
*/
if (node->count && node->count == node->nr_values) {
if (list_empty(&node->private_list))
mm: workingset: move shadow entry tracking to radix tree exceptional tracking Currently, we track the shadow entries in the page cache in the upper bits of the radix_tree_node->count, behind the back of the radix tree implementation. Because the radix tree code has no awareness of them, we rely on random subtleties throughout the implementation (such as the node->count != 1 check in the shrinking code, which is meant to exclude multi-entry nodes but also happens to skip nodes with only one shadow entry, as that's accounted in the upper bits). This is error prone and has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't plant shadow entries without radix tree node"). To remove these subtleties, this patch moves shadow entry tracking from the upper bits of node->count to the existing counter for exceptional entries. node->count goes back to being a simple counter of valid entries in the tree node and can be shrunk to a single byte. This vastly simplifies the page cache code. All accounting happens natively inside the radix tree implementation, and maintaining the LRU linkage of shadow nodes is consolidated into a single function in the workingset code that is called for leaf nodes affected by a change in the page cache tree. This also removes the last user of the __radix_delete_node() return value. Eliminate it. Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:43:52 +03:00
list_lru_add(&shadow_nodes, &node->private_list);
} else {
if (!list_empty(&node->private_list))
list_lru_del(&shadow_nodes, &node->private_list);
}
}
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
static unsigned long count_shadow_nodes(struct shrinker *shrinker,
struct shrink_control *sc)
{
unsigned long max_nodes;
mm: workingset: move shadow entry tracking to radix tree exceptional tracking Currently, we track the shadow entries in the page cache in the upper bits of the radix_tree_node->count, behind the back of the radix tree implementation. Because the radix tree code has no awareness of them, we rely on random subtleties throughout the implementation (such as the node->count != 1 check in the shrinking code, which is meant to exclude multi-entry nodes but also happens to skip nodes with only one shadow entry, as that's accounted in the upper bits). This is error prone and has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't plant shadow entries without radix tree node"). To remove these subtleties, this patch moves shadow entry tracking from the upper bits of node->count to the existing counter for exceptional entries. node->count goes back to being a simple counter of valid entries in the tree node and can be shrunk to a single byte. This vastly simplifies the page cache code. All accounting happens natively inside the radix tree implementation, and maintaining the LRU linkage of shadow nodes is consolidated into a single function in the workingset code that is called for leaf nodes affected by a change in the page cache tree. This also removes the last user of the __radix_delete_node() return value. Eliminate it. Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:43:52 +03:00
unsigned long nodes;
unsigned long cache;
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
mm: workingset: move shadow entry tracking to radix tree exceptional tracking Currently, we track the shadow entries in the page cache in the upper bits of the radix_tree_node->count, behind the back of the radix tree implementation. Because the radix tree code has no awareness of them, we rely on random subtleties throughout the implementation (such as the node->count != 1 check in the shrinking code, which is meant to exclude multi-entry nodes but also happens to skip nodes with only one shadow entry, as that's accounted in the upper bits). This is error prone and has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't plant shadow entries without radix tree node"). To remove these subtleties, this patch moves shadow entry tracking from the upper bits of node->count to the existing counter for exceptional entries. node->count goes back to being a simple counter of valid entries in the tree node and can be shrunk to a single byte. This vastly simplifies the page cache code. All accounting happens natively inside the radix tree implementation, and maintaining the LRU linkage of shadow nodes is consolidated into a single function in the workingset code that is called for leaf nodes affected by a change in the page cache tree. This also removes the last user of the __radix_delete_node() return value. Eliminate it. Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:43:52 +03:00
nodes = list_lru_shrink_count(&shadow_nodes, sc);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
/*
* Approximate a reasonable limit for the radix tree nodes
* containing shadow entries. We don't need to keep more
* shadow entries than possible pages on the active list,
* since refault distances bigger than that are dismissed.
*
* The size of the active list converges toward 100% of
* overall page cache as memory grows, with only a tiny
* inactive list. Assume the total cache size for that.
*
* Nodes might be sparsely populated, with only one shadow
* entry in the extreme case. Obviously, we cannot keep one
* node for every eligible shadow entry, so compromise on a
* worst-case density of 1/8th. Below that, not all eligible
* refaults can be detected anymore.
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
*
* On 64-bit with 7 radix_tree_nodes per page and 64 slots
* each, this will reclaim shadow entries when they consume
* ~1.8% of available memory:
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
*
* PAGE_SIZE / radix_tree_nodes / node_entries * 8 / PAGE_SIZE
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
*/
if (sc->memcg) {
cache = mem_cgroup_node_nr_lru_pages(sc->memcg, sc->nid,
LRU_ALL_FILE);
} else {
cache = node_page_state(NODE_DATA(sc->nid), NR_ACTIVE_FILE) +
node_page_state(NODE_DATA(sc->nid), NR_INACTIVE_FILE);
}
max_nodes = cache >> (RADIX_TREE_MAP_SHIFT - 3);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
mm: add SHRINK_EMPTY shrinker methods return value We need to distinguish the situations when shrinker has very small amount of objects (see vfs_pressure_ratio() called from super_cache_count()), and when it has no objects at all. Currently, in the both of these cases, shrinker::count_objects() returns 0. The patch introduces new SHRINK_EMPTY return value, which will be used for "no objects at all" case. It's is a refactoring mostly, as SHRINK_EMPTY is replaced by 0 by all callers of do_shrink_slab() in this patch, and all the magic will happen in further. Link: http://lkml.kernel.org/r/153063069574.1818.11037751256699341813.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:48:21 +03:00
if (!nodes)
return SHRINK_EMPTY;
mm: workingset: move shadow entry tracking to radix tree exceptional tracking Currently, we track the shadow entries in the page cache in the upper bits of the radix_tree_node->count, behind the back of the radix tree implementation. Because the radix tree code has no awareness of them, we rely on random subtleties throughout the implementation (such as the node->count != 1 check in the shrinking code, which is meant to exclude multi-entry nodes but also happens to skip nodes with only one shadow entry, as that's accounted in the upper bits). This is error prone and has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't plant shadow entries without radix tree node"). To remove these subtleties, this patch moves shadow entry tracking from the upper bits of node->count to the existing counter for exceptional entries. node->count goes back to being a simple counter of valid entries in the tree node and can be shrunk to a single byte. This vastly simplifies the page cache code. All accounting happens natively inside the radix tree implementation, and maintaining the LRU linkage of shadow nodes is consolidated into a single function in the workingset code that is called for leaf nodes affected by a change in the page cache tree. This also removes the last user of the __radix_delete_node() return value. Eliminate it. Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:43:52 +03:00
if (nodes <= max_nodes)
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
return 0;
mm: workingset: move shadow entry tracking to radix tree exceptional tracking Currently, we track the shadow entries in the page cache in the upper bits of the radix_tree_node->count, behind the back of the radix tree implementation. Because the radix tree code has no awareness of them, we rely on random subtleties throughout the implementation (such as the node->count != 1 check in the shrinking code, which is meant to exclude multi-entry nodes but also happens to skip nodes with only one shadow entry, as that's accounted in the upper bits). This is error prone and has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't plant shadow entries without radix tree node"). To remove these subtleties, this patch moves shadow entry tracking from the upper bits of node->count to the existing counter for exceptional entries. node->count goes back to being a simple counter of valid entries in the tree node and can be shrunk to a single byte. This vastly simplifies the page cache code. All accounting happens natively inside the radix tree implementation, and maintaining the LRU linkage of shadow nodes is consolidated into a single function in the workingset code that is called for leaf nodes affected by a change in the page cache tree. This also removes the last user of the __radix_delete_node() return value. Eliminate it. Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:43:52 +03:00
return nodes - max_nodes;
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
}
static enum lru_status shadow_lru_isolate(struct list_head *item,
list_lru: add helpers to isolate items Currently, the isolate callback passed to the list_lru_walk family of functions is supposed to just delete an item from the list upon returning LRU_REMOVED or LRU_REMOVED_RETRY, while nr_items counter is fixed by __list_lru_walk_one after the callback returns. Since the callback is allowed to drop the lock after removing an item (it has to return LRU_REMOVED_RETRY then), the nr_items can be less than the actual number of elements on the list even if we check them under the lock. This makes it difficult to move items from one list_lru_one to another, which is required for per-memcg list_lru reparenting - we can't just splice the lists, we have to move entries one by one. This patch therefore introduces helpers that must be used by callback functions to isolate items instead of raw list_del/list_move. These are list_lru_isolate and list_lru_isolate_move. They not only remove the entry from the list, but also fix the nr_items counter, making sure nr_items always reflects the actual number of elements on the list if checked under the appropriate lock. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 01:59:35 +03:00
struct list_lru_one *lru,
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
spinlock_t *lru_lock,
void *arg)
{
struct address_space *mapping;
struct radix_tree_node *node;
unsigned int i;
int ret;
/*
* Page cache insertions and deletions synchroneously maintain
* the shadow node LRU under the i_pages lock and the
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
* lru_lock. Because the page cache tree is emptied before
* the inode can be destroyed, holding the lru_lock pins any
* address_space that has radix tree nodes on the LRU.
*
* We can then safely transition to the i_pages lock to
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
* pin only the address_space of the particular node we want
* to reclaim, take the node off-LRU, and drop the lru_lock.
*/
node = container_of(item, struct xa_node, private_list);
mapping = container_of(node->array, struct address_space, i_pages);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
/* Coming from the list, invert the lock order */
if (!xa_trylock(&mapping->i_pages)) {
spin_unlock_irq(lru_lock);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
ret = LRU_RETRY;
goto out;
}
list_lru: add helpers to isolate items Currently, the isolate callback passed to the list_lru_walk family of functions is supposed to just delete an item from the list upon returning LRU_REMOVED or LRU_REMOVED_RETRY, while nr_items counter is fixed by __list_lru_walk_one after the callback returns. Since the callback is allowed to drop the lock after removing an item (it has to return LRU_REMOVED_RETRY then), the nr_items can be less than the actual number of elements on the list even if we check them under the lock. This makes it difficult to move items from one list_lru_one to another, which is required for per-memcg list_lru reparenting - we can't just splice the lists, we have to move entries one by one. This patch therefore introduces helpers that must be used by callback functions to isolate items instead of raw list_del/list_move. These are list_lru_isolate and list_lru_isolate_move. They not only remove the entry from the list, but also fix the nr_items counter, making sure nr_items always reflects the actual number of elements on the list if checked under the appropriate lock. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 01:59:35 +03:00
list_lru_isolate(lru, item);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
spin_unlock(lru_lock);
/*
* The nodes should only contain one or more shadow entries,
* no pages, so we expect to be able to remove them all and
* delete and free the empty node afterwards.
*/
if (WARN_ON_ONCE(!node->nr_values))
goto out_invalid;
if (WARN_ON_ONCE(node->count != node->nr_values))
goto out_invalid;
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
if (node->slots[i]) {
if (WARN_ON_ONCE(!xa_is_value(node->slots[i])))
goto out_invalid;
if (WARN_ON_ONCE(!node->nr_values))
mm: workingset: move shadow entry tracking to radix tree exceptional tracking Currently, we track the shadow entries in the page cache in the upper bits of the radix_tree_node->count, behind the back of the radix tree implementation. Because the radix tree code has no awareness of them, we rely on random subtleties throughout the implementation (such as the node->count != 1 check in the shrinking code, which is meant to exclude multi-entry nodes but also happens to skip nodes with only one shadow entry, as that's accounted in the upper bits). This is error prone and has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't plant shadow entries without radix tree node"). To remove these subtleties, this patch moves shadow entry tracking from the upper bits of node->count to the existing counter for exceptional entries. node->count goes back to being a simple counter of valid entries in the tree node and can be shrunk to a single byte. This vastly simplifies the page cache code. All accounting happens natively inside the radix tree implementation, and maintaining the LRU linkage of shadow nodes is consolidated into a single function in the workingset code that is called for leaf nodes affected by a change in the page cache tree. This also removes the last user of the __radix_delete_node() return value. Eliminate it. Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:43:52 +03:00
goto out_invalid;
if (WARN_ON_ONCE(!mapping->nrexceptional))
goto out_invalid;
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
node->slots[i] = NULL;
node->nr_values--;
mm: workingset: move shadow entry tracking to radix tree exceptional tracking Currently, we track the shadow entries in the page cache in the upper bits of the radix_tree_node->count, behind the back of the radix tree implementation. Because the radix tree code has no awareness of them, we rely on random subtleties throughout the implementation (such as the node->count != 1 check in the shrinking code, which is meant to exclude multi-entry nodes but also happens to skip nodes with only one shadow entry, as that's accounted in the upper bits). This is error prone and has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't plant shadow entries without radix tree node"). To remove these subtleties, this patch moves shadow entry tracking from the upper bits of node->count to the existing counter for exceptional entries. node->count goes back to being a simple counter of valid entries in the tree node and can be shrunk to a single byte. This vastly simplifies the page cache code. All accounting happens natively inside the radix tree implementation, and maintaining the LRU linkage of shadow nodes is consolidated into a single function in the workingset code that is called for leaf nodes affected by a change in the page cache tree. This also removes the last user of the __radix_delete_node() return value. Eliminate it. Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 03:43:52 +03:00
node->count--;
dax: support dirty DAX entries in radix tree Add support for tracking dirty DAX entries in the struct address_space radix tree. This tree is already used for dirty page writeback, and it already supports the use of exceptional (non struct page*) entries. In order to properly track dirty DAX pages we will insert new exceptional entries into the radix tree that represent dirty DAX PTE or PMD pages. These exceptional entries will also contain the writeback addresses for the PTE or PMD faults that we can use at fsync/msync time. There are currently two types of exceptional entries (shmem and shadow) that can be placed into the radix tree, and this adds a third. We rely on the fact that only one type of exceptional entry can be found in a given radix tree based on its usage. This happens for free with DAX vs shmem but we explicitly prevent shadow entries from being added to radix trees for DAX mappings. The only shadow entries that would be generated for DAX radix trees would be to track zero page mappings that were created for holes. These pages would receive minimal benefit from having shadow entries, and the choice to have only one type of exceptional entry in a given radix tree makes the logic simpler both in clear_exceptional_entry() and in the rest of DAX. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-23 02:10:40 +03:00
mapping->nrexceptional--;
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
}
}
if (WARN_ON_ONCE(node->nr_values))
goto out_invalid;
inc_lruvec_page_state(virt_to_page(node), WORKINGSET_NODERECLAIM);
__radix_tree_delete_node(&mapping->i_pages, node,
mm, truncate: do not check mapping for every page being truncated During truncation, the mapping has already been checked for shmem and dax so it's known that workingset_update_node is required. This patch avoids the checks on mapping for each page being truncated. In all other cases, a lookup helper is used to determine if workingset_update_node() needs to be called. The one danger is that the API is slightly harder to use as calling workingset_update_node directly without checking for dax or shmem mappings could lead to surprises. However, the API rarely needs to be used and hopefully the comment is enough to give people the hint. sparsetruncate (tiny) 4.14.0-rc4 4.14.0-rc4 oneirq-v1r1 pickhelper-v1r1 Min Time 141.00 ( 0.00%) 140.00 ( 0.71%) 1st-qrtle Time 142.00 ( 0.00%) 141.00 ( 0.70%) 2nd-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%) 3rd-qrtle Time 143.00 ( 0.00%) 143.00 ( 0.00%) Max-90% Time 144.00 ( 0.00%) 144.00 ( 0.00%) Max-95% Time 147.00 ( 0.00%) 145.00 ( 1.36%) Max-99% Time 195.00 ( 0.00%) 191.00 ( 2.05%) Max Time 230.00 ( 0.00%) 205.00 ( 10.87%) Amean Time 144.37 ( 0.00%) 143.82 ( 0.38%) Stddev Time 10.44 ( 0.00%) 9.00 ( 13.74%) Coeff Time 7.23 ( 0.00%) 6.26 ( 13.41%) Best99%Amean Time 143.72 ( 0.00%) 143.34 ( 0.26%) Best95%Amean Time 142.37 ( 0.00%) 142.00 ( 0.26%) Best90%Amean Time 142.19 ( 0.00%) 141.85 ( 0.24%) Best75%Amean Time 141.92 ( 0.00%) 141.58 ( 0.24%) Best50%Amean Time 141.69 ( 0.00%) 141.31 ( 0.27%) Best25%Amean Time 141.38 ( 0.00%) 140.97 ( 0.29%) As you'd expect, the gain is marginal but it can be detected. The differences in bonnie are all within the noise which is not surprising given the impact on the microbenchmark. radix_tree_update_node_t is a callback for some radix operations that optionally passes in a private field. The only user of the callback is workingset_update_node and as it no longer requires a mapping, the private field is removed. Link: http://lkml.kernel.org/r/20171018075952.10627-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 04:37:41 +03:00
workingset_lookup_update(mapping));
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
out_invalid:
xa_unlock_irq(&mapping->i_pages);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
ret = LRU_REMOVED_RETRY;
out:
cond_resched();
spin_lock_irq(lru_lock);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
return ret;
}
static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
struct shrink_control *sc)
{
/* list_lru lock nests inside the IRQ-safe i_pages lock */
return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
NULL);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
}
static struct shrinker workingset_shadow_shrinker = {
.count_objects = count_shadow_nodes,
.scan_objects = scan_shadow_nodes,
.seeks = DEFAULT_SEEKS,
.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
};
/*
* Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
* i_pages lock.
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
*/
static struct lock_class_key shadow_nodes_key;
static int __init workingset_init(void)
{
mm: workingset: eviction buckets for bigmem/lowbit machines For per-cgroup thrash detection, we need to store the memcg ID inside the radix tree cookie as well. However, on 32 bit that doesn't leave enough bits for the eviction timestamp to cover the necessary range of recently evicted pages. The radix tree entry would look like this: [ RADIX_TREE_EXCEPTIONAL(2) | ZONEID(2) | MEMCGID(16) | EVICTION(12) ] 12 bits means 4096 pages, means 16M worth of recently evicted pages. But refaults are actionable up to distances covering half of memory. To not miss refaults, we have to stretch out the range at the cost of how precisely we can tell when a page was evicted. This way we can shave off lower bits from the eviction timestamp until the necessary range is covered. E.g. grouping evictions into 1M buckets (256 pages) will stretch the longest representable refault distance to 4G. This patch implements eviction buckets that are automatically sized according to the available bits and the necessary refault range, in preparation for per-cgroup thrash detection. The maximum actionable distance is currently half of memory, but to support memory hotplug of up to 200% of boot-time memory, we size the buckets to cover double the distance. Beyond that, thrashing won't be detectable anymore. During boot, the kernel will print out the exact parameters, like so: [ 0.113929] workingset: timestamp_bits=12 max_order=18 bucket_order=6 In this example, there are 12 radix entry bits available for the eviction timestamp, to cover a maximum distance of 2^18 pages (this is a 1G machine). Consequently, evictions must be grouped into buckets of 2^6 pages, or 256K. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:57:13 +03:00
unsigned int timestamp_bits;
unsigned int max_order;
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
int ret;
mm: workingset: eviction buckets for bigmem/lowbit machines For per-cgroup thrash detection, we need to store the memcg ID inside the radix tree cookie as well. However, on 32 bit that doesn't leave enough bits for the eviction timestamp to cover the necessary range of recently evicted pages. The radix tree entry would look like this: [ RADIX_TREE_EXCEPTIONAL(2) | ZONEID(2) | MEMCGID(16) | EVICTION(12) ] 12 bits means 4096 pages, means 16M worth of recently evicted pages. But refaults are actionable up to distances covering half of memory. To not miss refaults, we have to stretch out the range at the cost of how precisely we can tell when a page was evicted. This way we can shave off lower bits from the eviction timestamp until the necessary range is covered. E.g. grouping evictions into 1M buckets (256 pages) will stretch the longest representable refault distance to 4G. This patch implements eviction buckets that are automatically sized according to the available bits and the necessary refault range, in preparation for per-cgroup thrash detection. The maximum actionable distance is currently half of memory, but to support memory hotplug of up to 200% of boot-time memory, we size the buckets to cover double the distance. Beyond that, thrashing won't be detectable anymore. During boot, the kernel will print out the exact parameters, like so: [ 0.113929] workingset: timestamp_bits=12 max_order=18 bucket_order=6 In this example, there are 12 radix entry bits available for the eviction timestamp, to cover a maximum distance of 2^18 pages (this is a 1G machine). Consequently, evictions must be grouped into buckets of 2^6 pages, or 256K. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:57:13 +03:00
BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
/*
* Calculate the eviction bucket size to cover the longest
* actionable refault distance, which is currently half of
* memory (totalram_pages/2). However, memory hotplug may add
* some more pages at runtime, so keep working with up to
* double the initial memory by using totalram_pages as-is.
*/
timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
max_order = fls_long(totalram_pages - 1);
if (max_order > timestamp_bits)
bucket_order = max_order - timestamp_bits;
pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
mm: workingset: eviction buckets for bigmem/lowbit machines For per-cgroup thrash detection, we need to store the memcg ID inside the radix tree cookie as well. However, on 32 bit that doesn't leave enough bits for the eviction timestamp to cover the necessary range of recently evicted pages. The radix tree entry would look like this: [ RADIX_TREE_EXCEPTIONAL(2) | ZONEID(2) | MEMCGID(16) | EVICTION(12) ] 12 bits means 4096 pages, means 16M worth of recently evicted pages. But refaults are actionable up to distances covering half of memory. To not miss refaults, we have to stretch out the range at the cost of how precisely we can tell when a page was evicted. This way we can shave off lower bits from the eviction timestamp until the necessary range is covered. E.g. grouping evictions into 1M buckets (256 pages) will stretch the longest representable refault distance to 4G. This patch implements eviction buckets that are automatically sized according to the available bits and the necessary refault range, in preparation for per-cgroup thrash detection. The maximum actionable distance is currently half of memory, but to support memory hotplug of up to 200% of boot-time memory, we size the buckets to cover double the distance. Beyond that, thrashing won't be detectable anymore. During boot, the kernel will print out the exact parameters, like so: [ 0.113929] workingset: timestamp_bits=12 max_order=18 bucket_order=6 In this example, there are 12 radix entry bits available for the eviction timestamp, to cover a maximum distance of 2^18 pages (this is a 1G machine). Consequently, evictions must be grouped into buckets of 2^6 pages, or 256K. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16 00:57:13 +03:00
timestamp_bits, max_order, bucket_order);
mm/workingset.c: refactor workingset_init() Use prealloc_shrinker()/register_shrinker_prepared() instead of register_shrinker(). This will be used in next patch. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112550112.4097.16606173020912323761.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063057666.1818.17625951186610808734.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:47:41 +03:00
ret = prealloc_shrinker(&workingset_shadow_shrinker);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
if (ret)
goto err;
fs: propagate shrinker::id to list_lru Add list_lru::shrinker_id field and populate it by registered shrinker id. This will be used to set correct bit in memcg shrinkers map by lru code in next patches, after there appeared the first related to memcg element in list_lru. Link: http://lkml.kernel.org/r/153063059758.1818.14866596416857717800.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:47:50 +03:00
ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
&workingset_shadow_shrinker);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
if (ret)
goto err_list_lru;
mm/workingset.c: refactor workingset_init() Use prealloc_shrinker()/register_shrinker_prepared() instead of register_shrinker(). This will be used in next patch. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112550112.4097.16606173020912323761.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063057666.1818.17625951186610808734.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:47:41 +03:00
register_shrinker_prepared(&workingset_shadow_shrinker);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
return 0;
err_list_lru:
mm/workingset.c: refactor workingset_init() Use prealloc_shrinker()/register_shrinker_prepared() instead of register_shrinker(). This will be used in next patch. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112550112.4097.16606173020912323761.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063057666.1818.17625951186610808734.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 01:47:41 +03:00
free_prealloced_shrinker(&workingset_shadow_shrinker);
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 01:47:56 +04:00
err:
return ret;
}
module_init(workingset_init);