2009-09-02 14:05:22 +04:00
/*
* Modified to interface to the Linux kernel
* Copyright ( c ) 2009 , Intel Corporation .
*
* This program is free software ; you can redistribute it and / or modify it
* under the terms and conditions of the GNU General Public License ,
* version 2 , as published by the Free Software Foundation .
*
* This program is distributed in the hope it will be useful , but WITHOUT
* ANY WARRANTY ; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE . See the GNU General Public License for
* more details .
*
* You should have received a copy of the GNU General Public License along with
* this program ; if not , write to the Free Software Foundation , Inc . , 59 Temple
* Place - Suite 330 , Boston , MA 02111 - 1307 USA .
*/
/* --------------------------------------------------------------------------
* VMAC and VHASH Implementation by Ted Krovetz ( tdk @ acm . org ) and Wei Dai .
* This implementation is herby placed in the public domain .
* The authors offers no warranty . Use at your own risk .
* Please send bug reports to the authors .
* Last modified : 17 APR 08 , 1700 PDT
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
# include <linux/init.h>
# include <linux/types.h>
# include <linux/crypto.h>
# include <linux/scatterlist.h>
# include <asm/byteorder.h>
# include <crypto/scatterwalk.h>
# include <crypto/vmac.h>
# include <crypto/internal/hash.h>
/*
* Constants and masks
*/
# define UINT64_C(x) x##ULL
const u64 p64 = UINT64_C ( 0xfffffffffffffeff ) ; /* 2^64 - 257 prime */
const u64 m62 = UINT64_C ( 0x3fffffffffffffff ) ; /* 62-bit mask */
const u64 m63 = UINT64_C ( 0x7fffffffffffffff ) ; /* 63-bit mask */
const u64 m64 = UINT64_C ( 0xffffffffffffffff ) ; /* 64-bit mask */
const u64 mpoly = UINT64_C ( 0x1fffffff1fffffff ) ; /* Poly key mask */
2010-03-18 15:22:55 +03:00
# define pe64_to_cpup le64_to_cpup /* Prefer little endian */
2009-09-02 14:05:22 +04:00
# ifdef __LITTLE_ENDIAN
# define INDEX_HIGH 1
# define INDEX_LOW 0
# else
# define INDEX_HIGH 0
# define INDEX_LOW 1
# endif
/*
* The following routines are used in this implementation . They are
* written via macros to simulate zero - overhead call - by - reference .
*
* MUL64 : 64 x64 - > 128 - bit multiplication
* PMUL64 : assumes top bits cleared on inputs
* ADD128 : 128 x128 - > 128 - bit addition
*/
# define ADD128(rh, rl, ih, il) \
do { \
u64 _il = ( il ) ; \
( rl ) + = ( _il ) ; \
if ( ( rl ) < ( _il ) ) \
( rh ) + + ; \
( rh ) + = ( ih ) ; \
} while ( 0 )
# define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2))
# define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \
do { \
u64 _i1 = ( i1 ) , _i2 = ( i2 ) ; \
u64 m = MUL32 ( _i1 , _i2 > > 32 ) + MUL32 ( _i1 > > 32 , _i2 ) ; \
rh = MUL32 ( _i1 > > 32 , _i2 > > 32 ) ; \
rl = MUL32 ( _i1 , _i2 ) ; \
ADD128 ( rh , rl , ( m > > 32 ) , ( m < < 32 ) ) ; \
} while ( 0 )
# define MUL64(rh, rl, i1, i2) \
do { \
u64 _i1 = ( i1 ) , _i2 = ( i2 ) ; \
u64 m1 = MUL32 ( _i1 , _i2 > > 32 ) ; \
u64 m2 = MUL32 ( _i1 > > 32 , _i2 ) ; \
rh = MUL32 ( _i1 > > 32 , _i2 > > 32 ) ; \
rl = MUL32 ( _i1 , _i2 ) ; \
ADD128 ( rh , rl , ( m1 > > 32 ) , ( m1 < < 32 ) ) ; \
ADD128 ( rh , rl , ( m2 > > 32 ) , ( m2 < < 32 ) ) ; \
} while ( 0 )
/*
* For highest performance the L1 NH and L2 polynomial hashes should be
2011-03-31 05:57:33 +04:00
* carefully implemented to take advantage of one ' s target architecture .
2009-09-02 14:05:22 +04:00
* Here these two hash functions are defined multiple time ; once for
* 64 - bit architectures , once for 32 - bit SSE2 architectures , and once
* for the rest ( 32 - bit ) architectures .
* For each , nh_16 * must * be defined ( works on multiples of 16 bytes ) .
* Optionally , nh_vmac_nhbytes can be defined ( for multiples of
* VMAC_NHBYTES ) , and nh_16_2 and nh_vmac_nhbytes_2 ( versions that do two
* NH computations at once ) .
*/
# ifdef CONFIG_64BIT
# define nh_16(mp, kp, nw, rh, rl) \
do { \
int i ; u64 th , tl ; \
rh = rl = 0 ; \
for ( i = 0 ; i < nw ; i + = 2 ) { \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i ) + ( kp ) [ i ] , \
pe64_to_cpup ( ( mp ) + i + 1 ) + ( kp ) [ i + 1 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh , rl , th , tl ) ; \
} \
} while ( 0 )
# define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
do { \
int i ; u64 th , tl ; \
rh1 = rl1 = rh = rl = 0 ; \
for ( i = 0 ; i < nw ; i + = 2 ) { \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i ) + ( kp ) [ i ] , \
pe64_to_cpup ( ( mp ) + i + 1 ) + ( kp ) [ i + 1 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh , rl , th , tl ) ; \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i ) + ( kp ) [ i + 2 ] , \
pe64_to_cpup ( ( mp ) + i + 1 ) + ( kp ) [ i + 3 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh1 , rl1 , th , tl ) ; \
} \
} while ( 0 )
# if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
# define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
do { \
int i ; u64 th , tl ; \
rh = rl = 0 ; \
for ( i = 0 ; i < nw ; i + = 8 ) { \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i ) + ( kp ) [ i ] , \
pe64_to_cpup ( ( mp ) + i + 1 ) + ( kp ) [ i + 1 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh , rl , th , tl ) ; \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i + 2 ) + ( kp ) [ i + 2 ] , \
pe64_to_cpup ( ( mp ) + i + 3 ) + ( kp ) [ i + 3 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh , rl , th , tl ) ; \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i + 4 ) + ( kp ) [ i + 4 ] , \
pe64_to_cpup ( ( mp ) + i + 5 ) + ( kp ) [ i + 5 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh , rl , th , tl ) ; \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i + 6 ) + ( kp ) [ i + 6 ] , \
pe64_to_cpup ( ( mp ) + i + 7 ) + ( kp ) [ i + 7 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh , rl , th , tl ) ; \
} \
} while ( 0 )
# define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
do { \
int i ; u64 th , tl ; \
rh1 = rl1 = rh = rl = 0 ; \
for ( i = 0 ; i < nw ; i + = 8 ) { \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i ) + ( kp ) [ i ] , \
pe64_to_cpup ( ( mp ) + i + 1 ) + ( kp ) [ i + 1 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh , rl , th , tl ) ; \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i ) + ( kp ) [ i + 2 ] , \
pe64_to_cpup ( ( mp ) + i + 1 ) + ( kp ) [ i + 3 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh1 , rl1 , th , tl ) ; \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i + 2 ) + ( kp ) [ i + 2 ] , \
pe64_to_cpup ( ( mp ) + i + 3 ) + ( kp ) [ i + 3 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh , rl , th , tl ) ; \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i + 2 ) + ( kp ) [ i + 4 ] , \
pe64_to_cpup ( ( mp ) + i + 3 ) + ( kp ) [ i + 5 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh1 , rl1 , th , tl ) ; \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i + 4 ) + ( kp ) [ i + 4 ] , \
pe64_to_cpup ( ( mp ) + i + 5 ) + ( kp ) [ i + 5 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh , rl , th , tl ) ; \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i + 4 ) + ( kp ) [ i + 6 ] , \
pe64_to_cpup ( ( mp ) + i + 5 ) + ( kp ) [ i + 7 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh1 , rl1 , th , tl ) ; \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i + 6 ) + ( kp ) [ i + 6 ] , \
pe64_to_cpup ( ( mp ) + i + 7 ) + ( kp ) [ i + 7 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh , rl , th , tl ) ; \
2010-03-18 15:22:55 +03:00
MUL64 ( th , tl , pe64_to_cpup ( ( mp ) + i + 6 ) + ( kp ) [ i + 8 ] , \
pe64_to_cpup ( ( mp ) + i + 7 ) + ( kp ) [ i + 9 ] ) ; \
2009-09-02 14:05:22 +04:00
ADD128 ( rh1 , rl1 , th , tl ) ; \
} \
} while ( 0 )
# endif
# define poly_step(ah, al, kh, kl, mh, ml) \
do { \
u64 t1h , t1l , t2h , t2l , t3h , t3l , z = 0 ; \
/* compute ab*cd, put bd into result registers */ \
PMUL64 ( t3h , t3l , al , kh ) ; \
PMUL64 ( t2h , t2l , ah , kl ) ; \
PMUL64 ( t1h , t1l , ah , 2 * kh ) ; \
PMUL64 ( ah , al , al , kl ) ; \
/* add 2 * ac to result */ \
ADD128 ( ah , al , t1h , t1l ) ; \
/* add together ad + bc */ \
ADD128 ( t2h , t2l , t3h , t3l ) ; \
/* now (ah,al), (t2l,2*t2h) need summing */ \
/* first add the high registers, carrying into t2h */ \
ADD128 ( t2h , ah , z , t2l ) ; \
/* double t2h and add top bit of ah */ \
t2h = 2 * t2h + ( ah > > 63 ) ; \
ah & = m63 ; \
/* now add the low registers */ \
ADD128 ( ah , al , mh , ml ) ; \
ADD128 ( ah , al , z , t2h ) ; \
} while ( 0 )
# else /* ! CONFIG_64BIT */
# ifndef nh_16
# define nh_16(mp, kp, nw, rh, rl) \
do { \
u64 t1 , t2 , m1 , m2 , t ; \
int i ; \
rh = rl = t = 0 ; \
for ( i = 0 ; i < nw ; i + = 2 ) { \
2010-03-18 15:22:55 +03:00
t1 = pe64_to_cpup ( mp + i ) + kp [ i ] ; \
t2 = pe64_to_cpup ( mp + i + 1 ) + kp [ i + 1 ] ; \
2009-09-02 14:05:22 +04:00
m2 = MUL32 ( t1 > > 32 , t2 ) ; \
m1 = MUL32 ( t1 , t2 > > 32 ) ; \
ADD128 ( rh , rl , MUL32 ( t1 > > 32 , t2 > > 32 ) , \
MUL32 ( t1 , t2 ) ) ; \
rh + = ( u64 ) ( u32 ) ( m1 > > 32 ) \
+ ( u32 ) ( m2 > > 32 ) ; \
t + = ( u64 ) ( u32 ) m1 + ( u32 ) m2 ; \
} \
ADD128 ( rh , rl , ( t > > 32 ) , ( t < < 32 ) ) ; \
} while ( 0 )
# endif
static void poly_step_func ( u64 * ahi , u64 * alo ,
const u64 * kh , const u64 * kl ,
const u64 * mh , const u64 * ml )
{
# define a0 (*(((u32 *)alo)+INDEX_LOW))
# define a1 (*(((u32 *)alo)+INDEX_HIGH))
# define a2 (*(((u32 *)ahi)+INDEX_LOW))
# define a3 (*(((u32 *)ahi)+INDEX_HIGH))
# define k0 (*(((u32 *)kl)+INDEX_LOW))
# define k1 (*(((u32 *)kl)+INDEX_HIGH))
# define k2 (*(((u32 *)kh)+INDEX_LOW))
# define k3 (*(((u32 *)kh)+INDEX_HIGH))
u64 p , q , t ;
u32 t2 ;
p = MUL32 ( a3 , k3 ) ;
p + = p ;
p + = * ( u64 * ) mh ;
p + = MUL32 ( a0 , k2 ) ;
p + = MUL32 ( a1 , k1 ) ;
p + = MUL32 ( a2 , k0 ) ;
t = ( u32 ) ( p ) ;
p > > = 32 ;
p + = MUL32 ( a0 , k3 ) ;
p + = MUL32 ( a1 , k2 ) ;
p + = MUL32 ( a2 , k1 ) ;
p + = MUL32 ( a3 , k0 ) ;
t | = ( ( u64 ) ( ( u32 ) p & 0x7fffffff ) ) < < 32 ;
p > > = 31 ;
p + = ( u64 ) ( ( ( u32 * ) ml ) [ INDEX_LOW ] ) ;
p + = MUL32 ( a0 , k0 ) ;
q = MUL32 ( a1 , k3 ) ;
q + = MUL32 ( a2 , k2 ) ;
q + = MUL32 ( a3 , k1 ) ;
q + = q ;
p + = q ;
t2 = ( u32 ) ( p ) ;
p > > = 32 ;
p + = ( u64 ) ( ( ( u32 * ) ml ) [ INDEX_HIGH ] ) ;
p + = MUL32 ( a0 , k1 ) ;
p + = MUL32 ( a1 , k0 ) ;
q = MUL32 ( a2 , k3 ) ;
q + = MUL32 ( a3 , k2 ) ;
q + = q ;
p + = q ;
* ( u64 * ) ( alo ) = ( p < < 32 ) | t2 ;
p > > = 32 ;
* ( u64 * ) ( ahi ) = p + t ;
# undef a0
# undef a1
# undef a2
# undef a3
# undef k0
# undef k1
# undef k2
# undef k3
}
# define poly_step(ah, al, kh, kl, mh, ml) \
poly_step_func ( & ( ah ) , & ( al ) , & ( kh ) , & ( kl ) , & ( mh ) , & ( ml ) )
# endif /* end of specialized NH and poly definitions */
/* At least nh_16 is defined. Defined others as needed here */
# ifndef nh_16_2
# define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
do { \
nh_16 ( mp , kp , nw , rh , rl ) ; \
nh_16 ( mp , ( ( kp ) + 2 ) , nw , rh2 , rl2 ) ; \
} while ( 0 )
# endif
# ifndef nh_vmac_nhbytes
# define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
nh_16 ( mp , kp , nw , rh , rl )
# endif
# ifndef nh_vmac_nhbytes_2
# define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
do { \
nh_vmac_nhbytes ( mp , kp , nw , rh , rl ) ; \
nh_vmac_nhbytes ( mp , ( ( kp ) + 2 ) , nw , rh2 , rl2 ) ; \
} while ( 0 )
# endif
static void vhash_abort ( struct vmac_ctx * ctx )
{
ctx - > polytmp [ 0 ] = ctx - > polykey [ 0 ] ;
ctx - > polytmp [ 1 ] = ctx - > polykey [ 1 ] ;
ctx - > first_block_processed = 0 ;
}
2010-03-18 15:22:55 +03:00
static u64 l3hash ( u64 p1 , u64 p2 , u64 k1 , u64 k2 , u64 len )
2009-09-02 14:05:22 +04:00
{
u64 rh , rl , t , z = 0 ;
/* fully reduce (p1,p2)+(len,0) mod p127 */
t = p1 > > 63 ;
p1 & = m63 ;
ADD128 ( p1 , p2 , len , t ) ;
/* At this point, (p1,p2) is at most 2^127+(len<<64) */
t = ( p1 > m63 ) + ( ( p1 = = m63 ) & & ( p2 = = m64 ) ) ;
ADD128 ( p1 , p2 , z , t ) ;
p1 & = m63 ;
/* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
t = p1 + ( p2 > > 32 ) ;
t + = ( t > > 32 ) ;
t + = ( u32 ) t > 0xfffffffeu ;
p1 + = ( t > > 32 ) ;
p2 + = ( p1 < < 32 ) ;
/* compute (p1+k1)%p64 and (p2+k2)%p64 */
p1 + = k1 ;
p1 + = ( 0 - ( p1 < k1 ) ) & 257 ;
p2 + = k2 ;
p2 + = ( 0 - ( p2 < k2 ) ) & 257 ;
/* compute (p1+k1)*(p2+k2)%p64 */
MUL64 ( rh , rl , p1 , p2 ) ;
t = rh > > 56 ;
ADD128 ( t , rl , z , rh ) ;
rh < < = 8 ;
ADD128 ( t , rl , z , rh ) ;
t + = t < < 8 ;
rl + = t ;
rl + = ( 0 - ( rl < t ) ) & 257 ;
rl + = ( 0 - ( rl > p64 - 1 ) ) & 257 ;
return rl ;
}
static void vhash_update ( const unsigned char * m ,
unsigned int mbytes , /* Pos multiple of VMAC_NHBYTES */
struct vmac_ctx * ctx )
{
u64 rh , rl , * mptr ;
const u64 * kptr = ( u64 * ) ctx - > nhkey ;
int i ;
u64 ch , cl ;
u64 pkh = ctx - > polykey [ 0 ] ;
u64 pkl = ctx - > polykey [ 1 ] ;
mptr = ( u64 * ) m ;
i = mbytes / VMAC_NHBYTES ; /* Must be non-zero */
ch = ctx - > polytmp [ 0 ] ;
cl = ctx - > polytmp [ 1 ] ;
if ( ! ctx - > first_block_processed ) {
ctx - > first_block_processed = 1 ;
nh_vmac_nhbytes ( mptr , kptr , VMAC_NHBYTES / 8 , rh , rl ) ;
rh & = m62 ;
ADD128 ( ch , cl , rh , rl ) ;
mptr + = ( VMAC_NHBYTES / sizeof ( u64 ) ) ;
i - - ;
}
while ( i - - ) {
nh_vmac_nhbytes ( mptr , kptr , VMAC_NHBYTES / 8 , rh , rl ) ;
rh & = m62 ;
poly_step ( ch , cl , pkh , pkl , rh , rl ) ;
mptr + = ( VMAC_NHBYTES / sizeof ( u64 ) ) ;
}
ctx - > polytmp [ 0 ] = ch ;
ctx - > polytmp [ 1 ] = cl ;
}
static u64 vhash ( unsigned char m [ ] , unsigned int mbytes ,
u64 * tagl , struct vmac_ctx * ctx )
{
u64 rh , rl , * mptr ;
const u64 * kptr = ( u64 * ) ctx - > nhkey ;
int i , remaining ;
u64 ch , cl ;
u64 pkh = ctx - > polykey [ 0 ] ;
u64 pkl = ctx - > polykey [ 1 ] ;
mptr = ( u64 * ) m ;
i = mbytes / VMAC_NHBYTES ;
remaining = mbytes % VMAC_NHBYTES ;
if ( ctx - > first_block_processed ) {
ch = ctx - > polytmp [ 0 ] ;
cl = ctx - > polytmp [ 1 ] ;
} else if ( i ) {
nh_vmac_nhbytes ( mptr , kptr , VMAC_NHBYTES / 8 , ch , cl ) ;
ch & = m62 ;
ADD128 ( ch , cl , pkh , pkl ) ;
mptr + = ( VMAC_NHBYTES / sizeof ( u64 ) ) ;
i - - ;
} else if ( remaining ) {
nh_16 ( mptr , kptr , 2 * ( ( remaining + 15 ) / 16 ) , ch , cl ) ;
ch & = m62 ;
ADD128 ( ch , cl , pkh , pkl ) ;
mptr + = ( VMAC_NHBYTES / sizeof ( u64 ) ) ;
goto do_l3 ;
} else { /* Empty String */
ch = pkh ; cl = pkl ;
goto do_l3 ;
}
while ( i - - ) {
nh_vmac_nhbytes ( mptr , kptr , VMAC_NHBYTES / 8 , rh , rl ) ;
rh & = m62 ;
poly_step ( ch , cl , pkh , pkl , rh , rl ) ;
mptr + = ( VMAC_NHBYTES / sizeof ( u64 ) ) ;
}
if ( remaining ) {
nh_16 ( mptr , kptr , 2 * ( ( remaining + 15 ) / 16 ) , rh , rl ) ;
rh & = m62 ;
poly_step ( ch , cl , pkh , pkl , rh , rl ) ;
}
do_l3 :
vhash_abort ( ctx ) ;
remaining * = 8 ;
return l3hash ( ch , cl , ctx - > l3key [ 0 ] , ctx - > l3key [ 1 ] , remaining ) ;
}
static u64 vmac ( unsigned char m [ ] , unsigned int mbytes ,
unsigned char n [ 16 ] , u64 * tagl ,
struct vmac_ctx_t * ctx )
{
u64 * in_n , * out_p ;
u64 p , h ;
int i ;
in_n = ctx - > __vmac_ctx . cached_nonce ;
out_p = ctx - > __vmac_ctx . cached_aes ;
i = n [ 15 ] & 1 ;
if ( ( * ( u64 * ) ( n + 8 ) ! = in_n [ 1 ] ) | | ( * ( u64 * ) ( n ) ! = in_n [ 0 ] ) ) {
in_n [ 0 ] = * ( u64 * ) ( n ) ;
in_n [ 1 ] = * ( u64 * ) ( n + 8 ) ;
( ( unsigned char * ) in_n ) [ 15 ] & = 0xFE ;
crypto_cipher_encrypt_one ( ctx - > child ,
( unsigned char * ) out_p , ( unsigned char * ) in_n ) ;
( ( unsigned char * ) in_n ) [ 15 ] | = ( unsigned char ) ( 1 - i ) ;
}
p = be64_to_cpup ( out_p + i ) ;
h = vhash ( m , mbytes , ( u64 * ) 0 , & ctx - > __vmac_ctx ) ;
2010-03-18 15:22:55 +03:00
return le64_to_cpu ( p + h ) ;
2009-09-02 14:05:22 +04:00
}
static int vmac_set_key ( unsigned char user_key [ ] , struct vmac_ctx_t * ctx )
{
u64 in [ 2 ] = { 0 } , out [ 2 ] ;
unsigned i ;
int err = 0 ;
err = crypto_cipher_setkey ( ctx - > child , user_key , VMAC_KEY_LEN ) ;
if ( err )
return err ;
/* Fill nh key */
( ( unsigned char * ) in ) [ 0 ] = 0x80 ;
for ( i = 0 ; i < sizeof ( ctx - > __vmac_ctx . nhkey ) / 8 ; i + = 2 ) {
crypto_cipher_encrypt_one ( ctx - > child ,
( unsigned char * ) out , ( unsigned char * ) in ) ;
ctx - > __vmac_ctx . nhkey [ i ] = be64_to_cpup ( out ) ;
ctx - > __vmac_ctx . nhkey [ i + 1 ] = be64_to_cpup ( out + 1 ) ;
( ( unsigned char * ) in ) [ 15 ] + = 1 ;
}
/* Fill poly key */
( ( unsigned char * ) in ) [ 0 ] = 0xC0 ;
in [ 1 ] = 0 ;
for ( i = 0 ; i < sizeof ( ctx - > __vmac_ctx . polykey ) / 8 ; i + = 2 ) {
crypto_cipher_encrypt_one ( ctx - > child ,
( unsigned char * ) out , ( unsigned char * ) in ) ;
ctx - > __vmac_ctx . polytmp [ i ] =
ctx - > __vmac_ctx . polykey [ i ] =
be64_to_cpup ( out ) & mpoly ;
ctx - > __vmac_ctx . polytmp [ i + 1 ] =
ctx - > __vmac_ctx . polykey [ i + 1 ] =
be64_to_cpup ( out + 1 ) & mpoly ;
( ( unsigned char * ) in ) [ 15 ] + = 1 ;
}
/* Fill ip key */
( ( unsigned char * ) in ) [ 0 ] = 0xE0 ;
in [ 1 ] = 0 ;
for ( i = 0 ; i < sizeof ( ctx - > __vmac_ctx . l3key ) / 8 ; i + = 2 ) {
do {
crypto_cipher_encrypt_one ( ctx - > child ,
( unsigned char * ) out , ( unsigned char * ) in ) ;
ctx - > __vmac_ctx . l3key [ i ] = be64_to_cpup ( out ) ;
ctx - > __vmac_ctx . l3key [ i + 1 ] = be64_to_cpup ( out + 1 ) ;
( ( unsigned char * ) in ) [ 15 ] + = 1 ;
} while ( ctx - > __vmac_ctx . l3key [ i ] > = p64
| | ctx - > __vmac_ctx . l3key [ i + 1 ] > = p64 ) ;
}
/* Invalidate nonce/aes cache and reset other elements */
ctx - > __vmac_ctx . cached_nonce [ 0 ] = ( u64 ) - 1 ; /* Ensure illegal nonce */
ctx - > __vmac_ctx . cached_nonce [ 1 ] = ( u64 ) 0 ; /* Ensure illegal nonce */
ctx - > __vmac_ctx . first_block_processed = 0 ;
return err ;
}
static int vmac_setkey ( struct crypto_shash * parent ,
const u8 * key , unsigned int keylen )
{
struct vmac_ctx_t * ctx = crypto_shash_ctx ( parent ) ;
if ( keylen ! = VMAC_KEY_LEN ) {
crypto_shash_set_flags ( parent , CRYPTO_TFM_RES_BAD_KEY_LEN ) ;
return - EINVAL ;
}
return vmac_set_key ( ( u8 * ) key , ctx ) ;
}
static int vmac_init ( struct shash_desc * pdesc )
{
return 0 ;
}
static int vmac_update ( struct shash_desc * pdesc , const u8 * p ,
unsigned int len )
{
struct crypto_shash * parent = pdesc - > tfm ;
struct vmac_ctx_t * ctx = crypto_shash_ctx ( parent ) ;
vhash_update ( p , len , & ctx - > __vmac_ctx ) ;
return 0 ;
}
static int vmac_final ( struct shash_desc * pdesc , u8 * out )
{
struct crypto_shash * parent = pdesc - > tfm ;
struct vmac_ctx_t * ctx = crypto_shash_ctx ( parent ) ;
vmac_t mac ;
u8 nonce [ 16 ] = { } ;
mac = vmac ( NULL , 0 , nonce , NULL , ctx ) ;
memcpy ( out , & mac , sizeof ( vmac_t ) ) ;
memset ( & mac , 0 , sizeof ( vmac_t ) ) ;
memset ( & ctx - > __vmac_ctx , 0 , sizeof ( struct vmac_ctx ) ) ;
return 0 ;
}
static int vmac_init_tfm ( struct crypto_tfm * tfm )
{
struct crypto_cipher * cipher ;
struct crypto_instance * inst = ( void * ) tfm - > __crt_alg ;
struct crypto_spawn * spawn = crypto_instance_ctx ( inst ) ;
struct vmac_ctx_t * ctx = crypto_tfm_ctx ( tfm ) ;
cipher = crypto_spawn_cipher ( spawn ) ;
if ( IS_ERR ( cipher ) )
return PTR_ERR ( cipher ) ;
ctx - > child = cipher ;
return 0 ;
}
static void vmac_exit_tfm ( struct crypto_tfm * tfm )
{
struct vmac_ctx_t * ctx = crypto_tfm_ctx ( tfm ) ;
crypto_free_cipher ( ctx - > child ) ;
}
static int vmac_create ( struct crypto_template * tmpl , struct rtattr * * tb )
{
struct shash_instance * inst ;
struct crypto_alg * alg ;
int err ;
err = crypto_check_attr_type ( tb , CRYPTO_ALG_TYPE_SHASH ) ;
if ( err )
return err ;
alg = crypto_get_attr_alg ( tb , CRYPTO_ALG_TYPE_CIPHER ,
CRYPTO_ALG_TYPE_MASK ) ;
if ( IS_ERR ( alg ) )
return PTR_ERR ( alg ) ;
inst = shash_alloc_instance ( " vmac " , alg ) ;
err = PTR_ERR ( inst ) ;
if ( IS_ERR ( inst ) )
goto out_put_alg ;
err = crypto_init_spawn ( shash_instance_ctx ( inst ) , alg ,
shash_crypto_instance ( inst ) ,
CRYPTO_ALG_TYPE_MASK ) ;
if ( err )
goto out_free_inst ;
inst - > alg . base . cra_priority = alg - > cra_priority ;
inst - > alg . base . cra_blocksize = alg - > cra_blocksize ;
inst - > alg . base . cra_alignmask = alg - > cra_alignmask ;
inst - > alg . digestsize = sizeof ( vmac_t ) ;
inst - > alg . base . cra_ctxsize = sizeof ( struct vmac_ctx_t ) ;
inst - > alg . base . cra_init = vmac_init_tfm ;
inst - > alg . base . cra_exit = vmac_exit_tfm ;
inst - > alg . init = vmac_init ;
inst - > alg . update = vmac_update ;
inst - > alg . final = vmac_final ;
inst - > alg . setkey = vmac_setkey ;
err = shash_register_instance ( tmpl , inst ) ;
if ( err ) {
out_free_inst :
shash_free_instance ( shash_crypto_instance ( inst ) ) ;
}
out_put_alg :
crypto_mod_put ( alg ) ;
return err ;
}
static struct crypto_template vmac_tmpl = {
. name = " vmac " ,
. create = vmac_create ,
. free = shash_free_instance ,
. module = THIS_MODULE ,
} ;
static int __init vmac_module_init ( void )
{
return crypto_register_template ( & vmac_tmpl ) ;
}
static void __exit vmac_module_exit ( void )
{
crypto_unregister_template ( & vmac_tmpl ) ;
}
module_init ( vmac_module_init ) ;
module_exit ( vmac_module_exit ) ;
MODULE_LICENSE ( " GPL " ) ;
MODULE_DESCRIPTION ( " VMAC hash algorithm " ) ;